1
|
Zhong J, Situ J, He C, He J, Kong G, Li H, Jiang Z, Li M. A virulent milRNA of Fusarium oxysporum f. sp. cubense impairs plant resistance by targeting banana AP2 transcription factor coding gene MaPTI6L. HORTICULTURE RESEARCH 2025; 12:uhae361. [PMID: 40070402 PMCID: PMC11894533 DOI: 10.1093/hr/uhae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
Fungi produce microRNA-like RNAs (milRNAs) with functional importance in various biological processes. Our previous research identified a new milRNA Foc-milR87 from Fusarium oxysporum f. sp. cubense, which contributes to fungal virulence by targeting the pathogen glycosyl hydrolase encoding gene. However, the potential roles of fungal milRNAs in interactions with hosts are not well understood. This study demonstrated that Foc-milR87 specifically suppressed the expression of MaPTI6L, a pathogenesis-related gene that encodes a transcriptional activator in the banana (Musa acuminata Cavendish group cv. 'Baxi Jiao') genome, by targeting the 3'untranslated region (UTR) of MaPTI6L. Transient overexpression of MaPTI6L activated plant defense responses that depend on its nuclear localization, yet co-expression with Foc-milR87 attenuated these responses. MaPTI6L enhanced plant resistance by promoting transcription of the salicylic acid signaling pathway marker gene MaEDS1. Sequence analysis of the MaPTI6L gene in 19 banana varieties, particularly those resistant to Fusarium wilt, uncovered single nucleotide polymorphisms (SNPs) at Foc-milR87 target sites. Experimental validation showed that these SNPs significantly reduce the microRNA's ability to suppress target gene expression. Our findings reveal that Foc-milR87 plays an important role in impairing plant resistance by targeting MaPTI6L mRNA and reducing MaEDS1 transcription during the early infection stage, suggesting the 3'UTR of MaPTI6L as a promising target for genome editing in generation of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiaqi Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Junjian Situ
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Chengcheng He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Jiahui He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Guanghui Kong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Huaping Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Zide Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Minhui Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| |
Collapse
|
2
|
Xu Y, Zhang T, Mu S, Peng Y, Wu D, Yang L, Li Q, Wu Z, Zhang J. Discovery of Arbutin as Novel Potential Antiviral Agent Against Tomato Yellow Leaf Curl Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3967-3976. [PMID: 39918282 DOI: 10.1021/acs.jafc.4c11365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV), a major plant virus, infects multiple plant species, severely threatening global food security. Arbutin, a natural product used in cosmetics to reduce pigmentation, also exhibits antibacterial and anti-inflammatory properties. However, its potential in plant protection remains undocumented. This study reveals arbutin's ability to inhibit TYLCV infection. In Nicotiana benthamiana, 100 μg/mL arbutin inhibited viral gene accumulation by up to 76.8%, surpassing ningnanmycin (65.8%) and ribavirin (39.5%). Besides, microscale thermophoresis indicated that arbutin bound strongly to the TYLCV coat protein (CP). Molecular docking indicated that arbutin interacted with ARG58, VAL65, and CYS69. RT-qPCR and Western blot experiments confirmed the crucial roles of these amino acids, especially VAL65, in viral infection. Transcriptome analysis revealed that mutating VAL65 affected plant-pathogen interaction pathways and MAPK signaling in host defense mechanisms. This study unveils arbutin's novel antiviral function, providing crucial insights for developing new biopesticides against plant viruses.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingting Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shimei Mu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yanqun Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Duanpu Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qing Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Tang Q, Wei S, Zheng X, Tu P, Tao F. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 2024; 44:1533-1551. [PMID: 38267262 DOI: 10.1080/07388551.2023.2299769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
4
|
Coll A, Lukan T, Stare K, Zagorščak M, Mahkovec Povalej T, Baebler Š, Prat S, Coll NS, Valls M, Petek M, Gruden K. The StPti5 ethylene response factor acts as a susceptibility factor by negatively regulating the potato immune response to pathogens. THE NEW PHYTOLOGIST 2024; 244:202-218. [PMID: 39129060 DOI: 10.1111/nph.20004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.
Collapse
Affiliation(s)
- Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Katja Stare
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Tjaša Mahkovec Povalej
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Salomé Prat
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Núria Sánchez Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, 08193, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Catalonia, Spain
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| |
Collapse
|
5
|
Lohmaneeratana K, Leetanasaksakul K, Thamchaipenet A. Transcriptomic Profiling of Sugarcane White Leaf (SCWL) Canes during Maturation Phase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1551. [PMID: 38891358 PMCID: PMC11174868 DOI: 10.3390/plants13111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Sugarcane white leaf (SCWL) disease, caused by Candidatus Phytoplasma sacchari, results in the most damage to sugarcane plantations. Some SCWL canes can grow unnoticed through the maturation phase, subsequently resulting in an overall low sugar yield, or they can be used accidentally as seed canes. In this work, 12-month-old SCWL and asymptomatic canes growing in the same field were investigated. An abundance of phytoplasma in SCWL canes affected growth and sugar content as well as alterations of transcriptomic profiles corresponding to several pathways that responded to the infection. Suppression of photosynthesis, porphyrin and chlorophyll metabolism, coupled with an increase in the expression of chlorophyllase, contributed to the reduction in chlorophyll levels and photosynthesis. Blockage of sucrose transport plausibly occurred due to the expression of sugar transporters in leaves but suppression in stalks, resulting in low sugar content in canes. Increased expression of genes associated with MAPK cascades, plant hormone signaling transduction, callose plug formation, the phenylpropanoid pathway, and calcium cascades positively promoted defense mechanisms against phytoplasma colonization by an accumulation of lignin and calcium in response to plant immunity. Significant downregulation of CPK plausibly results in a reduction in antioxidant enzymes and likely facilitates pathogen invasion, while expression of sesquiterpene biosynthesis possibly attracts the insect vectors for transmission, thereby enabling the spread of phytoplasma. Moreover, downregulation of flavonoid biosynthesis potentially intensifies the symptoms of SCWL upon challenge by phytoplasma. These SCWL sugarcane transcriptomic profiles describe the first comprehensive sugarcane-phytoplasma interaction during the harvesting stage. Understanding molecular mechanisms will allow for sustainable management and the prevention of SCWL disease-a crucial benefit to the sugar industry.
Collapse
Affiliation(s)
- Karan Lohmaneeratana
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kantinan Leetanasaksakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand;
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
6
|
Wang H, Chen Q, Feng W. The Emerging Role of 2OGDs as Candidate Targets for Engineering Crops with Broad-Spectrum Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1129. [PMID: 38674537 PMCID: PMC11054871 DOI: 10.3390/plants13081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases caused by pathogens result in a marked decrease in crop yield and quality annually, greatly threatening food production and security worldwide. The creation and cultivation of disease-resistant cultivars is one of the most effective strategies to control plant diseases. Broad-spectrum resistance (BSR) is highly preferred by breeders because it confers plant resistance to diverse pathogen species or to multiple races or strains of one species. Recently, accumulating evidence has revealed the roles of 2-oxoglutarate (2OG)-dependent oxygenases (2OGDs) as essential regulators of plant disease resistance. Indeed, 2OGDs catalyze a large number of oxidative reactions, participating in the plant-specialized metabolism or biosynthesis of the major phytohormones and various secondary metabolites. Moreover, several 2OGD genes are characterized as negative regulators of plant defense responses, and the disruption of these genes via genome editing tools leads to enhanced BSR against pathogens in crops. Here, the recent advances in the isolation and identification of defense-related 2OGD genes in plants and their exploitation in crop improvement are comprehensively reviewed. Also, the strategies for the utilization of 2OGD genes as targets for engineering BSR crops are discussed.
Collapse
Affiliation(s)
- Han Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| |
Collapse
|
7
|
Deng H, Pei Y, Xu X, Du X, Xue Q, Gao Z, Shu P, Wu Y, Liu Z, Jian Y, Wu M, Wang Y, Li Z, Pirrello J, Bouzayen M, Deng W, Hong Y, Liu M. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. THE NEW PHYTOLOGIST 2024; 242:592-609. [PMID: 38402567 DOI: 10.1111/nph.19632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The plant hormone ethylene plays a critical role in fruit defense against Botrytis cinerea attack, but the underlying mechanisms remain poorly understood. Here, we showed that ethylene response factor SlERF.C1 acts as a key regulator to trigger the ethylene-mediated defense against B. cinerea in tomato fruits without compromising ripening. Knockout of SlERF.C1 increased fruit susceptibility to B. cinerea with no effect on ripening process, while overexpression enhanced resistance. RNA-Seq, transactivation assays, EMSA and ChIP-qPCR results indicated that SlERF.C1 activated the transcription of PR genes by binding to their promoters. Moreover, SlERF.C1 interacted with the mitogen-activated protein kinase SlMPK8 which allowed SlMPK8 to phosphorylate SlERF.C1 at the Ser174 residue and increases its transcriptional activity. Knocking out of SlMPK8 increased fruit susceptibility to B. cinerea, whereas overexpression enhanced resistance without affecting ripening. Furthermore, genetic crosses between SlMPK8-KO and SlERF.C1-OE lines reduced the resistance to B. cinerea attack in SlERF.C1-OE fruits. In addition, B. cinerea infection induced ethylene production which in turn triggered SlMPK8 transcription and enhanced the phosphorylation of SlERF.C1. Overall, our findings reveal the regulatory mechanism of the 'Ethylene-MPK8-ERF.C1-PR' module in resistance against B. cinerea and provide new insight into the manipulation of gray mold disease in fruits.
