1
|
Gultyaeva EI, Shaydayuk EL. Diversity of Northwestern and North Caucasian Populations of Puccinia striiformis f. sp. tritici by Virulence and Microsatellite Loci in 2022. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024:10.1134/S0012496624701291. [PMID: 39400892 DOI: 10.1134/s0012496624701291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 10/15/2024]
Abstract
Yellow rust (Puccinia striiformis f. sp. tritici (Pst)) is a potentially dangerous disease of wheat. Genetic protection of wheat is an environmentally safe method to control the disease, but its successful application requires information on the structure of regional populations of the pathogen. Virulence and molecular polymorphism were characterized in two Russian Pst populations in 2022. Wheat leaves with Pst urediniopustules were collected from the North Caucasus (Krasnodar Krai, Dagestan, and Kalmykia) and Northwestern Russia (Leningrad Oblast). Virulence was tested on 14 isogenic lines (AvocetNIL) and 15 differentiator cultivars. Polymorphism at 20 microsatellite loci was evaluated in molecular analyses. The SSR markers were as recommended by the Global Rust Reference Center. Virulence was assessed in 74 monopustular isolates, including 29 Dagestan, 10 Krasnodar, 5 Kalmyk, and 30 Northwestern ones. Resistance to all isolates was observed in lines with the genes Yr5, Yr10, Yr15, Yr24, and Yr26 and the cultivars Moro (Yr10, YrMor) and Nord Desprez (Yr3, YrND, Yr+). Isolates virulent to the AvYr17 line were detected for the first time in the Dagestan and Krasnodar populations. Their occurrence was moderate (13%) in the Northwestern population. A significant variation was observed in lines and cultivars with the Yr1 and Yr3 genes. Virulence to Yr7 and YrSp was found to be lower than in 2019 to 2021. In total, 28 phenotypes (races) were determined in the virulence analysis (15 in Dagestan, 11 in the Northwestern region, 3 in Krasnodar, and 2 in Kalmykia). A common phenotype was detected in three North Caucasian Pst samples. Genetic distances between the phenotypes were estimated. Most phenotypes grouped together in a multidimensional diagram, with the exception of three Dagestan phenotypes with the fewest virulence alleles. Based on the Fst index, the Dagestan and Kalmyk Pst collections were high similar to each other and differed moderately from the other collections. Long-term trends in virulence (from 2019 to 2022) were assessed in the Pst populations. A high similarity was observed between all regional population samples in 2019 and 2020. The Northwestern and Dagestan populations slightly differed from the other populations in 2021 and 2022. In 2022, the Krasnodar and Kalmyk populations formed separate groups, which differed from each other and from the main group. The long-term virulence analysis indicated that the structure of Pst populations is highly dynamic in Russia. All North Caucasian isolates and 23 Northwestern isolates were used in the SSR analysis. Six loci (RYN3, RYN9, RYN12, WU6, RJO21, and RJO24) were monomorphic. Three polymorphic alleles were identified in each of the RYN13 and RJO27 loci; two alleles, in each of the remaining loci examined. Significant deviations from Hardy-Weinberg equilibrium were observed for most loci. The observed heterozygosity exceeded the expected one, suggesting a clonal origin of the Pst population. Twenty multilocus genotypes (MGs) were found in the total isolate collection (11 in Dagestan, 11 in the Northwestern region, 3 in Krasnodar, and 1 in Kalmykia). Common MGs were detected in the Dagestan, Krasnodar, and Northwestern populations (MG_1); Dagestan, Kalmyk, and Northwestern populations (MG_2); and Dagestan and Krasnodar populations (MG_3 and MG_4). Genetic distances between MGs were estimated. MGs formed four groups in a multidimensional diagram. A major group included 80% of MGs. One Dagestan MG, two Northwestern MGs, and MG_3 common for the Dagestan and Krasnodar collections were significantly differentiated from the major group and differed from each other. Based on Fst, most regional Pst collections were moderately differentiated from each other, with the exception of the Dagestan and Kalmyk collections. The finding was consistent with the virulence analysis results. The Mantel test detected a moderate correlation between the virulence and SSR data (r = 0.6). This indicates that both analyses can be used to assess genetic polymorphism in Pst. The high variability of the virulence and microsatellite loci warrants annual monitoring of regional Pst populations in Russia.
Collapse
Affiliation(s)
- E I Gultyaeva
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| | - E L Shaydayuk
- All-Russian Institute of Plant Protection, St. Petersburg, Russia.
