1
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
2
|
Alves LM, Valkov VT, Vittozzi Y, Ariante A, Notte A, Perez T, Barbulova A, Rogato A, Lacombe B, Chiurazzi M. The Lotus japonicus NPF4.6 gene, encoding for a dual nitrate and ABA transporter, plays a role in the lateral root elongation process and is not involved in the N 2-fixing nodule development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109144. [PMID: 39341182 DOI: 10.1016/j.plaphy.2024.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Plant root development depends on signaling pathways responding to external and internal signals. In this study we demonstrate the involvement of the Lotus japonicus LjNPF4.6 gene in the ABA and nitrate root responding pathways. LjNPF4.6 expression in roots is induced by external application of both nitrate and ABA. LjNPF4.6 promoter activity is spatially localized in epidermal cell layer and vascular bundle structures with the latter pattern being controlled by externally applied ABA. LjNPF4.6 cRNA injection achieves both nitrate and ABA uptake in Xenopus laevis oocytes and the analyses of L. japonicus knock-out insertion mutants confirmed the role played by LjNPF4.6 in root nitrate uptake. The phenotypic characterization of the Ljnpf4.6 plants indicates the role played by LjNPF4.6 in the root program development in response to exogenously applied nitrate and ABA. Based on the presented data, the mode of action of this transporter is discussed.
Collapse
Affiliation(s)
- Ludovico Martin Alves
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Ylenia Vittozzi
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Anita Ariante
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Alberta Notte
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Thibaut Perez
- IPSIM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Ani Barbulova
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Benoit Lacombe
- IPSIM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy.
| |
Collapse
|
3
|
Gultyaev AP, Koster C, van Batenburg DC, Sistermans T, van Belle N, Vijfvinkel D, Roussis A. Conserved structured domains in plant non-coding RNA enod40, their evolution and recruitment of sequences from transposable elements. NAR Genom Bioinform 2023; 5:lqad091. [PMID: 37850034 PMCID: PMC10578108 DOI: 10.1093/nargab/lqad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Plant long noncoding RNA enod40 is involved in the regulation of symbiotic associations with bacteria, in particular, in nitrogen-fixing root nodules of legumes, and with fungi in phosphate-acquiring arbuscular mycorrhizae formed by various plants. The presence of enod40 genes in plants that do not form such symbioses indicates its other roles in cell physiology. The molecular mechanisms of enod40 RNA function are poorly understood. Enod40 RNAs form several structured domains, conserved to different extents. Due to relatively low sequence similarity, identification of enod40 sequences in plant genomes is not straightforward, and many enod40 genes remain unannotated even in complete genomes. Here, we used comparative structure analysis and sequence similarity searches in order to locate enod40 genes and determine enod40 RNA structures in nitrogen-fixing clade plants and in grasses. The structures combine conserved features with considerable diversity of structural elements, including insertions of structured domain modules originating from transposable elements. Remarkably, these insertions contain sequences similar to tandem repeats and several stem-loops are homologous to microRNA precursors.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Celine Koster
- Life Science & Technology Honours College, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Amsterdam University Medical Center, Department of Human Genetics, section Ophthalmogenetics, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - Diederik Cames van Batenburg
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- CareRate, Unit E1.165, Stationsplein 45, 3013 AK Rotterdam, The Netherlands
| | - Tom Sistermans
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Niels van Belle
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Daan Vijfvinkel
- Leiden Institute of Advanced Computer Science, Leiden University, PO Box 9512, 2300 RA Leiden, The Netherlands
| | - Andreas Roussis
- National & Kapodistrian University of Athens, Faculty of Biology, Section of Botany, Group Molecular Plant Physiology, Panepistimiopolis - Zografou - Athens, 15784, Greece
| |
Collapse
|
4
|
Rogato A, Valkov VT, Chiurazzi M. LjNRT2.3 plays a hierarchical role in the control of high affinity transport system for root nitrate acquisition in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2022; 13:1042513. [PMID: 36438153 PMCID: PMC9687105 DOI: 10.3389/fpls.2022.1042513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is a key mineral nutrient required for plant growth and development. Plants have evolved sophisticated mechanisms to respond to changes of nutritional availability in the surrounding environment and the optimization of root nitrate acquisition under nitrogen starvation is crucial to cope with unfavoured condition of growth. In this study we present a general description of the regulatory transcriptional and spatial profile of expression of the Lotus japonicus nitrate transporter NRT2 family. Furthermore, we report a phenotypic characterization of two independent Ljnrt2.3 knock out mutants indicating the involvement of the LjNRT2.3 gene in the root nitrate acquisition and lateral root elongation pathways occurring in response to N starvation conditions. We also report an epistatic relationship between LjNRT2.3 and LjNRT2.1 suggesting a combined mode of action of these two genes in order to optimize the Lotus response to a prolonged N starvation.