Collapse
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qihan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhaoqiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Lin HH, Lin KH, Tsai YL, Chen RJ, Lin YC, Chen YC. Influences of Ipomoea batatas Anti-Cancer Peptide on Tomato Defense Genes. Curr Protein Pept Sci 2024; 25:651-665. [PMID: 38698748 DOI: 10.2174/0113892037299818240408053000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
AIMS This study investigates the impact of IbACP (Ipomoea batatas anti-cancer peptide) on defense-related gene expression in tomato leaves, focusing on its role in plant defense mechanisms. BACKGROUND Previously, IbACP was isolated from sweet potato leaves, and it was identified as a peptide capable of inducing an alkalinization response in tomato suspension culture media. Additionally, IbACP was found to regulate the proliferation of human pancreatic adenocarcinoma cells. OBJECTIVE Elucidate IbACP's molecular influence on defense-related gene expression in tomato leaves using next-generation sequencing analysis. METHODS To assess the impact of IbACP on defense-related gene expression, transcriptome data were analyzed, encompassing various functional categories such as photosynthesis, metabolic processes, and plant defense. Semi-quantitative reverse-transcription polymerase chain reaction analysis was employed to verify transcription levels of defense-related genes in tomato leaves treated with IbACP for durations ranging from 0 h (control) to 24 h. RESULTS IbACP induced jasmonic acid-related genes (LoxD and AOS) at 2 h, with a significant up-regulation of salicylic acid-dependent gene NPR1 at 24 h. This suggested a temporal antagonistic effect between jasmonic acid and salicylic acid during the early hours of IbACP treatment. Downstream ethylene-responsive regulator genes (ACO1, ETR4, and ERF1) were consistently down-regulated by IbACP at all times. Additionally, IbACP significantly up-regulated the gene expressions of suberization-associated anionic peroxidases (TMP1 and TAP2) at all time points, indicating enhanced suberization of the plant cell wall to prevent pathogen invasion. CONCLUSION IbACP enhances the synthesis of defense hormones and up-regulates downstream defense genes, improving the plant's resistance to biotic stresses.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Agronomy, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yung-Lin Tsai
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
| |
Collapse
|
9
|
Raio A, Brilli F, Neri L, Baraldi R, Orlando F, Pugliesi C, Chen X, Baccelli I. Stenotrophomonas rhizophila Ep2.2 inhibits growth of Botrytis cinerea through the emission of volatile organic compounds, restricts leaf infection and primes defense genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1235669. [PMID: 37849842 PMCID: PMC10577304 DOI: 10.3389/fpls.2023.1235669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
The bacterium Stenotrophomonas rhizophila is known to be beneficial for plants and has been frequently isolated from the rhizosphere of crops. In the present work, we isolated from the phyllosphere of an ornamental plant an epiphytic strain of S. rhizophila that we named Ep2.2 and investigated its possible application in crop protection. Compared to S. maltophilia LMG 958, a well-known plant beneficial species which behaves as opportunistic human pathogen, S. rhizophila Ep2.2 showed distinctive features, such as different motility, a generally reduced capacity to use carbon sources, a greater sensitivity to fusidic acid and potassium tellurite, and the inability to grow at the human body temperature. S. rhizophila Ep2.2 was able to inhibit in vitro growth of the plant pathogenic fungi Alternaria alternata and Botrytis cinerea through the emission of volatile compounds. Simultaneous PTR-MS and GC-MS analyses revealed the emission, by S. rhizophila Ep2.2, of volatile organic compounds (VOCs) with well-documented antifungal activity, such as furans, sulphur-containing compounds and terpenes. When sprayed on tomato leaves and plants, S. rhizophila Ep2.2 was able to restrict B. cinerea infection and to prime the expression of Pti5, GluA and PR1 plant defense genes.
Collapse
Affiliation(s)
- Aida Raio
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| | - Luisa Neri
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Rita Baraldi
- Institute for BioEconomy (IBE), National Research Council of Italy (CNR), Bologna, Italy
| | - Francesca Orlando
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Xiaoyulong Chen
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Florence, Italy
| |
Collapse
|
10
|
Prusky D, Romanazzi G. Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:279-300. [PMID: 37201920 DOI: 10.1146/annurev-phyto-021722-035135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel;
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy;
| |
Collapse
|
11
|
Tian S, Liu B, Shen Y, Cao S, Lai Y, Lu G, Wang Z, Wang A. Unraveling the Molecular Mechanisms of Tomatoes' Defense against Botrytis cinerea: Insights from Transcriptome Analysis of Micro-Tom and Regular Tomato Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2965. [PMID: 37631176 PMCID: PMC10459989 DOI: 10.3390/plants12162965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Botrytis cinerea is a devastating fungal pathogen that causes severe economic losses in global tomato cultivation. Understanding the molecular mechanisms driving tomatoes' response to this pathogen is crucial for developing effective strategies to counter it. Although the Micro-Tom (MT) cultivar has been used as a model, its stage-specific response to B. cinerea remains poorly understood. In this study, we examined the response of the MT and Ailsa Craig (AC) cultivars to B. cinerea at different time points (12-48 h post-infection (hpi)). Our results indicated that MT exhibited a stronger resistant phenotype at 18-24 hpi but became more susceptible to B. cinerea later (26-48 hpi) compared to AC. Transcriptome analysis revealed differential gene expression between MT at 24 hpi and AC at 22 hpi, with MT showing a greater number of differentially expressed genes (DEGs). Pathway and functional annotation analysis revealed significant differential gene expression in processes related to metabolism, biological regulation, detoxification, photosynthesis, and carbon metabolism, as well as some immune system-related genes. MT demonstrated an increased reliance on Ca2+ pathway-related proteins, such as CNGCs, CDPKs, and CaMCMLs, to resist B. cinerea invasion. B. cinerea infection induced the activation of PTI, ETI, and SA signaling pathways, involving the modulation of various genes such as FLS2, BAK1, CERK1, RPM, SGT1, and EDS1. Furthermore, transcription factors such as WRKY, MYB, NAC, and AUX/IAA families played crucial regulatory roles in tomatoes' defense against B. cinerea. These findings provide valuable insights into the molecular mechanisms underlying tomatoes' defense against B. cinerea and offer potential strategies to enhance plant resistance.
Collapse
Affiliation(s)
- Shifu Tian
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bojing Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yanan Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Shasha Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Yinyan Lai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.T.); (Y.S.); (S.C.); (Y.L.); (G.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| |
Collapse
|
12
|
Li T, Liu R, Liu Z, Chang J, Li J. Effects of Intermittent Temperature and Humidity Regulation on Tomato Gray Mold. PLANT DISEASE 2023; 107:2335-2345. [PMID: 36627805 DOI: 10.1094/pdis-10-22-2339-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Temperature and humidity play an important role in plant-pathogen interactions. However, regulating the temperature and humidity specifically to inhibit the development of plant diseases remains unclear. In this study, we explored the influence of intermittent temperature and humidity variation on tomato gray mold. Intermittent regulation of temperature and humidity (increasing temperature with decreasing humidity for different periods within 24 h) inhibited the disease severity of plants and the infection process of Botrytis cinerea. The 4-h treatment (increasing temperature accompanied by decreasing humidity for 4 h and recovering for 4 h, and so on) effectively inhibited the development of tomato gray mold, reduced the biomass of B. cinerea, delayed the differentiation time of mycelia, and inhibited the accumulation of hydrogen peroxide in tomato leaves at the later stage of infection. The increased expressions of heat-shock protein (HSP) genes HSP20, HSP70, HSP90, BAG6, and BAG7 in tomato were mainly caused by environmental changes and environment-plant-pathogen interactions, and the increased expression of the latter was greater than that of the former in the 2-h (increasing temperature accompanied by decreasing humidity for 2 h and recovering for 2 h, and so on) and 4-h treatments. Pathogen infection induced the expression of defense-related genes in tomato, and the increase in the expressions of FLS2, FEI1, PI2, Pti5, and WRKY75 induced by B. cinerea in the 4-h treatment was greater than that under unregulated temperature and humidity conditions. In general, intermittent temperature and humidity variation can effectively inhibit the development of tomato gray mold, and the 4-h treatment had the best inhibitory effect.
Collapse
Affiliation(s)
- Tianzhu Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Ruyi Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Zhaoyu Liu
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Jiayue Chang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| | - Jianming Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling 712100, China
| |
Collapse
|
13
|
McDonald SC, Buck JW, Li Z. Pinpointing Rcs3 for frogeye leaf spot resistance and tracing its origin in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:49. [PMID: 37313225 PMCID: PMC10248600 DOI: 10.1007/s11032-023-01397-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Frogeye leaf spot is a yield-reducing disease of soybean caused by the pathogen Cercospora sojina. Rcs3 has provided durable resistance to all known races of C. sojina since its discovery in the cultivar Davis during the 1980s. Using a recombinant inbred line population derived from a cross between Davis and the susceptible cultivar Forrest, Rcs3 was fine-mapped to a 1.15 Mb interval on chromosome 16. This single locus was confirmed by tracing Rcs3 in resistant and susceptible progeny derived from Davis, as well as three near-isogenic lines. Haplotype analysis in the ancestors of Davis indicated that Davis has the same haplotype at the Rcs3 locus as susceptible cultivars in its paternal lineage. On the basis of these results, it is hypothesized that the resistance allele in Davis resulted from a mutation of a susceptibility allele. Tightly linked SNP markers at the Rcs3 locus identified in this research can be used for effective marker-assisted selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01397-x.
Collapse
Affiliation(s)
- Samuel C. McDonald
- Institute of Plant Breeding, Genetics, and Genomics and Department of Crop and Soil Sciences, University of Georgia, Athens, GA USA
| | - James W. Buck
- Department of Plant Pathology, University of Georgia, Griffin, GA USA
| | - Zenglu Li
- Institute of Plant Breeding, Genetics, and Genomics and Department of Crop and Soil Sciences, University of Georgia, Athens, GA USA
| |
Collapse
|
14
|
Montesinos L, Baró A, Gascón B, Montesinos E. Bactericidal and plant defense elicitation activities of Eucalyptus oil decrease the severity of infections by Xylella fastidiosa on almond plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1122218. [PMID: 37008467 PMCID: PMC10050747 DOI: 10.3389/fpls.2023.1122218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
The activity of Eucalyptus essential oil against eleven strains pertaining to six species of plant pathogenic bacteria was studied using growth inhibition and contact assays. All strains were susceptible to the formulation EGL2, and Xylella fastidiosa subspecies and Xanthomonas fragariae were the most sensitive. The bactericidal effect was strong causing 4.5 to 6.0 log reductions in survival in 30 min at concentrations in the range of 0.75 to 15.0 μl/ml depending on the bacteria tested. Transmission electron microscopy of the formulation EGL2 against the three X. fastidiosa subspecies studied allowed the observation of a strong lytic effect on bacterial cells. In addition, the preventive spray application of EGL2 to potted pear plants subsequently inoculated with Erwinia amylovora significantly decreased the severity of infections. Almond plants treated by endotherapy or soil drenching, and then inoculated with X. fastidiosa showed a significant decrease in disease severity as well as in the levels of the pathogen, depending on the strategy used (endotherapy/soil drenching, preventive/curative). The treatment by endotherapy in almond plants induced the expression of several genes involved in plant defense. It was concluded that the reduction of infections by the Eucalyptus oil treatments was due to the combination of its bactericidal and plant defense induction activities.