| |
Collapse
|
2
|
Gultyaeva E, Shaydayuk E, Shreyder E, Kushnirenko I, Shamanin V. Genetic Diversity of Promising Spring Wheat Accessions from Russia and Kazakhstan for Rust Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2469. [PMID: 39273953 PMCID: PMC11396946 DOI: 10.3390/plants13172469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Spring bread wheat (Triticum aestivum) is a major crop in Russia and in Kazakhstan. The rust pathogens, leaf rust caused by the fungus Puccinia triticina, stem rust incited by P. graminis and yellow rust caused by P. striiformis, are the significant biotic factors affecting wheat production. In this study, 40 new promising spring wheat genotypes from the Kazakhstan-Siberia Network for Spring Wheat Improvement (KASIB) were tested for resistance to leaf, stem and yellow rust at the seedling stage, and for identification of rust resistance genes using molecular markers. In addition, the collection was tested for leaf rust resistance and grain yields in the South Urals agroclimatic zone of Russia in 2023. As a result, 16 accessions with seedling resistance to leaf rust, 21 to stem rust and 4 to yellow rust were identified. Three breeding accessions were resistant to all rust species, and nine to P. triticina and P. graminis. Wheat accessions resistant to leaf rust at the seedling stage were also resistant in the field. Molecular analysis showed the presence of cataloged resistance genes, Lr1, Lr3a, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Sr15, Sr24, Sr25, Sr31, Sr38, Yr9 and Yr18; uncatalogued genes Lr6Agi1 and Lr6Agi2 from Thinopyrum intermedium and LrAsp from Aegilops speltoides; and 1AL.1RS translocation. The current analysis showed an increase in leaf and stem rust resistance of new KASIB genotypes and their genetic diversity due to the inclusion of alien genetic material in breeding.
Collapse
Affiliation(s)
- Elena Gultyaeva
- All Russian Institute of Plant Protection, Shosse Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Ekaterina Shaydayuk
- All Russian Institute of Plant Protection, Shosse Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Ekaterina Shreyder
- Chelyabinsk Scientific Research Institute of Agriculture, 456404 Timiryazevskiy, Russia
| | - Igor Kushnirenko
- Chelyabinsk Scientific Research Institute of Agriculture, 456404 Timiryazevskiy, Russia
| | - Vladimir Shamanin
- Department of Agrotechnology, Omsk State Agrarian University, 644008 Omsk, Russia
| |
Collapse
|
3
|
Li Y, Wang M, Hu X, Chen X. Identification of a Locus for High-Temperature Adult-Plant Resistance to Stripe Rust in the Wheat Yr8 Near-Isogenic Line Through Mutagenesis and Molecular Mapping. PLANT DISEASE 2024; 108:1261-1269. [PMID: 37938905 DOI: 10.1094/pdis-10-23-2037-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Aegilops species are wheat relatives that harbor valuable disease resistance genes for wheat breeding. The wheat Yr8 near-isogenic line AvSYr8NIL has long been believed to carry only Yr8 for race-specific all-stage resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, derived from Aegilops comosa. However, AvSYr8NIL has been found to have high-temperature adult-plant (HTAP) resistance in our field and greenhouse tests. To confirm both HTAP and Yr8 resistance, seeds from AvSYr8NIL were treated with ethyl methanesulfonate to generate mutant lines. The mutant lines with only Yr8 (M641) and only HTAP resistance (M488) were crossed with the susceptible recurrent parent Avocet S (AvS). The F1 and F4 lines of AvS/M641 were phenotyped with Yr8-avirulent races in the seedling stage at the low-temperature (4 to 20°C) profile, while the F1, F2, F4, and F5 lines of AvS/M488 were phenotyped with Yr8-virulent races in the adult-plant stage at the high-temperature (10 to 30°C) profile. Both Yr8 and the HTAP resistance gene (YrM488) were recessive. The F4 populations of AvS/M641 and AvS/M488 were genotyped using polymorphic Kompetitive allele-specific PCR markers converted from single-nucleotide polymorphisms. Yr8 was mapped to a 0.66-cM fragment, and YrM488 was mapped to a 1.22-cM interval on chromosome 2D. The physical distance between the two resistance genes was estimated to be more than 500 Mb, indicating their distinct loci. The mutant lines with separated resistance genes would be useful in enhancing our understanding of different types of resistance and in further studying the interactions between wheat and the stripe rust pathogen.
Collapse
Affiliation(s)
- Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164, U.S.A
| |
Collapse
|
4
|
Gong B, Chen L, Zhang H, Zhu W, Xu L, Cheng Y, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Chen G, Zhou Y, Kang H, Wu D. Development, identification, and utilization of wheat-tetraploid Thinopyrum elongatum 4EL translocation lines resistant to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:17. [PMID: 38198011 DOI: 10.1007/s00122-023-04525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE The new stripe rust resistance gene Yr4EL in tetraploid Th. elongatum was identified and transferred into common wheat via 4EL translocation lines. Tetraploid Thinopyrum elongatum is a valuable genetic resource for improving the resistance of wheat to diseases such as stripe rust, powdery mildew, and Fusarium head blight. We previously reported that chromosome 4E of the 4E (4D) substitution line carries all-stage stripe rust resistance genes. To optimize the utility of these genes in wheat breeding programs, we developed translocation lines by inducing chromosomal structural changes through 60Co-γ irradiation and developing monosomic substitution lines. In total, 53 