1
|
You HJ, Jang IH, Moon JK, Kang IJ, Kim JM, Kang S, Lee S. Genetic dissection of resistance to Phytophthora sojae using genome-wide association and linkage analysis in soybean [Glycine max (L.) Merr.]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:263. [PMID: 39516394 DOI: 10.1007/s00122-024-04771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Two novel and one known genomic regions associated with R-gene resistance to Phytophthora sojae were identified by genome-wide association analysis and linkage analysis in soybean. Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is a severe disease that causes substantial economic losses in soybean [Glycine max (L.) Merr.]. The primary approach for successful disease management of PRR is using R-gene-mediated resistance. Based on the phenotypic evaluation of 376 cultivated soybean accessions for the R-gene type resistance to P. sojae (isolate 2457), a genome-wide association analysis identified two regions on chromosomes 3 and 8. The most significant genomic region (20.7-21.3 Mbp) on chromosome 8 was a novel resistance locus where no Rps gene was previously reported. Instead, multiple copies of the UDP-glycosyltransferase superfamily protein-coding gene, associated with disease resistance, were annotated in this new locus. Another genomic region on chromosome 3 was a well-known Rps cluster. Using the Daepung × Ilpumgeomjeong RIL population, a linkage analysis confirmed these two resistance loci and identified a resistance locus on chromosome 2. A unique feature of the resistance in Ilpumgeomjeong was discovered when phenotypic distribution was projected upon eight groups of RILs carrying different combinations of resistance alleles for the three loci. Interestingly, the seven groups carrying at least one resistance allele statistically differed from the other with none, regardless of the number of resistance alleles. This suggests that the respective three different resistance genes can confer resistance to P. sojae isolate 2457. Deployment of the three regions via marker-assisted selection will facilitate effectively improving resistance to particular P. sojae isolates in soybean breeding programs.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ik Hyun Jang
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Kyung Moon
- Division of Crop Foundation, National Institute of Crop Science, Wanju-gun, 55365, Jeollabuk-do, Republic of Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon, 16613, Gyeonggi-do, Republic of Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Sungtaeg Kang
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Sungwoo Lee
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Sharma D, Budhlakoti N, Kumari A, Saini DK, Sharma A, Yadav A, Mir RR, Singh AK, Vikas VK, Singh GP, Kumar S. Exploring the genetic architecture of powdery mildew resistance in wheat through QTL meta-analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1386494. [PMID: 39022610 PMCID: PMC11251950 DOI: 10.3389/fpls.2024.1386494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Powdery mildew (PM), caused by Blumeria graminis f. sp. tritici, poses a significant threat to wheat production, necessitating the development of genetically resistant varieties for long-term control. Therefore, exploring genetic architecture of PM in wheat to uncover important genomic regions is an important area of wheat research. In recent years, the utilization of meta-QTL (MQTL) analysis has gained prominence as an essential tool for unraveling the complex genetic architecture underlying complex quantitative traits. The aim of this research was to conduct a QTL meta-analysis to pinpoint the specific genomic regions in wheat responsible for governing PM resistance. This study integrated 222 QTLs from 33 linkage-based studies using a consensus map with 54,672 markers. The analysis revealed 39 MQTLs, refined to 9 high-confidence MQTLs (hcMQTLs) with confidence intervals of 0.49 to 12.94 cM. The MQTLs had an average physical interval of 41.00 Mb, ranging from 0.000048 Mb to 380.71 Mb per MQTL. Importantly, 18 MQTLs co-localized with known resistance genes like Pm2, Pm3, Pm8, Pm21, Pm38, and Pm41. The study identified 256 gene models within hcMQTLs, providing potential targets for marker-assisted breeding and genomic prediction programs to enhance PM resistance. These MQTLs would serve as a foundation for fine mapping, gene isolation, and functional genomics studies, facilitating a deeper understanding of molecular mechanisms. The identification of candidate genes opens up exciting possibilities for the development of PM-resistant wheat varieties after validation.
Collapse
Affiliation(s)
- Divya Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Centre for Agriculture Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anita Kumari
- Department of Botany, University of Delhi, Delhi, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Punjab, Ludhiana, India
| | - Anshu Sharma
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Aakash Yadav
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Reyazul Rouf Mir
- Department of Genetics and Plant Breeding , Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir (SKUAST-K), Srinagar, Kashmir, India
| | - Amit Kumar Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V. K. Vikas
- Divison of Crop Improvement, ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, Tamilnadu, India
| | - Gyanendra Pratap Singh
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Divison of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
3
|
Khojasteh M, Darzi Ramandi H, Taghavi SM, Taheri A, Rahmanzadeh A, Chen G, Foolad MR, Osdaghi E. Unraveling the genetic basis of quantitative resistance to diseases in tomato: a meta-QTL analysis and mining of transcript profiles. PLANT CELL REPORTS 2024; 43:184. [PMID: 38951262 DOI: 10.1007/s00299-024-03268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
KEY MESSAGE Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.
Collapse
Affiliation(s)
- Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, P.O. Box 657833131, Hamedan, Iran
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ayat Taheri
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Majid R Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ebrahim Osdaghi
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
4
|
Jacott CN, Schoonbeek HJ, Sidhu GS, Steuernagel B, Kirby R, Zheng X, von Tiedermann A, Macioszek VK, Kononowicz AK, Fell H, Fitt BDL, Mitrousia GK, Stotz HU, Ridout CJ, Wells R. Pathogen lifestyle determines host genetic signature of quantitative disease resistance loci in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:65. [PMID: 38430276 PMCID: PMC10908622 DOI: 10.1007/s00122-024-04569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
KEY MESSAGE Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.
