1
|
Tricon D, Faivre d'Arcier J, Eyquard JP, Liu S, Decroocq S, Chague A, Liu W, Balakishiyeva G, Mammadov A, Turdiev T, Kostritsyna T, Asma BM, Akparov Z, Decroocq V. Allele mining of eukaryotic translation initiation factor genes in Prunus for the identification of new sources of resistance to sharka. Sci Rep 2023; 13:15247. [PMID: 37709842 PMCID: PMC10502034 DOI: 10.1038/s41598-023-42215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Members of the eukaryotic translation initiation complex are co-opted in viral infection, leading to susceptibility in many crop species, including stone fruit trees (Prunus spp.). Therefore, modification of one of those eukaryotic translation initiation factors or changes in their gene expression may result in resistance. We searched the crop and wild Prunus germplasm from the Armeniaca and Amygdalus taxonomic sections for allelic variants in the eIF4E and eIFiso4E genes, to identify alleles potentially linked to resistance to Plum pox virus (PPV). Over one thousand stone fruit accessions (1397) were screened for variation in eIF4E and eIFiso4E transcript sequences which are in single copy within the diploid Prunus genome. We identified new alleles for both genes differing from haplotypes associated with PPV susceptible accessions. Overall, analyses showed that eIFiso4E is genetically more constrained since it displayed less polymorphism than eIF4E. We also demonstrated more variations at both loci in the related wild species than in crop species. As the eIFiso4E translation initiation factor was identified as indispensable for PPV infection, a selection of ten different eIFiso4E haplotypes along 13 accessions were tested by infection with PPV and eight of them displayed a range of reduced susceptibility to resistance, indicating new potential sources of resistance to sharka.
Collapse
Affiliation(s)
- David Tricon
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
- INRAE Unité de Recherches 1052 GAFL, 67 allee des Chênes, 84143, Montfavet, France
| | - Julie Faivre d'Arcier
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
- INRAE Unité Expérimentale Domaine des Jarres, 33210, Toulenne, France
| | - Jean-Philippe Eyquard
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Shuo Liu
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou, 115009, Liaoning, China
| | - Stéphane Decroocq
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Aurélie Chague
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Weisheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou, 115009, Liaoning, China
| | - Gulnara Balakishiyeva
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, 11 Izzat Nabiev Str., 1073, Baku, Azerbaijan
| | - Alamdar Mammadov
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education, 11 Izzat Nabiev Str., 1073, Baku, Azerbaijan
| | - Timur Turdiev
- Institute of Plant Biology and Biotechnology, Timiryazev Str. 45, 050040, Almaty, Kazakhstan
| | - Tatiana Kostritsyna
- International Higher School of Medicine, 1F Intergelpo Street, 720054, Bishkek, Kyrgyzstan
| | - Bayram M Asma
- Department of Horticulture, Malatya Turgut Ozal University, Malatya, 44210, Turkey
| | - Zeynal Akparov
- Genetic Resources Institute of ANAS, Azadlig Ave. 155, 1106, Baku, Azerbaijan
| | - Véronique Decroocq
- INRAE, UMR 1332 BFP, Virologie, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.
- UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| |
Collapse
|
2
|
Qi H, Xia FN, Xiao S, Li J. TRAF proteins as key regulators of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:431-448. [PMID: 34676666 DOI: 10.1111/jipb.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C-terminal region (TRAF-C domain) containing seven to eight anti-parallel β-sheets, also known as the meprin and TRAF-C homology (MATH) domain. Over the past few decades, significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants. Compared to other eukaryotic species, the Arabidopsis thaliana and rice (Oryza sativa) genomes encode many more TRAF/MATH domain-containing proteins; these plant proteins cluster into five classes: TRAF/MATH-only, MATH-BPM, MATH-UBP (ubiquitin protease), Seven in absentia (SINA), and MATH-Filament and MATH-PEARLI-4 proteins, suggesting parallel evolution of TRAF proteins in plants. Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes, such as vegetative and reproductive development, autophagosome formation, plant immunity, symbiosis, phytohormone signaling, and abiotic stress responses. Here, we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
3
|
Novianti F, Sasaki N, Arie T, Komatsu K. Acibenzolar-S-methyl-mediated restriction of loading of plantago asiatica mosaic virus into vascular tissues of Nicotiana benthamiana. Virus Res 2021; 306:198585. [PMID: 34624403 DOI: 10.1016/j.virusres.2021.198585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
Long-distance movement via vascular tissues is an essential step for systemic infection by plant viruses. We previously reported that pre-treatment of Nicotiana benthamiana with acibenzolar-S-methyl (ASM) both suppressed the accumulation of plantago asiatica mosaic virus (PlAMV) in inoculated leaves and delayed the long-distance movement to uninoculated upper leaves. These two effects occurred independently of each other. However, it remained unclear where and when the viral long-distance movement is inhibited upon ASM treatment. In this study, we found that ASM treatment restricted the loading of GFP-expressing PlAMV (PlAMV-GFP) into vascular tissues in the inoculated leaves. This led to delays in viral translocation to the petiole and the main stem, and to untreated upper leaves. We used cryohistological fluorescence imaging to show that ASM treatment affected the viral localization and reduced its accumulation in the phloem, xylem, and mesophyll tissues. A stem girdling experiment, which blocked viral movement downward through phloem tissues, demonstrated that ASM treatment could inhibit viral systemic infection to upper leaves, which occurred even with viral downward movement restricted. Taken together, our results showed that ASM treatment affects the loading of PlAMV-GFP into the vascular system in the inoculated leaf, and that this plays a key role in the ASM-mediated delay of viral long-distance movement.
Collapse
Affiliation(s)
- Fawzia Novianti
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Nobumitsu Sasaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research (GIR), TUAT, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Arie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research (GIR), TUAT, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research (GIR), TUAT, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Espinoza C, Bascou B, Calvayrac C, Bertrand C. Deciphering Prunus Responses to PPV Infection: A Way toward the Use of Metabolomics Approach for the Diagnostic of Sharka Disease. Metabolites 2021; 11:metabo11070465. [PMID: 34357359 PMCID: PMC8307365 DOI: 10.3390/metabo11070465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Sharka disease, caused by Plum pox virus (PPV), induces several changes in Prunus. In leaf tissues, the infection may cause oxidative stress and disrupt the photosynthetic process. Moreover, several defense responses can be activated after PPV infection and have been detected at the phytohormonal, transcriptomic, proteomic, and even translatome levels. As proposed in this review, some responses may be systemic and earlier to the onset of symptoms. Nevertheless, these changes are highly dependent among species, variety, sensitivity, and tissue type. In the case of fruit tissues, PPV infection can modify the ripening process, induced by an alteration of the primary metabolism, including sugars and organic acids, and secondary metabolism, including phenolic compounds. Interestingly, metabolomics is an emerging tool to better understand Prunus–PPV interactions mainly in primary and secondary metabolisms. Moreover, through untargeted metabolomics analyses, specific and early candidate biomarkers of PPV infection can be detected. Nevertheless, these candidate biomarkers need to be validated before being selected for a diagnostic or prognosis by targeted analyses. The development of a new method for early detection of PPV-infected trees would be crucial for better management of the outbreak, especially since there is no curative treatment.
Collapse
Affiliation(s)
- Christian Espinoza
- PSL Université de Paris EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (C.E.); (B.B.)
- S.A.S. AkiNaO, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France
| | - Benoît Bascou
- PSL Université de Paris EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (C.E.); (B.B.)
| | - Christophe Calvayrac
- Biocapteurs-Analyses-Environnement, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France;
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UMPC) Paris 6 et CNRS, Observatoire Océanologique, Banyuls-sur-Mer, CEDEX, 75005 Paris, France
| | - Cédric Bertrand
- PSL Université de Paris EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (C.E.); (B.B.)
- S.A.S. AkiNaO, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France
- Correspondence: ; Tel.: +33-(0)4-6866-2258
| |
Collapse
|
5
|
Virus Host Jumping Can Be Boosted by Adaptation to a Bridge Plant Species. Microorganisms 2021; 9:microorganisms9040805. [PMID: 33920394 PMCID: PMC8070427 DOI: 10.3390/microorganisms9040805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022] Open
Abstract
Understanding biological mechanisms that regulate emergence of viral diseases, in particular those events engaging cross-species pathogens spillover, is becoming increasingly important in virology. Species barrier jumping has been extensively studied in animal viruses, and the critical role of a suitable intermediate host in animal viruses-generated human pandemics is highly topical. However, studies on host jumping involving plant viruses have been focused on shifting intra-species, leaving aside the putative role of “bridge hosts” in facilitating interspecies crossing. Here, we take advantage of several VPg mutants, derived from a chimeric construct of the potyvirus Plum pox virus (PPV), analyzing its differential behaviour in three herbaceous species. Our results showed that two VPg mutations in a Nicotiana clevelandii-adapted virus, emerged during adaptation to the bridge-host Arabidopsis thaliana, drastically prompted partial adaptation to Chenopodium foetidum. Although both changes are expected to facilitate productive interactions with eIF(iso)4E, polymorphims detected in PPV VPg and the three eIF(iso)4E studied, extrapolated to a recent VPg:eIF4E structural model, suggested that two adaptation ways can be operating. Remarkably, we found that VPg mutations driving host-range expansion in two non-related species, not only are not associated with cost trade-off constraints in the original host, but also improve fitness on it.
