1
|
Al-Hilfi A, Li Z, Merz KM, Walker KD. Mg 2+-Ion Dependence Revealed for a BAHD 13- O-β-Aminoacyltransferase from Taxus Plants. JACS AU 2024; 4:4249-4262. [PMID: 39610752 PMCID: PMC11600153 DOI: 10.1021/jacsau.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/30/2024]
Abstract
A Taxus baccatin III:3-amino-3-phenylpropanoyltransferase (BAPT, Accession: AY082804) in clade 6 of the BAHD family catalyzed a Mg2+-dependent transfer of isoserines from their corresponding CoA thioesters. An advanced taxane baccatin III on the paclitaxel biosynthetic pathway in Taxus plants was incubated BAPT and phenylisoserine CoA or isobutenylisoserinyl CoA with and without MgCl2. BAPT biocatalytically converted baccatin III to its 13-O-phenylisoserinyl and 3-(1',1'-dimethylvinyl)isoserinyl analogs, an activity that abrogated when Mg2+ ions were omitted. Baccatin III analogs that are precursors to new generation taxanes were also assayed with BAPT, the Mg2+ cofactor, and 3-(1',1'-dimethylvinyl)isoserinyl CoA to make paclitaxel derivatives at k cat/K M ranging between 27 and 234 s-1 M-1. Molecular dynamics simulations of the BAPT active site modeled on the crystal structure of a BAHD family member (PDB: 4G0B) suggest that Mg2+ causes BAPT to use an unconventional active site space compared to those of other BAHD catalysts, studied over the last 25 years, that use a conserved catalytic histidine residue that is glycine in BAPT. The simulated six-membered Mg2+-coordination complex includes an interaction that disrupts an intramolecular hydrogen bond between the C13-hydroxyl and the carbonyl oxygen of the C4-acetate of baccatin III. A simulation snapshot captured an active site conformation showing the liberated C13-hydroxyl of baccatin III poised for acylation by BAPT through a potential substrate-assisted mechanism.
Collapse
Affiliation(s)
- Aimen Al-Hilfi
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Li
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Rigo R, Zumsteg J, Schaller H, Barchietto T, Buchet S, Heintz D, Villette C. BW312 Hordeum vulgare semi-dwarf mutant exhibits a shifted metabolic profile towards pathogen resistance. Metabolomics 2024; 20:119. [PMID: 39438353 DOI: 10.1007/s11306-024-02174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Plant hormonal mutants, which do not produce or are insensitive to hormones, are often affected in their growth and development, but other metabolic rearrangements might be involved. A trade-off between growth and stress response is necessary for the plant survival. OBJECTIVES Here, we explore the metabolic profile and the pathogen resistance of a brassinosteroid-insensitive Hordeum vulgare L. semi-dwarf mutant, BW312. METHODS We investigate BW312 metabolism through a chemical enrichment analysis, confirming a shifted metabolic profile towards pathogen resistance. The effective pathogen resistance of the mutant was tested in presence of Pyrenophora teres and Fusarium graminearum. RESULTS Four compound families were increased in the mutant (pyrrolidines, basic amino acids, alkaloids, monounsaturated fatty acids), while two compound families were decreased (pyrrolidinones, anthocyanins). Dipeptides were also altered (increased and decreased). BW312 displayed a better resistance to Pyrenophora teres in the earliest stage of infection with a 21.5% decrease of the lesion length 10 days after infection. BW312 also exhibited a reduced lesion length (43.3%) and a reduced browning of the lesions (55.5%) when exposed to Fusarium graminearum at the seedling stage. CONCLUSION The observed metabolomic shift strongly suggests that the BW312 semi-dwarf mutant is in a primed state, resulting in a standby state of alertness to pathogens.
Collapse
Affiliation(s)
- Richard Rigo
- BIOtransfer, 41 Rue Emile Zola, 93100, Montreuil, France
| | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | - Hubert Schaller
- Plant Isoprenoid Biology (PIB), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | | | - Sergej Buchet
- BIOtransfer, 41 Rue Emile Zola, 93100, Montreuil, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | - Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de Biologie Moléculaire Des Plantes, CNRS, Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
3
|
Deng M, Zeng Q, Liu S, Jin M, Luo H, Luo J. Combining association with linkage mapping to dissect the phenolamides metabolism of the maize kernel. FRONTIERS IN PLANT SCIENCE 2024; 15:1376405. [PMID: 38681218 PMCID: PMC11047430 DOI: 10.3389/fpls.2024.1376405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Phenolamides are important secondary metabolites in plant species. They play important roles in plant defense responses against pathogens and insect herbivores, protection against UV irradiation and floral induction and development. However, the accumulation and variation in phenolamides content in diverse maize lines and the genes responsible for their biosynthesis remain largely unknown. Here, we combined genetic mapping, protein regulatory network and bioinformatics analysis to further enhance the understanding of maize phenolamides biosynthesis. Sixteen phenolamides were identified in multiple populations, and they were all significantly correlated with one or several of 19 phenotypic traits. By linkage mapping, 58, 58, 39 and 67 QTLs, with an average of 3.9, 3.6, 3.6 and 4.2 QTLs for each trait were mapped in BBE1, BBE2, ZYE1 and ZYE2, explaining 9.47%, 10.78%, 9.51% and 11.40% phenotypic variation for each QTL on average, respectively. By GWAS, 39 and 36 significant loci were detected in two different environments, 3.3 and 2.8 loci for each trait, explaining 10.00% and 9.97% phenotypic variation for each locus on average, respectively. Totally, 58 unique candidate genes were identified, 31% of them encoding enzymes involved in amine and derivative metabolic processes. Gene Ontology term analysis of the 358 protein-protein interrelated genes revealed significant enrichment in terms relating to cellular nitrogen metabolism, amine metabolism. GRMZM2G066142, GRMZM2G066049, GRMZM2G165390 and GRMZM2G159587 were further validated involvement in phenolamides biosynthesis. Our results provide insights into the genetic basis of phenolamides biosynthesis in maize kernels, understanding phenolamides biosynthesis and its nutritional content and ability to withstand biotic and abiotic stress.
Collapse
Affiliation(s)
- Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qingping Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Songqin Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Ma N, Sun P, Li ZY, Zhang FJ, Wang XF, You CX, Zhang CL, Zhang Z. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. STRESS BIOLOGY 2024; 4:2. [PMID: 38163824 PMCID: PMC10758382 DOI: 10.1007/s44154-023-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.
Collapse
Affiliation(s)
- Ning Ma
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Ping Sun
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Zhao-Yang Li
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Ling Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
5
|
Zhang W, Jiménez-Jiménez Á, Capellades M, Rencoret J, Kashyap A, Coll NS. Determination of De Novo Suberin-Lignin Ferulate Deposition in Xylem Tissue Upon Vascular Pathogen Attack. Methods Mol Biol 2024; 2722:117-127. [PMID: 37897604 DOI: 10.1007/978-1-0716-3477-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Plant vascular pathogens use different ways to reach the xylem vessels and cause devastating diseases in plants. Resistant and tolerant plants have evolved various defense mechanisms against vascular pathogens. Inducible physico-chemical structures, such as the formation of tyloses and wall reinforcements with phenolic polymers, are very effective barriers that confine the pathogen and prevent colonization. Here, we use a combination of classical histochemistry along with bright-field and fluorescence microscopy and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy to visualize and characterize wall reinforcements containing phenolic wall polymers, namely, lignin, ferulates, and suberin, which occur in different xylem vasculature in response to pathogen attack.
Collapse
Affiliation(s)
- Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Álvaro Jiménez-Jiménez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Jorge Rencoret
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, Seville, Spain
| | - Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, India
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| |
Collapse
|
6
|
Payá C, Belda-Palazón B, Vera-Sirera F, Pérez-Pérez J, Jordá L, Rodrigo I, Bellés JM, López-Gresa MP, Lisón P. Signalling mechanisms and agricultural applications of ( Z)-3-hexenyl butyrate-mediated stomatal closure. HORTICULTURE RESEARCH 2024; 11:uhad248. [PMID: 38239809 PMCID: PMC10794947 DOI: 10.1093/hr/uhad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2023] [Indexed: 01/22/2024]
Abstract
Biotic and abiotic stresses can severely limit crop productivity. In response to drought, plants close stomata to prevent water loss. Furthermore, stomata are the main entry point for several pathogens. Therefore, the development of natural products to control stomata closure can be considered a sustainable strategy to cope with stresses in agriculture. Plants respond to different stresses by releasing volatile organic compounds. Green leaf volatiles, which are commonly produced across different plant species after tissue damage, comprise an important group within volatile organic compounds. Among them, (Z)-3-hexenyl butyrate (HB) was described as a natural inducer of stomatal closure, playing an important role in stomatal immunity, although its mechanism of action is still unknown. Through different genetic, pharmacological, and biochemical approaches, we here uncover that HB perception initiates various defence signalling events, such as activation of Ca2+ permeable channels, mitogen-activated protein kinases, and production of Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species. Furthermore, HB-mediated stomata closure was found to be independent of abscisic acid biosynthesis and signalling. Additionally, exogenous treatments with HB alleviate water stress and improve fruit productivity in tomato plants. The efficacy of HB was also tested under open field conditions, leading to enhanced resistance against Phytophthora spp. and Pseudomonas syringae infection in potato and tomato plants, respectively. Taken together, our results provide insights into the HB signalling transduction pathway, confirming its role in stomatal closure and plant immune system activation, and propose HB as a new phytoprotectant for the sustainable control of biotic and abiotic stresses in agriculture.