Collapse
|
15
|
Ali O, Ramsubhag A, Jayaraman J. Transcriptome-wide modulation by Sargassum vulgare and Acanthophora spicifera extracts results in a prime-triggered plant signalling cascade in tomato and sweet pepper. AOB PLANTS 2022; 14:plac046. [PMID: 36483312 PMCID: PMC9724562 DOI: 10.1093/aobpla/plac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Seaweed extracts (SWEs) are becoming integrated into crop production systems due to their multiple beneficial effects including growth promotion and induction of defence mechanisms. However, the comprehensive molecular mechanisms of these effects are yet to be elucidated. The current study investigated the transcriptomic changes induced by SWEs derived from Sargassum vulgare and Acanthophora spicifera on tomato and sweet pepper plants. Tomato and sweet pepper plants were subjected to foliar treatment with alkaline extracts prepared from the above seaweeds. Transcriptome changes in the plants were assessed 72 h after treatments using RNA sequencing. The treated plants were also analysed for defence enzyme activities, nutrient composition and phytohormonal profiles. The results showed the significant enrichment of genes associated with several growth and defence processes including photosynthesis, carbon and nitrogen metabolism, plant hormone signal transduction, plant-pathogen interaction, secondary metabolite metabolism, MAPK signalling and amino acid biosynthesis. Activities of defence enzymes were also significantly increased in SWE-treated plants. Plant nutrient profiling showed significant increases in calcium, potassium, nitrogen, sulphur, boron, copper, iron, manganese, zinc and phosphorous levels in SWE-treated plants. Furthermore, the levels of auxins, cytokinins and gibberellins were also significantly increased in the treated plants. The severity of bacterial leaf spot and early blight incidence in plants treated with SWE was significantly reduced, in addition to other effects like an increase in chlorophyll content, plant growth, and fruit yield. The results demonstrated the complex effect of S. vulgare and A. spicifera extracts on the plants' transcriptome and provided evidence of a strong role of these extracts in increasing plant growth responses while priming the plants against pathogenic attack simultaneously. The current study contributes to the understanding of the molecular mechanisms of SWEs in plants and helps their usage as a viable organic input for sustainable crop production.
Collapse
Affiliation(s)
- Omar Ali
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | - Adesh Ramsubhag
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine TTO, 00000, Trinidad and Tobago
| | | |
Collapse
|
16
|
Functional inhibition of the StERF3 gene by dual targeting through CRISPR/Cas9 enhances resistance to the late blight disease in Solanum tuberosum L. Mol Biol Rep 2022; 49:11675-11684. [PMID: 36178561 DOI: 10.1007/s11033-022-07958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Disease-resistant cultivars are the best solution to get their maximum yield potential and avoid fungicide application. There is no doubt about the contribution, and use of R genes (resistance genes) in resistance development in plants, while S genes (susceptibility genes) also hold a strong position in pathogenesis by resistance repression, and their loss of function contributes to enhanced resistance. Hence, we attempted to knock out the function of the StERF3 gene in potatoes through CRISPR/Cas9-based genome editing and investigated the CRISPR/Cas9 approach as strategic control against late blight disease in potato plants. METHODS AND RESULTS The StERF3 gene was edited in late blight susceptible cv. Lady Rosetta. Full allelic edited plants were identified through DnpI, and N1aIV mediated restriction digestion and then further analyzed through Indel Detection by Amplicon Analysis. Sequence analysis of targeted plants for indel identification showed full allelic editing. The detached leaf assay of full allelic edited plants demonstrated the role of the StERF3 gene in susceptibility to late blight in potatoes. In planta disease assay also showed reduced, slowed, and delayed disease progression in StERF3-loss-of-function mutants compared to wild-type (control) plants. Less fungal biomass was quantified in knockouts through Real-time qPCR that supported less susceptibility of edited plants to late blight. Besides, relatively high expression of pathogens-related genes, StPR1, and StNPR1, were also observed in StERF3-loss-of-function mutants compared to the corresponding control. CONCLUSION The results showed the functional inhibition of StERF3 genes using the CRISPR/Cas9 approach. The functional knockouts (StERF3 gene-edited potato plants) revealed enhanced resistance against Phytophthora infestans, thereby demonstrating the best strategic control for late blight disease in potato plants.
Collapse
|
17
|
Zorin EA, Kliukova MS, Afonin AM, Gribchenko ES, Gordon ML, Sulima AS, Zhernakov AI, Kulaeva OA, Romanyuk DA, Kusakin PG, Tsyganova AV, Tsyganov VE, Tikhonovich IA, Zhukov VA. A variable gene family encoding nodule-specific cysteine-rich peptides in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884726. [PMID: 36186063 PMCID: PMC9515463 DOI: 10.3389/fpls.2022.884726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.
Collapse
Affiliation(s)
- Evgeny A. Zorin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Marina S. Kliukova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Emma S. Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Mikhail L. Gordon
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | | | - Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Daria A. Romanyuk
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Pyotr G. Kusakin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna V. Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| |
Collapse
|
18
|
Gong X, Xu Y, Li H, Chen X, Song Z. Antioxidant activation, cell wall reinforcement, and reactive oxygen species regulation promote resistance to waterlogging stress in hot pepper (Capsicum annuum L.). BMC PLANT BIOLOGY 2022; 22:425. [PMID: 36050651 PMCID: PMC9434832 DOI: 10.1186/s12870-022-03807-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hot pepper (Capsicum annuum L.) is one of the world's oldest domesticated crops. It has poor waterlogging tolerance, and flooding frequently results in plant death and yield reduction. Therefore, understanding the molecular mechanisms associated with pepper waterlogging tolerance is essential to grow new varieties with stronger tolerance. RESULTS In this study, we discovered that after 5 days of flooding, the growth rate of waterlogging-tolerant pepper cultivars did not reduce to a large extent. Physiological data revealed that chlorophyll concentration was not significantly affected by flooding; however, stomatal conductance was altered considerably 0-5 days after flooding, and the net photosynthesis rate changed substantially 5-10 days after flooding. In addition, the root activity of waterlogging-tolerant varieties was substantially higher after flooding for 10 days than that of the control. This implies that the effect of flooding is associated with changes in the root environment, which ultimately affects photosynthesis. We evaluated changes in gene expression levels between two pepper types at the same time point and the same pepper variety at different time points after flooding stress treatment and performed a screening for multiple potential genes. These differentially expressed genes (DEGs) were further analyzed for functional enrichment, and the results revealed that antioxidase genes, cell wall synthesis pathway genes, and calcium ion regulation pathway genes might be associated with waterlogging tolerance. Other genes identified in peppers with waterlogging tolerance included those associated with lignin synthesis regulation, reactive oxygen species (ROS) regulation pathways, and others associated with stress resistance. Considerable changes in the expression levels of these genes were recorded 5 days after waterlogging, which was consistent with a considerable increase in oxidase content that was also noted on the fifth day after flooding. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) findings revealed that among the 20 selected DEGs, including genes such as mitogen-activated protein kinase 3 (MPK3) and calcium-binding protein 4 (CML4), approximately 80% of the gene expression patterns were consistent with our RNA-seq dataset. CONCLUSIONS The findings of this study suggest that ROS modulation, increased antioxidase activity, lignin formation, and the expression of stress resistance genes help peppers with waterlogging tolerance resist flooding stress in the early stages. These findings provide a basis for further investigation of the molecular mechanisms responsible for waterlogging tolerance in pepper and may be a critical reference for the breeding of hot pepper.
Collapse
Affiliation(s)
- Xuefeng Gong
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Yi Xu
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Hong Li
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Xin Chen
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China
| | - Zhanfeng Song
- Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture in Rural Affairs of the P.R. China, Chengdu, 610066, China.
| |
Collapse
|
19
|
Sun M, Qiu L, Liu Y, Zhang H, Zhang Y, Qin Y, Mao Y, Zhou M, Du X, Qin Z, Dai S. Pto Interaction Proteins: Critical Regulators in Plant Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:774229. [PMID: 35360329 PMCID: PMC8960991 DOI: 10.3389/fpls.2022.774229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Pto interaction (Pti) proteins are a group of proteins that can be phosphorylated by serine/threonine protein kinase Pto, which have diverse functions in plant development and stress response. In this study, we analyzed the phylogenetic relationship, gene structure, and conserved motifs of Pti1s and predicted the potential cis-elements in the promoters of Pti1 genes using bioinformatics methods. Importantly, we systematically summarized the diverse functions of Pti1s in tomato, rice, Arabidopsis, potato, apple, and cucumber. The potential cis-elements in promoters of Pti1s decide their functional diversity in response to various biotic and abiotic stresses. The protein kinase Pti1 was phosphorylated by Pto and then modulated the downstream signaling pathways for PTI and ETI in the disease insistence process. In addition, some transcription factors have been defined as Ptis (e.g., Pti4, Pti5, and Pti6) originally, which actually were ethylene-response factors (ERFs). Pti4, Pti5, and Pti6 were modulated by salicylic acid (SA), jasmonate (JA), and ethylene signaling pathways and regulated diverse defense-related gene expression to cope with Pst infection and insect wounding.