Collapse
|
6
|
Kappagantu M, Collum TD, Dardick C, Culver JN. Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection. Annu Rev Virol 2020; 7:351-370. [PMID: 32453971 DOI: 10.1146/annurev-virology-010320-072410] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.
Collapse
Affiliation(s)
- Madhu Kappagantu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA;
| | - Tamara D Collum
- Foreign Disease-Weed Science Research Unit, US Department of Agriculture Agricultural Research Service, Frederick, Maryland 21702, USA
| | - Christopher Dardick
- Appalachian Fruit Research Station, US Department of Agriculture Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - James N Culver
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA; .,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
7
|
Kloth KJ, Kormelink R. Defenses against Virus and Vector: A Phloem-Biological Perspective on RTM- and SLI1-Mediated Resistance to Potyviruses and Aphids. Viruses 2020; 12:E129. [PMID: 31979012 PMCID: PMC7077274 DOI: 10.3390/v12020129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
Combining plant resistance against virus and vector presents an attractive approach to reduce virus transmission and virus proliferation in crops. RestrictedTobacco-etch virus Movement (RTM) genes confer resistance to potyviruses by limiting their long-distance transport. Recently, a close homologue of one of the RTM genes, SLI1, has been discovered but this gene instead confers resistance to Myzus persicae aphids, a vector of potyviruses. The functional connection between resistance to potyviruses and aphids, raises the question whether plants have a basic defense system in the phloem against biotic intruders. This paper provides an overview on restricted potyvirus phloem transport and restricted aphid phloem feeding and their possible interplay, followed by a discussion on various ways in which viruses and aphids gain access to the phloem sap. From a phloem-biological perspective, hypotheses are proposed on the underlying mechanisms of RTM- and SLI1-mediated resistance, and their possible efficacy to defend against systemic viruses and phloem-feeding vectors.
Collapse
Affiliation(s)
- Karen J. Kloth
- Laboratory of Entomology, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
8
|
[Recessive resistance to plant viruses by the deficiency of eukaryotic translation initiation factor genes.]. Uirusu 2020; 70:61-68. [PMID: 33967115 DOI: 10.2222/jsv.70.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Plant viruses, obligate parasitic pathogens, utilize a variety of host plant factors in the process of their infection due to the limited number of genes encoded in their own genomes. The genes encoding these host factors are called susceptibility genes because they are responsible for the susceptibility of plants to viruses. Plants lacking or having mutations in a susceptibility gene essential for the infection of a virus acquire resistance to the virus. Such resistance trait is called recessive resistance because of the recessive inherited characteristics. Recessive resistance is reported to account for about half of the plant viral resistance loci mapped in known cultivated crops. Eukaryotic translation initiation factor (eIF) 4E family genes are well-known susceptibility genes. Although there are many reports about eIF4E-mediated recessive resistance to plant viruses, the mechanistic insight of the resistance is still limited. Here we review focusing on studies that have elucidated the mechanism of eIF4E-mediated recessive resistance.
Collapse
|
9
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
10
|
De Mori G, Falchi R, Testolin R, Bassi D, Savazzini F, Dondini L, Tartarini S, Palmisano F, Minafra A, Spadotto A, Scalabrin S, Geuna F. Resistance to Sharka in Apricot: Comparison of Phase-Reconstructed Resistant and Susceptible Haplotypes of 'Lito' Chromosome 1 and Analysis of Candidate Genes. FRONTIERS IN PLANT SCIENCE 2019; 10:1576. [PMID: 31867032 PMCID: PMC6905379 DOI: 10.3389/fpls.2019.01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Sharka, a common disease among most stone fruit crops, is caused by the Plum Pox Virus (PPV). Resistant genotypes have been found in apricot (Prunus armeniaca L.), one of which-the cultivar 'Lito' heterozygous for the resistance-has been used to map a major quantitative trait locus (QTL) on linkage group 1, following a pseudo-test-cross mating design with 231 individuals. In addition, 19 SNP markers were selected from among the hundreds previously developed, which allowed the region to be limited to 236 kb on chromosome 1. A 'Lito' bacterial artificial chromosome (BAC) library was produced, screened with markers of the region, and positive BAC clones were sequenced. Resistant (R) and susceptible (S) haplotypes were assembled independently. To refine the assembly, the whole genome of 'Lito' was sequenced to high coverage (98×) using PacBio technology, enabling the development of a detailed assembly of the region that was able to predict and annotate the genes in the QTL region. The selected cultivar 'Lito' allowed not only to discriminate structural variants between the two haplotypic regions but also to distinguish specific allele expression, contributing towards mining the PPVres locus. In light of these findings, genes previously indicated (i.e., MATHd genes) to have a possible role in PPV resistance were further analyzed, and new candidates were discussed. Although the results are not conclusive, the accurate and independent assembly of R and S haplotypes of 'Lito' is a valuable resource to predict and test alternative transcription and regulation mechanisms underpinning PPV resistance.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
| | - Federica Savazzini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Luca Dondini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Francesco Palmisano
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura “Basile Caramia”, Locorotondo, Italy
| | - Angelantonio Minafra
- National Research Council, Institute for Sustainable Plant Protection, Bari, Italy
| | | | - Simone Scalabrin
- IGA Technology Services, Science and Technology Park, ZIU, Udine, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, Milan, Italy
| |
Collapse
|
11
|
Rubio J, Sánchez E, Tricon D, Montes C, Eyquard JP, Chague A, Aguirre C, Prieto H, Decroocq V. Silencing of one copy of the translation initiation factor eIFiso4G in Japanese plum (Prunus salicina) impacts susceptibility to Plum pox virus (PPV) and small RNA production. BMC PLANT BIOLOGY 2019; 19:440. [PMID: 31640557 PMCID: PMC6806492 DOI: 10.1186/s12870-019-2047-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/20/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND In plants, host factors encoded by susceptibility (S) genes are indispensable for viral infection. Resistance is achieved through the impairment or the absence of those susceptibility factors. Many S genes have been cloned from model and crop species and a majority of them are coding for members of the eukaryotic translation initiation complex, mainly eIF4E, eIF4G and their isoforms. The aim of this study was to investigate the role of those translation initiation factors in susceptibility of stone fruit species to sharka, a viral disease due to Plum pox virus (PPV). RESULTS For this purpose, hairpin-inducing silencing constructs based on Prunus persica orthologs were used to generate Prunus salicina (Japanese plum) 4E and 4G silenced plants by Agrobacterium tumefaciens-mediated transformation and challenged with PPV. While down-regulated eIFiso4E transgenic Japanese plums were not regenerated in our conditions, eIFiso4G11-, but not the eIFiso4G10-, silenced plants displayed durable and stable resistance to PPV. We also investigated the alteration of the si- and mi-RNA profiles in transgenic and wild-type Japanese plums upon PPV infection and confirmed that the newly generated small interfering (si) RNAs, which are derived from the engineered inverted repeat construct, are the major contributor of resistance to sharka. CONCLUSIONS Our results indicate that S gene function of the translation initiation complex isoform is conserved in Prunus species. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of the different isoforms of proteins involved in this complex to breed for resistance to sharka in fruit trees.