Collapse
Affiliation(s)
- Catherine N Jacott
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gurpinder Singh Sidhu
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Burkhard Steuernagel
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Kirby
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaorong Zheng
- Department of Crop Sciences, Georg August University, 37077, Göttingen, Germany
| | | | - Violetta K Macioszek
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245, Białystok, Poland
| | - Andrzej K Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237, Lodz, Poland
| | - Heather Fell
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Georgia K Mitrousia
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Christopher J Ridout
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Wells
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
5
|
Kumar S, Saini DK, Jan F, Jan S, Tahir M, Djalovic I, Latkovic D, Khan MA, Kumar S, Vikas VK, Kumar U, Kumar S, Dhaka NS, Dhankher OP, Rustgi S, Mir RR. Comprehensive meta-QTL analysis for dissecting the genetic architecture of stripe rust resistance in bread wheat. BMC Genomics 2023; 24:259. [PMID: 37173660 PMCID: PMC10182688 DOI: 10.1186/s12864-023-09336-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Yellow or stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is an important disease of wheat that threatens wheat production. Since developing resistant cultivars offers a viable solution for disease management, it is essential to understand the genetic basis of stripe rust resistance. In recent years, meta-QTL analysis of identified QTLs has gained popularity as a way to dissect the genetic architecture underpinning quantitative traits, including disease resistance. RESULTS Systematic meta-QTL analysis involving 505 QTLs from 101 linkage-based interval mapping studies was conducted for stripe rust resistance in wheat. For this purpose, publicly available high-quality genetic maps were used to create a consensus linkage map involving 138,574 markers. This map was used to project the QTLs and conduct meta-QTL analysis. A total of 67 important meta-QTLs (MQTLs) were identified which were refined to 29 high-confidence MQTLs. The confidence interval (CI) of MQTLs ranged from 0 to 11.68 cM with a mean of 1.97 cM. The mean physical CI of MQTLs was 24.01 Mb, ranging from 0.0749 to 216.23 Mb per MQTL. As many as 44 MQTLs colocalized with marker-trait associations or SNP peaks associated with stripe rust resistance in wheat. Some MQTLs also included the following major genes- Yr5, Yr7, Yr16, Yr26, Yr30, Yr43, Yr44, Yr64, YrCH52, and YrH52. Candidate gene mining in high-confidence MQTLs identified 1,562 gene models. Examining these gene models for differential expressions yielded 123 differentially expressed genes, including the 59 most promising CGs. We also studied how these genes were expressed in wheat tissues at different phases of development. CONCLUSION The most promising MQTLs identified in this study may facilitate marker-assisted breeding for stripe rust resistance in wheat. Information on markers flanking the MQTLs can be utilized in genomic selection models to increase the prediction accuracy for stripe rust resistance. The candidate genes identified can also be utilized for enhancing the wheat resistance against stripe rust after in vivo confirmation/validation using one or more of the following methods: gene cloning, reverse genetic methods, and omics approaches.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Farkhandah Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sofora Jan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Mohd Tahir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, Serbia
| | - Dragana Latkovic
- Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000, Novi Sad, Serbia
| | - Mohd Anwar Khan
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - V K Vikas
- ICAR-IARI, Regional Station, Wellington, 643 231, The Nilgiris, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology., CCS Haryana Agriculture University, Hisar, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, Molecular Cytogenetics Laboratory, College of Basic Science and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar-263145, U.S. Nagar, Uttarakhand, India
| | - Narendra Singh Dhaka
- Department of Genetics and Plant Breeding, College of Agriculture, G. B. Pant, University of Agriculture & Technology, Pantnagar-263145, U. S. Nagar, Uttarakhand, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge Amherst, MA, 01003, USA
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Clemson University, 2200 Pocket Road, Florence, SC, 29506, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Wadura, 193201, India.
| |
Collapse
|
6
|
Gruner P, Witzke A, Flath K, Eifler J, Schmiedchen B, Schmidt M, Gordillo A, Siekmann D, Fromme FJ, Koch S, Piepho HP, Miedaner T. Studying Stem Rust and Leaf Rust Resistances of Self-Fertile Rye Breeding Populations. Int J Mol Sci 2022; 23:ijms232213674. [PMID: 36430155 PMCID: PMC9692268 DOI: 10.3390/ijms232213674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Stem rust (SR) and leaf rust (LR) are currently the two most important rust diseases of cultivated rye in Central Europe and resistant cultivars promise to prevent yield losses caused by those pathogens. To secure long-lasting resistance, ideally pyramided monogenic resistances and race-nonspecific resistances are applied. To find respective genes, we screened six breeding populations and one testcross population for resistance to artificially inoculated SR and naturally occurring LR in multi-environmental field trials. Five populations were genotyped with a 10K SNP marker chip and one with DArTseqTM. In total, ten SR-QTLs were found that caused a reduction of 5-17 percentage points in stem coverage with urediniospores. Four QTLs thereof were mapped to positions of already known SR QTLs. An additional gene at the distal end of chromosome 2R, Pgs3.1, that caused a reduction of 40 percentage points SR infection, was validated. One SR-QTL on chromosome 3R, QTL-SR4, was found in three populations linked with the same marker. Further QTLs at similar positions, but from different populations, were also found on chromosomes 1R, 4R, and 6R. For SR, additionally seedling tests were used to separate between adult-plant and all-stage resistances and a statistical method accounting for the ordinal-scaled seedling test data was used to map seedling resistances. However, only Pgs3.1 could be detected based on seedling test data, even though genetic variance was observed in another population, too. For LR, in three of the populations, two new large-effect loci (Pr7 and Pr8) on chromosomes 1R and 2R were mapped that caused 34 and 21 percentage points reduction in leaf area covered with urediniospores and one new QTL on chromosome 1R causing 9 percentage points reduction.
Collapse
Affiliation(s)
- Paul Gruner
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | - Anne Witzke
- Julius Kuehn-Institute, Institute for Plant Protection in Field Crops and Grassland, 14532 Kleinmachnow, Germany
| | - Kerstin Flath
- Julius Kuehn-Institute, Institute for Plant Protection in Field Crops and Grassland, 14532 Kleinmachnow, Germany
| | | | | | | | | | | | | | - Silvia Koch
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70593 Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
7
|
Rahmanzadeh A, Khahani B, Taghavi SM, Khojasteh M, Osdaghi E. Genome-wide meta-QTL analyses provide novel insight into disease resistance repertoires in common bean. BMC Genomics 2022; 23:680. [PMID: 36192697 PMCID: PMC9531352 DOI: 10.1186/s12864-022-08914-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 09/27/2022] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is considered a staple food in a number of developing countries. Several diseases attack the crop leading to substantial economic losses around the globe. However, the crop has rarely been investigated for multiple disease resistance traits using Meta-analysis approach. RESULTS AND CONCLUSIONS In this study, in order to identify the most reliable and stable quantitative trait loci (QTL) conveying disease resistance in common bean, we carried out a meta-QTL (MQTL) analysis using 152 QTLs belonging to 44 populations reported in 33 publications within the past 20 years. These QTLs were decreased into nine MQTLs and the average of confidence interval (CI) was reduced by 2.64 folds with an average of 5.12 cM in MQTLs. Uneven distribution of MQTLs across common bean genome was noted where sub-telomeric regions carry most of the corresponding genes and MQTLs. One MQTL was identified to be specifically associated with resistance to halo blight disease caused by the bacterial pathogen Pseudomonas savastanoi pv. phaseolicola, while three and one MQTLs were specifically associated with resistance to white mold and anthracnose caused by the fungal pathogens Sclerotinia sclerotiorum and Colletotrichum lindemuthianum, respectively. Furthermore, two MQTLs were detected governing resistance to halo blight and anthracnose, while two MQTLs were detected for resistance against anthracnose and white mold, suggesting putative genes governing resistance against these diseases at a shared locus. Comparative genomics and synteny analyses provide a valuable strategy to identify a number of well‑known functionally described genes as well as numerous putative novels candidate genes in common bean, Arabidopsis and soybean genomes.