Collapse
|
20
|
Tundo S, Paccanaro MC, Bigini V, Savatin DV, Faoro F, Favaron F, Sella L. The Fusarium graminearum FGSG_03624 Xylanase Enhances Plant Immunity and Increases Resistance against Bacterial and Fungal Pathogens. Int J Mol Sci 2021; 22:10811. [PMID: 34639149 PMCID: PMC8509205 DOI: 10.3390/ijms221910811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/05/2022] Open
Abstract
Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Maria Chiara Paccanaro
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, VT, Italy; (V.B.); (D.V.S.)
| | - Daniel V. Savatin
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, VT, Italy; (V.B.); (D.V.S.)
| | - Franco Faoro
- Department of Agricultural and Environmental Sciences, University of Milano, Via Celoria 2, 20133 Milano, MI, Italy;
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy; (S.T.); (M.C.P.); (F.F.)
| |
Collapse
|
21
|
Chen Y, Zhang M, Wang L, Yu X, Li X, Jin D, Zeng J, Ren H, Wang F, Song S, Yan X, Zhao J, Pei Y. GhKWL1 Upregulates GhERF105 but Its Function Is Impaired by Binding with VdISC1, a Pathogenic Effector of Verticillium dahliae. Int J Mol Sci 2021; 22:7328. [PMID: 34298948 PMCID: PMC8306359 DOI: 10.3390/ijms22147328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.
Collapse
Affiliation(s)
- Yang Chen
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Mi Zhang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Lei Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xiaohan Yu
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xianbi Li
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Dan Jin
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Jianyan Zeng
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Hui Ren
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Fanlong Wang
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Shuiqing Song
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xingying Yan
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Juan Zhao
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Pei
- Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
22
|
Silva CJ, van den Abeele C, Ortega-Salazar I, Papin V, Adaskaveg JA, Wang D, Casteel CL, Seymour GB, Blanco-Ulate B. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2696-2709. [PMID: 33462583 PMCID: PMC8006553 DOI: 10.1093/jxb/eraa601] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/19/2020] [Indexed: 05/03/2023]
Abstract
The increased susceptibility of ripe fruit to fungal pathogens poses a substantial threat to crop production and marketability. Here, we coupled transcriptomic analyses with mutant studies to uncover critical processes associated with defense and susceptibility in tomato (Solanum lycopersicum) fruit. Using unripe and ripe fruit inoculated with three fungal pathogens, we identified common pathogen responses reliant on chitinases, WRKY transcription factors, and reactive oxygen species detoxification. We established that the magnitude and diversity of defense responses do not significantly impact the interaction outcome, as susceptible ripe fruit mounted a strong immune response to pathogen infection. Then, to distinguish features of ripening that may be responsible for susceptibility, we utilized non-ripening tomato mutants that displayed different susceptibility patterns to fungal infection. Based on transcriptional and hormone profiling, susceptible tomato genotypes had losses in the maintenance of cellular redox homeostasis, while jasmonic acid accumulation and signaling coincided with defense activation in resistant fruit. We identified and validated a susceptibility factor, pectate lyase (PL). CRISPR-based knockouts of PL, but not polygalacturonase (PG2a), reduced susceptibility of ripe fruit by >50%. This study suggests that targeting specific genes that promote susceptibility is a viable strategy to improve the resistance of tomato fruit against fungal disease.
Collapse
Affiliation(s)
- Christian J Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Casper van den Abeele
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Victor Papin
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
- Ecole Nationale Supérieure Agronomique de Toulouse, Toulouse, France
| | - Jaclyn A Adaskaveg
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Duoduo Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- School of Biosciences, Plant and Crop Science Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Clare L Casteel
- School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Graham B Seymour
- School of Biosciences, Plant and Crop Science Division, University of Nottingham, Sutton Bonington, Loughborough, UK
| | | |
Collapse
|
23
|
Yang H, Sun Y, Wang H, Zhao T, Xu X, Jiang J, Li J. Genome-wide identification and functional analysis of the ERF2 gene family in response to disease resistance against Stemphylium lycopersici in tomato. BMC PLANT BIOLOGY 2021; 21:72. [PMID: 33530947 PMCID: PMC7856819 DOI: 10.1186/s12870-021-02848-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/21/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND APETALA2/ethylene responsive factor (AP2/ERF) transcription factors are a plant-specific family of transcription factors and one of the largest families of transcription factors. Ethylene response factors (ERF) regulate plant growth, development, and responses to biotic and abiotic stress. In a previous study, the ERF2 gene was significantly upregulated in both resistant and susceptible tomato cultivars in response to Stemphylium lycopersici. The main purpose of this study was to systematically analyze the ERF family and to explore the mechanism of ERF2 in tomato plants resisting pathogen infection by the Virus-induced Gene Silencing technique. RESULTS In this experiment, 134 ERF genes were explored and subjected to bioinformatic analysis and divided into twelve groups. The spatiotemporal expression characteristics of ERF transcription factor gene family in tomato were diverse. Combined with RNA-seq, we found that the expression of 18 ERF transcription factors increased after inoculation with S. lycopersici. In ERF2-silenced plants, the susceptible phenotype was observed after inoculation with S. lycopersici. The hypersensitive response and ROS production were decreased in the ERF2-silenced plants. Physiological analyses showed that the superoxide dismutase, peroxidase and catalase activities were lower in ERF2-silenced plants than in control plants, and the SA and JA contents were lower in ERF2-silenced plants than in control plants after inoculation with S. lycopersici. Furthermore, the results indicated that ERF2 may directly or indirectly regulate Pto, PR1b1 and PR-P2 expression and enhance tomato resistance. CONCLUSIONS In this study, we identified and analyzed members of the tomato ERF family by bioinformatics methods and classified, described and analyzed these genes. Subsequently, we used VIGS technology to significantly reduce the expression of ERF2 in tomatoes. The results showed that ERF2 had a positive effect on tomato resistance to S. lycopersici. Interestingly, ERF2 played a key role in multiple SA, JA and ROS signaling pathways to confer resistance to invasion by S. lycopersici. In addition, ERF2 may directly or indirectly regulate Pto, PR1b1 and PR-P2 expression and enhance tomato resistance to S. lycopersici. In summary, this study provides gene resources for breeding for disease resistance in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yaoguang Sun
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Hexuan Wang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
24
|
Wang Y, Feng G, Zhang Z, Liu Y, Ma Y, Wang Y, Ma F, Zhou Y, Gross R, Xu H, Wang R, Xiao F, Liu Y, Niu X. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110702. [PMID: 33288015 DOI: 10.1016/j.plantsci.2020.110702] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/19/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Pseudomonas syringae pv. tomato (Pst) is a pathogenic microorganism that causes bacterial speck disease and affects tomato yield and quality. Pto is a disease resistant gene for plant to recognize and defense against Pst. Pto interacts with Pti (Pto interacting) proteins, which include three transcription factors, Pti4, Pti5, Pti6, and they were thought to be downstream of Pto-mediated pathway to promote the expression of disease-related genes. In the present work, the overexpression plants of Pti4, Pti5 or Pti6 were obtained by Agrobacterium-mediated transformation in tomato. The Pti4/5/6-overexpressed lines indicated enhanced expression of pathogenesis-related genes and resistance to pathogenic bacteria Pst DC3000. Meanwhile, the transgenic plants showed that Pti4/5/6 function in ripening but performed no obvious adverse influence on flowering time, seed-setting rate, weight and soluble solids content of fruits. Furthermore, Pti-overexpressed fruits exhibited increased enzymatic activities of phenylalnine ammonialyase, catalase, peroxidase and decreased content of malondialdehyde. Additionally, cell-free and in vivo ubiquitination assay indicated that Pti4, Pti5 and Pti6 degraded by 26S proteasome which suggested that these Pti transcription regulators' functions could be regulated by ubiquitin-mediated post translational regulation in tomato.
Collapse
Affiliation(s)
- Yang Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guodong Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ying Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yilong Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yingying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fei Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yu Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rachel Gross
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Huanhuan Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ruipeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; School of Horticulture, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiangli Niu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
25
|
Barbero F, Guglielmotto M, Islam M, Maffei ME. Extracellular Fragmented Self-DNA Is Involved in Plant Responses to Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:686121. [PMID: 34381477 PMCID: PMC8350447 DOI: 10.3389/fpls.2021.686121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 05/17/2023]
Abstract
A growing body of evidence indicates that extracellular fragmented self-DNA (eDNA), by acting as a signaling molecule, triggers inhibitory effects on conspecific plants and functions as a damage-associated molecular pattern (DAMP). To evaluate early and late events in DAMP-dependent responses to eDNA, we extracted, fragmented, and applied the tomato (Solanum lycopersicum) eDNA to tomato leaves. Non-sonicated, intact self-DNA (intact DNA) was used as control. Early event analyses included the evaluation of plasma transmembrane potentials (Vm), cytosolic calcium variations (Ca2+ cy t), the activity and subcellular localization of both voltage-gated and ligand-gated rectified K+ channels, and the reactive oxygen species (ROS) subcellular localization and quantification. Late events included RNA-Seq transcriptomic analysis and qPCR validation of gene expression of tomato leaves exposed to tomato eDNA. Application of eDNA induced a concentration-dependent Vm depolarization which was correlated to an increase in (Ca2+)cyt; this event was associated to the opening of K+ channels, with particular action on ligand-gated rectified K+ channels. Both eDNA-dependent (Ca2+)cyt and K+ increases were correlated to ROS production. In contrast, application of intact DNA produced no effects. The plant response to eDNA was the modulation of the expression of genes involved in plant-biotic interactions including pathogenesis-related proteins (PRPs), calcium-dependent protein kinases (CPK1), heat shock transcription factors (Hsf), heat shock proteins (Hsp), receptor-like kinases (RLKs), and ethylene-responsive factors (ERFs). Several genes involved in calcium signaling, ROS scavenging and ion homeostasis were also modulated by application of eDNA. Shared elements among the transcriptional response to eDNA and to biotic stress indicate that eDNA might be a common DAMP that triggers plant responses to pathogens and herbivores, particularly to those that intensive plant cell disruption or cell death. Our results suggest the intriguing hypothesis that some of the plant reactions to pathogens and herbivores might be due to DNA degradation, especially when associated to the plant cell disruption. Fragmented DNA would then become an important and powerful elicitor able to trigger early and late responses to biotic stress.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Michela Guglielmotto
- Neuroscience Institute of Cavalieri Ottolenghi Foundation, University of Turin, Turin, Italy
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Massimo E. Maffei,
| |
Collapse
|
26
|
Yang X, Chen L, Yang Y, Guo X, Chen G, Xiong X, Dong D, Li G. Transcriptome analysis reveals that exogenous ethylene activates immune and defense responses in a high late blight resistant potato genotype. Sci Rep 2020; 10:21294. [PMID: 33277549 PMCID: PMC7718909 DOI: 10.1038/s41598-020-78027-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022] Open
Abstract
Ethylene (ET) is one of the many important signaling hormones that functions in regulating defense responses in plants. Gene expression profiling was conducted under exogenous ET application in the high late blight resistant potato genotype SD20 and the specific transcriptional responses to exogenous ET in SD20 were revealed. Analysis of differentially expressed genes (DEGs) generated a total of 1226 ET-specific DEGs, among which transcription factors, kinases, defense enzymes and disease resistance-related genes were significantly differentially expressed. GO enrichment and KEGG metabolic pathway analysis also revealed that numerous defense regulation-related genes and defense pathways were significantly enriched. These results were consistent with the interaction of SD20 and Phytophthora infestans in our previous study, indicating that exogenous ET stimulated the defense response and initiated a similar defense pathway compared to pathogen infection in SD20. Moreover, multiple signaling pathways including ET, salicylic acid, jasmonic acid, abscisic acid, auxin, cytokinin and gibberellin were involved in the response to exogenous ET, which indicates that many plant hormones work together to form a complex network to resist external stimuli in SD20. ET-induced gene expression profiling provides insights into the ET signaling transduction pathway and its potential mechanisms in disease defense systems in potato.