Collapse
Affiliation(s)
- Julia Rubio
- Biotechnology Laboratory, La Platina Station, Instituto de Investigaciones Agropecuarias, Santa Rosa 11610, La Pintana, Santiago Chile
- Agronomical Sciences Doctoral Program, Campus Sur, University of Chile, Santa Rosa 11315, La Pintana, Santiago Chile
- Present address: Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Providencia, Chile
| | - Evelyn Sánchez
- Biotechnology Laboratory, La Platina Station, Instituto de Investigaciones Agropecuarias, Santa Rosa 11610, La Pintana, Santiago Chile
- Present address: Integrative Genomics Doctoral Program, Universidad Mayor, Camino La Pirámide 575, Huechuraba, Santiago Chile
| | - David Tricon
- INRA, UMR 1332 BFP, Equipe de virologie, 71 Avenue Edouard Bourlaux, 33883 Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, CS20032, 33883 Villenave d’Ornon, France
| | - Christian Montes
- Biotechnology Laboratory, La Platina Station, Instituto de Investigaciones Agropecuarias, Santa Rosa 11610, La Pintana, Santiago Chile
- Present address: Genetics and Genomics Doctoral Program, Iowa State University, 2437 Pammel Drive, Ames, IA 50011–1079 USA
| | - Jean-Philippe Eyquard
- INRA, UMR 1332 BFP, Equipe de virologie, 71 Avenue Edouard Bourlaux, 33883 Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, CS20032, 33883 Villenave d’Ornon, France
| | - Aurélie Chague
- INRA, UMR 1332 BFP, Equipe de virologie, 71 Avenue Edouard Bourlaux, 33883 Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, CS20032, 33883 Villenave d’Ornon, France
| | - Carlos Aguirre
- Biotechnology Laboratory, La Platina Station, Instituto de Investigaciones Agropecuarias, Santa Rosa 11610, La Pintana, Santiago Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Station, Instituto de Investigaciones Agropecuarias, Santa Rosa 11610, La Pintana, Santiago Chile
| | - Véronique Decroocq
- INRA, UMR 1332 BFP, Equipe de virologie, 71 Avenue Edouard Bourlaux, 33883 Villenave d’Ornon, France
- Université de Bordeaux, UMR 1332 BFP, CS20032, 33883 Villenave d’Ornon, France
| |
Collapse
|
12
|
Shukla A, López-González S, Hoffmann G, Hafrén A. Diverse plant viruses: a toolbox for dissection of cellular pathways. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3029-3034. [PMID: 30882863 PMCID: PMC6598076 DOI: 10.1093/jxb/erz122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Research in virology has usually focused on one selected host-virus pathosystem to examine the mechanisms underlying a particular disease. However, as exemplified by the mechanistically versatile suppression of antiviral RNA silencing by plant viruses, there may be functionally convergent evolution. Assuming this is a widespread feature, we propose that effector proteins from diverse plant viruses can be a powerful resource for discovering new regulatory mechanisms of distinct cellular pathways. The efficiency of this approach will depend on how deeply and widely the studied pathway is integrated into viral infections. Beyond this, comparative studies using broad virus diversity should increase our global understanding of plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
13
|
Sidorova T, Mikhailov R, Pushin A, Miroshnichenko D, Dolgov S. Agrobacterium-Mediated Transformation of Russian Commercial Plum cv. "Startovaya" ( Prunus domestica L.) With Virus-Derived Hairpin RNA Construct Confers Durable Resistance to PPV Infection in Mature Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:286. [PMID: 30915093 PMCID: PMC6423057 DOI: 10.3389/fpls.2019.00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 05/19/2023]
Abstract
In modern horticulture Plum pox virus (PPV) imposes serious threats to commercial plantations of a wide range of fruit species belonging to genera Prunus. Given the lack of natural genetic resources, which display reliable resistance to PPV infection, there has been considerable interest in using genetic engineering methods for targeted genome modification of stone fruit trees to control Sharka disease caused by PPV. Among the many virus defense mechanisms, RNA interference is shown to be the most promising transgenic disease-control strategy in plant biotechnology. The present study describes the production of transgenic PPV resistant European plum "Startovaya" (P. domestica L.) through the Agrobacterium-mediated transformation of in vitro leaf explants. Due to organogenesis from leaves, the established protocol allows the genetic engineering of the plum genome without losing clonal fidelity of original cultivar. Seven independent transgenic plum lines containing the self-complementary fragments of PPV-CP gene sequence separated by a PDK intron were generated using hpt as a selective gene and uidA as a reporter gene. The transformation was verified through the histochemical staining for β-glucuronidase activity, PCR amplification of appropriate vector products from isolated genomic DNA and Southern blot analysis of hairpin PPV-CP gene fragments. To clarify the virus resistance, plum buds infected by PPV-M strain were grafted onto 1-year-old transgenic plants, which further were grown into mature trees in the greenhouse. As evaluated by RT-PCR, DAS-ELISA, Western blot, ImmunoStrip test, and visual observations, GM plum trees remained uninfected over 9 years. Infected branches that developed from grafted buds displayed obvious symptoms of Sharka disease over the years and maintained the high level of virus accumulation, whereby host transgenic trees had been constantly challenged with the pathogen. Since the virus was unable to spread to transgenic tissues, the stable expression of PPV-derived gene construct encoding intron-spliced hairpin RNAs provided a highly effective protection of plum trees against permanent viral infection. At the same time, this observation indicates the lack of the systemic spread of resistance from GM tissues to an infected plum graft even after years of joint growth.
Collapse
Affiliation(s)
- Tatiana Sidorova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- Nikita Botanical Gardens – National Scientific Centre, Russian Academy of Sciences, Yalta, Russia
| | - Roman Mikhailov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
| | - Alexander Pushin
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- Nikita Botanical Gardens – National Scientific Centre, Russian Academy of Sciences, Yalta, Russia
| | - Dmitry Miroshnichenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Sergey Dolgov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- Nikita Botanical Gardens – National Scientific Centre, Russian Academy of Sciences, Yalta, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
14
|
Rubio B, Cosson P, Caballero M, Revers F, Bergelson J, Roux F, Schurdi-Levraud V. Genome-wide association study reveals new loci involved in Arabidopsis thaliana and Turnip mosaic virus (TuMV) interactions in the field. THE NEW PHYTOLOGIST 2019; 221:2026-2038. [PMID: 30282123 DOI: 10.1111/nph.15507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/18/2018] [Indexed: 05/12/2023]
Abstract
The genetic architecture of plant response to viruses has often been studied in model nonnatural pathosystems under controlled conditions. There is an urgent need to elucidate the genetic architecture of the response to viruses in a natural setting. A field experiment was performed in each of two years. In total, 317 Arabidopsis thaliana accessions were inoculated with its natural Turnip mosaic virus (TuMV). The accessions were phenotyped for viral accumulation, frequency of infected plants, stem length and symptoms. Genome-wide association mapping was performed. Arabidopsis thaliana exhibits extensive natural variation in its response to TuMV in the field. The underlying genetic architecture reveals a more quantitative picture than in controlled conditions. Ten genomic regions were consistently identified across the two years. RTM3 (Restricted TEV Movement 3) is a major candidate for the response to TuMV in the field. New candidate genes include Dead box helicase 1, a Tim Barrel domain protein and the eukaryotic translation initiation factor eIF3b. To our knowledge, this study is the first to report the genetic architecture of quantitative response of A. thaliana to a naturally occurring virus in a field environment, thereby highlighting relevant candidate genes involved in plant virus interactions in nature.