Collapse
Affiliation(s)
- Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
| | - Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
8
|
Pal N, Jan I, Saini DK, Kumar K, Kumar A, Sharma PK, Kumar S, Balyan HS, Gupta PK. Meta-QTLs for multiple disease resistance involving three rusts in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2385-2405. [PMID: 35699741 DOI: 10.1007/s00122-022-04119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/28/2022] [Indexed: 05/20/2023]
Abstract
In wheat, multiple disease resistance meta-QTLs (MDR-MQTLs) and underlying candidate genes for the three rusts were identified which may prove useful for development of resistant cultivars. Rust diseases in wheat are a major threat to global food security. Therefore, development of multiple disease-resistant cultivars (resistant to all three rusts) is a major goal in all wheat breeding programs worldwide. In the present study, meta-QTLs and candidate genes for multiple disease resistance (MDR) involving all three rusts were identified using 152 individual QTL mapping studies for resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR). From these 152 studies, a total of 1,146 QTLs for resistance to three rusts were retrieved, which included 368 QTLs for LR, 291 QTLs for SR, and 487 QTLs for YR. Of these 1,146 QTLs, only 718 QTLs could be projected onto the consensus map saturated with 2, 34,619 markers. Meta-analysis of the projected QTLs resulted in the identification of 86 MQTLs, which included 71 MDR-MQTLs. Ten of these MDR-MQTLs were referred to as the 'Breeders' MQTLs'. Seventy-eight of the 86 MQTLs could also be anchored to the physical map of the wheat genome, and 54 MQTLs were validated by marker-trait associations identified during earlier genome-wide association studies. Twenty MQTLs (including 17 MDR-MQTLs) identified in the present study were co-localized with 44 known R genes. In silico expression analysis allowed identification of several differentially expressed candidate genes (DECGs) encoding proteins carrying different domains including the following: NBS-LRR, WRKY domains, F-box domains, sugar transporters, transferases, etc. The introgression of these MDR loci into high-yielding cultivars should prove useful for developing high yielding cultivars with resistance to all the three rusts.
Collapse
Affiliation(s)
- Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Sundip Kumar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, 263145, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
- Murdoch's Centre for Crop & Food Innovation, Murdoch University, Murdoch, Perth, WA 6150, Australia.
| |
Collapse
|
9
|
Saini DK, Chahal A, Pal N, Srivastava P, Gupta PK. Meta-analysis reveals consensus genomic regions associated with multiple disease resistance in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:11. [PMID: 37309411 PMCID: PMC10248701 DOI: 10.1007/s11032-022-01282-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In wheat, meta-QTLs (MQTLs) and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103 QTLs; fusarium head blight (FHB), 184 QTLs; karnal bunt (KB), 66 QTLs; and loose smut (LS), 14 QTLs. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed candidate genes (DECGs). Among the DECGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping and cloning of MDR genes and marker-assisted breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01282-z.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Amneek Chahal
- College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Neeraj Pal
- Department of Molecular Biology and Genetic Engineering, G. B. Pant, University of Agriculture and Technology, Pantnagar, Uttrakhand-263145 India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab-141004 India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
10
|
Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh CS, Ens J, Gundlach H, Boston LB, Tulpová Z, Holden S, Hernández-Pinzón I, Scholz U, Mayer KFX, Spannagl M, Pozniak CJ, Sharpe AG, Šimková H, Moscou MJ, Grimwood J, Schmutz J, Stein N. Long-read sequence assembly: a technical evaluation in barley. THE PLANT CELL 2021; 33:1888-1906. [PMID: 33710295 PMCID: PMC8290290 DOI: 10.1093/plcell/koab077] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/28/2021] [Indexed: 05/19/2023]
Abstract
Sequence assembly of large and repeat-rich plant genomes has been challenging, requiring substantial computational resources and often several complementary sequence assembly and genome mapping approaches. The recent development of fast and accurate long-read sequencing by circular consensus sequencing (CCS) on the PacBio platform may greatly increase the scope of plant pan-genome projects. Here, we compare current long-read sequencing platforms regarding their ability to rapidly generate contiguous sequence assemblies in pan-genome studies of barley (Hordeum vulgare). Most long-read assemblies are clearly superior to the current barley reference sequence based on short-reads. Assemblies derived from accurate long reads excel in most metrics, but the CCS approach was the most cost-effective strategy for assembling tens of barley genomes. A downsampling analysis indicated that 20-fold CCS coverage can yield very good sequence assemblies, while even five-fold CCS data may capture the complete sequence of most genes. We present an updated reference genome assembly for barley with near-complete representation of the repeat-rich intergenic space. Long-read assembly can underpin the construction of accurate and complete sequences of multiple genomes of a species to build pan-genome infrastructures in Triticeae crops and their wild relatives.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zürich 8008, Switzerland
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | | | - Thomas Lux
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Chu Shin Koh
- Global Institute for Food Security, University of Saskatchewan, Saskatoon SK S7N 4L8, Canada
| | - Jennifer Ens
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Heidrun Gundlach
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Lori B Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Zuzana Tulpová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Samuel Holden
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | | | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland 06466, Germany
| | - Klaus F X Mayer
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Manuel Spannagl
- PGSB–Plant Genome and Systems Biology, Helmholtz Center Munich–German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Curtis J Pozniak
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon SK S7N 4L8, Canada
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc 78371, Czech Republic
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland 06466, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen 37073, Germany
| |
Collapse
|
11
|
Capador-Barreto HD, Bernhardsson C, Milesi P, Vos I, Lundén K, Wu HX, Karlsson B, Ingvarsson PK, Stenlid J, Elfstrand M. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol Ecol 2021; 30:4433-4447. [PMID: 34218489 DOI: 10.1111/mec.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.
Collapse
Affiliation(s)
- Hernán D Capador-Barreto
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Vos
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Pär K Ingvarsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int J Mol Sci 2021; 22:5423. [PMID: 34063853 PMCID: PMC8196592 DOI: 10.3390/ijms22115423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.
Collapse
Affiliation(s)
- Antonia Mores
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giovanni Laidò
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | | | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| |
Collapse
|
13
|
Novakazi F, Krusell L, Jensen JD, Orabi J, Jahoor A, Bengtsson T. You Had Me at "MAGIC"!: Four Barley MAGIC Populations Reveal Novel Resistance QTL for Powdery Mildew. Genes (Basel) 2020; 11:genes11121512. [PMID: 33352820 PMCID: PMC7766815 DOI: 10.3390/genes11121512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Blumeria graminis f. sp. hordei (Bgh), the causal agent of barley powdery mildew (PM), is one of the most important barley leaf diseases and is prevalent in most barley growing regions. Infection decreases grain quality and yields on average by 30%. Multi-parent advanced generation inter-cross (MAGIC) populations combine the advantages of bi-parental and association panels and offer the opportunity to incorporate exotic alleles into adapted material. Here, four barley MAGIC populations consisting of six to eight founders were tested for PM resistance in field trials in Denmark. Principle component and STRUCTURE analysis showed the populations were unstructured and genome-wide linkage disequilibrium (LD) decay varied between 14 and 38 Mbp. Genome-wide association studies (GWAS) identified 11 regions associated with PM resistance located on chromosomes 1H, 2H, 3H, 4H, 5H and 7H, of which three regions are putatively novel resistance quantitative trait locus/loci (QTL). For all regions high-confidence candidate genes were identified that are predicted to be involved in pathogen defense. Haplotype analysis of the significant SNPs revealed new allele combinations not present in the founders and associated with high resistance levels.
Collapse
Affiliation(s)
- Fluturë Novakazi
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden; (F.N.); (A.J.)
| | - Lene Krusell
- Sejet Plant Breeding, Nørremarksvej 67, 8700 Horsens, Denmark;
| | - Jens Due Jensen
- Nordic Seed A/S, Kornmarken 1, 8464 Galten, Denmark; (J.D.J.); (J.O.)
| | - Jihad Orabi
- Nordic Seed A/S, Kornmarken 1, 8464 Galten, Denmark; (J.D.J.); (J.O.)
| | - Ahmed Jahoor
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden; (F.N.); (A.J.)
- Nordic Seed A/S, Kornmarken 1, 8464 Galten, Denmark; (J.D.J.); (J.O.)
| | - Therése Bengtsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden; (F.N.); (A.J.)