Collapse
Affiliation(s)
- Xiaohui Yang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Li Chen
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yu Yang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Xiao Guo
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Guangxia Chen
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China
| | - Xingyao Xiong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Daofeng Dong
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Molecular Biology Key Laboratory of Shandong Facility Vegetable, National Vegetable Improvement Center Shandong Sub-Center, Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Jinan, 250100, China.
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
27
|
Li D, Liu X, Shu L, Zhang H, Zhang S, Song Y, Zhang Z. Global analysis of the AP2/ERF gene family in rose (Rosa chinensis) genome unveils the role of RcERF099 in Botrytis resistance. BMC PLANT BIOLOGY 2020; 20:533. [PMID: 33228522 PMCID: PMC7684944 DOI: 10.1186/s12870-020-02740-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/16/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND The AP2/ERFs belong to a large family of transcription factors in plants. The AP2/ERF gene family has been identified as a key player involved in both biotic and abiotic stress responses in plants, however, no comprehensive study has yet been carried out on the AP2/ERF gene family in rose (Rosa sp.), the most important ornamental crop worldwide. RESULTS The present study comprises a genome-wide analysis of the AP2/ERF family genes (RcERFs) in the rose, involving their identification, gene structure, phylogenetic relationship, chromosome localization, collinearity analysis, as well as their expression patterns. Throughout the phylogenetic analysis, a total of 131 AP2/ERF genes in the rose genome were divided into 5 subgroups. The RcERFs are distributed over all the seven chromosomes of the rose, and genome duplication may have played a key role in their duplication. Furthermore, Ka/Ks analysis indicated that the duplicated RcERF genes often undergo purification selection with limited functional differentiation. Gene expression analysis revealed that 23 RcERFs were induced by infection of the necrotrophic fungal pathogen Botrytis cinerea. Presumably, these RcERFs are candidate genes which can react to the rose's resistance against Botrytis cinerea infection. By using virus-induced gene silencing, we confirmed that RcERF099 is an important regulator involved in the B.cinerea resistance in the rose petal. CONCLUSION Overall, our results conclude the necessity for further study of the AP2/ERF gene family in rose, and promote their potential application in improving the rose when subjected to biological stress.
Collapse
Affiliation(s)
- Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Lizhe Shu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Zhang
- Beijing Key Laboratory of Greening Plants Breeding, Beijing Institute of Landscape Architecture, Beijing, China
| | - Shiya Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Yin Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| |
Collapse
|
28
|
Vall-Llaura N, Giné-Bordonaba J, Usall J, Larrigaudière C, Teixidó N, Torres R. Ethylene biosynthesis and response factors are differentially modulated during the interaction of peach petals with Monilinia laxa or Monilinia fructicola. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110599. [PMID: 32900437 DOI: 10.1016/j.plantsci.2020.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Monilinia spp. may infect stone fruit at any growth stage, although susceptibility to brown rot depends on both host properties and climatological conditions. This said, no studies deciphering the host response in the interaction between peach blossoms and Monilinia spp. are yet available. This study presents an in-depth characterization of the role of ethylene in the interaction of 'Merrill O'Henry' peach petals (Prunus persica (L.) Batch) with Monilinia laxa and M. fructicola. We investigated the physiological responses of the host and the fungi to the application of ethylene and 1-methylcyclopropene (1-MCP) as well as the molecular patterns associated with the biosynthetic and ethylene-dependent responses during the interaction of both Monilinia species with the host. The incidence of both species was differentially affected by 1-MCP and ethylene; M. laxa was favoured by the enhanced host ethylene production associated with the treatments whereas M. fructicola reduced its infection capacity. Such differences were host-dependent as treatments did not affect growth or colony morphology of Monilinia spp. Besides, host ethylene production was altered in M. laxa inoculated petals, either by the fungus or the host itself. Molecular analysis revealed some important ERFs that could be involved in the different ability of both species to activate a cascade response of peach petals against these pathogens.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Jordi Giné-Bordonaba
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Josep Usall
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Christian Larrigaudière
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Neus Teixidó
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Rosario Torres
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
29
|
Yeo IC, Devarenne TP. Screening for potential nuclear substrates for the plant cell death suppressor kinase Adi3 using peptide microarrays. PLoS One 2020; 15:e0234011. [PMID: 32484825 PMCID: PMC7266335 DOI: 10.1371/journal.pone.0234011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The tomato AGC protein kinase Adi3 is a Ser/Thr kinase that functions as a negative regulator of programmed cell death through cell death suppression (CDS) activity in the nucleus. In this study, to understand the mechanism of Adi3 CDS, peptide microarrays containing random Ser- and Thr-peptide phosphorylation substrates were used to screen for downstream phosphorylation substrates. In the microarray phosphorylation assay, Adi3 showed promiscuous kinase activity more toward Ser-peptides compared to Thr-peptides, and a preference for aromatic and cyclic amino acids on both Ser- and Thr-peptides was seen. The 63 highest phosphorylated peptide sequences from the Ser-peptide microarray were selected as queries for a BLAST search against the tomato proteome. As a result, 294 candidate nuclear Adi3 substrates were selected and categorized based on their functions. Many of these proteins were classified as DNA/RNA polymerases or regulators involved in transcription and translation events. The list of potential Adi3 substrates was narrowed to eleven and four candidates were tested for phosphorylation by Adi3. Two of these candidates, RNA polymerase II 2nd largest subunit (RPB2) and the pathogen defense related transcription factor Pti5, were confirmed as Adi3 phosphorylation substrates by in vitro kinase assays. Using a mutational approach two residues, Thr675 and Thr676, were identified as Adi3 phosphorylation sites on RPB2. This study provides the foundation for understanding Adi3 CDS mechanisms in the nucleus as well as other cellular functions.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
30
|
Tang Q, Zhu F, Cao X, Zheng X, Yu T, Lu L. Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses. Food Chem 2018; 278:240-247. [PMID: 30583368 DOI: 10.1016/j.foodchem.2018.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022]
Abstract
This research aimed to investigate the roles of phytohormone ethylene in cherry tomato fruit immune response against gray mold caused by Botrytis cinerea. Pretreatment with antagonistic yeast Cryptococcus laurentii resulted in a significantly decreased disease incidence of B. cinerea infection, and accompanied by a burst of ethylene production in the whole fruit. Blocking the ethylene perception by adding 1-MCP (5 μL L-1 or greater) remarkably weaken the protection ability of fruit itself and suppressed the C. laurentii-stimulated host immune response. 5 μL L-1 1-MCP prefumigation decreased the expression of ethylene biosynthesis and perception related genes SlACO1, SlACS2, SlERF1, SlPti5 and SlMPK3, and ethylene production in C. laurentii treated fruit. Consequently, the expressions of SlCHI9, SlGlub, SlPAL3, SlPR1 and SlPR5 up-regulated by the yeast were all impaired to different degrees by the 1-MCP prefumigation. These findings demonstrate that ethylene contributes to fruit immunity and C. laurentii-mediated immune responses of cherry tomato.
Collapse
Affiliation(s)
- Qiong Tang
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Fanghuan Zhu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xuan Cao
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
31
|
Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice. PLoS Pathog 2018; 14:e1007092. [PMID: 29864161 PMCID: PMC6037387 DOI: 10.1371/journal.ppat.1007092] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/09/2018] [Accepted: 05/12/2018] [Indexed: 11/19/2022] Open
Abstract
Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9–16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene. The ability of most Xanthomonas plant pathogenic bacteria to infect their hosts relies on the action of a specific family of proteins called TAL effectors, which are transcriptional activators injected into the plant by the bacteria. TAL effectors enter the plant cell nucleus and bind to the promoters of specific plant genes. Genes that when induced can benefit pathogen multiplication or disease development are called susceptibility (S) genes. Here, we perform a comparative analysis of the TAL effector repertoires of three strains of X. oryzae pv. oryzae, which causes bacterial leaf blight of rice, a major yield constraint in this staple crop. Using sequencing of entire genomes, we compared the large repertoires of TAL effectors in three African Xoo strains which form a genetic lineage distinct from Asian strains. We assessed the individual contribution to pathogen virulence of 13 TAL effector variants represented in the three strains, and identified one that makes a major contribution. By combining host transcriptome profiling and TAL effector binding sites prediction, we identified two targets of this TAL effector that function as S genes, one previously identified, and one, new S gene. We validated the new S gene by functional characterization using designer TAL effectors. Both S genes encode transcription factors and can therefore be considered as susceptibility hubs for pathogen manipulation of the host transcriptome. Our results provide new insights into the diversified strategies underlying the roles of TAL effectors in promoting plant disease.