plants with different 4E chromosomal structural changes were identified. Three homozygous translocation lines (T4DS·4EL, T5AL·4EL, and T3BL·4EL) and an addition translocation line (T5DS·4EL) were confirmed by the genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), FISH-painting, and wheat 55 K SNP array analyses. These four translocation lines, which contained chromosome arm 4EL, exhibited high stripe rust resistance. Thus, a resistance gene (tentatively named Yr4EL) was localized to the chromosome arm 4EL of tetraploid Th. elongatum. For the application of marker-assisted selection (MAS), 32 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome arm 4EL and co-segregation with Yr4EL. Furthermore, the 4DS·4EL line could be selected as a good pre-breeding line that better agronomic traits than other translocation lines. We transferred Yr4EL into three wheat cultivars SM482, CM42, and SM51, and their progenies were all resistant to stripe rust, which can be used in future wheat resistance breeding programs.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Linfeng Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
5
|
Feng J, Yao F, Wang M, See DR, Chen X. Molecular Mapping of Yr85 and Comparison with Other Genes for Resistance to Stripe Rust on Wheat Chromosome 1B. PLANT DISEASE 2023; 107:3585-3591. [PMID: 37221244 DOI: 10.1094/pdis-11-22-2600-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most serious plant diseases worldwide. Resistant cultivars are the most effective way to control the disease. YrTr1 is an important stripe rust resistance gene that has been used in wheat breeding programs and is represented in the host differential set to identify P. striiformis f. sp. tritici races in the United States. To map YrTr1, AvSYrTr1NIL was backcrossed to its recurrent parent Avocet S (AvS). Seedlings of BC7F2, BC7F3, and BC8F1 populations were tested with YrTr1-avirulent races under controlled conditions, and BC7F2 plants were genotyped using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. YrTr1 was mapped to the short arm of chromosome 1B using four SSR and seven SNP markers. The genetic distances of YrTr1 from the nearest flanking markers IWA2583 and IWA7480 were 1.8 and 1.3 centimorgans (cM), respectively. DNA amplification of a set of 21 Chinese Spring (CS) nulli-tetrasomic lines and seven CS 1B deletion lines with three SSR markers confirmed the chromosome arm location and further placed the gene in chromosomal bin region 1BS18 (0.5). The gene was determined to be about 7.4 cM proximal to Yr10. Based on multirace response array and chromosomal location, YrTr1 was determined to be different from other permanently named stripe rust resistance genes in chromosome arm 1BS and was named Yr85.
Collapse
Affiliation(s)
- Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Fangjie Yao
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Deven R See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
- Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Pullman, WA 99164-6430, U.S.A
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
- Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Pullman, WA 99164-6430, U.S.A
| |
Collapse
|
6
|
Gultyaeva E, Shaydayuk E. Resistance of Modern Russian Winter Wheat Cultivars to Yellow Rust. PLANTS (BASEL, SWITZERLAND) 2023; 12:3471. [PMID: 37836211 PMCID: PMC10574662 DOI: 10.3390/plants12193471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Over the last decade, the significance of yellow rust caused by Puccinia striiformis (Pst) has substantially increased worldwide, including in Russia. The development and cultivation of resistant genotypes is the most efficient control method. The present study was conducted to explore the yellow rust resistance potential of modern common winter wheat cultivars included in the Russian Register of Breeding Achievements in 2019-2022 using the seedling tests with an array of Pst races and molecular markers linked with Yr resistance genes. Seventy-two winter wheat cultivars were inoculated with five Pst isolates differing in virulence and origin. Molecular markers were used to identify genes Yr2, Yr5, Yr7, Yr9, Yr10, Yr15, Yr17, Yr18, Yr24, Yr25 and Yr60. Thirteen cultivars were resistant to all Pst isolates. The genes Yr5, Yr10, Yr15 and Yr24 that are effective against all Russian Pst races in resistant cultivars were not found. Using molecular methods, gene Yr9 located in translocation 1BL.1RS was detected in 12 cultivars, gene Yr18 in 24, gene Yr17 in 3 and 1AL.1RS translocation with unknown Yr gene in 2. While these genes have lost effectiveness individually, they can still enhance genetic diversity and overall yellow rust resistance, whether used in combination with each other or alongside other Yr genes.
Collapse
Affiliation(s)
- Elena Gultyaeva
- All Russian Institute of Plant Protection, Shosse Podbelskogo 3, St. Petersburg 1986608, Russia;
| | | |
Collapse
|
7
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Qureshi N, Singh RP, Gonzalez BM, Velazquez-Miranda H, Bhavani S. Genomic Regions Associated with Resistance to Three Rusts in CIMMYT Wheat Line "Mokue#1". Int J Mol Sci 2023; 24:12160. [PMID: 37569535 PMCID: PMC10418946 DOI: 10.3390/ijms241512160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.
Collapse
Affiliation(s)
- Naeela Qureshi
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Blanca Minerva Gonzalez
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Hedilberto Velazquez-Miranda
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Carretera Mexico-Veracruz Km. 45, El-Batan, Texcoco 56237, Mexico; (N.Q.); (R.P.S.); (B.M.G.); (H.V.-M.)