Collapse
Affiliation(s)
- Bernadette Rubio
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Patrick Cosson
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Mélodie Caballero
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| | - Frédéric Revers
- INRA, UMR 1202 BIOGECO, Université de Bordeaux, 69 Route d'Arcachon, 33612, Cestas Cedex, France
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL, 60637, USA
| | - Fabrice Roux
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Valérie Schurdi-Levraud
- Univ. Bordeaux INRA, UMR Biologie du Fruit et Pathologie, 1332, 71 avenue Edouard Bourlaux, 33883, Villenave d'Ornon cedex, France
| |
Collapse
|
15
|
Zhang Z, Tong X, Liu SY, Chai LX, Zhu FF, Zhang XP, Zou JZ, Wang XB. Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana. Sci Rep 2019; 9:3187. [PMID: 30816193 PMCID: PMC6395819 DOI: 10.1038/s41598-019-39436-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023] Open
Abstract
As obligate intracellular phytopathogens, plant viruses must take advantage of hosts plasmodesmata and phloem vasculature for their local and long-distance transports to establish systemic infection in plants. In contrast to well-studied virus local transports, molecular mechanisms and related host genes governing virus systemic trafficking are far from being understood. Here, we performed a forward genetic screening to identify Arabidopsis thaliana mutants with enhanced susceptibility to a 2b-deleted mutant of cucumber mosaic virus (CMV-2aT∆2b). We found that an uncharacterized Piezo protein (AtPiezo), an ortholog of animal Piezo proteins with mechanosensitive (MS) cation channel activities, was required for inhibiting systemic infection of CMV-2aT∆2b and turnip mosaic virus tagged a green fluorescent protein (GFP) (TuMV-GFP). AtPiezo is induced by virus infection, especially in the petioles of rosette leaves. Thus, we for the first time demonstrate the biological function of Piezo proteins in plants, which might represent a common antiviral strategy because many monocot and dicot plant species have a single Piezo ortholog.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Song-Yu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Long-Xiang Chai
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fei-Fan Zhu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao-Peng Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jing-Ze Zou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
17
|
Nováková S, Danchenko M, Skultety L, Fialová I, Lešková A, Beke G, Flores-Ramírez G, Glasa M. Photosynthetic and Stress Responsive Proteins Are Altered More Effectively in Nicotiana benthamiana Infected with Plum pox virus Aggressive PPV-CR versus Mild PPV-C Cherry-Adapted Isolates. J Proteome Res 2018; 17:3114-3127. [PMID: 30084641 DOI: 10.1021/acs.jproteome.8b00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plum pox virus (PPV, family Potyviridae) is one of the most important viral pathogens of Prunus spp. causing considerable damage to stone-fruit industry worldwide. Among the PPV strains identified so far, only PPV-C, PPV-CR, and PPV-CV are able to infect cherries under natural conditions. Herein, we evaluated the pathogenic potential of two viral isolates in herbaceous host Nicotiana benthamiana. Significantly higher accumulation of PPV capsid protein in tobacco leaves infected with PPV-CR (RU-30sc isolate) was detected in contrast to PPV-C (BY-101 isolate). This result correlated well with the symptoms observed in the infected plants. To further explore the host response upon viral infection at the molecular level, a comprehensive proteomic profiling was performed. Using reverse-phase ultra-high-performance liquid chromatography followed by label-free mass spectrometry quantification, we identified 38 unique plant proteins as significantly altered due to the infection. Notably, the abundances of photosynthesis-related proteins, mainly from the Calvin-Benson cycle, were found more aggressively affected in plants infected with PPV-CR isolate than those of PPV-C. This observation was accompanied by a significant reduction in the amount of photosynthetic pigments extracted from the leaves of PPV-CR infected plants. Shifts in the abundance of proteins that are involved in stimulation of photosynthetic capacity, modification of amino acid, and carbohydrate metabolism may affect plant growth and initiate energy formation via gluconeogenesis in PPV infected N. benthamiana. Furthermore, we suggest that the higher accumulation of H2O2 in PPV-CR infected leaves plays a crucial role in plant defense and development by activating the glutathione synthesis.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Maksym Danchenko
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Ludovit Skultety
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
- Institute of Microbiology , The Czech Academy of Sciences , Videnska 1083 , 142 20 Prague , Czech Republic
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Alexandra Lešková
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Gábor Beke
- Institute of Molecular Biology , Slovak Academy of Sciences , Dúbravská cesta 21 , 845 51 Bratislava , Slovak Republic
| | - Gabriela Flores-Ramírez
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Miroslav Glasa
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| |
Collapse
|
18
|
Signaling through plant lectins: modulation of plant immunity and beyond. Biochem Soc Trans 2018; 46:217-233. [PMID: 29472368 DOI: 10.1042/bst20170371] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/12/2022]
Abstract
Lectins constitute an abundant group of proteins that are present throughout the plant kingdom. Only recently, genome-wide screenings have unraveled the multitude of different lectin sequences within one plant species. It appears that plants employ a plurality of lectins, though relatively few lectins have already been studied and functionally characterized. Therefore, it is very likely that the full potential of lectin genes in plants is underrated. This review summarizes the knowledge of plasma membrane-bound lectins in different biological processes (such as recognition of pathogen-derived molecules and symbiosis) and illustrates the significance of soluble intracellular lectins and how they can contribute to plant signaling. Altogether, the family of plant lectins is highly complex with an enormous diversity in biochemical properties and activities.
Collapse
|
19
|
Zuriaga E, Romero C, Blanca JM, Badenes ML. Resistance to Plum Pox Virus (PPV) in apricot (Prunus armeniaca L.) is associated with down-regulation of two MATHd genes. BMC PLANT BIOLOGY 2018; 18:25. [PMID: 29374454 PMCID: PMC5787289 DOI: 10.1186/s12870-018-1237-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plum pox virus (PPV), causing Sharka disease, is one of the main limiting factors for Prunus production worldwide. In apricot (Prunus armeniaca L.) the major PPV resistance locus (PPVres), comprising ~ 196 kb, has been mapped to the upper part of linkage group 1. Within the PPVres, 68 genomic variants linked in coupling to PPV resistance were identified within 23 predicted transcripts according to peach genome annotation. Taking into account the predicted functions inferred from sequence homology, some members of a cluster of meprin and TRAF-C homology domain (MATHd)-containing genes were pointed as PPV resistance candidate genes. RESULTS Here, we have characterized the global apricot transcriptome response to PPV-D infection identifying six PPVres locus genes (ParP-1 to ParP-6) differentially expressed in resistant/susceptible cultivars. Two of them (ParP-3 and ParP-4), that encode MATHd proteins, appear clearly down-regulated in resistant cultivars, as confirmed by qRT-PCR. Concurrently, variant calling was performed using whole-genome sequencing data of 24 apricot cultivars (10 PPV-resistant and 14 PPV-susceptible) and 2 wild relatives (PPV-susceptible). ParP-3 and ParP-4, named as Prunus armeniaca PPVres MATHd-containing genes (ParPMC), are the only 2 genes having allelic variants linked in coupling to PPV resistance. ParPMC1 has 1 nsSNP, while ParPMC2 has 15 variants, including a 5-bp deletion within the second exon that produces a frameshift mutation. ParPMC1 and ParPMC2 are adjacent and highly homologous (87.5% identity) suggesting they are paralogs originated from a tandem duplication. Cultivars carrying the ParPMC2 resistant (mutated) allele show lack of expression in both ParPMC2 and especially ParPMC1. CONCLUSIONS Accordingly, we hypothesize that ParPMC2 is a pseudogene that mediates down-regulation of its functional paralog ParPMC1 by silencing. As a whole, results strongly support ParPMC1 and/or ParPMC2 as host susceptibility genes required for PPV infection which silencing may confer PPV resistance trait. This finding may facilitate resistance breeding by marker-assisted selection and pave the way for gene edition approaches in Prunus.
Collapse
Affiliation(s)
- Elena Zuriaga
- Citriculture and Plant Production Center, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10.7, Moncada, 46113 Valencia, Spain
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio, s/n 46022, Valencia, Spain
| | - Jose Miguel Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Ingeniero Fausto Elio, s/n 46022, Valencia, Spain
| | - Maria Luisa Badenes
- Citriculture and Plant Production Center, Instituto Valenciano de Investigaciones Agrarias (IVIA), CV-315, Km. 10.7, Moncada, 46113 Valencia, Spain
| |
Collapse
|
20
|
Cirilli M, Rossini L, Geuna F, Palmisano F, Minafra A, Castrignanò T, Gattolin S, Ciacciulli A, Babini AR, Liverani A, Bassi D. Genetic dissection of Sharka disease tolerance in peach (P. persica L. Batsch). BMC PLANT BIOLOGY 2017; 17:192. [PMID: 29100531 PMCID: PMC5670703 DOI: 10.1186/s12870-017-1117-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/09/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plum pox virus (PPV), agent of Sharka disease, is the most important quarantine pathogen of peach (P. persica L. Batsch). Extensive evaluation of peach germplasm has highlighted the lack of resistant sources, while suggesting the presence of a quantitative disease resistance, expressed as reduction in the intensity of symptoms. Unravelling the genetic architecture of peach response to PPV infection is essential for pyramiding resistant genes and for developing more tolerant varieties. For this purpose, a genome-wide association (GWA) approach was applied in a panel of accessions phenotyped for virus susceptibility and genotyped with the IPSC peach 9 K SNP Array, and coupled with an high-coverage resequencing of the tolerant accession 'Kamarat'. RESULTS Genome-wide association identified three highly significant associated loci on chromosome 2 and 3, accounting for most of the reduction in PPV-M susceptibility within the analysed peach population. The exploration of associated intervals through whole-genome comparison of the tolerant accession 'Kamarat' and other susceptible accessions, including the PPV-resistant wild-related species P. davidiana, allow the identification of allelic variants in promising candidate genes, including an RTM2-like gene already characterized in A. thaliana. CONCLUSIONS The present study is the first effort to identify genetic factors involved in Sharka disease in peach germplasm through a GWA approach. We provide evidence of the presence of quantitative resistant loci in a collection of peach accessions, identifying major loci and highly informative SNPs that could be useful for marker assisted selection. These results could serve as reference bases for future research aimed at the comprehension of genetic mechanism regulating the complex peach-PPV interaction.