Collapse
|
5
|
Ganguly P, Roy D, Das T, Kundu A, Cartieaux F, Ghosh Z, DasGupta M. The Natural Antisense Transcript DONE40 Derived from the lncRNA ENOD40 Locus Interacts with SET Domain Protein ASHR3 During Inception of Symbiosis in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1057-1070. [PMID: 33934615 DOI: 10.1094/mpmi-12-20-0357-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The long noncoding RNA ENOD40 is required for cortical cell division during root nodule symbiosis (RNS) of legumes, though it is not essential for actinorhizal RNS. Our objective was to understand whether ENOD40 was required for aeschynomenoid nodule formation in Arachis hypogaea. AhENOD40 express from chromosome 5 (chr5) (AhENOD40-1) and chr15 (AhENOD40-2) during symbiosis, and RNA interference of these transcripts drastically affected nodulation, indicating the importance of ENOD40 in A. hypogaea. Furthermore, we demonstrated several distinct characteristics of ENOD40. (i) Natural antisense transcript (NAT) of ENOD40 was detected from the AhENOD40-1 locus (designated as NAT-AhDONE40). (ii) Both AhENOD40-1 and AhENOD40-2 had two exons, whereas NAT-AhDONE40 was monoexonic. Reverse-transcription quantitative PCR analysis indicated both sense and antisense transcripts to be present in both cytoplasm and nucleus, and their expression increased with the progress of symbiosis. (iii) RNA pull-down from whole cell extracts of infected roots at 4 days postinfection indicated NAT-AhDONE40 to interact with the SET (Su(var)3-9, enhancer of Zeste and Trithorax) domain containing absent small homeotic disc (ASH) family protein AhASHR3 and this interaction was further validated using RNA immunoprecipitation and electrophoretic mobility shift assay. (iv) Chromatin immunoprecipitation assays indicate deposition of ASHR3-specific histone marks H3K36me3 and H3K4me3 in both of the ENOD40 loci during the progress of symbiosis. ASHR3 is known for its role in optimizing cell proliferation and reprogramming. Because both ASHR3 and ENOD40 from legumes cluster away from those in actinorhizal plants and other nonlegumes in phylogenetic distance trees, we hypothesize that the interaction of DONE40 with ASHR3 could have evolved for adapting the nodule organogenesis program for legumes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pritha Ganguly
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Dipan Roy
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Fabienne Cartieaux
- LSTM, Université de Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| |
Collapse
|
6
|
The Lotus japonicus AFB6 Gene Is Involved in the Auxin Dependent Root Developmental Program. Int J Mol Sci 2021; 22:ijms22168495. [PMID: 34445201 PMCID: PMC8395167 DOI: 10.3390/ijms22168495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Auxin is essential for root development, and its regulatory action is exerted at different steps from perception of the hormone up to transcriptional regulation of target genes. In legume plants there is an overlap between the developmental programs governing lateral root and N2-fixing nodule organogenesis, the latter induced as the result of the symbiotic interaction with rhizobia. Here we report the characterization of a member of the L. japonicus TIR1/AFB auxin receptor family, LjAFB6. A preferential expression of the LjAFB6 gene in the aerial portion of L. japonicus plants was observed. Significant regulation of the expression was not observed during the symbiotic interaction with Mesorhizobium loti and the nodule organogenesis process. In roots, the LjAFB6 expression was induced in response to nitrate supply and was mainly localized in the meristematic regions of both primary and lateral roots. The phenotypic analyses conducted on two independent null mutants indicated a specialized role in the control of primary and lateral root elongation processes in response to auxin, whereas no involvement in the nodulation process was found. We also report the involvement of LjAFB6 in the hypocotyl elongation process and in the control of the expression profile of an auxin-responsive gene.