Collapse
Affiliation(s)
- Celia Payá
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Julia Pérez-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI) 8E, Universitat Politècnica de València (UPV), Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| |
Collapse
|
7
|
Khawula S, Gokul A, Niekerk LA, Basson G, Keyster M, Badiwe M, Klein A, Nkomo M. Insights into the Effects of Hydroxycinnamic Acid and Its Secondary Metabolites as Antioxidants for Oxidative Stress and Plant Growth under Environmental Stresses. Curr Issues Mol Biol 2023; 46:81-95. [PMID: 38275667 PMCID: PMC10814621 DOI: 10.3390/cimb46010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Plant immobility renders plants constantly susceptible to various abiotic and biotic stresses. Abiotic and biotic stresses are known to produce reactive oxygen species (ROS), which cause comparable cellular secondary reactions (osmotic or oxidative stress), leading to agricultural productivity constraints worldwide. To mitigate the challenges caused by these stresses, plants have evolved a variety of adaptive strategies. Phenolic acids form a key component of these strategies, as they are predominantly known to be secreted by plants in response to abiotic or biotic stresses. Phenolic acids can be divided into different subclasses based on their chemical structures, such as hydroxybenzoic acids and hydroxycinnamic acids. This review analyzes hydroxycinnamic acids and their derivatives as they increase under stressful conditions, so to withstand environmental stresses they regulate physiological processes through acting as signaling molecules that regulate gene expression and biochemical pathways. The mechanism of action used by hydroxycinnamic acid involves minimization of oxidative damage to maintain cellular homeostasis and protect vital cellular components from harm. The purpose of this review is to highlight the potential of hydroxycinnamic acid metabolites/derivatives as potential antioxidants. We review the uses of different secondary metabolites associated with hydroxycinnamic acid and their contributions to plant growth and development.
Collapse
Affiliation(s)
- Sindiswa Khawula
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, Kwa-Dlangezwa 3886, South Africa;
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of Free State, Phuthadithaba 9866, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (G.B.); (M.K.)
| | - Mihlali Badiwe
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7435, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mbukeni Nkomo
- Plant Biotechnology Laboratory, Department of Agriculture, University of Zululand, Main Road, Kwa-Dlangezwa 3886, South Africa;
| |
Collapse
|
8
|
Singh DP, Maurya S, Yerasu SR, Bisen MS, Farag MA, Prabha R, Shukla R, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Behera TK. Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Sci Rep 2023; 13:21023. [PMID: 38030710 PMCID: PMC10687106 DOI: 10.1038/s41598-023-48269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tomato (Solanum lycopersicum) is among the most important commercial horticultural crops worldwide. The crop quality and production is largely hampered due to the fungal pathogen Alternaria solani causing necrotrophic foliage early blight disease. Crop plants usually respond to the biotic challenges with altered metabolic composition and physiological perturbations. We have deciphered altered metabolite composition, modulated metabolic pathways and identified metabolite biomarkers in A. solani-challenged susceptible tomato variety Kashi Aman using Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomics. Alteration in the metabolite feature composition of pathogen-challenged (m/z 9405) and non-challenged (m/z 9667) plant leaves including 8487 infection-exclusive and 8742 non-infection exclusive features was observed. Functional annotation revealed putatively annotated metabolites and pathway mapping indicated their enrichment in metabolic pathways, biosynthesis of secondary metabolites, ubiquinone and terpenoid-quinones, brassinosteroids, steroids, terpenoids, phenylpropanoids, carotenoids, oxy/sphingolipids and metabolism of biotin and porphyrin. PCA, multivariate PLS-DA and OPLS-DA analysis showed sample discrimination. Significantly up regulated 481 and down regulated 548 metabolite features were identified based on the fold change (threshold ≥ 2.0). OPLS-DA model based on variable importance in projection (VIP scores) and FC threshold (> 2.0) revealed 41 up regulated discriminant metabolite features annotated as sphingosine, fecosterol, melatonin, serotonin, glucose 6-phosphate, zeatin, dihydrozeatin and zeatin-β-D-glucoside. Similarly, 23 down regulated discriminant metabolites included histidinol, 4-aminobutyraldehyde, propanoate, tyramine and linalool. Melatonin and serotonin in the leaves were the two indoleamines being reported for the first time in tomato in response to the early blight pathogen. Receiver operating characteristic (ROC)-based biomarker analysis identified apigenin-7-glucoside, uridine, adenosyl-homocysteine, cGMP, tyrosine, pantothenic acid, riboflavin (as up regulated) and adenosine, homocyctine and azmaline (as down regulated) biomarkers. These results could aid in the development of metabolite-quantitative trait loci (mQTL). Furthermore, stress-induced biosynthetic pathways may be the potential targets for modifications through breeding programs or genetic engineering for improving crop performance in the fields.
Collapse
Affiliation(s)
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | |
Collapse
|
9
|
Nietzschmann L, Smolka U, Perino EHB, Gorzolka K, Stamm G, Marillonnet S, Bürstenbinder K, Rosahl S. The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato. Sci Rep 2023; 13:20534. [PMID: 37996470 PMCID: PMC10667265 DOI: 10.1038/s41598-023-47648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Collapse
Affiliation(s)
- Linda Nietzschmann
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulrike Smolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Elvio Henrique Benatto Perino
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gina Stamm
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany.
| |
Collapse
|
10
|
Xu D, Wang Z, Zhuang W, Wang T, Xie Y. Family characteristics, phylogenetic reconstruction, and potential applications of the plant BAHD acyltransferase family. FRONTIERS IN PLANT SCIENCE 2023; 14:1218914. [PMID: 37868312 PMCID: PMC10585174 DOI: 10.3389/fpls.2023.1218914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
The BAHD acyltransferase family is a class of proteins in plants that can acylate a variety of primary and specialized secondary metabolites. The typically acylated products have greatly improved stability, lipid solubility, and bioavailability and thus show significant differences in their physicochemical properties and pharmacological activities. Here, we review the protein structure, catalytic mechanism, and phylogenetic reconstruction of plant BAHD acyltransferases to describe their family characteristics, acylation reactions, and the processes of potential functional differentiation. Moreover, the potential applications of the BAHD family in human activities are discussed from the perspectives of improving the quality of economic plants, enhancing the efficacy of medicinal plants, improving plant biomass for use in biofuel, and promoting stress resistance of land plants. This review provides a reference for the research and production of plant BAHD acyltransferases.
Collapse
Affiliation(s)
- Donghuan Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Hamany Djande CY, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA. Metabolomic Reconfiguration in Primed Barley ( Hordeum vulgare) Plants in Response to Pyrenophora teres f. teres Infection. Metabolites 2023; 13:997. [PMID: 37755277 PMCID: PMC10537252 DOI: 10.3390/metabo13090997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Necrotrophic fungi affect a wide range of plants and cause significant crop losses. For the activation of multi-layered innate immune defences, plants can be primed or pre-conditioned to rapidly and more efficiently counteract this pathogen. Untargeted and targeted metabolomics analyses were applied to elucidate the biochemical processes involved in the response of 3,5-dichloroanthranilic acid (3,5-DCAA) primed barley plants to Pyrenophora teres f. teres (Ptt). A susceptible barley cultivar ('Hessekwa') at the third leaf growth stage was treated with 3,5-DCAA 24 h prior to infection using a Ptt conidia suspension. The infection was monitored over 2, 4, and 6 days post-inoculation. For untargeted studies, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) was used to analyse methanolic plant extracts. Acquired data were processed to generate the data matrices utilised in chemometric modelling and multi-dimensional data mining. For targeted studies, selected metabolites from the amino acids, phenolic acids, and alkaloids classes were quantified using multiple reaction monitoring (MRM) mass spectrometry. 3,5-DCAA was effective as a priming agent in delaying the onset and intensity of symptoms but could not prevent the progression of the disease. Unsupervised learning methods revealed clear differences between the sample extracts from the control plants and the infected plants. Both orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and 'shared and unique structures' (SUS) plots allowed for the extraction of potential markers of the primed and naïve plant responses to Ptt. These include classes of organic acids, fatty acids, amino acids, phenolic acids, and derivatives and flavonoids. Among these, 5-oxo-proline and citric acid were notable as priming response-related metabolites. Metabolites from the tricarboxylic acid pathway were only discriminant in the primed plant infected with Ptt. Furthermore, the quantification of targeted metabolites revealed that hydroxycinnamic acids were significantly more prominent in the primed infected plants, especially at 2 d.p.i. Our research advances efforts to better understand regulated and reprogrammed metabolic responses that constitute defence priming in barley against Ptt.
Collapse
Affiliation(s)
| | | | | | | | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; (C.Y.H.D.); (F.T.); (P.A.S.); (L.A.P.)
| |
Collapse
|
12
|
Wang W, Xie X, Lv Y, Guan H, Liu L, Huang Q, Bao Y, Zhou J, Bao L, Gong C, Yu Y. Identification and profile of phenolamides with anthracnose resistance potential in tea ( Camellia sinensis). HORTICULTURE RESEARCH 2023; 10:uhad154. [PMID: 37719276 PMCID: PMC10500153 DOI: 10.1093/hr/uhad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Tea anthracnose is a prevalent disease in China that can lead to reduced tea production and lower quality, yet there is currently a lack of effective means for controlling this disease. In this study, we identified 46 phenolamides (including 27 isomers) in different tissues and organs of tea plants based on a developed workflow, and the secondary mass spectra of all these compounds have been documented. It was revealed that tea plants predominantly accumulate protonated aliphatic phenolamides, rather than aromatic phenolamides. The profile of phenolamides indicate that their buildup in tea plants is specific to certain tissues and acyl-acceptors, and this distribution is associated with the extent of phenolamide acyl-modification. Additionally, it was observed that N-Feruloylputrescine (Fer-Put, a type of phenolamides) was responsive to the stimulated accumulation of the tea anthracnose pathogen. The findings of anti-anthracnose experiments in vitro and on tea leaf demonstrated that Fer-Put was capable of significantly inhibiting the growth of anthracnose pathogen colony, effectively prevented tea leaf disease. Furthermore, it was observed that Fer-Put treatment can enhance the antioxidant enzyme activity of tea leaves. TEA002780.1 and TEA013165.1 gene may be responsible for the biosynthesis of Fer-Put in the disease resistance process in tea plants. Through these studies, the types and distribution of phenolamides in tea plants have been elucidated, and Fer-Put's ability to resist anthracnose has been established, providing new insights into the resistance of tea anthracnose.