- Correspondence:
| |
Collapse
|
14
|
Büttner B, Draba V, Pillen K, Schweizer G, Maurer A. Identification of QTLs conferring resistance to scald (Rhynchosporium commune) in the barley nested association mapping population HEB-25. BMC Genomics 2020; 21:837. [PMID: 33246416 PMCID: PMC7694317 DOI: 10.1186/s12864-020-07258-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Barley scald, caused by the fungus Rhynchosporium commune, is distributed worldwide to all barley growing areas especially in cool and humid climates. Scald is an economically important leaf disease resulting in yield losses of up to 40%. To breed resistant cultivars the identification of quantitative trait loci (QTLs) conferring resistance to scald is necessary. Introgressing promising resistance alleles of wild barley is a way to broaden the genetic basis of scald resistance in cultivated barley. Here, we apply nested association mapping (NAM) to map resistance QTLs in the barley NAM population HEB-25, comprising 1420 lines in BC1S3 generation, derived from crosses of 25 wild barley accessions with cv. Barke. RESULTS In scald infection trials in the greenhouse variability of resistance across and within HEB-25 families was found. NAM based on 33,005 informative SNPs resulted in the identification of eight reliable QTLs for resistance against scald with most wild alleles increasing resistance as compared to cv. Barke. Three of them are located in the region of known resistance genes and two in the regions of QTLs, respectively. The most promising wild allele was found at Rrs17 in one specific wild donor. Also, novel QTLs with beneficial wild allele effects on scald resistance were detected. CONCLUSIONS To sum up, wild barley represents a rich resource for scald resistance. As the QTLs were linked to the physical map the identified candidate genes will facilitate cloning of the scald resistance genes. The closely linked flanking molecular markers can be used for marker-assisted selection of the respective resistance genes to integrate them in elite cultivars.
Collapse
Affiliation(s)
- Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Vera Draba
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Günther Schweizer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany.
| |
Collapse
|
15
|
Chavarro C, Chu Y, Holbrook C, Isleib T, Bertioli D, Hovav R, Butts C, Lamb M, Sorensen R, A Jackson S, Ozias-Akins P. Pod and Seed Trait QTL Identification To Assist Breeding for Peanut Market Preferences. G3 (BETHESDA, MD.) 2020; 10:2297-2315. [PMID: 32398236 PMCID: PMC7341151 DOI: 10.1534/g3.120.401147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
Although seed and pod traits are important for peanut breeding, little is known about the inheritance of these traits. A recombinant inbred line (RIL) population of 156 lines from a cross of Tifrunner x NC 3033 was genotyped with the Axiom_Arachis1 SNP array and SSRs to generate a genetic map composed of 1524 markers in 29 linkage groups (LG). The genetic positions of markers were compared with their physical positions on the peanut genome to confirm the validity of the linkage map and explore the distribution of recombination and potential chromosomal rearrangements. This linkage map was then used to identify Quantitative Trait Loci (QTL) for seed and pod traits that were phenotyped over three consecutive years for the purpose of developing trait-associated markers for breeding. Forty-nine QTL were identified in 14 LG for seed size index, kernel percentage, seed weight, pod weight, single-kernel, double-kernel, pod area and pod density. Twenty QTL demonstrated phenotypic variance explained (PVE) greater than 10% and eight more than 20%. Of note, seven of the eight major QTL for pod area, pod weight and seed weight (PVE >20% variance) were attributed to NC 3033 and located in a single linkage group, LG B06_1. In contrast, the most consistent QTL for kernel percentage were located on A07/B07 and derived from Tifrunner.
Collapse
Affiliation(s)
- Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793
| | - Corley Holbrook
- USDA- Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793
| | - Thomas Isleib
- Department of Crop Science, North Carolina State University, P.O. Box 7629, Raleigh, NC 27695
| | - David Bertioli
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Ran Hovav
- Department of Field and Vegetable Crops, Plant Sciences Institute, ARO (Volcani Center), Bet Dagan, Israel, and
| | - Christopher Butts
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Marshall Lamb
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Ronald Sorensen
- USDA- Agricultural Research Service, National Peanut Research Laboratory, Dawson, GA 39842
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Tifton, GA 31793,
| |
Collapse
|
16
|
Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs. Sci Rep 2020; 10:214. [PMID: 31937848 PMCID: PMC6959250 DOI: 10.1038/s41598-019-56903-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
The genetic architecture of seed protein content (SPC) and its relationships to agronomic traits in pigeonpea is poorly understood. Accordingly, five F2 populations segregating for SPC and four agronomic traits (seed weight (SW), seed yield (SY), growth habit (GH) and days to first flowering (DFF)) were phenotyped and genotyped using genotyping-by-sequencing approach. Five high-density population-specific genetic maps were constructed with an average inter-marker distance of 1.6 to 3.5 cM, and subsequently, integrated into a consensus map with average marker spacing of 1.6 cM. Based on analysis of phenotyping data and genotyping data, 192 main effect QTLs (M-QTLs) with phenotypic variation explained (PVE) of 0.7 to 91.3% were detected for the five traits across the five populations. Major effect (PVE ≥ 10%) M-QTLs included 14 M-QTLs for SPC, 16 M-QTLs for SW, 17 M-QTLs for SY, 19 M-QTLs for GH and 24 M-QTLs for DFF. Also, 573 epistatic QTLs (E-QTLs) were detected with PVE ranging from 6.3 to 99.4% across traits and populations. Colocalization of M-QTLs and E-QTLs explained the genetic basis of the significant (P < 0.05) correlations of SPC with SW, SY, DFF and GH. The nature of genetic architecture of SPC and its relationship with agronomic traits suggest that genomics-assisted breeding targeting genome-wide variations would be effective for the simultaneous improvement of SPC and other important traits.
Collapse
|
17
|
Hoseinzadeh P, Zhou R, Mascher M, Himmelbach A, Niks RE, Schweizer P, Stein N. High Resolution Genetic and Physical Mapping of a Major Powdery Mildew Resistance Locus in Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:146. [PMID: 30838011 PMCID: PMC6382739 DOI: 10.3389/fpls.2019.00146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/28/2019] [Indexed: 05/02/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. hordei is a foliar disease with highly negative impact on yield and grain quality in barley. Thus, breeding for powdery mildew resistance is an important goal and requires constantly the discovery of new sources of natural resistance. Here, we report the high resolution genetic and physical mapping of a dominant race-specific powdery mildew resistance locus, originating from an Ethiopian spring barley accession 'HOR2573,' conferring resistance to several modern mildew isolates. High-resolution genetic mapping narrowed down the interval containing the resistance locus to a physical span of 850 kb. Four candidate genes with homology to known disease resistance gene families were identified. The mapped resistance locus coincides with a previously reported resistance locus from Hordeum laevigatum, suggesting allelism at the same locus in two different barley lines. Therefore, we named the newly mapped resistance locus from HOR2573 as MlLa-H. The reported co-segregating and flanking markers may provide new tools for marker-assisted selection of this resistance locus in barley breeding.