Collapse
Affiliation(s)
- Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, Lodi, Italy
| | - Filippo Geuna
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | - Francesco Palmisano
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile-Caramia (CRSFA), via Cisternino, 281 Locorotondo, Bari, Italy
| | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante (CNR-IPSP), via Amendola 122/D, Bari, Italy
| | - Tiziana Castrignanò
- CINECA, SCAI Super Computing Applications and Innovation, via dei Tizii 6, Rome, Italy
| | - Stefano Gattolin
- Parco Tecnologico Padano, via Einstein, Loc. C.na Codazza, Lodi, Italy
| | - Angelo Ciacciulli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| | | | - Alessandro Liverani
- CREA, Research Centre for Olive, Citrus and Tree Fruit, via La Canapona 1 bis, Forlì, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, via Celoria 2, Milan, Italy
| |
Collapse
|
21
|
Nicaise V, Candresse T. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:878-886. [PMID: 27301551 PMCID: PMC6638313 DOI: 10.1111/mpp.12447] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/01/2016] [Accepted: 06/10/2016] [Indexed: 05/20/2023]
Abstract
The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences.
Collapse
Affiliation(s)
- Valerie Nicaise
- INRA, UMR 1332 BFP, CS 20032Villenave d'Ornon cedex33882France
- University of Bordeaux, UMR 1332 BFP, CS 20032Villenave d'Ornon cedex33882France
| | - Thierry Candresse
- INRA, UMR 1332 BFP, CS 20032Villenave d'Ornon cedex33882France
- University of Bordeaux, UMR 1332 BFP, CS 20032Villenave d'Ornon cedex33882France
| |
Collapse
|
22
|
Sofer L, Cabanillas DG, Gayral M, Téplier R, Pouzoulet J, Ducousso M, Dufin L, Bréhélin C, Ziegler-Graff V, Brault V, Revers F. Identification of host factors potentially involved in RTM-mediated resistance during potyvirus long distance movement. Arch Virol 2017; 162:1855-1865. [PMID: 28251380 DOI: 10.1007/s00705-017-3292-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/29/2017] [Indexed: 12/28/2022]
Abstract
The long distance movement of potyviruses is a poorly understood step of the viral cycle. Only factors inhibiting this process, referred to as "Restricted TEV Movement" (RTM), have been identified in Arabidopsis thaliana. On the virus side, the potyvirus coat protein (CP) displays determinants required for long-distance movement and for RTM-based resistance breaking. However, the potyvirus CP was previously shown not to interact with the RTM proteins. We undertook the identification of Arabidopsis factors which directly interact with either the RTM proteins or the CP of lettuce mosaic virus (LMV). An Arabidopsis cDNA library generated from companion cells was screened with LMV CP and RTM proteins using the yeast two-hybrid system. Fourteen interacting proteins were identified. Two of them were shown to interact with CP and the RTM proteins suggesting that a multiprotein complex could be formed between the RTM proteins and virions or viral ribonucleoprotein complexes. Co-localization experiments in Nicotiana benthamiana showed that most of the viral and cellular protein pairs co-localized at the periphery of chloroplasts which suggests a putative role for plastids in this process.
Collapse
Affiliation(s)
- Luc Sofer
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France
| | - Daniel Garcia Cabanillas
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, QC, H7V 1B7, Canada
| | - Mathieu Gayral
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France
| | - Rachèle Téplier
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France
| | - Jérôme Pouzoulet
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Marie Ducousso
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France
- UMR 0385 BGPI, Virus Insecte Plante, INRA, Campus international de Bailllarguet, Montpellier, France
| | - Laurène Dufin
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France
| | - Claire Bréhélin
- UMR 5200, Laboratory of Membrane Biogenesis, CNRS, University of Bordeaux, 33140, Villenave d'Ornon, France
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | | - Frédéric Revers
- BFP, INRA, University of Bordeaux, 33140, Villenave d'Ornon, France.
- BIOGECO, INRA, University of Bordeaux, 33615, Pessac, France.
| |
Collapse
|
23
|
Van Holle S, De Schutter K, Eggermont L, Tsaneva M, Dang L, Van Damme EJM. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics. Int J Mol Sci 2017; 18:ijms18061136. [PMID: 28587095 PMCID: PMC5485960 DOI: 10.3390/ijms18061136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsisthaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.
Collapse
Affiliation(s)
- Sofie Van Holle
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Kristof De Schutter
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Lore Eggermont
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Mariya Tsaneva
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Liuyi Dang
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Cui H, Wang A. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:344-356. [PMID: 27565765 PMCID: PMC5316922 DOI: 10.1111/pbi.12629] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/23/2016] [Accepted: 08/22/2016] [Indexed: 05/17/2023]
Abstract
RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees.
Collapse
Affiliation(s)
- Hongguang Cui
- London Research and Development CentreAgriculture and Agri‐Food Canada (AAFC)LondonONCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food Canada (AAFC)LondonONCanada
| |
Collapse
|
25
|
Makarov VV, Kalinina NO. Structure and Noncanonical Activities of Coat Proteins of Helical Plant Viruses. BIOCHEMISTRY (MOSCOW) 2016; 81:1-18. [PMID: 26885578 DOI: 10.1134/s0006297916010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main function of virus coat protein is formation of the capsid that protects the virus genome against degradation. However, besides the structural function, coat proteins have many additional important activities in the infection cycle of the virus and in the defense response of host plants to viral infection. This review focuses on noncanonical functions of coat proteins of helical RNA-containing plant viruses with positive genome polarity. Analysis of data on the structural organization of coat proteins of helical viruses has demonstrated that the presence of intrinsically disordered regions within the protein structure plays an important role in implementation of nonstructural functions and largely determines the multifunctionality of coat proteins.
Collapse
Affiliation(s)
- V V Makarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
26
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
27
|
Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.). PLoS One 2015; 10:e0144670. [PMID: 26658051 PMCID: PMC4684361 DOI: 10.1371/journal.pone.0144670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, “Rojo Pasión” and “Z506-7”, resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Ana Rosa Ballester
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna (Valencia) Spain
| | - Pedro Manuel Olivares
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Manuel Castro de Moura
- aScidea Computational Biology Solutions, S.L. Parc de Reserca UAB, Edifici Eureka. 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Federico Dicenta
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
- * E-mail:
| |
Collapse
|
28
|
Abstract
Diseases caused by viruses are found throughout the maize-growing regions of the world and can cause significant losses for producers. In this review, virus diseases of maize and the pathogens that cause them are discussed. Factors leading to the spread of disease and measures for disease control are reviewed, as is our current knowledge of the genetics of virus resistance in this important crop.
Collapse
Affiliation(s)
- Margaret G Redinbaugh
- USDA, Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit and Department of Plant Pathology, Ohio State University-OARDC, Wooster, Ohio, USA.
| | - José L Zambrano
- Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Programa Nacional del Maíz, Quito, Ecuador
| |
Collapse
|
29
|
Poque S, Pagny G, Ouibrahim L, Chague A, Eyquard JP, Caballero M, Candresse T, Caranta C, Mariette S, Decroocq V. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:159. [PMID: 26109391 PMCID: PMC4479089 DOI: 10.1186/s12870-015-0559-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/17/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Sharka is caused by Plum pox virus (PPV) in stone fruit trees. In orchards, the virus is transmitted by aphids and by grafting. In Arabidopsis, PPV is transferred by mechanical inoculation, by biolistics and by agroinoculation with infectious cDNA clones. Partial resistance to PPV has been observed in the Cvi-1 and Col-0 Arabidopsis accessions and is characterized by a tendency to escape systemic infection. Indeed, only one third of the plants are infected following inoculation, in comparison with the susceptible Ler accession. RESULTS Genetic analysis showed this partial resistance to be monogenic or digenic depending on the allelic configuration and recessive. It is detected when inoculating mechanically but is overcome when using biolistic or agroinoculation. A genome-wide association analysis was performed using multiparental lines and 147 Arabidopsis accessions. It identified a major genomic region, rpv1. Fine mapping led to the positioning of rpv1 to a 200 kb interval on the long arm of chromosome 1. A candidate gene approach identified the chloroplast phosphoglycerate kinase (cPGK2) as a potential gene underlying the resistance. A virus-induced gene silencing strategy was used to knock-down cPGK2 expression, resulting in drastically reduced PPV accumulation. CONCLUSION These results indicate that rpv1 resistance to PPV carried by the Cvi-1 and Col-0 accessions is linked to allelic variations at the Arabidopsis cPGK2 locus, leading to incomplete, compatible interaction with the virus.
Collapse
Affiliation(s)
- S Poque
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan.
| | - G Pagny
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - L Ouibrahim
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - A Chague
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - J-P Eyquard
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - M Caballero
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - T Candresse
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - C Caranta
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - S Mariette
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: INRA, UMR 1202 Biogeco, F- 33610, Cestas, France.