Collapse
|
7
|
Vittozzi Y, Nadzieja M, Rogato A, Radutoiu S, Valkov VT, Chiurazzi M. The Lotus japonicus NPF3.1 Is a Nodule-Induced Gene That Plays a Positive Role in Nodule Functioning. FRONTIERS IN PLANT SCIENCE 2021; 12:688187. [PMID: 34220910 PMCID: PMC8253256 DOI: 10.3389/fpls.2021.688187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Nitrogen-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with the soil bacteria, rhizobia. Proteins of the nitrate transporter 1/peptide transporter family (NPF) are largely represented in the subcategory of nodule-induced transporters identified in mature nodules. The role of nitrate as a signal/nutrient regulating nodule functioning has been recently highlighted in the literature, and NPFs may play a central role in both the permissive and inhibitory pathways controlling N2-fixation efficiency. In this study, we present the characterization of the Lotus japonicus LjNPF3.1 gene. LjNPF3.1 is upregulated in mature nodules. Promoter studies show transcriptional activation confined to the cortical region of both roots and nodules. Under symbiotic conditions, Ljnpf3.1-knockout mutant's display reduced shoot development and anthocyanin accumulation as a result of nutrient deprivation. Altogether, LjNPF3.1 plays a role in maximizing the beneficial outcome of the root nodule symbiosis.
Collapse
Affiliation(s)
- Ylenia Vittozzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| |
Collapse
|
8
|
Valkov VT, Sol S, Rogato A, Chiurazzi M. The functional characterization of LjNRT2.4 indicates a novel, positive role of nitrate for an efficient nodule N 2 -fixation activity. THE NEW PHYTOLOGIST 2020; 228:682-696. [PMID: 32542646 DOI: 10.1111/nph.16728] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/27/2020] [Indexed: 05/25/2023]
Abstract
Atmospheric nitrogen (N2) -fixing nodules are formed on the roots of legume plants as result of the symbiotic interaction with rhizobia. Nodule functioning requires high amounts of carbon and energy, and therefore legumes have developed finely tuned mechanisms to cope with changing external environmental conditions, including nutrient availability and flooding. The investigation of the role of nitrate as regulator of the symbiotic N2 fixation has been limited to the inhibitory effects exerted by high external concentrations on nodule formation, development and functioning. We describe a nitrate-dependent route acting at low external concentrations that become crucial in hydroponic conditions to ensure an efficient nodule functionality. Combined genetic, biochemical and molecular studies are used to unravel the novel function of the LjNRT2.4 gene. Two independent null mutants are affected by the nitrate content of nodules, consistent with LjNRT2.4 temporal and spatial profiles of expression. The reduced nodular nitrate content is associated to a strong reduction of nitrogenase activity and a severe N-starvation phenotype observed under hydroponic conditions. We also report the effects of the mutations on the nodular nitric oxide (NO) production and content. We discuss the involvement of LjNRT2.4 in a nitrate-NO respiratory chain taking place in the N2 -fixing nodules.