Collapse
Affiliation(s)
- Parastoo Hoseinzadeh
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Ruonan Zhou
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Axel Himmelbach
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rients E. Niks
- Department of Plant Science, Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Patrick Schweizer
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nils Stein
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Looseley ME, Griffe LL, Büttner B, Wright KM, Middlefell-Williams J, Bull H, Shaw PD, Macaulay M, Booth A, Schweizer G, Russell JR, Waugh R, Thomas WTB, Avrova A. Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2513-2528. [PMID: 30151748 DOI: 10.1007/s00122-018-3168-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.
Collapse
Affiliation(s)
- Mark E Looseley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Lucie L Griffe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- RAGT Seeds Ltd, Grange Road, Ickleton, Saffron Walden, Essex, CB10 1TA, UK
| | - Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| | - Kathryn M Wright
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Hazel Bull
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd, Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - Paul D Shaw
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Malcolm Macaulay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Günther Schweizer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| | - Joanne R Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Anna Avrova
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
19
|
Romero CCT, Vermeulen JP, Vels A, Himmelbach A, Mascher M, Niks RE. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1031-1045. [PMID: 29372282 PMCID: PMC5895680 DOI: 10.1007/s00122-018-3055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/12/2018] [Indexed: 05/08/2023]
Abstract
Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
Collapse
Affiliation(s)
- Cynara C T Romero
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Jasper P Vermeulen
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Anton Vels
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Rients E Niks
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Chang HX, Roth MG, Wang D, Cianzio SR, Lightfoot DA, Hartman GL, Chilvers MI. Integration of sudden death syndrome resistance loci in the soybean genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:757-773. [PMID: 29435603 DOI: 10.1007/s00122-018-3063-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/19/2018] [Indexed: 05/12/2023]
Abstract
KEY MESSAGE Complexity and inconsistencies in resistance mapping publications of soybean sudden death syndrome (SDS) result in interpretation difficulty. This review integrates SDS mapping literature and proposes a new nomenclature system for reproducible SDS resistance loci. Soybean resistance to sudden death syndrome (SDS) is composed of foliar resistance to phytotoxins and root resistance to pathogen invasion. There are more than 80 quantitative trait loci (QTL) and dozens of single nucleotide polymorphisms (SNPs) associated with soybean resistance to SDS. The validity of these QTL and SNPs is questionable because of the complexity in phenotyping methodologies, the disease synergism between SDS and soybean cyst nematode (SCN), the variability from the interactions between soybean genotypes and environments, and the inconsistencies in the QTL nomenclature. This review organizes SDS mapping results and proposes the Rfv (resistance to Fusarium virguliforme) nomenclature based on supporting criteria described in the text. Among ten reproducible loci receiving our Rfv nomenclature, Rfv18-01 is mostly supported by field studies and it co-localizes to the SCN resistance locus rhg1. The possibility that Rfv18-01 is a pleiotropic resistance locus and the concern about Rfv18-01 being confounded with Rhg1 is discussed. On the other hand, Rfv06-01, Rfv06-02, Rfv09-01, Rfv13-01, and Rfv16-01 were identified both by screening soybean leaves against phytotoxic culture filtrates and by evaluating SDS severity in fields. Future phenotyping using leaf- and root-specific resistance screening methodologies may improve the precision of SDS resistance, and advanced genetic studies may further clarify the interactions among soybean genotypes, F. virguliforme, SCN, and environments. The review provides a summary of the SDS resistance literature and proposes a framework for communicating SDS resistance loci for future research considering molecular interactions and genetic breeding for soybean SDS resistance.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Mitchell G Roth
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Genetics Program, Michigan State University, East Lansing, MI, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA.
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- USDA-Agricultural Research Service, Urbana, IL, USA.
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
- Genetics Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
21
|
Vatter T, Maurer A, Perovic D, Kopahnke D, Pillen K, Ordon F. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM). PLoS One 2018; 13:e0191666. [PMID: 29370232 PMCID: PMC5784946 DOI: 10.1371/journal.pone.0191666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.
Collapse
Affiliation(s)
- Thomas Vatter
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Doris Kopahnke
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet 2017; 19:21-33. [PMID: 29109524 DOI: 10.1038/nrg.2017.82] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant diseases are responsible for substantial crop losses each year and pose a threat to global food security and agricultural sustainability. Improving crop resistance to pathogens through breeding is an environmentally sound method for managing disease and minimizing these losses. However, it is challenging to breed varieties with resistance that is effective, stable and broad-spectrum. Recent advances in genetic and genomic technologies have contributed to a better understanding of the complexity of host-pathogen interactions and have identified some of the genes and mechanisms that underlie resistance. This new knowledge is benefiting crop improvement through better-informed breeding strategies that utilize diverse forms of resistance at different scales, from the genome of a single plant to the plant varieties deployed across a region.
Collapse
Affiliation(s)
- Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Randall Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Peter Balint-Kurti
- United States Department of Agriculture Agricultural Research Service (USDA-ARS), Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA
| |
Collapse
|
23
|
Vatter T, Maurer A, Kopahnke D, Perovic D, Ordon F, Pillen K. A nested association mapping population identifies multiple small effect QTL conferring resistance against net blotch (Pyrenophora teres f. teres) in wild barley. PLoS One 2017; 12:e0186803. [PMID: 29073176 PMCID: PMC5658061 DOI: 10.1371/journal.pone.0186803] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/06/2017] [Indexed: 12/02/2022] Open
Abstract
The net form of net blotch caused by the necrotrophic fungus Pyrenophora teres f. teres is a major disease of barley, causing high yield losses and reduced malting and feed quality. Exploiting the allelic richness of wild barley proved to be a valuable tool to broaden the genetic base of resistance of modern elite cultivars. In this study, a SNP-based nested association mapping (NAM) study was conducted to map QTL for P. teres resistance in the barley population HEB-25 comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area followed by calculation of the average ordinate (AO) and scoring of the reaction type (RT) in two-year field trials a large variability of net blotch resistance across and within families of HEB-25 was observed. Genotype response to net blotch infection showed a range of 48.2% for AO (0.9-49.1%) and 6.4 for RT (2.2-8.6). NAM based on 5,715 informative SNPs resulted in the identification of 24 QTL for resistance against net blotch. Out of these, six QTL are considered novel showing no correspondence to previously reported QTL for net blotch resistance. Overall, variation of net blotch resistance in HEB-25 turned out to be controlled by small effect QTL. Results indicate the presence of alleles in HEB-25 differing in their effect on net blotch resistance. Results provide valuable information regarding the genetic architecture of the complex barley-P. teres f. teres interaction as well as for the improvement of net blotch resistance of elite barley cultivars.
Collapse
Affiliation(s)
- Thomas Vatter
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Doris Kopahnke
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
24
|
Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen. G3-GENES GENOMES GENETICS 2017; 7:3317-3329. [PMID: 28790145 PMCID: PMC5633382 DOI: 10.1534/g3.117.300125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causes powdery mildew disease in barley (Hordeum vulgare L.). Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL) analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr) 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa) and H. vulgare cv. Algerian (Mla1), which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI) via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE) complex with SYP121 (PEN1), which is engaged in pathogen associated molecular pattern (PAMP)-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios.
Collapse
|
25
|
Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, Johrde A, Doblin MS, Beahan CT, Kopischke M, Fuchs R, Lipka V, Niks RE, Bulone V, Chowdhury J, Little A, Burton RA, Bacic A, Fincher GB, Schweizer P. The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. THE NEW PHYTOLOGIST 2016; 212:421-33. [PMID: 27352228 DOI: 10.1111/nph.14065] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/10/2016] [Indexed: 05/20/2023]
Abstract
Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.