- Current address: Univ. Bordeaux, UMR1202 Biogeco, F-33400, Talence, France.
| | - V Decroocq
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| |
Collapse
|
30
|
Ilardi V, Tavazza M. Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. FRONTIERS IN PLANT SCIENCE 2015; 6:379. [PMID: 26106397 PMCID: PMC4458569 DOI: 10.3389/fpls.2015.00379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/12/2015] [Indexed: 05/19/2023]
Abstract
Plum pox virus (PPV) is the etiological agent of sharka, the most devastating and economically important viral disease affecting Prunus species. It is widespread in most stone fruits producing countries even though eradication and quarantine programs are in place. The development of resistant cultivars and rootstocks remains the most ecologically and economically suitable approach to achieve long-term control of sharka disease. However, the few PPV resistance genetic resources found in Prunus germplasm along with some intrinsic biological features of stone fruit trees pose limits for efficient and fast breeding programs. This review focuses on an array of biotechnological strategies and tools, which have been used, or may be exploited to confer PPV resistance. A considerable number of scientific studies clearly indicate that robust and predictable resistance can be achieved by transforming plant species with constructs encoding intron-spliced hairpin RNAs homologous to conserved regions of the PPV genome. In addition, we discuss how recent advances in our understanding of PPV biology can be profitably exploited to develop viral interference strategies. In particular, genetic manipulation of host genes by which PPV accomplishes its infection cycle already permits the creation of intragenic resistant plants. Finally, we review the emerging genome editing technologies based on ZFN, TALEN and CRISPR/Cas9 engineered nucleases and how the knockout of host susceptibility genes will open up next generation of PPV resistant plants.
Collapse
Affiliation(s)
- Vincenza Ilardi
- Centro di Ricerca per la Patologia Vegetale, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Mario Tavazza
- UTAGRI Centro Ricerche Casaccia, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| |
Collapse
|
31
|
Abstract
Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The conventional breeding for virus-tolerant or resistant fruit tree cultivars using available germplasm is a long-term strategy, and the development and production of these cultivars may take decades, if successful. Genetic engineering allows the introduction of specific DNA sequences offering the opportunity to obtain existing fruit tree cultivars improved for the desired resistance trait. Unfortunately, genetic transformation of pome and stone fruits is still limited to few commercial genotypes. Research carried out and the new emerging biotechnological approaches to obtain fruit tree plants resistant or tolerant to viruses are discussed.
Collapse
|
32
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
33
|
Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:45-66. [PMID: 25938276 DOI: 10.1146/annurev-phyto-080614-120001] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A successful infection by a plant virus results from the complex molecular interplay between the host plant and the invading virus. Thus, dissecting the molecular network of virus-host interactions advances the understanding of the viral infection process and may assist in the development of novel antiviral strategies. In the past decade, molecular identification and functional characterization of host factors in the virus life cycle, particularly single-stranded, positive-sense RNA viruses, have been a research focus in plant virology. As a result, a number of host factors have been identified. These host factors are implicated in all the major steps of the infection process. Some host factors are diverted for the viral genome translation, some are recruited to improvise the viral replicase complexes for genome multiplication, and others are components of transport complexes for cell-to-cell spread via plasmodesmata and systemic movement through the phloem. This review summarizes current knowledge about host factors and discusses future research directions.
Collapse
Affiliation(s)
- Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada;
| |
Collapse
|
34
|
Nicaise V. Crop immunity against viruses: outcomes and future challenges. FRONTIERS IN PLANT SCIENCE 2014; 5:660. [PMID: 25484888 PMCID: PMC4240047 DOI: 10.3389/fpls.2014.00660] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/04/2014] [Indexed: 05/02/2023]
Abstract
Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently employed in agriculture relies on the use of crop genetic resistances, approach that depends on mechanisms governing plant-virus interactions. Hence, knowledge related to the molecular bases of viral infections and crop resistances is key to face viral attacks in fields. Over the past 80 years, great advances have been made on our understanding of plant immunity against viruses. Although most of the known natural resistance genes have long been dominant R genes (encoding NBS-LRR proteins), a vast number of crop recessive resistance genes were cloned in the last decade, emphasizing another evolutive strategy to block viruses. In addition, the discovery of RNA interference pathways highlighted a very efficient antiviral system targeting the infectious agent at the nucleic acid level. Insidiously, plant viruses evolve and often acquire the ability to overcome the resistances employed by breeders. The development of efficient and durable resistances able to withstand the extreme genetic plasticity of viruses therefore represents a major challenge for the coming years. This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant-virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants. In addition, I will discuss the current outcomes of the actions employed to control viral diseases in fields and the future investigations that need to be undertaken to develop sustainable broad-spectrum crop resistances against viruses.
Collapse
Affiliation(s)
- Valérie Nicaise
- Fruit Biology and Pathology, Virology Laboratory, Institut National de la Recherche Agronomique, University of BordeauxUMR 1332, Villenave d’Ornon, France
| |
Collapse
|
35
|
Calvo M, Martínez-Turiño S, García JA. Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1291-301. [PMID: 25296116 DOI: 10.1094/mpmi-05-14-0130-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Research performed on model herbaceous hosts has been useful to unravel the molecular mechanisms that control viral infections. The most common Plum pox virus (PPV) strains are able to infect Nicotiana species as well as Chenopodium and Arabidopsis species. However, isolates belonging to strain C (PPV-C) that have been adapted to Nicotiana spp. are not infectious either in Chenopodium foetidum or in Arabidopsis thaliana. In order to determine the mechanism underlying this interesting host-specific behavior, we have constructed chimerical clones derived from Nicotiana-adapted PPV isolates from the D and C strains, which differ in their capacity to infect A. thaliana and C. foetidum. With this approach, we have identified the nuclear inclusion a protein (VPg+Pro) as the major pathogenicity determinant that conditions resistance in the presence of additional secondary determinants, different for each host. Genome-linked viral protein (VPg) mutations similar to those involved in the breakdown of eIF4E-mediated resistance to other potyviruses allow some PPV chimeras to infect A. thaliana. These results point to defective interactions between a translation initiation factor and the viral VPg as the most probable cause of host-specific incompatibility, in which other viral factors also participate, and suggest that complex interactions between multiple viral proteins and translation initiation factors not only define resistance to potyviruses in particular varieties of susceptible hosts but also contribute to establish nonhost resistance.
Collapse
|
36
|
Ouibrahim L, Mazier M, Estevan J, Pagny G, Decroocq V, Desbiez C, Moretti A, Gallois JL, Caranta C. Cloning of the Arabidopsis rwm1 gene for resistance to Watermelon mosaic virus points to a new function for natural virus resistance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:705-16. [PMID: 24930633 DOI: 10.1111/tpj.12586] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 05/06/2023]
Abstract
Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi-0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map-based cloning delimited rwm1 on chromosome 1 in a 114-kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus-encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N-terminal domain of cPGK2 is involved in rwm1-mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus-induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases.
Collapse
Affiliation(s)
- Laurence Ouibrahim
- Genetics and Breeding of Fruits and Vegetables, INRA-UR1052, Dom. St Maurice, CS 60094, F-84143, Montfavet Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
García JA, Glasa M, Cambra M, Candresse T. Plum pox virus and sharka: a model potyvirus and a major disease. MOLECULAR PLANT PATHOLOGY 2014; 15:226-41. [PMID: 24102673 PMCID: PMC6638681 DOI: 10.1111/mpp.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMIC RELATIONSHIPS Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Collapse
Affiliation(s)
- Juan Antonio García
- Departmento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Estevan J, Maréna A, Callot C, Lacombe S, Moretti A, Caranta C, Gallois JL. Specific requirement for translation initiation factor 4E or its isoform drives plant host susceptibility to Tobacco etch virus. BMC PLANT BIOLOGY 2014; 14:67. [PMID: 24645730 PMCID: PMC3999954 DOI: 10.1186/1471-2229-14-67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND In plants, eIF4E translation initiation factors and their eIFiso4E isoforms are essential susceptibility factors for many RNA viruses, including potyviruses. Mutations altering these factors are a major source of resistance to the viruses. The eIF4E allelic series is associated with specific resistance spectra in crops such as Capsicum annum. Genetic evidence shows that potyviruses have a specific requirement for a given 4E isoform that depends on the host plant. For example, Tobacco etch virus (TEV) uses eIF4E1 to infect Capsicum annuum but uses eIFiso4E to infect Arabidopsis thaliana. Here, we investigated how TEV exploits different translation initiation factor isoforms to infect these two plant species. RESULTS A complementation system was set up in Arabidopsis to test the restoration of systemic infection by TEV. Using this system, Arabidopsis susceptibility to TEV was complemented with a susceptible pepper eIF4E1 allele but not with a resistant allele. Therefore, in Arabidopsis, TEV can use the pepper eIF4E1 instead of the endogenous eIFiso4E isoform so is able to switch between translation initiation factor 4E isoform to infect the same host. Moreover, we show that overexpressing the pepper eIF4E1 alleles is sufficient to make Arabidopsis susceptible to an otherwise incompatible TEV strain. Lastly, we show that the resistant eIF4E1 allele is similarly overcome by a resistance-breaking TEV strain as in pepper, confirming that this Arabidopsis TEV-susceptibility complementation system is allele-specific. CONCLUSION We report here a complementation system in Arabidopsis that makes it possible to assess the role of pepper pvr2-eIF4E alleles in susceptibility to TEV. Heterologous complementation experiments showed that the idiosyncratic properties of the 4E and iso4E proteins create a major checkpoint for viral infection of different hosts. This system could be used to screen natural or induced eIF4E alleles to find and study alleles of interest for plant breeding.