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, United Nations Avenue, Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| |
Collapse
|
9
|
Din I, Khan S, Khan FU, Khan M, Khan MN, Hafeez A, Wahab S, Wahid N, Ali B, Qasim UB, Manan F, Alwahibi MS, Elshikh MS, Ercisli S, Khalifa EMA. Genetic Characterization of Advance Bread Wheat Lines for Yield and Stripe Rust Resistance. ACS OMEGA 2023; 8:25988-25998. [PMID: 37521679 PMCID: PMC10372943 DOI: 10.1021/acsomega.3c01981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Wheat (Triticum aestivum L.) is a prominent grain crop. The goal of the current experiment was to examine the genetic potential of advanced bread wheat genotypes for yield and stripe rust resistance. Ninety-three bread wheat genotypes including three varieties (Kohat-2017, Pakistan-2013, and Morocco) were field tested in augmented design as observational nurseries at three locations (i.e., Kohat, Nowshera, and Peshawar) during the 2018-19 crop season. Various parameters related to yield and stripe rust resistance showed significant differences among genotypes for most of the characters with few exceptions. The analysis of variance revealed significant variations for all the genotypes for all the traits at all three sites with few exceptions where nonsignificant differences were noticed among genotypes. Averaged over three locations, genotypes exhibiting maximum desirable values for yield and yield components were KT-86 (325 tillers) for tillers m-2, KT-50 (2.86 g) for grain weight spike-1, KT-49 (41.6 g) for 1000-grain weight, KT-50 (74 grains) for grains spikes-1, KT-55 (4.76 g) for spike weight, and KT-36 and KT-072 (4586 kg ha-1) for grain yield. Correlation analysis revealed that grain yield had a significant positive correlation with grain spike-1 and grain weight spike-1 at Kohat, with grains spike-1, tillers m-2, and grain weight spike-1 at Nowshera, and with plant height, spike weight, 1000-grain weight, and tillers m-2 at Peshawar. Molecular marker data and host response in the field at the adult stage revealed that Yr15 and Yr10 are both still effective in providing adequate resistance to wheat against prevalent races of stripe rust. Four lines showing desirable lower average coefficient of infection (ACI) values without carrying Yr15 and Yr10 genes show the presence of unique/new resistance gene(s) in the genetic composition of these four lines. Genotype KT-072 (4586 kg ha-1 and 1.3 ACI), KT-07 (4416 kg ha-1 and 4.3 ACI), KT-10 (4346 kg ha-1 and 1.0 ACI), and KT-62 (4338 kg ha-1 and 2.7 ACI) showed maximum values for grain yield and low desirable ACI values, and these lines could be recommended for general cultivation after procedural requirements of variety release.
Collapse
Affiliation(s)
- Israr
Ud Din
- The
University of Agriculture Peshawar, Institute
of Biotechnology and Genetic Engineering, Peshawar 25130, Pakistan
| | - Salman Khan
- Department
of Biotechnology, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Fahim Ullah Khan
- Department
of Agriculture, Hazara University, Mansehra 21120, Pakistan
| | - Majid Khan
- The
University of Agriculture Peshawar, Institute
of Biotechnology and Genetic Engineering, Peshawar 25130, Pakistan
| | - Muhammad Nauman Khan
- Department
of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
- University
Public School, University of Peshawar, Peshawar 25120, Pakistan
| | - Aqsa Hafeez
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sana Wahab
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Nazima Wahid
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Baber Ali
- Department
of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Umair Bin Qasim
- Department
of Plant Breeding & Genetics, The University
of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Fazal Manan
- Department
of Plant Pathology, North Dakota State University, Fargo, North Dakota 58108-6050, United
States
| | - Mona S Alwahibi
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department
of Horticulture Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
- HGF
Agro, Ata Teknokent, Erzurum 25240, Türkiye
| | - Ebaa Mohamed Ali Khalifa
- Agriculture
Research Center, Wheat Research Department, Field Crop Research Institute, Giza 3725005, Egypt
| |
Collapse
|
10
|
Waris MH, Kaur J, Bala R, Singh S, Srivastava P, Sharma A, Singh R, Kumari J. Stripe rust resistance gene(s) postulation in wheat germplasm with the help of differentials and tagged molecular markers. Sci Rep 2023; 13:9007. [PMID: 37268698 DOI: 10.1038/s41598-023-36197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Thirteen known Yr gene-associated markers pertaining to genes (Yr5, Yr10, Yr15, Yr24/Yr26) were used to identify the genes in selected wheat germplasm which were found resistant under field conditions at two locations in Punjab, India against stripe rust. In field evaluation, 38 genotypes exhibited highly resistant response, with a final rust severity (FRS) ranging from 0 to TR. Seven genotypes expressed a resistant to moderately resistant response with FRS ranging from 5MR-10S. In race-specific phenotying against most prevalent pathotypes of Puccinia striiformis tritici (46S119,110S119 &238S119) by seedling reaction test (SRT) 14 genotypes (29.2%) were found to be immune (IT = 0), 28 genotypes (58.3%) were resistant (IT = 1), and 3 genotypes (6.3%) were moderately resistant (IT = 2). Yr5 was detected in sixteen lines with the help of two markers Xwmc175 and Xgwm120 linked with Yr5. Yr10 was detected in ten lines with the marker Xpsp3000 and Yr15 was detected in fourteen lines with two linked markers; Xgwm413 and Xgwm273. Likewise, Yr24/26 was detected in 15 lines with two linked markers, namely Xbarc181 and Xbarc187. Based on the race specific phenotyping data and marker data, fourteen lines were found to carry a single gene, 16 showed the presence of two gene combinations, and seven genotypes were found to have a combination of three genes. Frequencies of Yr5, Yr15 and Yr26/Yr24 was high among test wheat germplasm in comparison to Yr10.