Collapse
Affiliation(s)
- Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Stefanie Lueck
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Goetz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Annika Johrde
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Cherie T Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - René Fuchs
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, Göttingen, D-37077, Germany
| | - Rients E Niks
- Plant Sciences, Wageningen University, PO Box 386, Wageningen, 6700AJ, the Netherlands
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
- Division of Glycocience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, SE-106 91, Sweden
| | - Jamil Chowdhury
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Rachel A Burton
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Vic., 3010, Australia
| | - Geoffrey B Fincher
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben, Corrensstrasse 3, Stadt Seeland, 06466, Germany.
| |
Collapse
|
26
|
Abstract
Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the plant innate immunity system provides highly specific resistance, there is emerging evidence to support the hypothesis that some components of plant defense are relatively nonspecific, providing multiple disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant biologists, pathologists, and breeders. This review takes stock of the available evidence related to the MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying selection, by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus and gene levels.
Collapse
Affiliation(s)
- Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| | - Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
27
|
Douchkov D, Lück S, Johrde A, Nowara D, Himmelbach A, Rajaraman J, Stein N, Sharma R, Kilian B, Schweizer P. Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biol 2015; 15:518. [PMID: 25476012 PMCID: PMC4302706 DOI: 10.1186/s13059-014-0518-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 01/01/2023] Open
Abstract
Background Non-host resistance, NHR, to non-adapted pathogens and quantitative host resistance, QR, confer durable protection to plants and are important for securing yield in a longer perspective. However, a more targeted exploitation of the trait usually possessing a complex mode of inheritance by many quantitative trait loci, QTLs, will require a better understanding of the most important genes and alleles. Results Here we present results from a transient-induced gene silencing, TIGS, approach of candidate genes for NHR and QR in barley against the powdery mildew fungus Blumeria graminis. Genes were selected based on transcript regulation, multigene-family membership or genetic map position. Out of 1,144 tested RNAi-target genes, 96 significantly affected resistance to the non-adapted wheat- or the compatible barley powdery mildew fungus, with an overlap of four genes. TIGS results for QR were combined with transcript regulation data, allele-trait associations, QTL co-localization and copy number variation resulting in a meta-dataset of 51 strong candidate genes with convergent evidence for a role in QR. Conclusions This study represents an initial, functional inventory of approximately 3% of the barley transcriptome for a role in NHR or QR against the powdery mildew pathogen. The discovered candidate genes support the idea that QR in this Triticeae host is primarily based on pathogen-associated molecular pattern-triggered immunity, which is compromised by effector molecules produced by the compatible pathogen. The overlap of four genes with significant TIGS effects both in the NHR and QR screens also indicates shared components for both forms of durable pathogen resistance. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0518-8) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Rötter RP, Tao F, Höhn JG, Palosuo T. Use of crop simulation modelling to aid ideotype design of future cereal cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3463-76. [PMID: 25795739 DOI: 10.1093/jxb/erv098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A major challenge of the 21st century is to achieve food supply security under a changing climate and roughly a doubling in food demand by 2050 compared to present, the majority of which needs to be met by the cereals wheat, rice, maize, and barley. Future harvests are expected to be especially threatened through increased frequency and severity of extreme events, such as heat waves and drought, that pose particular challenges to plant breeders and crop scientists. Process-based crop models developed for simulating interactions between genotype, environment, and management are widely applied to assess impacts of environmental change on crop yield potentials, phenology, water use, etc. During the last decades, crop simulation has become important for supporting plant breeding, in particular in designing ideotypes, i.e. 'model plants', for different crops and cultivation environments. In this review we (i) examine the main limitations of crop simulation modelling for supporting ideotype breeding, (ii) describe developments in cultivar traits in response to climate variations, and (iii) present examples of how crop simulation has supported evaluation and design of cereal cultivars for future conditions. An early success story for rice demonstrates the potential of crop simulation modelling for ideotype breeding. Combining conventional crop simulation with new breeding methods and genetic modelling holds promise to accelerate delivery of future cereal cultivars for different environments. Robustness of model-aided ideotype design can further be enhanced through continued improvements of simulation models to better capture effects of extremes and the use of multi-model ensembles.
Collapse
Affiliation(s)
- R P Rötter
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| | - F Tao
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| | - J G Höhn
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| | - T Palosuo
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| |
Collapse
|
29
|
Niks RE, Qi X, Marcel TC. Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:445-70. [PMID: 26047563 DOI: 10.1146/annurev-phyto-080614-115928] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Quantitative resistance (QR) refers to a resistance that is phenotypically incomplete and is based on the joined effect of several genes, each contributing quantitatively to the level of plant defense. Often, QR remains durably effective, which is the primary driver behind the interest in it. The various terms that are used to refer to QR, such as field resistance, adult plant resistance, and basal resistance, reflect the many properties attributed to it. In this article, we discuss aspects connected to those attributions, in particular the hypothesis that much of the QR to biotrophic filamentous pathogens is basal resistance, i.e., poor suppression of PAMP-triggered defense by effectors. We discuss what role effectors play in suppressing defense or improving access to nutrients. Based on the functions of the few plant proteins identified as involved in QR, vesicle trafficking and protein/metabolite transportation are likely to be common physiological processes relevant to QR.
Collapse
Affiliation(s)
- Rients E Niks
- Laboratory of Plant Breeding, Wageningen University and Research Centre, 6700 AJ Wageningen, The Netherlands;
| | | | | |
Collapse
|
30
|
Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1513-1525. [PMID: 24797143 DOI: 10.1007/s00122-014-2315-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
We suggest multi-parental nested association mapping as a valuable innovation in barley genetics, which increases the power to map quantitative trait loci and assists in extending genetic diversity of the elite barley gene pool. Plant genetic resources are a key asset to further improve crop species. The nested association mapping (NAM) approach was introduced to identify favorable genes in multi-parental populations. Here, we report toward the development of the first explorative barley NAM population and demonstrate its usefulness in a study on mapping quantitative trait loci (QTLs) for leaf rust resistance. The NAM population HEB-5 was developed from crossing and backcrossing five exotic barley donors with the elite barley cultivar 'Barke,' resulting in 295 NAM lines in generation BC1S1. HEB-5 was genetically characterized with 1,536 barley SNPs. Across HEB-5 and within the NAM families, no deviation from the expected genotype and allele frequencies was detected. Genetic similarity between 'Barke' and the NAM families ranged from 78.6 to 83.1 %, confirming the backcrossing step during population development. To explore its usefulness, a screen for leaf rust (Puccinia hordei) seedling resistance was conducted. Resistance QTLs were mapped to six barley chromosomes, applying a mixed model genome-wide association study. In total, four leaf rust QTLs were detected across HEB-5 and four QTLs within family HEB-F23. Favorable exotic QTL alleles reduced leaf rust symptoms on two chromosomes by 33.3 and 36.2 %, respectively. The located QTLs may represent new resistance loci or correspond to new alleles of known resistance genes. We conclude that the exploratory population HEB-5 can be applied to mapping and utilizing exotic QTL alleles of agronomic importance. The NAM concept will foster the evaluation of the genetic diversity, which is present in our primary barley gene pool.