Collapse
Affiliation(s)
- Vladimir Totev Valkov
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Stefano Sol
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, Napoli, 80131, Italy
| |
Collapse
|
9
|
Sol S, Valkov VT, Rogato A, Noguero M, Gargiulo L, Mele G, Lacombe B, Chiurazzi M. Disruption of the Lotus japonicus transporter LjNPF2.9 increases shoot biomass and nitrate content without affecting symbiotic performances. BMC PLANT BIOLOGY 2019; 19:380. [PMID: 31470797 PMCID: PMC6717371 DOI: 10.1186/s12870-019-1978-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/14/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND After uptake from soil into the root tissue, distribution and allocation of nitrate throughout the whole plant body, is a critical step of nitrogen use efficiency (NUE) and for modulation of plant growth in response to various environmental conditions. In legume plants nitrate distribution is also important for the regulation of the nodulation process that allows to fix atmospheric N (N2) through the symbiotic interaction with rhizobia (symbiotic nitrogen fixation, SNF). RESULTS Here we report the functional characterization of the Lotus japonicus gene LjNPF2.9, which is expressed mainly in the root vascular structures, a key localization for the control of nitrate allocation throughout the plant body. LjNPF2.9 expression in Xenopus laevis oocytes induces 15NO3 accumulation indicating that it functions as a nitrate importer. The phenotypic characterization of three independent knock out mutants indicates an increased shoot biomass in the mutant backgrounds. This phenotype is associated to an increased/decreased nitrate content detected in the shoots/roots. Furthermore, our analysis indicates that the accumulation of nitrate in the shoot does not affect the nodulation and N-Fixation capacities of the knock out mutants. CONCLUSIONS This study shows that LjNPF2.9 plays a crucial role in the downward transport of nitrate to roots, occurring likely through a xylem-to-phloem loading-mediated activity. The increase of the shoot biomass and nitrate accumulation might represent a relevant phenotype in the perspective of an improved NUE and this is further reinforced in legume plants by the reported lack of effects on the SNF efficiency.
Collapse
Affiliation(s)
- Stefano Sol
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Mélanie Noguero
- BPMP, Univ. Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Laura Gargiulo
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo, ISAFOM, CNR, Via Patacca 85, 80056 Ercolano, Italy
| | - Giacomo Mele
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo, ISAFOM, CNR, Via Patacca 85, 80056 Ercolano, Italy
| | - Benoit Lacombe
- BPMP, Univ. Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources, IBBR, CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
10
|
Biotechnological strategies for studying actinorhizal symbiosis in Casuarinaceae: transgenesis and beyond. Symbiosis 2016. [DOI: 10.1007/s13199-016-0400-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
|
12
|
Svistoonoff S, Benabdoun FM, Nambiar-Veetil M, Imanishi L, Vaissayre V, Cesari S, Diagne N, Hocher V, de Billy F, Bonneau J, Wall L, Ykhlef N, Rosenberg C, Bogusz D, Franche C, Gherbi H. The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis. PLoS One 2013; 8:e64515. [PMID: 23741336 PMCID: PMC3669324 DOI: 10.1371/journal.pone.0064515] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Faiza Meriem Benabdoun
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
- Departement of Biology and Ecology, Mentouri University, Constantine, Algeria
| | - Mathish Nambiar-Veetil
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
- Plant Biotechnology Division, Institute of Forest Genetics and Tree Breeding, Coimbatore, India
| | - Leandro Imanishi
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratorio de Bioquímica, Microbología e Interacciones Biológicas en el Suelo L, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Virginie Vaissayre
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Stella Cesari
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
- Biologie et Génétique des Interactions Plante-Parasite (INRA, CIRAD, SupAgro), Campus International de Baillarguet, Montpellier, France