Collapse
Affiliation(s)
- Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Xingcui Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yuanyuan Lv
- College of Tropical Crops, Hainan University, Haikou 570228 Hainan, China
| | - Haonan Guan
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Lu Liu
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Qian Huang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yumeng Bao
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| |
Collapse
|
13
|
Nutricati E, De Pascali M, Negro C, Bianco PA, Quaglino F, Passera A, Pierro R, Marcone C, Panattoni A, Sabella E, De Bellis L, Luvisi A. Signaling Cross-Talk between Salicylic and Gentisic Acid in the ' Candidatus Phytoplasma Solani' Interaction with Sangiovese Vines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2695. [PMID: 37514309 PMCID: PMC10383235 DOI: 10.3390/plants12142695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
"Bois noir" disease associated with 'Candidatus Phytoplasma solani' seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma-grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of 'Ca. P. solani'-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in 'Ca. P. solani-positive plants compared to -negative ones during the observed period.
Collapse
Affiliation(s)
- Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Roberto Pierro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Alessandra Panattoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
14
|
Alfaro-Quezada JF, Martínez JP, Molinett S, Valenzuela M, Montenegro I, Ramírez I, Dorta F, Ávila-Valdés A, Gharbi E, Zhou M, Dailly H, Quinet M, Lutts S, Seeger M. Rootstock increases the physiological defence of tomato plants against Pseudomonas syringae pv. tomato infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2891-2911. [PMID: 36723875 DOI: 10.1093/jxb/erad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/30/2023] [Indexed: 06/06/2023]
Abstract
Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.
Collapse
Affiliation(s)
- Juan Felipe Alfaro-Quezada
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
- Laboratorio de Fitopatología de Frutales, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional Quilamapu, Avenida Vicente Méndez 515, Chillán, Chile
| | - Juan Pablo Martínez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Sebastian Molinett
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Cruz, Chorrillos 86, La Cruz, Chile
| | - Miryam Valenzuela
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Ivan Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, Chile
| | - Ingrid Ramírez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Fernando Dorta
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| | - Andrea Ávila-Valdés
- Graduate School, Faculty of Agricultural Sciences & Centro de Investigación en Suelos Volcánicos, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Emna Gharbi
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mingxi Zhou
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, 37005, Czech Republic
| | - Hélène Dailly
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso, Chile
| |
Collapse
|
15
|
Li S, Qi L, Tan X, Li S, Fang J, Ji R. Small Brown Planthopper Nymph Infestation Regulates Plant Defenses by Affecting Secondary Metabolite Biosynthesis in Rice. Int J Mol Sci 2023; 24:ijms24054764. [PMID: 36902211 PMCID: PMC10003665 DOI: 10.3390/ijms24054764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The small brown planthopper (SBPH, Laodelphax striatellus) is one of the most destructive insect pests in rice (Oryza sativa), which is the world's major grain crop. The dynamic changes in the rice transcriptome and metabolome in response to planthopper female adult feeding and oviposition have been reported. However, the effects of nymph feeding remain unclear. In this study, we found that pre-infestation with SBPH nymphs increased the susceptibility of rice plants to SBPH infestation. We used a combination of broadly targeted metabolomic and transcriptomic studies to investigate the rice metabolites altered by SBPH feeding. We observed that SBPH feeding induced significant changes in 92 metabolites, including 56 defense-related secondary metabolites (34 flavonoids, 17 alkaloids, and 5 phenolic acids). Notably, there were more downregulated metabolites than upregulated metabolites. Additionally, nymph feeding significantly increased the accumulation of seven phenolamines and three phenolic acids but decreased the levels of most flavonoids. In SBPH-infested groups, 29 differentially accumulated flavonoids were downregulated, and this effect was more pronounced with infestation time. The findings of this study indicate that SBPH nymph feeding suppresses flavonoid biosynthesis in rice, resulting in increased susceptibility to SBPH infestation.
Collapse
Affiliation(s)
- Shuai Li
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Liangxuan Qi
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinyang Tan
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jichao Fang
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: (J.F.); (R.J.)
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- Correspondence: (J.F.); (R.J.)
| |
Collapse
|
16
|
Payá C, Minguillón S, Hernández M, Miguel SM, Campos L, Rodrigo I, Bellés JM, López-Gresa MP, Lisón P. SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC PLANT BIOLOGY 2022; 22:549. [PMID: 36443652 PMCID: PMC9706870 DOI: 10.1186/s12870-022-03939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon Pseudomonas syringae DC3000 pv. tomato (Pst) infection. RESULTS We have studied the induction of tomato SlS5H gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of SlS5H in Nicotiana benthamiana confirmed that SA is processed by SlS5H in vivo. SlS5H-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus Botrytis cinerea. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and Pst infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In SlS5H-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in Pst-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate. CONCLUSION Using SlS5H-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and Pst infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways.
Collapse
Affiliation(s)
- C. Payá
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. Minguillón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. Hernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. M. Miguel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - L. Campos
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - I. Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - J. M. Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - P. Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| |
Collapse
|
17
|
Kushalappa AC, Hegde NG, Yogendra KN. Metabolic pathway genes for editing to enhance multiple disease resistance in plants. JOURNAL OF PLANT RESEARCH 2022; 135:705-722. [PMID: 36036859 DOI: 10.1007/s10265-022-01409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Niranjan G Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Kalenahalli N Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| |
Collapse
|
18
|
Cytotoxic evaluation and chemical investigation of tomatoes from plants (Solanum lycopersicum L.) grown in uncontaminated and experimentally contaminated soils. Sci Rep 2022; 12:13024. [PMID: 35906264 PMCID: PMC9338037 DOI: 10.1038/s41598-022-13876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxic activity and the chemical composition of the tomato extracts coming from, Pomodoro Giallo and San Marzano Cirio 3, and then to evaluate the potential changes when plants were grown in soils contaminated by cadmium, chromium and lead. Extracts were investigated by UHPLC-HRMS and UV–Vis. Cell viability (CellTiter-Glo Luminescent assay), enzyme aldehyde dehydrogenase activity (ALDEFLOUR Assay), cell cycle progression (Accuri C6 Flow Cytometer), apoptosis and necrosis (Annexin V-FITC assay) were evaluated on two gastric cancer (AGS and NCI-N87) and two colorectal cancer (HT-29 and HCT 116) cell lines. Different content of polyphenol and carotenoid constituents was observed. Extracts from uncontaminated soil induced cytotoxic activity towards all selected cancer cells, while extracts coming from contaminated soils showed the aberrant phenotype increased in colorectal cancer cells. Chloroform extracts exerted the highest cytotoxic activity. AGS and HT-29 were the most sensitive to cell cycle arrest and to apoptosis. No necrotic effect was observed in HCT 116. The contrasting effects on cancer cells were observed based on tomato variety, the extract polarity, heavy metal identity, and tested cell line. The investigation of potential adverse health effects due to Cd in the fruits should be explored.