Collapse
Affiliation(s)
- Florian Schnaithmann
- Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | | | | |
Collapse
|
31
|
Lecomte M, Hamama L, Voisine L, Gatto J, Hélesbeux JJ, Séraphin D, Peña-Rodriguez LM, Richomme P, Boedo C, Yovanopoulos C, Gyomlai M, Briard M, Simoneau P, Poupard P, Berruyer R. Partial resistance of carrot to Alternaria dauci correlates with in vitro cultured carrot cell resistance to fungal exudates. PLoS One 2014; 9:e101008. [PMID: 24983469 PMCID: PMC4077726 DOI: 10.1371/journal.pone.0101008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/30/2014] [Indexed: 11/25/2022] Open
Abstract
Although different mechanisms have been proposed in the recent years, plant pathogen partial resistance is still poorly understood. Components of the chemical warfare, including the production of plant defense compounds and plant resistance to pathogen-produced toxins, are likely to play a role. Toxins are indeed recognized as important determinants of pathogenicity in necrotrophic fungi. Partial resistance based on quantitative resistance loci and linked to a pathogen-produced toxin has never been fully described. We tested this hypothesis using the Alternaria dauci-carrot pathosystem. Alternaria dauci, causing carrot leaf blight, is a necrotrophic fungus known to produce zinniol, a compound described as a non-host selective toxin. Embryogenic cellular cultures from carrot genotypes varying in resistance against A. dauci were confronted with zinniol at different concentrations or to fungal exudates (raw, organic or aqueous extracts). The plant response was analyzed through the measurement of cytoplasmic esterase activity, as a marker of cell viability, and the differentiation of somatic embryos in cellular cultures. A differential response to toxicity was demonstrated between susceptible and partially resistant genotypes, with a good correlation noted between the resistance to the fungus at the whole plant level and resistance at the cellular level to fungal exudates from raw and organic extracts. No toxic reaction of embryogenic cultures was observed after treatment with the aqueous extract or zinniol used at physiological concentration. Moreover, we did not detect zinniol in toxic fungal extracts by UHPLC analysis. These results suggest that strong phytotoxic compounds are present in the organic extract and remain to be characterized. Our results clearly show that carrot tolerance to A. dauci toxins is one component of its partial resistance.
Collapse
Affiliation(s)
- Mickaël Lecomte
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Latifa Hamama
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Linda Voisine
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Julia Gatto
- Université d'Angers, UPRES EA921SONAS, SFR 4207 QUASAV, Angers, France
| | | | - Denis Séraphin
- Université d'Angers, UPRES EA921SONAS, SFR 4207 QUASAV, Angers, France
| | - Luis M. Peña-Rodriguez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, Mexico
| | - Pascal Richomme
- Université d'Angers, UPRES EA921SONAS, SFR 4207 QUASAV, Angers, France
| | - Cora Boedo
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Claire Yovanopoulos
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Melvina Gyomlai
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Mathilde Briard
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Philippe Simoneau
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Pascal Poupard
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| | - Romain Berruyer
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- Université d'Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
| |
Collapse
|
32
|
Scherm H, Thomas CS, Garrett KA, Olsen JM. Meta-analysis and other approaches for synthesizing structured and unstructured data in plant pathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:453-76. [PMID: 25001455 DOI: 10.1146/annurev-phyto-102313-050214] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The term data deluge is used widely to describe the rapidly accelerating growth of information in the technical literature, in scientific databases, and in informal sources such as the Internet and social media. The massive volume and increased complexity of information challenge traditional methods of data analysis but at the same time provide unprecedented opportunities to test hypotheses or uncover new relationships via mining of existing databases and literature. In this review, we discuss analytical approaches that are beginning to be applied to help synthesize the vast amount of information generated by the data deluge and thus accelerate the pace of discovery in plant pathology. We begin with a review of meta-analysis as an established approach for summarizing standardized (structured) data across the literature. We then turn to examples of synthesizing more complex, unstructured data sets through a range of data-mining approaches, including the incorporation of 'omics data in epidemiological analyses. We conclude with a discussion of methodologies for leveraging information contained in novel, open-source data sets through web crawling, text mining, and social media analytics, primarily in the context of digital disease surveillance. Rapidly evolving computational resources provide platforms for integrating large and complex data sets, motivating research that will draw on new types and scales of information to address big questions.
Collapse
Affiliation(s)
- H Scherm
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602;
| | | | | | | |
Collapse
|
33
|
Marone D, Russo MA, Laidò G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM. Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 2013; 14:562. [PMID: 23957646 PMCID: PMC3765315 DOI: 10.1186/1471-2164-14-562] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/14/2013] [Indexed: 01/27/2023] Open
Abstract
Background Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. Results Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2–6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. Conclusions The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat.
Collapse
|
34
|
Ostertag M, Stammler J, Douchkov D, Eichmann R, Hückelhoven R. The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. MOLECULAR PLANT PATHOLOGY 2013; 14:230-40. [PMID: 23145810 PMCID: PMC6638642 DOI: 10.1111/j.1364-3703.2012.00846.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Membrane trafficking is vital to plant development and adaptation to the environment. It is suggested that post-Golgi vesicles and multivesicular bodies are essential for plant defence against directly penetrating fungal parasites at the cell wall. However, the actual plant proteins involved in membrane transport for defence are largely unidentified. We applied a candidate gene approach and single cell transient-induced gene silencing for the identification of membrane trafficking proteins of barley involved in the response to the fungal pathogen Blumeria graminis f.sp. hordei. This revealed potential components of vesicle tethering complexes [putative exocyst subunit HvEXO70F-like and subunits of the conserved oligomeric Golgi (COG) complex] and Golgi membrane trafficking (COPIγ coatomer and HvYPT1-like RAB GTPase) as essential for resistance to fungal penetration into the host cell.
Collapse
Affiliation(s)
- Maya Ostertag
- Lehrstuhl für Phytopathologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
35
|
Hamon C, Coyne CJ, McGee RJ, Lesné A, Esnault R, Mangin P, Hervé M, Le Goff I, Deniot G, Roux-Duparque M, Morin G, McPhee KE, Delourme R, Baranger A, Pilet-Nayel ML. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC PLANT BIOLOGY 2013; 13:45. [PMID: 23497245 PMCID: PMC3680057 DOI: 10.1186/1471-2229-13-45] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/04/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Development of durable plant genetic resistance to pathogens through strategies of QTL pyramiding and diversification requires in depth knowledge of polygenic resistance within the available germplasm. Polygenic partial resistance to Aphanomyces root rot, caused by Aphanomyces euteiches, one of the most damaging pathogens of pea worldwide, was previously dissected in individual mapping populations. However, there are no data available regarding the diversity of the resistance QTL across a broader collection of pea germplasm. In this study, we performed a meta-analysis of Aphanomyces root rot resistance QTL in the four main sources of resistance in pea and compared their genomic localization with genes/QTL controlling morphological or phenological traits and with putative candidate genes. RESULTS Meta-analysis, conducted using 244 individual QTL reported previously in three mapping populations (Puget x 90-2079, Baccara x PI180693 and Baccara x 552) and in a fourth mapping population in this study (DSP x 90-2131), resulted in the identification of 27 meta-QTL for resistance to A. euteiches. Confidence intervals of meta-QTL were, on average, reduced four-fold compared to mean confidence intervals of individual QTL. Eleven consistent meta-QTL, which highlight seven highly consistent genomic regions, were identified. Few meta-QTL specificities were observed among mapping populations, suggesting that sources of resistance are not independent. Seven resistance meta-QTL, including six of the highly consistent genomic regions, co-localized with six of the meta-QTL identified in this study for earliness and plant height and with three morphological genes (Af, A, R). Alleles contributing to the resistance were often associated with undesirable alleles for dry pea breeding. Candidate genes underlying six main meta-QTL regions were identified using colinearity between the pea and Medicago truncatula genomes. CONCLUSIONS QTL meta-analysis provided an overview of the moderately low diversity of loci controlling partial resistance to A. euteiches in four main sources of resistance in pea. Seven highly consistent genomic regions with potential use in marker-assisted-selection were identified. Confidence intervals at several main QTL regions were reduced and co-segregation among resistance and morphological/phenological alleles was identified. Further work will be required to identify the best combinations of QTL for durably increasing partial resistance to A. euteiches.