Collapse
Affiliation(s)
- Joan Estevan
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Aramata Maréna
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Caroline Callot
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Séverine Lacombe
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - André Moretti
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Carole Caranta
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| | - Jean-Luc Gallois
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, Montfavet Cedex F-84143, France
| |
Collapse
|
39
|
Calvo M, Malinowski T, García JA. Single amino acid changes in the 6K1-CI region can promote the alternative adaptation of Prunus- and Nicotiana-propagated Plum pox virus C isolates to either host. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:136-49. [PMID: 24200075 DOI: 10.1094/mpmi-08-13-0242-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plum pox virus (PPV) C is one of the less common PPV strains and specifically infects cherry trees in nature. Making use of two PPV-C isolates that display different pathogenicity features, i.e., SwCMp, which had been adapted to Nicotiana species, and BY101, which had been isolated from cherry rootstock L2 (Prunus lannesiana) and propagated only in cherry species, we have generated two infective full-length cDNA clones in order to determine which viral factors are involved in the adaptation to each host. According to our results, the C-P3(PIPO)/6K1/N-CI (cylindrical inclusion) region contains overlapping but not coincident viral determinants involved in symptoms development, local viral amplification, and systemic movement capacity. Amino acid changes in this region promoting the adaptation to N. benthamiana or P. avium have trade-off effects in the alternative host. In both cases, adaptation can be achieved through single amino acid changes in the NIapro protease recognition motif between 6K1 and CI or in nearby sequences. Thus, we hypothesize that the potyvirus polyprotein processing could depend on specific host factors and the adaptation of PPV-C isolates to particular hosts relies on a fine regulation of the proteolytic cleavage of the 6K1-CI junction.
Collapse
|
40
|
Cosson P, Decroocq V, Revers F. Development and characterization of 96 microsatellite markers suitable for QTL mapping and accession control in an Arabidopsis core collection. PLANT METHODS 2014; 10:2. [PMID: 24447639 PMCID: PMC3899612 DOI: 10.1186/1746-4811-10-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/20/2014] [Indexed: 05/14/2023]
Abstract
BACKGROUND To identify plant genes involved in various key traits, QTL mapping is a powerful approach. This approach is based on the use of mapped molecular markers to identify genomic regions controlling quantitative traits followed by a fine mapping and eventually positional cloning of candidate genes. Mapping technologies using SNP markers are still rather expensive and not feasible in every laboratory. In contrast, microsatellite (also called SSR for Simple Sequence Repeat) markers are technologically less demanding and less costly for any laboratory interested in genetic mapping. RESULTS In this study, we present the development and the characterization of a panel of 96 highly polymorphic SSR markers along the Arabidopsis thaliana genome allowing QTL mapping among accessions of the Versailles 24 core collection that covers a high percentage of the A. thaliana genetic diversity. These markers can be used for any QTL mapping analysis involving any of these accessions. We optimized the use of these markers in order to reveal polymorphism using standard PCR conditions and agarose gel electrophoresis. In addition, we showed that the use of only three of these markers allows differentiating all 24 accessions which makes this set of markers a powerful tool to control accession identity or any cross between any of these accessions. CONCLUSION The set of SSR markers developed in this study provides a simple and efficient tool for any laboratory focusing on QTL mapping in A. thaliana and a simple means to control seed stock or crosses between accessions.
Collapse
Affiliation(s)
- Patrick Cosson
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, F-33140, France
- Univ Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, F-33140, France
| | - Véronique Decroocq
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, F-33140, France
- Univ Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, F-33140, France
| | - Frédéric Revers
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, F-33140, France
- Univ Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, F-33140, France
| |
Collapse
|
41
|
Orjuela J, Deless EFT, Kolade O, Chéron S, Ghesquière A, Albar L. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1455-63. [PMID: 23944999 DOI: 10.1094/mpmi-05-13-0127-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
RYMV2 is a major recessive resistance gene identified in cultivated African rice (Oryza glaberrima) which confers high resistance to the Rice yellow mottle virus (RYMV). We mapped RYMV2 in an approximately 30-kb interval in which four genes have been annotated. Sequencing of the candidate region in the resistant Tog7291 accession revealed a single mutation affecting a predicted gene, as compared with the RYMV-susceptible O. glaberrima CG14 reference sequence. This mutation was found to be a one-base deletion leading to a truncated and probably nonfunctional protein. It affected a gene homologous to the Arabidopsis thaliana CPR5 gene, known to be a defense mechanism regulator. Only seven O. glaberrima accessions showing this deletion were identified in a collection consisting of 417 accessions from three rice species. All seven accessions were resistant to RYMV, which is an additional argument in favor of the involvement of the deletion in resistance. In addition, fine mapping of a resistance quantitative trait locus in O. sativa advanced backcrossed lines pinpointed a 151-kb interval containing RYMV2, suggesting that allelic variants of the same gene may control both high and partial resistance.
Collapse
|
42
|
Ouibrahim L, Caranta C. Exploitation of natural genetic diversity to study plant-virus interactions: what can we learn from Arabidopsis thaliana? MOLECULAR PLANT PATHOLOGY 2013; 14:844-54. [PMID: 23790151 PMCID: PMC6638744 DOI: 10.1111/mpp.12052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development and use of cultivars that are genetically resistant to viruses is an efficient strategy to tackle the problems of virus diseases. Over the past two decades, the model plant Arabidopsis thaliana has been documented as a host for a broad range of viral species, providing access to a large panel of resources and tools for the study of viral infection processes and resistance mechanisms. Exploration of its natural genetic diversity has revealed a wide range of genes conferring virus resistance. The molecular characterization of some of these genes has unveiled resistance mechanisms distinct from those described in crops. In these respects, Arabidopsis represents a rich and largely untapped source of new genes and mechanisms involved in virus resistance. Here, we review the current status of our knowledge concerning natural virus resistance in Arabidopsis. We also address the impact of environmental conditions on Arabidopsis-virus interactions and resistance mechanisms, and discuss the potential of applying the knowledge gained from the study of Arabidopsis natural diversity for crop improvement.
Collapse
Affiliation(s)
- Laurence Ouibrahim
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, CEA/CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, Marseille, France
| | | |
Collapse
|
43
|
Sugawara K, Shiraishi T, Yoshida T, Fujita N, Netsu O, Yamaji Y, Namba S. A replicase of Potato virus X acts as the resistance-breaking determinant for JAX1-mediated resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1106-12. [PMID: 23906090 DOI: 10.1094/mpmi-04-13-0094-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lectin-mediated resistance (LMR) has been suggested to comprise an uncharacterized branch of antiviral plant innate immunity. To unveil the feature of resistance conferred by jacalin-type lectin required for potexvirus resistance 1 (JAX1), a recently isolated LMR gene against potexviruses, we analyzed the resistance-breaking variants to find the viral component involved in resistance. We employed grafting-mediated inoculation, a high-pressure virus inoculation method, to obtain Potato virus X (PVX) variants that can overcome JAX1-mediated resistance. Whole-genome sequencing of the variants suggested that a single amino acid in the methyl transferase domain of the replicase encoded by PVX is responsible for this resistance-breaking property. Reintroduction of the amino-acid substitution to avirulent wild-type PVX was sufficient to overcome the JAX1-mediated resistance. These results suggest that viral replicase is involved in JAX1-mediated resistance. The residue that determines the resistance-breaking properties was highly conserved among potexviruses, suggesting a general role of the residue in potexvirus-JAX1 interactions.