Collapse
|
19
|
Liu S, Jiang J, Ma Z, Xiao M, Yang L, Tian B, Yu Y, Bi C, Fang A, Yang Y. The Role of Hydroxycinnamic Acid Amide Pathway in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:922119. [PMID: 35812905 PMCID: PMC9257175 DOI: 10.3389/fpls.2022.922119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The compounds involved in the hydroxycinnamic acid amide (HCAA) pathway are an important class of metabolites in plants. Extensive studies have reported that a variety of plant hydroxycinnamamides exhibit pivotal roles in plant-pathogen interactions, such as p-coumaroylagmatine and ferulic acid. The aim of this review is to discuss the emerging findings on the functions of hydroxycinnamic acid amides (HCAAs) accumulation associated with plant defenses against plant pathologies, antimicrobial activity of HCAAs, and the mechanism of HCAAs involved in plant immune responses (such as reactive oxygen species (ROS), cell wall response, plant defense hormones, and stomatal immunity). However, these advances have also revealed the complexity of HCAAs participation in plant defense reactions, and many mysteries remain to be revealed. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future exploration of phytochemical defense metabolites.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jincheng Jiang
- Committee on Agriculture and Rural Affairs of Yongchuan District, Chongqing, China
| | - Zihui Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Muye Xiao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lan Yang
- Analytical and Testing Center, Southwest University, Chongqing, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Kashyap A, Jiménez-Jiménez ÁL, Zhang W, Capellades M, Srinivasan S, Laromaine A, Serra O, Figueras M, Rencoret J, Gutiérrez A, Valls M, Coll NS. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. THE NEW PHYTOLOGIST 2022; 234:1411-1429. [PMID: 35152435 DOI: 10.1111/nph.17982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico-chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live-imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum-induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties, effectively contributing to resistance.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
| | | | - Weiqi Zhang
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
| | - Montserrat Capellades
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| | - Sumithra Srinivasan
- Institute of Material Science of Barcelona (ICMAB), CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Anna Laromaine
- Institute of Material Science of Barcelona (ICMAB), CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Jorge Rencoret
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, 41012, Seville, Spain
| | - Ana Gutiérrez
- Institute of Natural Resources and Agrobiology of Seville (IRNAS), CSIC, 41012, Seville, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Department of Genetics, University of Barcelona, 08028, Barcelona, Spain
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain
| |
Collapse
|
21
|
Function of hydroxycinnamoyl transferases for the biosynthesis of phenolamides in rice resistance to Magnaporthe oryzae. J Genet Genomics 2022; 49:776-786. [DOI: 10.1016/j.jgg.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 01/05/2023]
|
22
|
Margaritopoulou T, Kizis D, Kotopoulis D, Papadakis IE, Anagnostopoulos C, Baira E, Termentzi A, Vichou AE, Leifert C, Markellou E. Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. PLANT PHYSIOLOGY 2022; 188:576-592. [PMID: 34597395 PMCID: PMC8774738 DOI: 10.1093/plphys/kiab453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew (PM) disease, caused by the obligate biotrophic fungal pathogen Podosphaera xanthii, is the most reported and destructive disease on cultivated Cucurbita species all over the world. Recently, the appearance of highly aggressive P. xanthii isolates has led to PM outbreaks even in resistant crops, making disease management a very difficult task. To challenge this, breeders rely on genetic characteristics for PM control. Analysis of commercially available intermediate resistance courgette (Cucurbita pepo L. var. cylindrica) varieties using cytological, molecular, and biochemical approaches showed that the plants were under a primed state and induced systemic acquired resistance (SAR) responses, exhibiting enhanced callose production, upregulation of salicylic acid (SA) defense signaling pathway genes, and accumulation of SA and defense metabolites. Additionally, the intermediate resistant varieties showed an altered epigenetic landscape in histone marks that affect transcriptional activation. We demonstrated that courgette plants had enriched H3K4me3 marks on SA-BINDING PROTEIN 2 and YODA (YDA) genes of the Pm-0 interval introgression, a genomic region that confers resistant to Cucurbits against P. xanthii. The open chromatin of SA-BINDING PROTEIN 2 and YDA genes was consistent with genes' differential expression, induced SA pathway, altered stomata characteristics, and activated SAR responses. These findings demonstrate that the altered epigenetic landscape of the intermediate resistant varieties modulates the activation of SA-BINDING PROTEIN 2 and YDA genes leading to induced gene transcription that primes courgette plants.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimosthenis Kizis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Dimitris Kotopoulis
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Ioannis E Papadakis
- Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Christos Anagnostopoulos
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Eirini Baira
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini Termentzi
- Scientific Directorate of Pesticides' Assessment & Phytopharmacy, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Aikaterini-Eleni Vichou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| | - Carlo Leifert
- SCU Plant Science, Southern Cross University, Lismore, Australia
- Department of Nutrition, IMB, University of Oslo, Oslo 0372, Norway
| | - Emilia Markellou
- Scientific Directorate of Phytopathology, Benaki Phytopathological Institute, Athens 14561, Greece
| |
Collapse
|
23
|
Shen S, Peng M, Fang H, Wang Z, Zhou S, Jing X, Zhang M, Yang C, Guo H, Li Y, Lei L, Shi Y, Sun Y, Liu X, Xu C, Tohge T, Yuan M, Fernie AR, Ning Y, Wang GL, Luo J. An Oryza-specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance. Sci Bull (Beijing) 2021; 66:2369-2380. [PMID: 36654123 DOI: 10.1016/j.scib.2021.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 01/07/2021] [Indexed: 02/03/2023]
Abstract
Genomic clustering of non-homologous genes for the biosynthesis of plant defensive compounds is an emerging theme, but insights into their formation and physiological function remain limited. Here we report the identification of a newly discovered hydroxycinnamoyl tyramine (HT) gene cluster in rice. This cluster contains a pyridoxamine 5'-phosphate oxidase (OsPDX3) producing the cofactor pyridoxal 5'-phosphate (PLP), a PLP-dependent tyrosine decarboxylase (OsTyDC1), and two duplicated hydroxycinnamoyl transferases (OsTHT1 and OsTHT2). These members were combined to represent an enzymological innovation gene cluster. Natural variation analysis showed that the abundance of the toxic tyramine intermediate of the gene cluster among different rice accessions is mainly determined by the coordinated transcription of OsTyDC1 and OsTHT1. Further pathogen incubation assays demonstrated that the end products of the HT gene cluster displayed enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and fungal pathogen Magnaporthe oryzae (M. oryzae), and the enhanced resistance is associated with the boost of phytoalexins and the activation of defense response. The unique presence of the HT gene cluster in Oryza AA genome, together with the enrichment of transposon elements within this gene cluster region, provides an evolutionary background to accelerate cluster member combinations. Our study not only discovered a gene cluster involved in the phenylpropanoid metabolism but also addressed the key aspects of gene cluster formation. In addition, our results provide a new metabolic pool for plant defense against pathogens.
Collapse
Affiliation(s)
- Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; VIB-UGent Center for Plant Systems Biology, Ghent University, Ghent 9052, Belgium
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shen Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Long Lei
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yangyang Sun
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Congping Xu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Takayuki Tohge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma Nara 630-0192, Japan
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus OH 43210, USA
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
24
|
Fang H, Shen S, Wang D, Zhang F, Zhang C, Wang Z, Zhou Q, Wang R, Tao H, He F, Yang C, Peng M, Jing X, Hao Z, Liu X, Luo J, Wang GL, Ning Y. A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice. Sci Bull (Beijing) 2021; 66:2381-2393. [PMID: 36654124 DOI: 10.1016/j.scib.2021.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 02/03/2023]
Abstract
Phenolamides (PAs), a diverse group of specialized metabolites, including hydroxycinnamoylputrescine (HP), hydroxycinnamoylagmatine, and hydroxycinnamoyltryptamine, are important in plant resistance to biotic stress. However, the genes involved in the biosynthesis and modulation of PAs have not been fully elucidated. This study identified an HP biosynthetic gene cluster in rice (Oryza sativa) comprising one gene (OsODC) encoding a decarboxylase and two tandem-duplicated genes (OsPHT3 and OsPHT4) encoding putrescine hydroxycinnamoyl acyltransferases coexpressed in different tissues. OsODC catalyzes the conversion of ornithine to putrescine, which is used in HP biosynthesis involving OsPHT3 and OsPHT4. OsPHT3 or OsPHT4 overexpression causes HP accumulation and cell death and putrescine hydroxycinnamoyl acyltransferases (PHT) activity-dependent resistance against the fungal pathogen Magnaporthe oryzae. OsODC overexpression plants also confer enhanced resistance to M. oryzae. Notably, the basic leucine zipper transcription factor APIP5, a negative regulator of cell death, directly binds to the OsPHT4 promoter, repressing its transcription. Moreover, APIP5 suppression induces OsPHT4 expression and HP accumulation. Comparative genomic analysis revealed that the HP biosynthetic gene cluster is conserved in monocots. These results characterized a previously unidentified monocot-specific gene cluster that is involved in HP biosynthesis and contributes to defense and cell death in rice.
Collapse
Affiliation(s)
- Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xionglun Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 572208, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus OH 43210, USA.
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
25
|
Chai T, Zhang WH, Jiao H, Qiang Y. Hydroxycinnamic Acid Amide Dimers from Goji Berry and Their Potential Anti-AD Activity. Chem Biodivers 2021; 18:e2100436. [PMID: 34664781 DOI: 10.1002/cbdv.202100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
Three undescribed hydroxycinnamic acid amide dimers 1-3 were isolated and identified from an extract of Goji berry. Their molecular structures were elucidated based on NMR, MS, and IR spectra analysis. Compounds 1-3 were hydroxycinnamic acid amide dimers, which possess a cyclic butane moiety formed by head-to-head connection. These compounds at 25 μM showed the disaggregation potency on the copper-mediated Aβ1-42 aggregation ranging from 27.3±3.2 to 31.0±2.9 %. This study provides new information on the antiaging traditional usage of goji berry.
Collapse
Affiliation(s)
- Tian Chai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wen-Han Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hui Jiao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yin Qiang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
26
|
Adhikari P, Mideros SX, Jamann TM. Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:675208. [PMID: 34113371 PMCID: PMC8185347 DOI: 10.3389/fpls.2021.675208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.
Collapse
|
27
|
Roumani M, Besseau S, Gagneul D, Robin C, Larbat R. Phenolamides in plants: an update on their function, regulation, and origin of their biosynthetic enzymes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2334-2355. [PMID: 33315095 DOI: 10.1093/jxb/eraa582] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Phenolamides represent a family of specialized metabolites, consisting of the association of hydroxycinnamic acid derivatives with aliphatic or aromatic amines. Since the discovery of the first phenolamide in the late 1940s, decades of phytochemical analyses have revealed a high structural diversity for this family and a wide distribution in the plant kingdom. The occurrence of structurally diverse phenolamides in almost all plant organs has led to early hypotheses on their involvement in floral initiation and fertility, as well as plant defense against biotic and abiotic stress. In the present work, we critically review the literature ascribing functional hypotheses to phenolamides and recent evidence on the control of their biosynthesis in response to biotic stress. We additionally provide a phylogenetic analysis of the numerous N-hydroxycinnamoyltransferases involved in the synthesis of phenolamides and discuss the potential role of other enzyme families in their diversification. The data presented suggest multiple evolutionary events that contributed to the extension of the taxonomic distribution and diversity of phenolamides.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Sébastien Besseau
- EA 2106, Biomolécules et biotechnologies végétales (BBV), Université de Tours, Tours, France
| | - David Gagneul
- UMR 1158, BioEcoAgro, Université de Lille, INRAe, Université de Liège, UPJV, YNCREA, Université d'Artois, Université Littoral Côte d'Opale, Institut Charles Viollette (ICV), Lille, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| |
Collapse
|
28
|
Li J, Meng Y, Zhang K, Li Q, Li S, Xu B, Georgiev MI, Zhou M. Jasmonic acid-responsive RRTF1 transcription factor controls DTX18 gene expression in hydroxycinnamic acid amide secretion. PLANT PHYSIOLOGY 2021; 185:369-384. [PMID: 33721896 PMCID: PMC8133619 DOI: 10.1093/plphys/kiaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) are plant hormones that regulate the biosynthesis of many secondary metabolites, such as hydroxycinnamic acid amides (HCAAs), through jasmonic acid (JA)-responsive transcription factors (TFs). HCAAs are renowned for their role in plant defense against pathogens. The multidrug and toxic compound extrusion transporter DETOXIFICATION18 (DTX18) has been shown to mediate the extracellular accumulation of HCAAs p-coumaroylagmatine (CouAgm) at the plant surface for defense response. However, little is known about the regulatory mechanism of DTX18 gene expression by TFs. Yeast one-hybrid screening using the DTX18 promoter as bait isolated the key positive regulator redox-responsive TF 1 (RRTF1), which is a member of the AP2/ethylene-response factor family of proteins. RRTF1 is a JA-responsive factor that is required for the transcription of the DTX18 gene, and it thus promotes CouAgm secretion at the plant surface. As a result, overexpression of RRTF1 caused increased resistance against the fungus Botrytis cinerea, whereas rrtf1 mutant plants were more susceptible. Using yeast two-hybrid screening, we identified the BTB/POZ-MATH (BPM) protein BPM1 as an interacting partner of RRTF1. The BPM family of proteins acts as substrate adaptors of CUL3-based E3 ubiquitin ligases, and we found that only BPM1 and BPM3 were able to interact with RRTF1. In addition, we demonstrated that RRTF1 was subjected to degradation through the 26S proteasome pathway and that JA stabilized RRTF1. Knockout of BPM1 and BPM3 in bpm1/3 double mutants enhanced RRTF1 accumulation and DTX18 gene expression, thus increasing resistance to the fungus B. cinerea. Our results provide a better understanding of the fine-tuned regulation of JA-induced TFs in HCAA accumulation.