Collapse
|
32
|
Liu A, Cheng C. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato. MOLECULAR PLANT PATHOLOGY 2017; 18:1062-1074. [PMID: 27415633 PMCID: PMC6638261 DOI: 10.1111/mpp.12460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ethylene response factors (ERFs) are a large plant-specific transcription factor family and play diverse important roles in various plant functions. However, most tomato ERFs have not been characterized. In this study, we showed that the expression of an uncharacterized member of the tomato ERF-IX subgroup, ERF68, was significantly induced by treatments with different bacterial pathogens, ethylene (ET) and salicylic acid (SA), but only slightly induced by bacterial mutants defective in the type III secretion system (T3SS) or non-host pathogens. The ERF68-green fluorescent protein (ERF68-GFP) fusion protein was localized in the nucleus. Transactivation and electrophoretic mobility shift assays (EMSAs) further showed that ERF68 was a functional transcriptional activator and was bound to the GCC-box. Moreover, transient overexpression of ERF68 led to spontaneous lesions in tomato and tobacco leaves and enhanced the expression of genes involved in ET, SA, jasmonic acid (JA) and hypersensitive response (HR) pathways, whereas silencing of ERF68 increased tomato susceptibility to two incompatible Xanthomonas spp. These results reveal the involvement of ERF68 in the effector-triggered immunity (ETI) pathway. To identify ERF68 target genes, chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq) was performed. Amongst the confirmed target genes, a few genes involved in cell death or disease defence were differentially regulated by ERF68. Our study demonstrates the function of ERF68 in the positive regulation of hypersensitive cell death and disease defence by modulation of multiple signalling pathways, and provides important new information on the complex regulatory function of ERFs.
Collapse
Affiliation(s)
- An‐Chi Liu
- Graduate Institute of Plant Biology, National Taiwan UniversityTaipei10617, Taiwan
| | - Chiu‐Ping Cheng
- Graduate Institute of Plant Biology, National Taiwan UniversityTaipei10617, Taiwan
- Department of Life Science, College of Life ScienceNational Taiwan UniversityTaipei10617, Taiwan
| |
Collapse
|
33
|
Owji H, Hajiebrahimi A, Seradj H, Hemmati S. Identification and functional prediction of stress responsive AP2/ERF transcription factors in Brassica napus by genome-wide analysis. Comput Biol Chem 2017; 71:32-56. [PMID: 28961511 DOI: 10.1016/j.compbiolchem.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023]
Abstract
Using homology and domain authentication, 321 putative AP2/ERF transcription factors were identified in Brassica napus, called BnAP2/ERF TFs. BnAP2/ERF TFs were classified into five major subfamilies, including DREB, ERF, AP2, RAV, and BnSoloist. This classification is based on phylogenetic analysis, motif identification, gene structure analysis, and physiochemical characterization. These TFs were annotated based on phylogenetic relationship with Brassica rapa. BnAP2/ERF TFs were located on 19 chromosomes of B. napus. Orthologs and paralogs were identified using synteny-based methods Ks calculation within B. napus genome and between B. napus with other species such as B. rapa, Brassica oleracea, and Arabidopsis thaliana indicated that BnAP2/ERF TFs were formed through duplication events occurred before B. napus formation. Kn/Ks values were between 0 and 1, suggesting the purifying selection among BnAP2/ERF TFs. Gene ontology annotation, cis-regulatory elements and functional interaction networks suggested that BnAP2/ERF TFs participate in response to stressors, including drought, high salinity, heat and cold as well as developmental processes particularly organ specification and embryogenesis. The identified cis-regulatory elements in the upstream of BnAP2/ERF TFs were responsive to abscisic acid. Analysis of the expression data derived from Illumina Hiseq 2000 RNA sequencing revealed that BnAP2/ERF genes were highly expressed in the roots comparing to flower buds, leaves, and stems. Also, the ERF subfamily was over-expressed under salt and fungal treatments. BnERF039 and BnERF245 are candidates for salt-tolerant B. napus. BnERF253-256 and BnERF260-277 are potential cytokinin response factors. BnERF227, BnERF228, BnERF234, BnERF134, BnERF132, BnERF176, and BnERF235 were suggested for resistance against Leptosphaeria maculan and Leptosphaeria biglobosa.
Collapse
Affiliation(s)
- Hajar Owji
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hajiebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Seradj
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Pseudomonas chlororaphis Produces Two Distinct R-Tailocins That Contribute to Bacterial Competition in Biofilms and on Roots. Appl Environ Microbiol 2017; 83:AEM.00706-17. [PMID: 28526791 DOI: 10.1128/aem.00706-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022] Open
Abstract
R-type tailocins are high-molecular-weight bacteriocins that resemble bacteriophage tails and are encoded within the genomes of many Pseudomonas species. In this study, analysis of the P. chlororaphis 30-84 R-tailocin gene cluster revealed that it contains the structural components to produce two R-tailocins of different ancestral origins. Two distinct R-tailocin populations differing in length were observed in UV-induced lysates of P. chlororaphis 30-84 via transmission electron microscopy. Mutants defective in the production of one or both R-tailocins demonstrated that the killing spectrum of each tailocin is limited to Pseudomonas species. The spectra of pseudomonads killed by the two R-tailocins differed, although a few Pseudomonas species were either killed by or insusceptible to both tailocins. Tailocin release was disrupted by deletion of the holin gene within the tailocin gene cluster, demonstrating that the lysis cassette is required for the release of both R-tailocins. The loss of functional tailocin production reduced the ability of P. chlororaphis 30-84 to compete with an R-tailocin-sensitive strain within biofilms and rhizosphere communities. Our study demonstrates that Pseudomonas species can produce more than one functional R-tailocin particle sharing the same lysis cassette but differing in their killing spectra. This study provides evidence for the role of R-tailocins as determinants of bacterial competition among plant-associated Pseudomonas in biofilms and the rhizosphere.IMPORTANCE Recent studies have identified R-tailocin gene clusters potentially encoding more than one R-tailocin within the genomes of plant-associated Pseudomonas but have not demonstrated that more than one particle is produced or the ecological significance of the production of multiple R-tailocins. This study demonstrates for the first time that Pseudomonas strains can produce two distinct R-tailocins with different killing spectra, both of which contribute to bacterial competition between rhizosphere-associated bacteria. These results provide new insight into the previously uncharacterized role of R-tailocin production by plant-associated Pseudomonas species in bacterial population dynamics within surface-attached biofilms and on roots.
Collapse
|
35
|
Liu J, Wang Y, Zhao G, Zhao J, Du H, He X, Zhang H. A novel Gossypium barbadense ERF transcription factor, GbERFb, regulation host response and resistance to Verticillium dahliae in tobacco. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:125-134. [PMID: 28250589 PMCID: PMC5313406 DOI: 10.1007/s12298-016-0402-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/27/2016] [Indexed: 05/02/2023]
Abstract
Ethylene-responsive factors (ERFs) are commonly considered to play an important role in pathogen defense responses. However, only few of ERF members have been characterized in Sea island cotton (Gossypium barbadense). Here, we reported a novel AP2/ERF transcription factors gene, named GbERFb which was cloned and identified from Sea island cotton by RACE. The expression of GbERFb was significantly induced by treatments with ethylene, Methyl jasmonate, salicylic acid, wounding, H2O2 and Verticillium dahliae (V. dahliae) infection. Bioinformatics analysis showed that GbERFb protein containing a conserved ERF DNA binding domain and a nuclear localization signal sequence, belonged to IXb subgroup of the ERF family. Further experiments demonstrated that GbERFb could bind the GCC box cis-acting element and interact with GbMAPKb (MAP kinase) directly in yeast. Over-expression of GbERFb in tobacco could increase the disease resistance to V. dahliae. The results suggest that the GbERFb, a new AP2/ERF transcription factor, could enhance the resistance to V. dahliae and be useful in improvement of crop resistance to pathogenes.