| | - Nathalie Diagne
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
- Laboratoire Commun de Microbiologie (IRD/ISRA/UCAD), Dakar, Sénégal
| | - Valérie Hocher
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Françoise de Billy
- Laboratoire des Interactions Plantes Microorganismes (UMR 2594/441, CNRS/INRA), Castanet-Tolosan, France
| | - Jocelyne Bonneau
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Luis Wall
- Laboratorio de Bioquímica, Microbología e Interacciones Biológicas en el Suelo L, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Nadia Ykhlef
- Departement of Biology and Ecology, Mentouri University, Constantine, Algeria
| | - Charles Rosenberg
- Laboratoire des Interactions Plantes Microorganismes (UMR 2594/441, CNRS/INRA), Castanet-Tolosan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Hassen Gherbi
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| |
Collapse
|
13
|
Batut J, Mergaert P, Masson-Boivin C. Peptide signalling in the rhizobium-legume symbiosis. Curr Opin Microbiol 2011; 14:181-7. [PMID: 21236724 DOI: 10.1016/j.mib.2010.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 01/06/2023]
Abstract
For two decades, signalling research in the rhizobium-legume symbiosis field has been dominated by oligosaccharide signals (mainly Nod factors and, to a lesser extent, surface polysaccharides made by the microsymbionts) and phytohormones. Recently, plant peptides have emerged as another major class of signalling molecules in the rhizobium-legume symbioses contributing to the control of nodulation, infection and bacteroid differentiation. Here we focus on three examples of symbiotically relevant peptides, namely Enod40, CLE and NCR peptides. The number of genes encoding these peptides, as well as the recent discovery of additional peptide players in the context of symbiosis, suggests that we might be seeing only the tip of the peptide iceberg in the sea of symbiotic regulations.
Collapse
Affiliation(s)
- Jacques Batut
- Laboratoire des Interactions Plantes Micro-organismes, UMR INRA-CNRS 441/2594, BP 52627, 31326 Castanet-Tolosan Cedex, France.
| | | | | |
Collapse
|
14
|
Svistoonoff S, Gherbi H, Nambiar-Veetil M, Zhong C, Michalak Z, Laplaze L, Vaissayre V, Auguy F, Hocher V, Doumas P, Bonneau J, Bogusz D, Franche C. Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 2009. [DOI: 10.1007/s13199-009-0036-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Gultyaev AP, Roussis A. Identification of conserved secondary structures and expansion segments in enod40 RNAs reveals new enod40 homologues in plants. Nucleic Acids Res 2007; 35:3144-52. [PMID: 17452360 PMCID: PMC1888808 DOI: 10.1093/nar/gkm173] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/05/2007] [Accepted: 03/06/2007] [Indexed: 11/22/2022] Open
Abstract
enod40 is a plant gene that participates in the regulation of symbiotic interaction between leguminous plants and bacteria or fungi. Furthermore, it has been suggested to play a general role in non-symbiotic plant development. Although enod40 seems to have multiple functions, being present in many land plants, the molecular mechanisms of its activity are unclear; they may be determined though, by short peptides and/or RNA structures encoded in the enod40 genes. We utilized conserved RNA structures in enod40 sequences to search nucleotide sequence databases and identified a number of new enod40 homologues in plant species that belong to known, but also, to yet unknown enod40-containing plant families. RNA secondary structure predictions and comparative sequence analysis of enod40 RNAs allowed us to determine the most conserved structural features, present in all known enod40 genes. Remarkably, the topology and evolution of one of the conserved structural domains are similar to those of the expansion segments found in structural RNAs such as rRNAs, RNase P and SRP RNAs. Surprisingly, the enod40 RNA structural elements are much more stronger conserved than the encoded peptides. This finding suggests that some general functions of enod40 gene could be determined by the encoded RNA structure, whereas short peptides may be responsible for more diverse functions found only in certain plant families.