Collapse
Affiliation(s)
- Jinbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Life Science College, Luoyang Normal University, Luoyang 471934, China
| | - Yu Meng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Landscape and Travel, Hebei Agricultural University, Baoding 071001, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiong Li
- School of Nursing, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shijuan Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Plant Pathology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Pathology, Gansu Agricultural University, Lanzhou 730070, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication: (M.Z.)
| |
Collapse
|
29
|
Ahmad MZ, Zhang Y, Zeng X, Li P, Wang X, Benedito VA, Zhao J. Isoflavone malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by modifying synthesis and secretion of isoflavones. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1349-1369. [PMID: 33130852 DOI: 10.1093/jxb/eraa511] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 05/20/2023]
Abstract
Malonyl-CoA:flavonoid acyltransferases (MaTs) modify isoflavones, but only a few have been characterized for activity and assigned to specific physiological processes. Legume roots exude isoflavone malonates into the rhizosphere, where they are hydrolyzed into isoflavone aglycones. Soybean GmMaT2 was highly expressed in seeds, root hairs, and nodules. GmMaT2 and GmMaT4 recombinant enzymes used isoflavone 7-O-glucosides as acceptors and malonyl-CoA as an acyl donor to generate isoflavone glucoside malonates. GmMaT2 had higher activity towards isoflavone glucosides than GmMaT4. Overexpression in hairy roots of GmMaT2 and GmMaT4 produced more malonyldaidzin, malonylgenistin, and malonylglycitin, and resulted in more nodules than control. However, only GmMaT2 knockdown (KD) hairy roots showed reduced levels of malonyldaidzin, malonylgenistin, and malonylglycitin, and, likewise, reduced nodule numbers. These were consistent with the up-regulation of only GmMaT2 by rhizobial infection, and higher expression levels of early nodulation genes in GmMaT2- and GmMaT4-overexpressing roots, but lower only in GmMaT2-KD roots compared with control roots. Higher malonyl isoflavonoid levels in transgenic hairy roots were associated with higher levels of isoflavones in root exudates and more nodules, and vice versa. We suggest that GmMaT2 participates in soybean nodulation by catalyzing isoflavone malonylation and affecting malonyl isoflavone secretion for activation of Nod factor and nodulation.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanrui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangsheng Zeng
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Vagner A Benedito
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Zeiss DR, Piater LA, Dubery IA. Hydroxycinnamate Amides: Intriguing Conjugates of Plant Protective Metabolites. TRENDS IN PLANT SCIENCE 2021; 26:184-195. [PMID: 33036915 DOI: 10.1016/j.tplants.2020.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/09/2023]
Abstract
The syntheses of aromatic monoamines and aliphatic polyamines (PAs) are responsive to environmental stresses, with some modulating aspects of plant defense. Conjugation of amines to hydroxycinnamic acids (HCAs) generates HCA amides (HCAAs), with the conjugates possessing properties from both compounds. Conjugation may reduce the polarity of the resulting metabolite and assist in translocation, stability, and compartmentalization. Recent metabolomic insights identified HCAAs as biomarkers during plant-pathogen interactions, supporting a functional role in defense. The conjugates may contribute to regulation of the dynamic metabolic pool of hydroxycinnamates. This review highlights the occurrence of aromatic amines (AAs) and PAs in stress metabolism, conjugation to HCAs, and the roles of HCAAs during host defense, adding emphasis on their involvement in hydrogen peroxide (H2O2) production and cell-wall strengthening.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
31
|
Hegde N, Joshi S, Soni N, Kushalappa AC. The caffeoyl-CoA O-methyltransferase gene SNP replacement in Russet Burbank potato variety enhances late blight resistance through cell wall reinforcement. PLANT CELL REPORTS 2021; 40:237-254. [PMID: 33141312 DOI: 10.1007/s00299-020-02629-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/15/2020] [Indexed: 05/28/2023]
Abstract
Metabolic pathway gene editing in tetraploid potato enhanced resistance to late blight. Multiallelic mutation correction of a caffeoyl-CoA O-methyltransferase gene increased accumulation of resistance metabolites in Russet Burbank potato. Late blight of potato is a devastating disease worldwide and requires weekly applications of fungicides to manage. Genetic improvement is the best option, but the self-incompatibility and inter-specific incompatibility makes potato breeding very challenging. Immune receptor gene stacking has increased resistance, but its durability is limited. Quantitative resistance is durable, and it mainly involves secondary cell wall thickening due to several metabolites and their conjugates. Deleterious mutations in biosynthetic genes can hinder resistance metabolite biosynthesis. Here a probable resistance role of the StCCoAOMT gene was first confirmed by an in-planta transient overexpression of the functional StCCoAOMT allele in late blight susceptible Russet Burbank (RB) genotype. Following this, a precise single nucleotide polymorphism (SNP) mutation correction of the StCCoAOMT gene in RB potato was carried out using CRISPR-Cas9 mediated homology directed repair (HDR). The StCCoAOMT gene editing increased the transcript abundance of downstream biosynthetic resistance genes. Following pathogen inoculation, several phenylpropanoid pathway genes were highly expressed in the edited RB plants, as compared to the non-edited. The disease severity (fold change = 3.76) and pathogen biomass in inoculated stems of gene-edited RB significantly reduced (FC = 21.14), relative to non-edited control. The metabolic profiling revealed a significant increase in the accumulation of resistance-related metabolites in StCCoAOMT edited RB plants. Most of these metabolites are involved in suberization and lignification. The StCCoAOMT gene, if mutated, can be edited in other potato cultivars to enhance resistance to late blight, provided it is associated with other functional genes in the metabolic pathway network.
Collapse
Affiliation(s)
- Niranjan Hegde
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Sripad Joshi
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Nancy Soni
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Ajjamada C Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|
32
|
Roumani M, Duval RE, Ropars A, Risler A, Robin C, Larbat R. Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomed Pharmacother 2020; 131:110762. [PMID: 33152925 DOI: 10.1016/j.biopha.2020.110762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | | | - Armelle Ropars
- Stress Immunity Pathogens Université de Lorraine, Nancy, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France.
| |
Collapse
|
33
|
Wang W, Yu Z, Meng J, Zhou P, Luo T, Zhang J, Wu J, Lou Y. Rice phenolamindes reduce the survival of female adults of the white-backed planthopper Sogatella furcifera. Sci Rep 2020; 10:5778. [PMID: 32238850 PMCID: PMC7113316 DOI: 10.1038/s41598-020-62752-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
In response to infestation by herbivores, rice plants rapidly biosynthesize defense compounds by activating a series of defense-related pathways. However, which defensive compounds in rice are effective against herbivores remains largely unknown. We found that the infestation of white-backed planthopper (WBPH) Sogatella furcifera gravid females significantly increased levels of jasmonic acid (JA), jasmonoyl-isoleucine (JA-Ile) and H2O2, and reduced the level of ethylene in rice; levels of 11 of the tested 12 phenolamides (PAs) were subsequently enhanced. In contrast, WBPH nymph infestation had no effect on levels of JA, JA-Ile, ethylene and H2O2 in rice, and enhanced levels of only 2 of 12 PAs. Moreover, infestation by brown planthopper Nilaparvata lugens gravid females also affected the production of these PAs differently. Bioassays revealed that 4 PAs - N-feruloylputrescine, N-feruloyltyramine, feruloylagmatine and N1,N10-diferuloylspermidine - were toxic to newly emerged WBPH female adults. Our results suggest that WBPH- or BPH-induced biosynthesis of PAs in rice seems to be shaped primarily by the specific profile of defense-related signals elicited by the herbivore and that PAs play a role in conferring the resistance to WBPH on rice.
Collapse
Affiliation(s)
- Wanwan Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhuoxian Yu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinpeng Meng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Pengyong Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Luo
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Valette M, Rey M, Gerin F, Comte G, Wisniewski-Dyé F. A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:228-246. [PMID: 30920733 DOI: 10.1111/jipb.12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 05/21/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR), whose growth is stimulated by root exudates, are able to improve plant growth and health. Among those, bacteria of the genus Azospirillum were shown to affect root secondary metabolite content in rice and maize, sometimes without visible effects on root architecture. Transcriptomic studies also revealed that expression of several genes involved in stress and plant defense was affected, albeit with fewer genes when a strain was inoculated onto its original host cultivar. Here, we investigated, via a metabolic profiling approach, whether rice roots responded differently and with gradual intensity to various PGPR, isolated from rice or not. A common metabolomic signature of nine compounds was highlighted, with the reduced accumulation of three alkylresorcinols and increased accumulation of two hydroxycinnamic acid amides (HCAA), identified as N-p-coumaroylputrescine and N-feruloylputrescine. This was accompanied by the increased transcription of two genes involved in the N-feruloylputrescine biosynthetic pathway. Interestingly, exposure to a rice bacterial pathogen triggered a reduced accumulation of these HCAA in roots, a result contrasting with previous reports of increased HCAA content in leaves upon pathogen infection. Accumulation of HCAA, that are potential antimicrobial compounds, might be considered as a primary reaction of plant to bacterial perception.