Collapse
Affiliation(s)
- Jianguang Liu
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, No. 598 HePing West Road, Shi Jiazhuang, 050000 Hebei Province China
| | - Yongqiang Wang
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, No. 598 HePing West Road, Shi Jiazhuang, 050000 Hebei Province China
| | - Guiyuan Zhao
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, No. 598 HePing West Road, Shi Jiazhuang, 050000 Hebei Province China
| | - Junli Zhao
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, No. 598 HePing West Road, Shi Jiazhuang, 050000 Hebei Province China
| | - Haiying Du
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, No. 598 HePing West Road, Shi Jiazhuang, 050000 Hebei Province China
| | - Xiaoliang He
- School of Bioscience and Bioengineering, Hebei University of Science and Technology, Shi Jiazhuang, 050000 Hebei Province China
| | - Hanshuang Zhang
- Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, No. 598 HePing West Road, Shi Jiazhuang, 050000 Hebei Province China
| |
Collapse
|
36
|
Venkatesh J, Jahn M, Kang BC. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper. PLoS One 2016; 11:e0161545. [PMID: 27536870 PMCID: PMC4990186 DOI: 10.1371/journal.pone.0161545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| | - Molly Jahn
- University of Wisconsin, Madison, Wisconsin, WI 53706, United States of America
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Vegetable Breeding Research Center, Seoul National University, Seoul, 151–921, Korea
| |
Collapse
|
37
|
Jin JH, Zhang HX, Tan JY, Yan MJ, Li DW, Khan A, Gong ZH. A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2016; 6:1217. [PMID: 26779241 PMCID: PMC4705296 DOI: 10.3389/fpls.2015.01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
Ethylene-responsive factors (ERF) are usually considered to play diverse roles in plant response to biotic and abiotic stresses. In this study, an ERF gene CaPTI1 was isolated from pepper transcriptome database. CaPTI1 contains an open reading frame (ORF) of 543 bp, which encodes a putative polypeptide of 180 amino acids with a theoretical molecular weight of 20.30 kDa. Results of expression profile showed that CaPTI1 had a highest expression level in roots and this gene could not only response to the infection of Phytophthora capsici and the stresses of cold and drought, but also be induced by the signaling molecule (salicylic acid, Methyl Jasmonate, Ethephon, and hydogen peroxide). Furthermore, virus-induce gene silencing (VIGS) of CaPTI1 in pepper weakened the defense response significantly by reducing the expression of defense related genes CaPR1, CaDEF1 and CaSAR82 and also the root activity. These results suggested that CaPTI1 is involved in the regulation of defense response to P. capsici in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
38
|
Ouyang Z, Liu S, Huang L, Hong Y, Li X, Huang L, Zhang Y, Zhang H, Li D, Song F. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2016; 7:1964. [PMID: 28083004 PMCID: PMC5187353 DOI: 10.3389/fpls.2016.01964] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/12/2016] [Indexed: 05/11/2023]
Abstract
The Ethylene-Responsive Factors (ERFs) comprise a large family of transcriptional factors that play critical roles in plant immunity. Gray mold disease caused by Botrytis cinerea, a typical necrotrophic fungal pathogen, is the serious disease that threatens tomato production worldwide. However, littler is known about the molecular mechanism regulating the immunity to B. cinerea in tomato. In the present study, virus-induced gene silencing (VIGS)-based functional analyses of 18 members of B3 group (also called Group IX) in tomato ERF family were performed to identify putative ERFs that are involved in disease resistance against B. cinerea. VIGS-based silencing of either SlERF.B1 or SlERF.C2 had lethal effect while silencing of SlERF.A3 (Pit4) significantly suppressed vegetative growth of tomato plants. Importantly, silencing of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 resulted in increased susceptibility to B. cinerea, attenuated the B. cinerea-induced expression of jasmonic acid/ethylene-mediated signaling responsive defense genes and promoted the B. cinerea-induced H2O2 accumulation. However, silencing of SlERF.A3 also decreased the resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 but silencing of SlERF.A1, SlERF.B4 or SlERF.C3 did not affect the resistance to this bacterial pathogen. Expression of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 was induced by B. cinerea and by defense signaling hormones such as salicylic acid, methyl jasmonate, and 1-aminocyclopropane-1-carboxylic acid (an ethylene precursor). SlERF.A1, SlERF.B4, SlERF.C3, and SlERF.A3 proteins were found to localize in nucleus of cells and possess transactivation activity in yeasts. These data suggest that SlERF.A1, SlERF.B4, and SlERF.C3, three previously uncharacterized ERFs in B3 group, and SlERF.A3, a previously identified ERF with function in immunity to Pst DC3000, play important roles in resistance against B. cinerea in tomato.
Collapse
Affiliation(s)
- Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
- National Navel Orange Engineering Research Center, College of Life and Environmental Sciences, Gannan Normal UniversityGanzhou, China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lihong Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
- *Correspondence: Fengming Song,
| |
Collapse
|
39
|
Wu C, Avila CA, Goggin FL. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:559-70. [PMID: 25504643 PMCID: PMC4286409 DOI: 10.1093/jxb/eru472] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Carlos A Avila
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA Department of Horticultural Sciences, Texas A&M AgriLife Research, Weslaco, TX 78596, USA
| | - Fiona L Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
40
|
Kroumova ABM, Sahoo DK, Raha S, Goodin M, Maiti IB, Wagner GJ. Expression of an apoplast-directed, T-phylloplanin-GFP fusion gene confers resistance against Peronospora tabacina disease in a susceptible tobacco. PLANT CELL REPORTS 2013; 32:1771-82. [PMID: 23942845 DOI: 10.1007/s00299-013-1490-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/18/2013] [Accepted: 07/25/2013] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Phylloplanins are plant-derived, antifungal glycoproteins produced by leaf trichomes. Expression of phylloplanin-GFP fusion gene to the apoplast of a blue mold susceptible tobacco resulted in increased resistance to this pathogen. ABSTRACT Tobaccos and certain other plants secrete phylloplanin glycoproteins to aerial surfaces where they appear to provide first-point-of-contact resistance against fungi/fungi-like pathogens. These proteins can be collected by water washing of aerial plant surfaces, and as shown for tobacco and a sunflower phylloplanins, spraying concentrated washes onto, e.g., turf grass aerial surfaces can provide resistance against various fungi/fungi-like pathogens, in the laboratory. These results suggest that natural-product, phylloplanins may be useful as broad-selectivity fungicides. An obvious question now is can a tobacco phylloplanin gene be introduced into a disease-susceptible plant to confer endogenous resistance. Here we demonstrate that introduction of a tobacco phylloplanin gene--as a fusion with the GFP gene--targeted to the apoplasm can increase resistance to blue mold disease in a susceptible host tobacco.
Collapse
Affiliation(s)
- Antoaneta B M Kroumova
- Kentucky Tobacco Research and Development Center, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA
| | | | | | | | | | | |
Collapse
|
41
|
Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:923-33. [PMID: 23541511 DOI: 10.1016/j.jplph.2013.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 05/23/2023]
Abstract
Ethylene response factor (ERF) functions as an important plant-specific transcription factor in regulating biotic and abiotic stress response through interaction with various stress pathways. We previously obtained three ERF members, VpERF1, VpERF2, and VpERF3 from a highly powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata cDNA full-length library. To explore their functions associated with plant disease resistance or biotic stress, we report here to characterize three ERF members from this library. PM-inoculation analysis on three different resistant grapevine genotypes revealed that three VpERFs displayed significant responses, but a different expression pattern. Over-expression of VpERF1, VpERF2, and VpERF3 in transgenic tobacco plants demonstrated that VpERF2 and VpERF3 enhanced resistance to both bacterial pathogen Ralstonia solanacearum and fungal pathogen Phytophtora parasitica var. nicotianae Tucker. Importantly, VpERF1-overexpressing transgenic Arabidopsis plants increased susceptibility toward these pathogens. Investigation on drought, cold, and heat treatments suggested, VpERF2 was distinctly induced, whereas VpERF3 displayed a very weak response and VpERF1 was distinctly induced by drought and heat. Concurrently, VpERF3 was significantly induced by salicylic acid (SA), methyl jasmonate (MeJA), and ET. Our results showed that the three VpERFs from Chinese wild V. pseudoreticulata play different roles in either preventing disease progression via regulating the expression of relevant defense genes, or directly involving abiotic stress responsive pathways.
Collapse
Affiliation(s)
- Ziguo Zhu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ishihara T, Mitsuhara I, Takahashi H, Nakaho K. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One 2012; 7:e46763. [PMID: 23071630 PMCID: PMC3465262 DOI: 10.1371/journal.pone.0046763] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Bacterial wilt, caused by the soil-borne bacterium Ralstonia solanacearum, is a lethal disease of tomato, but the molecular mechanisms of the host resistance responses to R. solanacearum remain unclear. In this study, we report the first work describing the transcriptome of cultivar resistance and susceptible tomato cultivar after inoculation with R. solanacearum. To elucidate the characteristics of resistance early in the interaction, we analyzed microarrays for resistant cultivar LS-89 and susceptible cultivar Ponderosa 1 day after stem inoculation. No change in gene expression was detected for Ponderosa, but expression levels of over 140 genes, including pathogenesis-related, hormone signaling and lignin biosynthesis genes, increased in LS-89. Expression of β-1,3-glucanase genes increased substantially. In an immunohistochemical study, glucanase in LS-89 accumulated in the xylem and pith tissues surrounding xylem vessels filled with R. solanacearum. The expression of these genes also increased in four other resistant cultivars, but changed little in four susceptible cultivars in response to R. solanacearum, suggesting that similar reactions occur in other cultivars. These gene expression profiles will serve as fundamental information to elucidate the molecular mechanisms in the resistance response to R. solanacearum in tomato.
Collapse
Affiliation(s)
- Takeaki Ishihara
- Plant Protection Division, National Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Ichiro Mitsuhara
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hideki Takahashi
- Department of Life Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuhiro Nakaho
- Plant Protection Division, National Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
43
|
Sherif S, El-Sharkawy I, Paliyath G, Jayasankar S. Differential expression of peach ERF transcriptional activators in response to signaling molecules and inoculation with Xanthomonas campestris pv. pruni. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:731-739. [PMID: 22410465 DOI: 10.1016/j.jplph.2012.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/12/2012] [Accepted: 02/14/2012] [Indexed: 05/31/2023]
Abstract
Ethylene response factors (ERFs) are a large family of transcription factors (TFs) that have diverse functions in plant development and immunity. However, very little is known about the molecular regulation of these TFs in stone fruits during disease incidence. In the present study, we describe the identification of five peach ERFs (Pp-ERFs), aiming to elucidate their potential roles in defense against Xanthomonas campestris pv. pruni (Xcp), the causal agent of bacterial spot disease. The phylogenetic analysis along with sequence comparisons indicated that all Pp-ERFs are transcriptional activators belonging to groups IX and IIV ERFs. The transactivation capacity of these proteins was verified in vivo where they all induced the expression of the GUS reporter gene and in a GCC-dependent manner. The nuclear localization was also confirmed for two of these proteins, Pp-ERF2.b and Pp-ERF2.c, after their transient expression in onion epidermal cells. The induction kinetics of Pp-ERFs after inoculation with Xcp was determined by qRT-PCR. Except for Pp-ERF2.b, transcript levels of Pp-ERFs increased strongly and rapidly in the resistant 'Venture' compared to the susceptible 'BabyGold 5' cultivar after infection with Xcp. In contrast, the expression of Pp-ERF2.b was several-fold higher in the susceptible cultivar after bacterial infection. The expression of Pp-ERFs was also monitored after treating with signaling compounds; salicylic acid (SA) (1 mM), ethephon (1 mM) and methyl jasmonate (MeJA) (50 μM). Although the results generally emphasize the role of ethylene/jasmonic acid (ET/JA) signaling pathways in regulating the expression of Pp-ERFs, there was a coordination of the timing of ET/JA responses, suggesting compensatory rather than synergistic interactions between these pathways during defense against Xcp.