Collapse
Affiliation(s)
| | - Jaspal Kaur
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India.
| | - Ritu Bala
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| | | | - Puja Srivastava
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| | - Rohtas Singh
- Department of Plant Breeding and Genetics, PAU, Ludhiana, India
| | - Jyoti Kumari
- National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
11
|
Chen L, Awais M, Yang H, Shen Y, Li G, Gao H, Ma J. Races CYR34 and Suwon11-1 of Puccinia striiformis f. sp. tritici Played an Important Role in Causing the Stripe Rust Epidemic in Winter Wheat in Yili, Xinjiang, China. J Fungi (Basel) 2023; 9:jof9040436. [PMID: 37108891 PMCID: PMC10145038 DOI: 10.3390/jof9040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Wheat stripe rust caused by Puccinia striiformis f. sp. tritici is a destructive disease. Its pathogen frequently adapts to newly invaded regions and overcomes resistance in wheat cultivars. This disease is especially important in China due to its favorable conditions for the stripe rust epidemic and the recombination population structure of pathogens. Xinjiang is a vast epidemic region in China, but very limited research on this disease has been performed in this region. In this study, we identified 25 races from 129 isolates collected from winter wheat fields from five different regions (Nileke, Xinyuan, Gongliu, Huocheng, and Qapqal) of Yili, Xinjiang, using the Chinese set of 19 differential wheat lines. All isolates were virulent on the differentials Fulhad and Early Premium, but no isolates were virulent on Yr5. Among the 25 races, Suwon11-1 was the most prevalent, followed by CYR34. Both races were found in four out of the five locations. It is important to continue monitoring stripe rust and its pathogen races in this region, as it forms a pathway between China and Central Asia. Collaborative research is essential for controlling stripe rust in this region, other regions in China, and neighboring countries.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China
| | - Muhammad Awais
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Hong Yang
- College of Agriculture, Xinjiang Agricultural University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, Urumqi 830000, China
| | - Yuyang Shen
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China
| | - Guangkuo Li
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830000, China
| |
Collapse
|
12
|
Zhang G, Liu W, Wang L, Ju M, Tian X, Du Z, Kang Z, Zhao J. Genetic Characteristics and Linkage of Virulence Genes of the Puccinia striiformis f. sp. tritici TSA-6 Isolate to Yr5 Host Resistance. PLANT DISEASE 2023; 107:688-700. [PMID: 35869586 DOI: 10.1094/pdis-07-22-1637-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To understand the inheritance of the TSA-6 Puccinia striiformis f. sp. tritici (Pst) isolate that is virulent to Yr5 and was recently detected in China, we analyzed avirulence and virulence of 120 selfed progeny lines from Berberis shensiana. The results showed that the TSA-6 isolate is virulent against the Yr5 resistance gene, and overall progeny lines were categorized into 73 virulence phenotypes (VPs); of these, 72 VPs differed from the isolate TSA-6, and only one VP, including three progeny, was identical to the parental isolate. The analyses indicated that the TSA-6 isolate is homozygous for avirulence at the Yr10, Yr15, and Yr26 resistance loci and virulence at the YrA resistance locus. The TSA-6 isolate is heterozygous for avirulence at the Yr2, Yr3, Yr5, Yr7, and Yr8 resistance loci, which are controlled by a dominant/recessive relationship. The Yr1, Yr6, Yr9, Yr17, Yr27, Yr25, Yr28, Yr29, Yr32, YrTr1, and YrSP resistance loci are governed by two complementary dominant/recessive genes. Avirulence against heterozygous Yr4, Yr43, Yr44, Yr76, and YrExp2 resistance loci is regulated by a dominant and recessive or a dominant and suppressor gene pair. In total, 117 multilocus genotypes were detected at 24 KASP-SNP marker loci among the 120 progenies. Using these marker loci, we constructed a linkage map with a genetic distance interval spanning 624.5 cM. Quantitative trait loci corresponding to phenotypic segregation for virulence at 20 Yr resistance loci in addition to the Yr1 resistance locus were identified. These results facilitate our understanding of Pst virulence evolution and simplify breeding of wheat cultivars with effective resistance to wheat stripe rust.
Collapse
Affiliation(s)
- Gensheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Ju
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaxia Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhimin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Hovmøller MS, Thach T, Justesen AF. Global dispersal and diversity of rust fungi in the context of plant health. Curr Opin Microbiol 2023; 71:102243. [PMID: 36462410 DOI: 10.1016/j.mib.2022.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022]
Abstract
Long-distance dispersal of plant pathogens at the continental scale may have strong implications on plant health, in particular when incursions result in spread of disease to new territories where the disease was previously absent or insignificant. These dispersions may be caused by airborne transmission of spores or accidental spread via human travel and trade. Recent surveillance efforts of cereal rust fungi have demonstrated that incursion of new strains with superior fitness into areas where the disease is already established may have similar implications on plant health. Since dispersal events are highly stochastic, irrespective of transmission mechanism, critical mitigation efforts include preparedness by coordinated pathogen surveillance activities, host crop diversification, and breeding for disease resistance with low vulnerability to sudden changes in the pathogen population.