Collapse
Affiliation(s)
- Kyoko Sugawara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Zuriaga E, Soriano JM, Zhebentyayeva T, Romero C, Dardick C, Cañizares J, Badenes ML. Genomic analysis reveals MATH gene(s) as candidate(s) for Plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). MOLECULAR PLANT PATHOLOGY 2013; 14:663-77. [PMID: 23672686 PMCID: PMC6638718 DOI: 10.1111/mpp.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sharka disease, caused by Plum pox virus (PPV), is the most important viral disease affecting Prunus species. A major PPV resistance locus (PPVres) has been mapped to the upper part of apricot (Prunus armeniaca) linkage group 1. In this study, a physical map of the PPVres locus in the PPV-resistant cultivar 'Goldrich' was constructed. Bacterial artificial chromosome (BAC) clones belonging to the resistant haplotype contig were sequenced using 454/GS-FLX Titanium technology. Concurrently, the whole genome of seven apricot varieties (three PPV-resistant and four PPV-susceptible) and two PPV-susceptible apricot relatives (P. sibirica var. davidiana and P. mume) were obtained using the Illumina-HiSeq2000 platform. Single nucleotide polymorphisms (SNPs) within the mapped interval, recorded from alignments against the peach genome, allowed us to narrow down the PPVres locus to a region of ∼196 kb. Searches for polymorphisms linked in coupling with the resistance led to the identification of 68 variants within 23 predicted transcripts according to peach genome annotation. Candidate resistance genes were ranked combining data from variant calling and predicted functions inferred from sequence homology. Together, the results suggest that members of a cluster of meprin and TRAF-C homology domain (MATHd)-containing proteins are the most likely candidate genes for PPV resistance in apricot. Interestingly, MATHd proteins are hypothesized to control long-distance movement (LDM) of potyviruses in Arabidopsis, and restriction for LDM is also a major component of PPV resistance in apricot. Although the PPV resistance gene(s) remains to be unambiguously identified, these results pave the way to the determination of the underlying mechanism and to the development of more accurate breeding strategies.
Collapse
Affiliation(s)
- Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
Hipper C, Brault V, Ziegler-Graff V, Revers F. Viral and cellular factors involved in Phloem transport of plant viruses. FRONTIERS IN PLANT SCIENCE 2013; 4:154. [PMID: 23745125 PMCID: PMC3662875 DOI: 10.3389/fpls.2013.00154] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/05/2013] [Indexed: 05/03/2023]
Abstract
Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement.
Collapse
Affiliation(s)
| | | | - Véronique Ziegler-Graff
- Laboratoire Propre du CNRS (UPR 2357), Virologie Végétale, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
| | - Frédéric Revers
- UMR 1332 de Biologie du Fruit et Pathologie, INRA, Université de BordeauxVillenave d’Ornon, France
| |
Collapse
|
46
|
Contreras-Paredes CA, Silva-Rosales L, Daròs JA, Alejandri-Ramírez ND, Dinkova TD. The absence of eukaryotic initiation factor eIF(iso)4E affects the systemic spread of a Tobacco etch virus isolate in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:461-70. [PMID: 23252462 DOI: 10.1094/mpmi-09-12-0225-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Translation initiation factor eIF4E exerts an important role during infection of viral species in the family Potyviridae. Particularly, a eIF(iso)4E family member is required for Arabidopsis thaliana susceptibility to Turnip mosaic virus, Lettuce mosaic virus, and Tobacco etch virus (TEV). In addition, a resistance mechanism named restriction of TEV movement (RTM) in A. thaliana controls the systemic spread of TEV in Col-0 ecotype. Here, we describe that TEV-TAMPS, a Mexican isolate, overcomes the RTM resistance mechanism reported for TEV-7DA infection of the Col-0 ecotype but depends on eIF(iso)4E for its systemic spread. To understand at which level eIF(iso)4E participates in A. thaliana TEV-TAMPS infection, the viral RNA replication and translation were measured. The absence or overexpression of eIF(iso)4E did not affect viral translation, and replication was still observed in the absence of eIF(iso)4E. However, the TEV-TAMPS systemic spread was completely abolished in the null mutant. The viral protein genome-linked (VPg) precursor NIa was found in coimmunoprecipitated complexes with both, eIF(iso)4E and eIF4E. However, the viral coat protein (CP) was only present in the eIF(iso)4E complexes. Since both the VPg and the CP proteins are needed for systemic spread, we propose a role of A. thaliana eIF(iso)4E in the movement of TEV-TAMPS within this host.
Collapse
|
47
|
Wang X, Kohalmi SE, Svircev A, Wang A, Sanfaçon H, Tian L. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS One 2013; 8:e50627. [PMID: 23382802 PMCID: PMC3557289 DOI: 10.1371/journal.pone.0050627] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/23/2012] [Indexed: 01/29/2023] Open
Abstract
Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Antonet Svircev
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Hélène Sanfaçon
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
48
|
Pagny G, Paulstephenraj PS, Poque S, Sicard O, Cosson P, Eyquard JP, Caballero M, Chague A, Gourdon G, Negrel L, Candresse T, Mariette S, Decroocq V. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 196:873-886. [PMID: 22943366 DOI: 10.1111/j.1469-8137.2012.04289.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/21/2012] [Indexed: 05/03/2023]
Abstract
Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement.
Collapse
Affiliation(s)
- Gaëlle Pagny
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | | | - Sylvain Poque
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Ophélie Sicard
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Patrick Cosson
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Jean-Philippe Eyquard
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Mélodie Caballero
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Aurélie Chague
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Germain Gourdon
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Lise Negrel
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Thierry Candresse
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Stéphanie Mariette
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Véronique Decroocq
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| |
Collapse
|
49
|
Wang A, Krishnaswamy S. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. MOLECULAR PLANT PATHOLOGY 2012; 13:795-803. [PMID: 22379950 PMCID: PMC6638641 DOI: 10.1111/j.1364-3703.2012.00791.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The use of genetic resistance is considered to be the most effective and sustainable approach to the control of plant pathogens. Although most of the known natural resistance genes are monogenic dominant R genes that are predominant against fungi and bacteria, more and more recessive resistance genes against viruses have been cloned in the last decade. Interestingly, of the 14 natural recessive resistance genes against plant viruses that have been cloned from diverse plant species thus far, 12 encode the eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. This review is intended to summarize the current state of knowledge about eIF4E and the possible mechanisms underlying its essential role in virus infection, and to discuss recent progress and the potential of eIF4E as a target gene in the development of genetic resistance to viruses for crop improvement.
Collapse
Affiliation(s)
- Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada, N5V 4T3.
| | | |
Collapse
|
50
|
Cosson P, Schurdi-Levraud V, Le QH, Sicard O, Caballero M, Roux F, Le Gall O, Candresse T, Revers F. The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS One 2012; 7:e39169. [PMID: 22723957 PMCID: PMC3377653 DOI: 10.1371/journal.pone.0039169] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/16/2012] [Indexed: 11/19/2022] Open
Abstract
Background The non conventional RTM (Restricted Tobacco etch virus Movement) resistance which restricts long distance movement of some plant viruses in Arabidopsis thaliana is still poorly understood. Though at least three RTM genes have been identified, their precise role(s) in the process as well as whether other genes are involved needs to be elucidated. Methodology/Principal Findings In this study, the natural variation of the RTM genes was analysed at the amino acid level in relation with their functionality to restrict the long distance movement of Lettuce mosaic potyvirus (LMV). We identified non-functional RTM alleles in LMV-susceptible Arabidopsis accessions as well as some of the mutations leading to the non-functionality of the RTM proteins. Our data also indicate that more than 40% of the resistant accessions to LMV are controlled by the RTM genes. In addition, two new RTM loci were genetically identified. Conclusions/Significance Our results show that the RTM resistance seems to be a complex biological process which would involves at least five different proteins. The next challenges will be to understand how the different RTM protein domains are involved in the resistance mechanism and to characterise the new RTM genes for a better understanding of the blocking of the long distance transport of plant viruses.
Collapse
Affiliation(s)
- Patrick Cosson
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Valérie Schurdi-Levraud
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Quang Hien Le
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Ophélie Sicard
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Mélodie Caballero
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Fabrice Roux
- FRE CNRS 3268 – Laboratoire de Génétique et Evolution des Populations Végétales, Université des Sciences et Technologies de Lille 1, Villeneuve d’Ascq, France
| | - Olivier Le Gall
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Thierry Candresse
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
| | - Frédéric Revers
- INRA, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- Univ. Bordeaux, UMR 1332 de Biologie du fruit et Pathologie, Villenave d’Ornon, France
- * E-mail:
| |
Collapse
|