Collapse
Affiliation(s)
- Marine Valette
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Marjolaine Rey
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Florence Gerin
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Gilles Comte
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Florence Wisniewski-Dyé
- Université de Lyon, Université Lyon1, Ecologie Microbienne, CNRS UMR-5557, INRA UMR-1418, VetAgroSup, 43 boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
35
|
Knollenberg BJ, Li GX, Lambert JD, Maximova SN, Guiltinan MJ. Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2020; 11:617520. [PMID: 33424909 PMCID: PMC7786005 DOI: 10.3389/fpls.2020.617520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/04/2020] [Indexed: 05/13/2023]
Abstract
The hydroxycinnamic acid amides (HCAAs) are a diverse group of plant-specialized phenylpropanoid metabolites distributed widely in the plant kingdom and are known to be involved in tolerance to abiotic and biotic stress. The HCAA clovamide is reported in a small number of distantly related species. To explore the contribution of specialized metabolites to disease resistance in cacao (Theobroma cacao L., chocolate tree), we performed untargeted metabolomics using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and compared the basal metabolite profiles in leaves of two cacao genotypes with contrasting levels of susceptibility to Phytophthora spp. Leaves of the tolerant genotype 'Scavina 6' ('Sca6') were found to accumulate dramatically higher levels of clovamide and several other HCAAs compared to the susceptible 'Imperial College Selection 1' ('ICS1'). Clovamide was the most abundant metabolite in 'Sca6' leaf extracts based on MS signal, and was up to 58-fold higher in 'Sca6' than in 'ICS1'. In vitro assays demonstrated that clovamide inhibits growth of three pathogens of cacao in the genus Phytophthora, is a substrate for cacao polyphenol oxidase, and is a contributor to enzymatic browning. Furthermore, clovamide inhibited proteinase and pectinase in vitro, activities associated with defense in plant-pathogen interactions. Fruit epidermal peels from both genotypes contained substantial amounts of clovamide, but two sulfated HCAAs were present at high abundance exclusively in 'Sca6' suggesting a potential functional role of these compounds. The potential to breed cacao with increased HCAAs for improved agricultural performance is discussed.
Collapse
Affiliation(s)
- Benjamin J. Knollenberg
- Plant Biology PhD Program ‐ Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| | - Guo-Xing Li
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Joshua D. Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan,
| |
Collapse
|
36
|
Muhammad S, Tan J, Deng P, Li T, He H, Bian J, Wu L. Pesticide application has little influence on coding and non-coding gene expressions in rice. BMC Genomics 2019; 20:1009. [PMID: 31870289 PMCID: PMC6927115 DOI: 10.1186/s12864-019-6381-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background Agricultural insects are one of the major threats to crop yield. It is a known fact that pesticide application is an extensive approach to eliminate insect pests, and has severe adverse effects on environment and ecosystem; however, there is lack of knowledge whether it could influence the physiology and metabolic processes in plants. Results Here, we systemically analyzed the transcriptomic changes in rice after a spray of two commercial pesticides, Abamectin (ABM) and Thiamethoxam (TXM). We found only a limited number of genes (0.91%) and (1.24%) were altered by ABM and TXM respectively, indicating that these pesticides cannot dramatically affect the performance of rice. Nevertheless, we characterized 1140 Differentially Expressed Genes (DEGs) interacting with 105 long non-coding RNAs (lncRNAs) that can be impacted by the two pesticides, suggesting their certain involvement in response to farm chemicals. Moreover, we detected 274 alternative splicing (AS) alterations accompanied by host genes expressions, elucidating a potential role of AS in control of gene transcription during insecticide spraying. Finally, we identified 488 transposons that were significantly changed with pesticides treatment, leading to a variation in adjacent coding or non-coding transcripts. Conclusion Altogether, our results provide valuable insights into pest management through appropriate timing and balanced mixture, these pesticides have no harmful effects on crop physiology over sustainable application of field drugs.
Collapse
Affiliation(s)
- Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jingai Tan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pingchuan Deng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Tingting Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Liang Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Zhang Y, Zhang W, Han L, Li J, Shi X, Hikichi Y, Ohnishi K. Involvement of a PadR regulator PrhP on virulence of Ralstonia solanacearum by controlling detoxification of phenolic acids and type III secretion system. MOLECULAR PLANT PATHOLOGY 2019; 20:1477-1490. [PMID: 31392803 PMCID: PMC6804342 DOI: 10.1111/mpp.12854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ralstonia solanacearum can metabolize ferulic acid (FA) and salicylic acid (SA), two representative phenolic acids, to protect it from toxicity of phenolic acids. Here, we genetically demonstrated a novel phenolic acid decarboxylase regulator (PadR)-like regulator PrhP as a positive regulator on detoxification of SA and FA in R. solanacearum. Although the ability to degrade SA and FA enhances the infection process of R. solanacearum toward host plants, PrhP greatly contributes to the infection process besides degradation of SA and FA. Our results from the growth assay, promoter activity assay, RNA-seq and qRT-PCR revealed that PrhP plays multiple roles in the virulence of R. solanacearum: (1) positively regulates expression of genes for degradation of SA and FA; (2) positively regulates expression of genes encoding type III secretion system (T3SS) and type III effectors both in vitro and in planta; (3) positively regulates expression of many virulence-related genes, such as the flagella, type IV pili and cell wall degradation enzymes; and (4) is important for the extensive proliferation in planta. The T3SS is one of the essential pathogenicity determinants in many pathogenic bacteria, and PrhP positively regulates its expression mediated with the key regulator HrpB but through some novel pathway to HrpB in R. solanacearum. This is the first report on PadR regulators to regulate the T3SS and it could improve our understanding of the various biological functions of PadR regulators and the complex regulatory pathway on T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Key Laboratory of Efficient Utilization of Soil and Fertilizer ResourcesChongqing
| | - Weiqi Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Liangliang Han
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Research Institute of Molecular Genetics, Kochi UniversityKochiJapan
| | - Jing Li
- The Ninth Peoples Hospital of ChongqingChongqingChina
| | - Xiaojun Shi
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Key Laboratory of Efficient Utilization of Soil and Fertilizer ResourcesChongqing
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and BiotechnologyKochi UniversityKochiJapan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityKochiJapan
| |
Collapse
|
38
|
Ledesma-Ramírez L, Solís-Moya E, Iturriaga G, Sehgal D, Reyes-Valdes MH, Montero-Tavera V, Sansaloni CP, Burgueño J, Ortiz C, Aguirre-Mancilla CL, Ramírez-Pimentel JG, Vikram P, Singh S. GWAS to Identify Genetic Loci for Resistance to Yellow Rust in Wheat Pre-Breeding Lines Derived From Diverse Exotic Crosses. FRONTIERS IN PLANT SCIENCE 2019; 10:1390. [PMID: 31781137 PMCID: PMC6831551 DOI: 10.3389/fpls.2019.01390] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/08/2019] [Indexed: 05/05/2023]
Abstract
Yellow rust (YR) or stripe rust, caused by Puccinia striformis f. sp tritici Eriks (Pst), is a major challenge to resistance breeding in wheat. A genome wide association study (GWAS) was performed using 22,415 single nucleotide polymorphism (SNP) markers and 591 haplotypes to identify genomic regions associated with resistance to YR in a subset panel of 419 pre-breeding lines (PBLs) developed at International Center for Maize and Wheat Improvement (CIMMYT). The 419 PBLs were derived from an initial set of 984 PBLs generated by a three-way crossing scheme (exotic/elite1//elite2) among 25 best elites and 244 exotics (synthetics, landraces) from CIMMYT's germplasm bank. For the study, 419 PBLs were characterized with 22,415 high-quality DArTseq-SNPs and phenotyped for severity of YR disease at five locations in Mexico. A population structure was evident in the panel with three distinct subpopulations, and a genome-wide linkage disequilibrium (LD) decay of 2.5 cM was obtained. Across all five locations, 14 SNPs and 7 haplotype blocks were significantly (P < 0.001) associated with the disease severity explaining 6.0 to 14.1% and 7.9 to 19.9% of variation, respectively. Based on average LD decay of 2.5 cM, identified 14 SNP-trait associations were delimited to seven quantitative trait loci in total. Seven SNPs were part of the two haplotype blocks on chromosome 2A identified in haplotypes-based GWAS. In silico analysis of the identified SNPs showed hits with interesting candidate genes, which are related to pathogenic process or known to regulate induction of genes related to pathogenesis such as those coding for glunolactone oxidase, quinate O-hydroxycinnamoyl transferase, or two-component histidine kinase. The two-component histidine kinase, for example, acts as a sensor in the perception of phytohormones ethylene and cytokinin. Ethylene plays a very important role in regulation of multiple metabolic processes of plants, including induction of defense mechanisms mediated by jasmonate. The SNPs linked to the promising genes identified in the study can be used for marker-assisted selection.