Collapse
Affiliation(s)
- Mogens S Hovmøller
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| | - Tine Thach
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Annemarie F Justesen
- Aarhus University, Department of Agroecology, Global Rust Reference Center, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| |
Collapse
|
14
|
Kosman E, Ben-Yehuda P, Manisterski J, Anikster Y, Sela H. Virulence Survey of Puccinia striiformis in Israel Revealed Considerable Changes in the Pathogen Population During the Period 2001 to 2019. PLANT DISEASE 2022; 106:2823-2830. [PMID: 35522956 DOI: 10.1094/pdis-03-22-0568-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A total of 353 urediniospore isolates of Puccinia striiformis f. sp. tritici (Pst) collected in Israel during 2001 to 2019 were analyzed. Pst pathogenicity was studied with a set of 20 differentials (17 Avocet and 3 other lines). Three periods were compared: 2001 to 2007, 2009 to 2016, and 2017 to 2019. No virulence to Yr5 or Yr15 was detected. Virulence frequencies on Yr4, Yr10, Yr24, and YrSp genes rose to the moderate level (0.28 to 0.44) in 2017 to 2019. Virulence frequencies to Yr2 and Yr9 decreased. One Pst phenotype was identified in all three periods, but its frequency drastically decreased from 0.74 in 2001 to 2016 to 0.21 in 2017 to 2019. The most probable scenario of emergence of wheat yellow rust in Israel is wind dissemination of Pst urediniospores from the Horn of Africa. Variability of the Pst population increased amid considerable evolution with two major transformations in 2009 and 2017. The first modification can be attributed to changes in wheat genetic background in Israel due to deployment of new cultivars resistant to yellow rust since 2004. The second shift in 2017 can be primarily explained by intensive deployment of wheat cultivars resistant to the stem rust race Ug99 in the 2010s in the Horn of Africa. This led to changing genetic backgrounds of the cultivated wheats in the donor region and development and long-distance spread of new Pst phenotypes to Israel. Two singular multivirulent Pst phenotypes were identified in 2019, one of them being closely related to the aggressive Warrior race. Such phenotypes may potentially defeat existing resistances.
Collapse
Affiliation(s)
- Evsey Kosman
- Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pnina Ben-Yehuda
- Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jacob Manisterski
- Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yehoshua Anikster
- Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanan Sela
- Institute for Cereal Crops Research, School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
15
|
Zhan G, Ji F, Chen X, Wang J, Zhang D, Zhao J, Zeng Q, Yang L, Huang L, Kang Z. Populations of Puccinia striiformis f. sp. tritici in Winter Spore Production Regions Spread from Southwestern Oversummering Areas in China. PLANT DISEASE 2022; 106:2856-2865. [PMID: 35471078 DOI: 10.1094/pdis-09-21-2070-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust, caused by Puccinia striifomis f. sp. tritici (Pst), is one of the most destructive wheat diseases in China. Understanding the interregional dispersal of Pst inoculum is important for controlling the disease. In the present study, wheat stripe rust samples collected from the winter spore production and oversummering regions in November 2018 to March 2019 were studied through virulence testing and molecular characterization. From 296 isolates, 96 races were identified using a set of 19 Chinese wheat cultivars and 111 races were identified using 18 Yr single-gene lines as differentials. The isolates from Hubei province in the winter spore production area had the highest similarity in virulence with those from eastern Yunnan in the oversummering area. Molecular characterization using 13 simple-sequence repeat and 43 Kompetitive allele specific PCR-single nucleotide polymorphism markers supported the conclusion that the Pst populations in the winter spore production regions were from Guizhou and eastern Yunnan, key oversummering areas in the southwest. Furthermore, an analysis of wind movement at the 700-hPa high altitude also supported the conclusion of spore dispersal from the southwestern oversummering region to the south-central winter spore production region. The results of this study provide an epidemiological basis for deploying various effective resistance genes in different regions to control stripe rust.
Collapse
Affiliation(s)
- Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Fan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xianming Chen
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Jianxiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dingling Zhang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Lijun Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430072, P.R. China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
16
|
Wang M, Wan A, Chen X. Race Characterization of Puccinia striiformis f. sp. tritici in the United States from 2013 to 2017. PLANT DISEASE 2022; 106:1462-1473. [PMID: 35077227 DOI: 10.1094/pdis-11-21-2499-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat. In this study, 1,567 isolates collected from the United States from 2013 to 2017 were tested for virulence on 18 wheat Yr single-gene lines to differentiate races. In total, 72 races, including 20 new, were identified, and their frequencies in different years and different epidemiological regions were determined and compared. The 20 new races had low frequencies, and 7 of them each were detected from only one sample and 10 only in a single year. Frequencies of virulence to Yr10, Yr24, and Yr32 were low (<10%); to Yr1, Yr76, YrTr1, and YrSP were moderate (10 to 40%); and to Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, Yr44, and Exp2 were high (>70%), although they varied from year to year and from region to region. No virulence was detected to either Yr5 or Yr15, indicating that these genes were still effective against the pathogen in the United States. Based on the virulence data, the diversity of the U.S. P. striiformis f. sp. tritici population was the highest in 2016 and lowest in 2015, and the diversity of the regional population was the highest in region 1 and lowest in region 11. The yearly populations between consecutive years were closer than nonconsecutive years, and the eastern populations were closer to each other than those among the western populations. The findings are useful for understanding the pathogen evolution and for developing resistant cultivars for control of the disease.