Collapse
Affiliation(s)
- Alexander P. Gultyaev
- Leiden Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands and Agricultural University of Athens, Department of Agricultural Biology and Biotechnology, Iera Odos 75, 118 55 Votanikos, Athens, Greece
| | - Andreas Roussis
- Leiden Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands and Agricultural University of Athens, Department of Agricultural Biology and Biotechnology, Iera Odos 75, 118 55 Votanikos, Athens, Greece
| |
Collapse
|
16
|
Kumagai H, Kinoshita E, Ridge RW, Kouchi H. RNAi Knock-Down of ENOD40 s Leads to Significant Suppression of Nodule Formation in Lotus japonicus. ACTA ACUST UNITED AC 2006; 47:1102-11. [PMID: 16816411 DOI: 10.1093/pcp/pcj081] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ENOD40 is one of the most intriguing early nodulin genes that is known to be induced very early in response to interaction of legume plants with symbiotic Rhizobium bacteria, but its function in the nodulation process is still not known. Lotus japonicus has two ENOD40 genes: LjENOD40-1 is abundantly induced in very early stages of bacterial infection or Nod factor application, whereas LjENOD40-2 is abundantly expressed only in mature nodules. We generated transgenic lines of L. japonicus with an RNAi (RNA interference) construct that expresses hairpin double-stranded RNA for LjENOD40-1 to induce sequence-specific RNA silencing. In the transgenic plants, expression of both LjENOD40-1 and -2 was significantly reduced, and no accumulation of ENOD40 transcripts was detected upon Mesorhizobium loti inoculation. The transgenic plants exhibited very poor nodulation (only 0-2 nodules per plant) and could not grow well without additional nitrogen supply. Analysis of segregation in the T(2) progeny indicated that the suppression of nodulation is perfectly linked with the presence of the transgene. Microscopic observation of the infection process using lacZ-labeled M. loti, together with expression analysis of infection-related nodulin genes, demonstrated that ENOD40 knock-down did not inhibit the initiation of the bacterial infection process. In contrast, nodule primordium initiation and subsequent nodule development were significantly suppressed in the transgenic plants. These results clearly indicate that ENOD40 is required for nodule initiation and subsequent organogenesis, but is not involved in early infection events.
Collapse
Affiliation(s)
- Hirotaka Kumagai
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | | | | | | |
Collapse
|
17
|
Hocher V, Auguy F, Argout X, Laplaze L, Franche C, Bogusz D. Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. THE NEW PHYTOLOGIST 2006; 169:681-8. [PMID: 16441749 DOI: 10.1111/j.1469-8137.2006.01644.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The present study aimed to identify and assess the frequency and tissue specificity of plant genes in the actinorhizal Casuarina glauca-Frankia symbiosis through expressed sequence tag (EST) analysis. Using a custom analysis pipeline for raw sequences of C. glauca uninfected roots and nodules, we obtained an EST databank web interface. Gene expression was studied in nodules vs roots using comparative quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). From roots and nodules, 2028 ESTs were created and clustered in 242 contigs and 1429 singletons, giving a total of 1616 unique genes. Half the nodule transcripts showed no similarity to previously identified genes. Genes of primary metabolism, protein synthesis, cell division and defence were highly represented in the nodule library. Differential expression was observed between roots and nodules for several genes linked to primary metabolism and flavonoid biosynthesis. This comparative EST-based study provides the first picture of the set of genes expressed during actinorhizal symbiosis. We consider our database to be a flexible tool that can be used for the management of EST data from other actinorhizal symbioses.