Collapse
Affiliation(s)
- Lourdes Ledesma-Ramírez
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Ernesto Solís-Moya
- Programa de mejoramiento genetico de trigo, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Bajío, Celaya, Mexico
| | - Gabriel Iturriaga
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Deepmala Sehgal
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | | | - Víctor Montero-Tavera
- Programa de mejoramiento genetico de trigo, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Bajío, Celaya, Mexico
| | - Carolina P. Sansaloni
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Juan Burgueño
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Cynthia Ortiz
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - César L. Aguirre-Mancilla
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Juan G. Ramírez-Pimentel
- Departamento de estudios e investigación de Posgrado, Tecnológico Nacional de México/Instituto Tecnológico de Roque, Celaya, Mexico
| | - Prashant Vikram
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
| | - Sukhwinder Singh
- Department of Bioscience, Centro Internacional de Mejoramiento de Maíz y Trigo, Texcoco, Mexico
- Department of Biotechnology, Geneshifters, Pullman, WA, United States
| |
Collapse
|
39
|
Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC PLANT BIOLOGY 2019; 19:450. [PMID: 31655554 PMCID: PMC6815406 DOI: 10.1186/s12870-019-2063-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Secondary metabolites play an important role in the plant defensive response. They are produced as a defence mechanism against biotic stress by providing plants with antimicrobial and antioxidant weapons. In higher plants, the majority of secondary metabolites accumulate as glycoconjugates. Glycosylation is one of the commonest modifications of secondary metabolites, and is carried out by enzymes called glycosyltransferases. RESULTS Here we provide evidence that the previously described tomato wound and pathogen-induced glycosyltransferase Twi1 displays in vitro activity toward the coumarins scopoletin, umbelliferone and esculetin, and the flavonoids quercetin and kaempferol, by uncovering a new role of this gene in plant glycosylation. To test its activity in vivo, Twi1-silenced transgenic tomato plants were generated and infected with Tomato spotted wilt virus. The Twi1-silenced plants showed a differential accumulation of Twi1 substrates and enhanced susceptibility to the virus. CONCLUSIONS Biochemical in vitro assays and transgenic plants generation proved to be useful strategies to assign a role of tomato Twi1 in the plant defence response. Twi1 glycosyltransferase showed to regulate quercetin and kaempferol levels in tomato plants, affecting plant resistance to viral infection.
Collapse
Affiliation(s)
- Laura Campos
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Diana Fuertes
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
40
|
Sun G, Strebl M, Merz M, Blamberg R, Huang FC, McGraphery K, Hoffmann T, Schwab W. Glucosylation of the phytoalexin N-feruloyl tyramine modulates the levels of pathogen-responsive metabolites in Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:20-37. [PMID: 31124249 DOI: 10.1111/tpj.14420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 05/03/2023]
Abstract
Enzyme promiscuity, a common property of many uridine diphosphate sugar-dependent glycosyltransferases (UGTs) that convert small molecules, significantly hinders the identification of natural substrates and therefore the characterization of the physiological role of enzymes. In this paper we present a simple but effective strategy to identify endogenous substrates of plant UGTs using LC-MS-guided targeted glycoside analysis of transgenic plants. We successfully identified natural substrates of two promiscuous Nicotiana benthamiana UGTs (NbUGT73A24 and NbUGT73A25), orthologues of pathogen-induced tobacco UGT (TOGT) from Nicotiana tabacum, which is involved in the hypersensitive reaction. While in N. tabacum, TOGT glucosylated scopoletin after treatment with salicylate, fungal elicitors and the tobacco mosaic virus, NbUGT73A24 and NbUGT73A25 produced glucosides of phytoalexin N-feruloyl tyramine, which may strengthen cell walls to prevent the intrusion of pathogens, and flavonols after agroinfiltration of the corresponding genes in N. benthamiana. Enzymatic glucosylation of fractions of a physiological aglycone library confirmed the biological substrates of UGTs. In addition, overexpression of both genes in N. benthamiana produced clear lesions on the leaves and led to a significantly reduced content of pathogen-induced plant metabolites such as phenylalanine and tryptophan. Our results revealed some additional biological functions of TOGT enzymes and indicated a multifunctional role of UGTs in plant resistance.
Collapse
Affiliation(s)
- Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Michael Strebl
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Maximilian Merz
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Robert Blamberg
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Fong-Chin Huang
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Kate McGraphery
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| |
Collapse
|
41
|
Metabolomic Profiling of the Host Response of Tomato ( Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci 2019; 20:ijms20163945. [PMID: 31416118 PMCID: PMC6720392 DOI: 10.3390/ijms20163945] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important dietary source of bioactive phytochemicals and active breeding programs constantly produce new cultivars possessing superior and desirable traits. The phytopathogenic Ralstonia solanacearum, the causal agent of bacterial wilt, is a highly destructive bacterial disease with a high economic impact on tomato production. This study followed an untargeted metabolomic approach involving four tomato cultivars and aimed at the identification of secondary metabolites involved in plant defense after infection with R. solanacearum. Liquid chromatography coupled to mass spectrometry (LC-MS) in combination with multivariate data analysis and chemometric modelling were utilized for the identification of discriminant secondary metabolites. The total of 81 statistically selected features were annotated belonging to the metabolite classes of amino acids, organic acids, fatty acids, various derivatives of cinnamic acid and benzoic acids, flavonoids and steroidal glycoalkaloids. The results indicate that the phenylpropanoid pathway, represented by flavonoids and hydroxycinnamic acids, is of prime importance in the tomato defense response. The hydroxycinnamic acids esters of quinic acid, hexoses and glucaric acids were identified as signatory biomarkers, as well as the hydroxycinnamic acid amides to polyamines and tyramine. Interestingly, the rapid and differential accumulation of putrescine, dopamine, and tyramine derivatives, along with the presence of a newly documented metabolite, feruloyl serotonin, were documented in the infected plants. Metabolite concentration variability in the different cultivar tissues point to cultivar-specific variation in the speed and manner of resource redistribution between the host tissues. These metabolic phenotypes provide insights into the differential metabolic signatures underlying the defense metabolism of the four cultivars, defining their defensive capabilities to R. solanacearum.
Collapse
|
42
|
Sundaresha S, Sharma S, Shandil RK, Sharma S, Thakur V, Bhardwaj V, Kaushik SK, Singh BP, Chakrabarti SK. An insight into the downstream analysis of RB gene in F1 RB potato lines imparting field resistance to late blight. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1026-1037. [PMID: 32291002 DOI: 10.1071/fp17299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/04/2018] [Indexed: 06/11/2023]
Abstract
Earlier studies have shown that level of late blight resistance conferred by the classical R gene (RB Rpi-blb1) is dependent on genetic background of the recipient genotype. This was revealed in the analysis of late blight response that belonged to a group of F1 progeny obtained from the cross between Kufri Jyoti and SP951, which showed wide variation in late blight resistance response in spite of possessing the same RB gene. The global gene expression pattern in the RB potato lines was studied in response to late blight infection using cDNA microarray analysis to reveal the background effect. Leaf samples were collected at 0, 24, 72 and 120h post inoculation (hpi) with Phytophthora infestans for gene expression analysis using 61031 gene sequences. Significantly upregulated (1477) and downregulated (4245) genes common in the RB-transgenic F1 lines at 24 and 72 hpi were classified into several categories based on GO identifiers and majority of genes were assigned putative biological functions. Highest expression of an NBS-LRR along with protease, pectin esterase inhibitors, chaperones and reactive oxygen species genes were observed which affirmed a significant role of these categories in the defence response of RB-KJ lines. Results suggest that the immune priming of plant receptors are likely to be involved in stability and functionality of RB to induce resistance against P. infestans. This study is important for effective deployment of RB gene in the host background and contributes immensely to scientific understanding of R gene interaction with host protein complexes to regulate defence system in plants.
Collapse
Affiliation(s)
- S Sundaresha
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Rajesh K Shandil
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Sadhana Sharma
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Vandana Thakur
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Surinder K Kaushik
- ICAR-National Bureau of Plant Genetic Resources, New Delhi -110012, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| | - Swarup K Chakrabarti
- ICAR-Central Potato Research Institute, Shimla - 171 001, Himachal Pradesh, India
| |
Collapse
|
43
|
Li J, Zhang K, Meng Y, Hu J, Ding M, Bian J, Yan M, Han J, Zhou M. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:444-457. [PMID: 29752755 DOI: 10.1111/tpj.13960] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 05/19/2023]
Abstract
Hydroxycinnamic acid amides (HCAAs) are a class of antimicrobial metabolites involved in plant defense against necrotrophic pathogens, including Alternaria brassicicola and Botrytis cinerea. The agmatine coumaryl transferase (AtACT) is the key enzyme that catalyzes the last reaction in the biosynthesis of HCAAs, including p-coumaroylagmatine (CouAgm) and feruloylagmatine in Arabidopsis thaliana. However, the regulatory mechanism of AtACT gene expression is currently unknown. Yeast one-hybrid screening using the AtACT promoter as bait isolated the key positive regulator ORA59 that is involved in jasmonic acid/ethylene (JA/ET)-mediated plant defense responses. AtACT gene expression and HCAAs biosynthesis were synergistically induced by a combination of JA and ET. In the AtACT promoter, two GCC-boxes function equivalently for trans-activation by ORA59 in Arabidopsis protoplasts, and mutation of either GCC-box abolished AtACT mRNA accumulation in transgenic plants. Site-directed mutation analysis demonstrated that the specific Leu residue at position 228 of the ORA59 EDLL motif mainly contributed to its transcriptional activity on AtACT gene expression. Importantly, MEDIATOR25 (MED25) and ORA59 homodimer are also required for ORA59-dependent activation of the AtACT gene. These results suggest that ORA59 and two functionally equivalent GCC-boxes form the regulatory module together with MED25 that enables AtACT gene expression and HCAAs biosynthesis to respond to simultaneous activation of the JA/ET signaling pathways.