Collapse
Affiliation(s)
- Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
- United States Department of Agriculture-Agricultural Research Service Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
17
|
Wamalwa MN, Wanyera R, Rodriguez-Algaba J, Boyd LA, Owuoche J, Ogendo J, Bhavani S, Uauy C, Justesen AF, Hovmøller M. Distribution of Puccinia striiformis f. sp. tritici Races and Virulence in Wheat Growing Regions of Kenya from 1970 to 2014. PLANT DISEASE 2022; 106:701-710. [PMID: 34633239 DOI: 10.1094/pdis-11-20-2341-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of P. striiformis f. sp. tritici races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty P. striiformis f. sp. tritici isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped with stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, and Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the P. striiformis f. sp. tritici samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing P. striiformis f. sp. tritici virulence was found in the Kenyan P. striiformis f. sp. tritici population, and different P. striiformis f. sp. tritici race groups were found to dominate different wheat growing regions. Moreover, recent P. striiformis f. sp. tritici races in East Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in elucidating P. striiformis f. sp. tritici evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust.
Collapse
Affiliation(s)
| | - Ruth Wanyera
- Kenya Agricultural and Livestock Research Organization Njoro, Private Bag 20107, Kenya
| | | | - Lesley A Boyd
- National Institute of Agricultural Botany, Cambridge CB3 0LE, UK
| | | | | | | | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 UH, UK
| | - Annemarie F Justesen
- Global Rust Reference Center, Aarhus University, Flakkebjerg, Slagelse DK-4200, Denmark
| | - Mogens Hovmøller
- Global Rust Reference Center, Aarhus University, Flakkebjerg, Slagelse DK-4200, Denmark
| |
Collapse
|
18
|
Analysis of Host-Specific Differentiation of Puccinia striiformis in the South and North-West of the European Part of Russia. PLANTS 2021; 10:plants10112497. [PMID: 34834861 PMCID: PMC8622514 DOI: 10.3390/plants10112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Yellow (stripe) rust, caused by Puccinia striiformis Westend. (Pst), is a major disease of cereals worldwide. We studied Pst virulence phenotypes on Triticum aestivum, Triticum durum, and triticale in three geographically distant regions of the European part of Russia (Dagestan and Krasnodar in North Caucasus, and Northwest) with different climate and environmental conditions. Based on the set of twenty differential lines, a relatively high level of population diversity was determined with 67 different Pst pathotypes identified among 141 isolates. Only seven pathotypes were shared by at least two hosts or occurred in the different regions. No significant differentiation was found between regional Pst collections of pathotypes either from T. aestivum or from T. durum. A set of Pst pathotypes from triticale was subdivided into two groups. One of them was indistinguishable from most durum and common wheat pathotypes, whereas the second group differed greatly from all other pathotypes. All sampled Pst isolates were avirulent on lines with Yr5, Yr10, Yr15, and Yr24 genes. Significant variation in virulence frequency among all Pst collections was observed on lines containing Yr1, Yr3, Yr17, Yr27, and YrSp genes and cvs Strubes Dickkopf, Carstens V, and Nord Desprez. Relationships between Russian regional collections of Pst from wheat did not conform to those for P. triticina.
Collapse
|
19
|
Zhou J, Singh RP, Ren Y, Bai B, Li Z, Yuan C, Li S, Huerta-Espino J, Liu D, Lan C. Identification of Two New Loci for Adult Plant Resistance to Leaf Rust and Stripe Rust in the Chinese Wheat Variety 'Neimai 836'. PLANT DISEASE 2021; 105:3705-3714. [PMID: 33779256 DOI: 10.1094/pdis-12-20-2654-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.
Collapse
Affiliation(s)
- Jingwei Zhou
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, P.R. China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuanxincun, Lanzhou 730070, Gansu Province, P.R. China
| | - Zhikang Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Shunda Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), 56230 Chapingo, Edo. de Mexico, Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding and China and Qinghai Provincial Key Laboratory of Crop Molecular Breeding Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Xining 810008, P.R. China
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| |
Collapse
|
20
|
Kokhmetova A, Rsaliyev A, Malysheva A, Atishova M, Kumarbayeva M, Keishilov Z. Identification of Stripe Rust Resistance Genes in Common Wheat Cultivars and Breeding Lines from Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112303. [PMID: 34834666 PMCID: PMC8619625 DOI: 10.3390/plants10112303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 05/18/2023]
Abstract
Stripe (yellow) rust, caused by Puccinia striiformis f.sp. tritici (Pst), is a fungal disease that presents one of the most serious threats to the wheat crops, causing severe yield losses worldwide, including Kazakhstan. The objectives of this study were to: (1) evaluate a winter wheat collection for stripe rust resistance during an adult plant growth stage, (2) identify the presence of selected Yr genes using linked molecular markers in wheat germplasm, (3) identify potentially useful resistant wheat genotypes among leading cultivars and advanced breeding lines. This study evaluated 70 winter wheat genotypes for stripe rust resistance. According to the field reactions, 42 entries (60%) had R or MR reactions including 27 breeding lines (38.6%) and 15 (21.4%) cultivars. Twenty-eight breeding lines/cultivars (40.0%) were susceptible in both years. According to the average coefficient of infection value (ACI) six genotypes were regarded as possessing high level of adult plant resistance. Cultivars/lines carrying Yr10 alone or in combination with other Yr resistance genes provided resistance to stripe rust. Eleven breeding lines showed <5% disease severity in both years. Linked marker analysis revealed the presence of several gene and gene complexes (Yr5, Yr10, Yr15, Yr17/Lr37/Sr38 and Yr18/Lr34). Among a collection of 70 winter wheat breeding lines and cultivars produced in Kazakhstan three stripe rust resistance genes (Yr10, Yr5 and Yr15) demonstrated high frequency occurrence (31.4%, 14.0% and 7.0%, respectively). The most abundant was gene Yr10 identified in 22 genotypes. It was followed by the Yr5 gene, which conferred resistance in 14 lines (20%) and Yr18 gene-11 lines (15.7%). Yr15 was identified in 7 genotypes. Yr17/Lr37/Sr38 gene complex was found in 2 entries. Among 70 evaluated germplasm sources, 42 disease resistant entries are potentially useful resistant wheat genotypes. These carriers of different Yr genes can be used directly in breeding programs to improve stripe rust resistance of winter wheat. Marker-assisted selection can be efficiently applied to develop wheat cultivars with effective gene combinations that would directly assist in developing durable resistance in Kazakhstan.