Collapse
Affiliation(s)
- Céline Hamon
- INRA, UMR1349 IGEPP, Le Rheu F-35653, France
- Current address: Vegenov-BBV, Penn ar Prat, Saint Pol de Léon, 29250, France
| | - Clarice J Coyne
- USDA, ARS, Western Regional Plant Introduction Station, Washington State University, Pullman, WA, 99164-6402, USA
| | - Rebecca J McGee
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164-6434, USA
| | | | | | - Pierre Mangin
- INRA, Domaine Expérimental d’Epoisses, UE0115, Bretenières, F-21110, France
| | - Marie Hervé
- INRA, UMR1349 IGEPP, Le Rheu F-35653, France
- Current address: HM CLAUSE, 1 chemin ronzières, La Bohalle, 49800, France
| | - Isabelle Le Goff
- INRA, UMR1349 IGEPP, Le Rheu F-35653, France
- Current address: INRA, UMR1301 IBSV Interactions Biotiques en Santé Végétale, 400 route des Chappes, Sophia Antipolis Cedex, 06903, France
| | | | - Martine Roux-Duparque
- GSP, Domaine Brunehaut, Estrées-Mons, 80200, France
- Current address: Chambre d'Agriculture de l'Aisne, 1 rue René Blondelle, Laon Cedex, 02007, France
| | | | - Kevin E McPhee
- Department 7670, North Dakota State University, 370G Loftsgard Hall, Fargo, ND, 58108-6050, USA
| | | | | | | |
Collapse
|
36
|
Michelmore RW, Christopoulou M, Caldwell KS. Impacts of resistance gene genetics, function, and evolution on a durable future. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:291-319. [PMID: 23682913 DOI: 10.1146/annurev-phyto-082712-102334] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Studies on resistance gene function and evolution lie at the confluence of structural and molecular biology, genetics, and plant breeding. However, knowledge from these disparate fields has yet to be extensively integrated. This review draws on ideas and information from these different fields to elucidate the influences driving the evolution of different types of resistance genes in plants and the concurrent evolution of virulence in pathogens. It provides an overview of the factors shaping the evolution of recognition, signaling, and response genes in the context of emerging functional information along with a consideration of the new opportunities for durable resistance enabled by high-throughput DNA sequencing technologies.
Collapse
|
37
|
Avrova A, Knogge W. Rhynchosporium commune: a persistent threat to barley cultivation. MOLECULAR PLANT PATHOLOGY 2012; 13:986-97. [PMID: 22738626 PMCID: PMC6638709 DOI: 10.1111/j.1364-3703.2012.00811.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. TAXONOMY Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. DISEASE SYMPTOMS Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. LIFE CYCLE Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. DISEASE CONTROL The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.
Collapse
Affiliation(s)
- Anna Avrova
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | | |
Collapse
|
38
|
Plant-pathogen interactions: disease resistance in modern agriculture. Trends Genet 2012; 29:233-40. [PMID: 23153595 DOI: 10.1016/j.tig.2012.10.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/19/2012] [Accepted: 10/08/2012] [Indexed: 11/21/2022]
Abstract
The growing human population will require a significant increase in agricultural production. This challenge is made more difficult by the fact that changes in the climatic and environmental conditions under which crops are grown have resulted in the appearance of new diseases, whereas genetic changes within the pathogen have resulted in the loss of previously effective sources of resistance. To help meet this challenge, advanced genetic and statistical methods of analysis have been used to identify new resistance genes through global screens, and studies of plant-pathogen interactions have been undertaken to uncover the mechanisms by which disease resistance is achieved. The informed deployment of major, race-specific and partial, race-nonspecific resistance, either by conventional breeding or transgenic approaches, will enable the production of crop varieties with effective resistance without impacting on other agronomically important crop traits. Here, we review these recent advances and progress towards the ultimate goal of developing disease-resistant crops.
Collapse
|
39
|
Kirsten S, Navarro-Quezada A, Penselin D, Wenzel C, Matern A, Leitner A, Baum T, Seiffert U, Knogge W. Necrosis-inducing proteins of Rhynchosporium commune, effectors in quantitative disease resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1314-1325. [PMID: 22712509 DOI: 10.1094/mpmi-03-12-0065-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The barley pathogen Rhynchosporium commune secretes necrosis-inducing proteins NIP1, NIP2, and NIP3. Expression analysis revealed that NIP1 transcripts appear to be present in fungal spores already, whereas NIP2 and NIP3 are synthesized after inoculation of host plants. To assess the contribution of the three effector proteins to disease development, deletion mutants were generated. The development of these fungal mutants on four barley cultivars was quantified in comparison with that of the parent wild-type strain and with two fungal strains failing to secrete an "active" NIP1 avirulence protein, using quantitative polymerase chain reaction as well as microscopic imaging after fungal green fluorescent protein tagging. The impact of the three deletions varied quantitatively depending on the host genotype, suggesting that the activities of the fungal effectors add up to produce stronger growth patterns and symptom development. Alternatively, recognition events of differing intensities may be converted into defense gene expression in a quantitative manner.
Collapse
Affiliation(s)
- S Kirsten
- Leibniz Institute of Plant Biochemistry, Department of Stress and Developmental Biology, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Spies A, Korzun V, Bayles R, Rajaraman J, Himmelbach A, Hedley PE, Schweizer P. Allele mining in barley genetic resources reveals genes of race-non-specific powdery mildew resistance. FRONTIERS IN PLANT SCIENCE 2011; 2:113. [PMID: 22629270 PMCID: PMC3355509 DOI: 10.3389/fpls.2011.00113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/22/2011] [Indexed: 05/18/2023]
Abstract
Race-non-specific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL) and therefore difficult to handle in practice. Knowing the genes that underlie race-non-specific resistance (NR) would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worldwide collection of spring barley accessions for candidate genes of race-NR to the powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) and combined data with results from QTL mapping as well as functional-genomics approaches. This led to the identification of 11 associated genes with converging evidence for an important role in race-NR in the presence of the Mlo gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches can accelerate the discovery of genes underlying race-NR in barley and other crop plants.
Collapse
Affiliation(s)
- Annika Spies
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | | | | | - Jeyaraman Rajaraman
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Axel Himmelbach
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | | | - Patrick Schweizer
- Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Patrick Schweizer, Leibniz-Institute of Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany. e-mail:
| |
Collapse
|