Collapse
Affiliation(s)
- S Sherif
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N., PO Box 7000 Vineland Station, ON L0R 2E0, Canada
| | | | | | | |
Collapse
|
44
|
Li CW, Su RC, Cheng CP, You SJ, Hsieh TH, Chao TC, Chan MT. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. PLANT PHYSIOLOGY 2011; 156:213-227. [PMID: 21398258 PMCID: PMC3091068 DOI: 10.1104/pp.111.174268] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt (BW), one of the most important bacterial diseases worldwide. We used cDNA microarray to survey the gene expression profile in transgenic tomato (Solanum lycopersicum) overexpressing Arabidopsis (Arabidopsis thaliana) CBF1 (AtCBF1), which confers tolerance to BW. The disease-resistant phenotype is correlated with constitutive expression of the Related-to-ABI3/VP1 (RAV) transcription factor, ethylene-responsive factor (ERF) family genes, and several pathogenesis-related (PR) genes. Using a transient assay system, we show that tomato RAV2 (SlRAV2) can transactivate the reporter gene driven by the SlERF5 promoter. Virus-induced gene silencing of SlERF5 and SlRAV2 in AtCBF1 transgenic and BW-resistant cultivar Hawaii 7996 plants gave rise to plants with enhanced susceptibility to BW. Constitutive overexpression of SlRAV2 in transgenic tomato plants induced the expression of SlERF5 and PR5 genes and increased BW tolerance, while knockdown of expression of SlRAV2 inhibited SlERF5 and PR5 gene expression under pathogen infection and significantly decreased BW tolerance. In addition, transgenic tomato overexpressing SlERF5 also accumulated higher levels of PR5 transcripts and displayed better tolerance to pathogen than wild-type plants. From these results, we conclude that SlERFs may act as intermediate transcription factors between AtCBF1 and PR genes via SlRAV in tomato, which results in enhanced tolerance to BW.
Collapse
Affiliation(s)
- Chia-Wen Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 2010; 284:455-75. [PMID: 20922546 DOI: 10.1007/s00438-010-0580-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/14/2010] [Indexed: 01/05/2023]
Abstract
Ethylene responsive transcription factors have been shown to be intimately connected to plant development, defense responses and stress signaling pathways and in order to use them for plant improvement, we need to have better understanding of these proteins. In this study, 85 ERF genes have been identified from tomato using raw EST data in various public repositories. Phylogenetic analysis with tomato ERF domains revealed their distribution in all the groups, previously identified in model systems. MEME motif analysis resulted in identification of conserved domains, characteristic to member of each clade, in addition to ERF domain. Expression analysis during vegetative and reproductive stages of development using QPCR and tomato GeneChip arrays, revealed their tissue-specific/preferential accumulation. In total, 57 genes were found to be differentially expressed during temporal stages of tomato fruit development. The expression analysis of 23 ERF family genes representing each clade in response to seven abiotic stress treatments revealed their differential expression in response to more than one abiotic stress treatments. Results suggest that ERF genes play diverse roles in plant's life and comprehensive data generated will be helpful in conducting functional genomics studies to understand their precise role during plant development and stress response.
Collapse
|
46
|
Zhang G, Chen M, Chen X, Xu Z, Guan S, Li LC, Li A, Guo J, Mao L, Ma Y. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4095-107. [PMID: 18832187 PMCID: PMC2639015 DOI: 10.1093/jxb/ern248] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/07/2008] [Accepted: 09/11/2008] [Indexed: 05/18/2023]
Abstract
Members of the ERF transcription factor family play important roles in regulating gene expression in response to biotic and abiotic stresses. In soybean (Glycine max L.), however, only a few ERF genes have been studied so far. In this study, 98 unigenes that contained a complete AP2/ERF domain were identified from 63,676 unique sequences in the DFCI Soybean Gene Index database. The phylogeny, gene structures, and putative conserved motifs in soybean ERF proteins were analysed, and compared with those of Arabidopsis and rice. The members of the soybean ERF family were divided into 12 subgroups, similar to the case for Arabidopsis. AP2/ERF domains were conserved among soybean, Arabidopsis, and rice. Outside the AP2/ERF domain, many soybean-specific conserved motifs were detected. Expression analysis showed that nine unigenes belonging to six ERF family subgroups were induced by both biotic/abiotic stresses and hormone treatment, suggesting that they were involved in cross-talk between biotic and abiotic stress-responsive signalling pathways. Overexpression of two full-length genes from two different subgroups enhanced the tolerances to drought, salt stresses, and/or pathogen infection of the tobacco plants. These results will be useful for elucidating ERF gene-associated stress response signalling pathways in soybean.
Collapse
Affiliation(s)
- Gaiyun Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ming Chen
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueping Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhaoshi Xu
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shan Guan
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lian-Cheng Li
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aili Li
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaming Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Long Mao
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Youzhi Ma
- The National Key Facility for Crop Genetic Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
47
|
Century K, Reuber TL, Ratcliffe OJ. Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. PLANT PHYSIOLOGY 2008; 147:20-9. [PMID: 18443103 PMCID: PMC2330319 DOI: 10.1104/pp.108.117887] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/13/2008] [Indexed: 05/18/2023]
|
48
|
Trujillo LE, Sotolongo M, Menéndez C, Ochogavía ME, Coll Y, Hernández I, Borrás-Hidalgo O, Thomma BPHJ, Vera P, Hernández L. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants. PLANT & CELL PHYSIOLOGY 2008; 49:512-25. [PMID: 18281696 DOI: 10.1093/pcp/pcn025] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The molecular signals and pathways that govern biotic and abiotic stress responses in sugarcane are poorly understood. Here we describe SodERF3, a sugarcane (Saccharum officinarum L. cv Ja60-5) cDNA that encodes a 201-amino acid DNA-binding protein that acts as a transcriptional regulator of the ethylene responsive factor (ERF) superfamily. Like other ERF transcription factors, the SodERF3 protein binds to the GCC box, and its deduced amino acid sequence contains an N-terminal putative nuclear localization signal (NLS). In addition, a C-terminal short hydrophobic region that is highly homologous to an ERF-associated amphiphilic repression-like motif, typical for class II ERFs, was found. Northern and Western blot analysis showed that SodERF3 is induced by ethylene. In addition, SodERF3 is induced by ABA, salt stress and wounding. Greenhouse-grown transgenic tobacco plants (Nicotiana tabacum L. cv. SR1) expressing SodERF3 were found to display increased tolerance to drought and osmotic stress.
Collapse
Affiliation(s)
- L E Trujillo
- Laboratory of Plant Microbe Interactions, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. PLANT PHYSIOLOGY 2007; 144:1863-77. [PMID: 17573540 PMCID: PMC1949893 DOI: 10.1104/pp.107.099226] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/06/2007] [Indexed: 05/15/2023]
Abstract
Plant defense mechanisms against necrotrophic pathogens, such as Botrytis cinerea, are considered to be complex and to differ from those that are effective against biotrophs. In the abscisic acid-deficient sitiens tomato (Solanum lycopersicum) mutant, which is highly resistant to B. cinerea, accumulation of hydrogen peroxide (H(2)O(2)) was earlier and stronger than in the susceptible wild type at the site of infection. In sitiens, H(2)O(2) accumulation was observed from 4 h postinoculation (hpi), specifically in the leaf epidermal cell walls, where it caused modification by protein cross-linking and incorporation of phenolic compounds. In wild-type tomato plants, H(2)O(2) started to accumulate 24 hpi in the mesophyll layer and was associated with spreading cell death. Transcript-profiling analysis using TOM1 microarrays revealed that defense-related transcript accumulation prior to infection was higher in sitiens than in wild type. Moreover, further elevation of sitiens defense gene expression was stronger than in wild type 8 hpi both in number of genes and in their expression levels and confirmed a role for cell wall modification in the resistant reaction. Although, in general, plant defense-related reactive oxygen species formation facilitates necrotrophic colonization, these data indicate that timely hyperinduction of H(2)O(2)-dependent defenses in the epidermal cell wall can effectively block early development of B. cinerea.
Collapse
Affiliation(s)
- Bob Asselbergh
- Laboratory of Phytopathology , Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
50
|
Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene 2007; 391:80-90. [PMID: 17321073 DOI: 10.1016/j.gene.2006.12.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 11/12/2006] [Accepted: 12/06/2006] [Indexed: 11/23/2022]
Abstract
ERF transcription factors can bind GCC boxes or non-GCC cis elements to regulate biotic and abiotic stress responses. Here, we report that an ERF transcription factor gene (GbERF2) was cloned by suppression subtraction hybridization from sea-island cotton after Verticillium dahliae attack. The GbERF2 cDNA has a total length of 1143 bp with an open reading frame of 597 bp. The genomic sequence of GbERF2 contains an intron of 515 bp. The gene encodes a predicated polypeptide of 198 amino acids with a molecular weight of 22.5 kDa and a calculated pI of 9.82. The GbERF2 protein has a highly conserved ERF domain while the nucleotide and amino acid sequences have low homology with other ERF plant proteins. An RNA blot revealed that GbERF2 is constitutively expressed in different tissues, but is higher in the leaves. High levels of GbERF2 transcripts rapidly accumulated when the plants were exposed to exogenous ethylene treatment and V. dahliae infection, while there was only a slight accumulation in response to salt, cold, drought and water stresses. In contrast, GbERF2 transcripts declined in response to exogenous abscisic acid (ABA) treatment. GbERF2 transgenic tobacco plants constitutively accumulated higher levels of pathogenesis-related gene transcripts, such as PR-1b, PR2 and PR4. The resistance of transgenic tobacco to fungal infection by Alternaria longipes was enhanced. However, the resistance to bacterial infection by Pseudomonas syringae pv. tabaci was not improved. These results show that GbERF2 plays an important role in response to ethylene stress and fungal attack in cotton.
Collapse
Affiliation(s)
- Kai-Jing Zuo
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|