Collapse
Affiliation(s)
- Jinbo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Meng
- College of Landscape and Travel, Agricultural University of Hebei, Baoding, 071001, China
| | - Jianping Hu
- College of Agricultural Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiahui Bian
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Jianming Han
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
44
|
Schenck CA, Maeda HA. Tyrosine biosynthesis, metabolism, and catabolism in plants. PHYTOCHEMISTRY 2018; 149:82-102. [PMID: 29477627 DOI: 10.1016/j.phytochem.2018.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 05/22/2023]
Abstract
L-Tyrosine (Tyr) is an aromatic amino acid (AAA) required for protein synthesis in all organisms, but synthesized de novo only in plants and microorganisms. In plants, Tyr also serves as a precursor of numerous specialized metabolites that have diverse physiological roles as electron carriers, antioxidants, attractants, and defense compounds. Some of these Tyr-derived plant natural products are also used in human medicine and nutrition (e.g. morphine and vitamin E). While the Tyr biosynthesis and catabolic pathways have been extensively studied in microbes and animals, respectively, those of plants have received much less attention until recently. Accumulating evidence suggest that the Tyr biosynthetic pathways differ between microbes and plants and even within the plant kingdom, likely to support the production of lineage-specific plant specialized metabolites derived from Tyr. The interspecies variations of plant Tyr pathway enzymes can now be used to enhance the production of Tyr and Tyr-derived compounds in plants and other synthetic biology platforms.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
45
|
Wang S, Suh JH, Hung WL, Zheng X, Wang Y, Ho CT. Use of UHPLC-TripleQ with synthetic standards to profile anti-inflammatory hydroxycinnamic acid amides in root barks and leaves of Lycium barbarum. J Food Drug Anal 2018; 26:572-582. [PMID: 29567226 PMCID: PMC9322230 DOI: 10.1016/j.jfda.2017.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022] Open
Abstract
Hydroxycinnamic acid amides (HCAA) are the secondary metabolites ubiquitously exist in flowering plants, formed by condensation between hydroxycinnamates and mono or polyamines. HCAA species not only serve multiple functions in plant growth and development, but also exert significant positive effects on human health. In this study, we combined organic synthesis and UPHLC-TripleQ-MS/MS specifically targeting at HCAA species. The method was fully validated with respect to specificity, linearity, intra- and inter-day precision and accuracy, limit of detection (LOD), limit of quantification (LOQ), recovery, and reproducibility. We applied this method to identify and quantify HCAAs from the root barks and leaves of Lycium barbarum. HCAA species were reported in leaves for the first time, and 10 new HCAA species were further identified in root barks in addition to the ones reported in the literature. We also examine anti-inflammatory properties of identified HCAAs species. Seven HCAA compounds had a potent NO inhibitory effect with IC50 as low as 2.381 μM (trans-N-caffeoyl phenethylamine). Our developed method largely improved analytical sensitivity of HCAAs species that potentially contributes to plant metabolomics studies.
Collapse
|
46
|
Torras-Claveria L, Bastida J, Viladomat F, Tiburcio AF. Analysis of Polyamines Conjugated with Hydroxycinnamoyl Acids by High-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry. Methods Mol Biol 2018; 1694:95-104. [PMID: 29080159 DOI: 10.1007/978-1-4939-7398-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyamines conjugated with hydroxycinnamic acids are phenolic compounds, which are widespread in the plant kingdom playing important roles in development and defence responses. This chapter describes the methodology employed to analyze these phenolamides in plant material by liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-MS-MS). These compounds are not always in sufficient concentration in plant tissues for analysis by more conventional methods such as UV detection of HPLC. Owing to their particular molecular structure, they cannot be analyzed as free polyamines. Thus, described herein is an extraction method for hydroxycinnamic acid amides in plant tissues such as leaves, and their analysis by LC-MS-MS, including identification and quantification protocols.
Collapse
Affiliation(s)
- Laura Torras-Claveria
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Jaume Bastida
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Section of Plant Physiology, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Francesc Viladomat
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Section of Plant Physiology, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Antonio F Tiburcio
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Section of Plant Physiology, University of Barcelona, Avda. Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
47
|
Khedia J, Agarwal P, Agarwal PK. AlNAC4 Transcription Factor From Halophyte Aeluropus lagopoides Mitigates Oxidative Stress by Maintaining ROS Homeostasis in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2018; 9:1522. [PMID: 30420862 PMCID: PMC6215862 DOI: 10.3389/fpls.2018.01522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/27/2018] [Indexed: 05/02/2023]
Abstract
NAC proteins are a large family of plant-specific transcription factors which regulate both ABA-dependent and -independent gene expression. These transcription factors participate in biotic and abiotic stress-response through intricate regulation at transcriptional, post-transcriptional and post-translational levels. In the present study, AlNAC4 transcription factor was isolated from a salt excreting halophyte Aeluropus lagopoides. The AlNAC4 has an open reading frame of 936 bp, encoding a protein of 312 amino acid, with an estimated molecular mass of 34.9 kDa. The AlNAC4 showed close homology to monocot NACs in the phylogenetic tree. In silico analysis revealed that AlNAC4 possess the characteristic A-E subdomains within the NAC domain. The AlNAC4 showed sixteen post-translational phosphorylation sites. The AlNAC4 transcript was significantly upregulated with dehydration and H2O2 treatments, showing its role in osmotic and oxidative stress, respectively. The recombinant protein showed binding to mono as well as tandem repeats of NAC recognition sequence (NACRS) of the erd1 promoter. This is the first report mentioning that overexpression of AlNAC4 improved oxidative stress tolerance in tobacco transgenics. The transgenics maintained ROS homeostasis during H2O2 treatment. The transgenics showed regulation of stress-responsive genes including CAT, SOD, LEA5, PLC3, ERD10B, THT1 and transcription factors like AP2, ZFP during oxidative stress. Key Message: The AlNAC4 transcription factor from recretohalophyte Aeluropus showed regulation with abiotic stresses and binding to NACRS elements of erd1 promoter. The AlNAC4 tobacco transgenics showed improved growth with oxidative stress.
Collapse
Affiliation(s)
- Jackson Khedia
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
| | - Parinita Agarwal
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- *Correspondence: Parinita Agarwal, ; Pradeep K. Agarwal, ;
| | - Pradeep K. Agarwal
- Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, Bhavnagar, India
- *Correspondence: Parinita Agarwal, ; Pradeep K. Agarwal, ;
| |
Collapse
|
48
|
Lee SJ, Sim GY, Lee Y, Kim BG, Ahn JH. Engineering of Escherichia coli for the synthesis of N-hydroxycinnamoyl tryptamine and serotonin. J Ind Microbiol Biotechnol 2017; 44:1551-1560. [PMID: 28819877 DOI: 10.1007/s10295-017-1975-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/09/2017] [Indexed: 01/13/2023]
Abstract
Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC-tryptamines and HC-serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Geun-Young Sim
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngshim Lee
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Bong-Gyu Kim
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
- Department of Forest Resources, Gyeongnam National University of Science and Technology, 33 Dongjin-ro, Jinju-si, Gyeongsangman-do, 52725, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
49
|
Novo M, Silvar C, Merino F, Martínez-Cortés T, Lu F, Ralph J, Pomar F. Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:12-20. [PMID: 28330555 DOI: 10.1016/j.plantsci.2017.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 05/08/2023]
Abstract
Verticillium dahliae is an economically relevant soilborne pathogen that causes vascular wilt in several crops, including pepper (Capsicum annuum). Fungal infection is usually visualized as a vascular browning, likely due to the onset of phenylpropanoid metabolism, which also seems to play a crucial role in the tolerance of some pepper varieties. In the current work, the potential function of distinct phenylpropanoid derivatives (suberin, lignin and phenolic compounds) in the pepper tolerance response against V. dahliae, was investigated. Histochemical and biochemical analyses ruled out suberin as a key player in the pepper-fungus interaction. However, changes observed in lignin composition and higher deposition of bound phenolics in infected stems seemed to contribute to the reinforcement of cell walls and the impairment of V. dahliae colonization. Most importantly, this is the first time that the accumulation of the hydroxycinnamic acid amide N-feruloyltyramine was reported in pepper stems in response to a vascular fungus. Fungitoxic activity for that hydroxycinnamate-tyramine conjugate was demonstrated as well.
Collapse
Affiliation(s)
- Marta Novo
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Cristina Silvar
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Fuencisla Merino
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Teresa Martínez-Cortés
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Fachuang Lu
- Department of Biochemistry and the Department of Energy's Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, WI 53726 Madison, USA; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, China
| | - John Ralph
- Department of Biochemistry and the Department of Energy's Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, WI 53726 Madison, USA
| | - Federico Pomar
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain.
| |
Collapse
|
50
|
Wang S, Suh JH, Zheng X, Wang Y, Ho CT. Identification and Quantification of Potential Anti-inflammatory Hydroxycinnamic Acid Amides from Wolfberry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:364-372. [PMID: 28008757 DOI: 10.1021/acs.jafc.6b05136] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wolfberry or Goji berry, the fruit of Lycium barbarum, exhibits health-promoting properties that leads to an extensive study of their active components. We synthesized a set of hydroxycinnamic acid amide (HCCA) compounds, including trans-caffeic acid, trans-ferulic acid, and 3,4-dihydroxyhydrocinnamic acid, with extended phenolic amine components as standards to identify and quantify the corresponding compounds from wolfberry and to investigate anti-inflammatory properties of these compounds using in vitro model. With optimized LC-MS/MS and NMR analysis, nine amide compounds were identified from the fruits. Seven of these compounds were identified in this plant for the first time. The amide compounds with a tyramine moiety were the most abundant. In vitro studies indicated that five HCCA compounds showed inhibitory effect on NO production inuded by lipopolysaccharides with IC50 less than 15.08 μM (trans-N-feruloyl dopamine). These findings suggested that wolfberries demonstrated anti-inflammatory properties.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Joon Hyuk Suh
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida , 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| | - Xi Zheng
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University , 164 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Yu Wang
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida , 700 Experiment Station Road, Lake Alfred, Florida 33850, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|