Collapse
Affiliation(s)
- Valérie Hocher
- UMR 1098, Institut de Recherche pour le Développement (IRD), BP 64501, 911 avenue Agropolis, 34394 Montpellier cedex 5, France.
| | | | | | | | | | | |
Collapse
|
18
|
Obertello M, Santi C, Sy MO, Laplaze L, Auguy F, Bogusz D, Franche C. Comparison of four constitutive promoters for the expression of transgenes in the tropical nitrogen-fixing tree Allocasuarina verticillata. PLANT CELL REPORTS 2005; 24:540-8. [PMID: 15940528 DOI: 10.1007/s00299-005-0963-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 03/01/2005] [Accepted: 03/08/2005] [Indexed: 05/02/2023]
Abstract
Allocasuarina verticillata is an actinorhizal tree that lives in symbiotic association with a nitrogen fixing actinomycete called Frankia. In the search for promoters that drive strong constitutive expression in this tropical tree, we studied the organ specificity of four different constitutive promoters (CaMV 35S, e35S, e35S-4ocs and UBQ1 from Arabidopsis thaliana) in stably transformed A. verticillata plants. The ss-glucuronidase (gus) gene was used as a reporter and expression studies were carried out by histochemical analyses on shoots, roots and actinorhizal nodules. While the 35S promoter was poorly expressed in the shoot apex and lateral roots, both the e35S and e35S-4ocs were found to drive high constitutive expression in the transgenic non-nodulated plants. In contrast, the UBQ1 promoter was very poorly expressed and appeared unsuitable for A. verticillata. We also showed that none of the promoters studied were active in the nodule infected cells, whatever the developmental stage studied.
Collapse
Affiliation(s)
- Mariana Obertello
- Groupe Rhizogénèse Symbiotique, UMR 1098, IRD (Institut de Recherche pour le Développement), 911 avenue Agropolis, BP 5045, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Grønlund M, Roussis A, Flemetakis E, Quaedvlieg NEM, Schlaman HRM, Umehara Y, Katinakis P, Stougaard J, Spaink HP. Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:414-27. [PMID: 15915640 DOI: 10.1094/mpmi-18-0414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Our comparative studies on the promoter (pr) activity of Enod40 in the model legume Lotus japonicus in stably transformed GusA reporter lines and in hairy roots of L. japonicus demonstrate a stringent regulation of the Enod40 promoter in the root cortex and root hairs in response to Nod factors. Interestingly, the L. japonicus Enod40-2 promoter fragment also shows symbiotic activity in the reverse orientation. Deletion analyses of the Glycine max (Gm) Enod40 promoter revealed the presence of a minimal region -185 bp upstream of the transcription start. Stable transgenic L. japonicus reporter lines were used in bioassays to test the effect of different compounds on early symbiotic signaling. The responses of prGmEnod40 reporter lines were compared with the responses of L. japonicus (Lj) reporter lines based on the LjNin promoter. Both reporter lines show very early activity postinoculation in root hairs of the responsive zone of the root and later in the dividing cells of nodule primordia. The LjNin promoter was found to be more responsive than the GmEnod40 promoter to Nod factors and related compounds. The use of prGmEnod40 reporter lines to analyze the effect of nodulin genes on the GmEnod40 promoter activity indicates that LJNIN has a positive effect on the regulation of the Enod40 promoter, whereas the latter is not influenced by ectopic overexpression of its own gene product. In addition to pointing to a difference in the regulation of the two nodulin genes Enod40 and Nin during early time points of symbiosis, the bioassays revealed a difference in the response to the synthetic cytokinin 6-benzylaminopurine (BAP) between alfalfa and clover and L. japonicus. In alfalfa and clover, Enod40 expression was induced upon BAP treatment, whereas this seems not to be the case in L. japonicus; these results correlate with effects at the cellular level because BAP can induce pseudonodules in alfalfa and clover but not in L. japonicus. In conclusion, we demonstrate the applicability of the described L. japonicus reporter lines in analyses of the specificity of compounds related to nodulation as well as for the dissection of the interplay between different nodulin genes.
Collapse
Affiliation(s)
- Mette Grønlund
- Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp. and cycads. PLANT ECOPHYSIOLOGY 2005. [DOI: 10.1007/1-4020-4099-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Brewin NJ. Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis. CRITICAL REVIEWS IN PLANT SCIENCES 2004; 23:293-316. [PMID: 0 DOI: 10.1080/07352680490480734] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|