Collapse
Affiliation(s)
- Alma Kokhmetova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (M.A.); (M.K.); (Z.K.)
- Correspondence: ; Tel.: +7-727-394-75-52
| | - Aralbek Rsaliyev
- Research Institute of Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan;
| | - Angelina Malysheva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (M.A.); (M.K.); (Z.K.)
| | - Makpal Atishova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (M.A.); (M.K.); (Z.K.)
| | - Madina Kumarbayeva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (M.A.); (M.K.); (Z.K.)
| | - Zhenis Keishilov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (A.M.); (M.A.); (M.K.); (Z.K.)
| |
Collapse
|
21
|
Durability of Adult Plant Resistance Gene Yr18 in Partial Resistance Behavior of Wheat (Triticum aestivum) Genotypes with Different Degrees of Tolerance to Stripe Rust Disease, Caused by Puccinia striiformis f. sp. tritici: A Five-Year Study. PLANTS 2021; 10:plants10112262. [PMID: 34834622 PMCID: PMC8620947 DOI: 10.3390/plants10112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Adult plant resistance in wheat is an achievement of the breeding objective because of its durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr 3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against Puccinia striiformis f. sp. tritici races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were moderately susceptible, had the longest latent period and lowest values of the length of stripes and infection frequency at the adult stage. Partial resistance levels under field conditions were assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and Shandaweel1. Molecular analyses of Yr18 were performed for csLV34, cssfr1, and cssfr2 markers. Only Sakha 94 and Shandaweel1 proved to carry the Yr18 resistance allele at both phenotypic and genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 ‘R’.
Collapse
|
22
|
Wang Y, Liang F, Guan F, Yao F, Long L, Zhao X, Duan L, Wu Y, Li H, Li W, Jiang Q, Wei Y, Ma J, Qi P, Deng M, Zheng Y, Kang H, Jiang Y, Chen G. Molecular Mapping and Analysis of an Excellent Quantitative Trait Loci Conferring Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landrace Gaoxianguangtoumai. FRONTIERS IN PLANT SCIENCE 2021; 12:756557. [PMID: 34858460 PMCID: PMC8631748 DOI: 10.3389/fpls.2021.756557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Chinese wheat landrace "Gaoxianguangtoumai" (GX) has exhibited a high level of adult-plant resistance (APR) to stripe rust in the field for more than a decade. To reveal the genetic background for APR to stripe rust in GX, a set of 249 F6:8 (F6, F7, and F8) recombinant inbred lines (RILs) was developed from a cross between GX and the susceptible cultivar "Taichung 29." The parents and RILs were evaluated for disease severity at the adult-plant stage in the field by artificial inoculation with the currently predominant Chinese Puccinia striiformis f. sp. tritici races during three cropping seasons and genotyped using the Wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,871 SNP markers finally. Two stable APR quantitative trait loci (QTL), QYr.GX-2AS and QYr.GX-7DS in GX, were detected on chromosomes 2AS and 7DS, which explained 15.5-27.0% and 11.5-13.5% of the total phenotypic variation, respectively. Compared with published Yr genes and QTL, QYr.GX-7DS and Yr18 may be the same, whereas QYr.GX-2AS is likely to be novel. Haplotype analysis revealed that QYr.GX-2AS is likely to be rare which presents in 5.3% of the 325 surveyed Chinese wheat landraces. By analyzing a heterogeneous inbred family (HIF) population from a residual heterozygous plant in an F8 generation of RIL, QYr.GX-2AS was further flanked by KP2A_36.85 and KP2A_38.22 with a physical distance of about 1.37Mb and co-segregated with the KP2A_37.09. Furthermore, three tightly linked Kompetitive allele-specific PCR (KASP) markers were highly polymorphic among 109 Chinese wheat cultivars. The results of this study can be used in wheat breeding for improving resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengying Liang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1094-1102. [PMID: 34096764 PMCID: PMC8761531 DOI: 10.1094/mpmi-03-21-0073-cr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Gitta Coaker
- Department of Plant Pathology, University of California,
Davis, CA, U.S.A
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi
Avenue, Mt. Carmel, 3498838 Haifa, Israel
- Department of Evolutionary and Environmental Biology,
University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838 Haifa, Israel
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
24
|
Ghanbarnia K, Gourlie R, Amundsen E, Aboukhaddour R. The Changing Virulence of Stripe Rust in Canada from 1984 to 2017. PHYTOPATHOLOGY 2021; 111:1840-1850. [PMID: 33673753 DOI: 10.1094/phyto-10-20-0469-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, is an important wheat disease worldwide. In this study, the P. striiformis f. sp. tritici population in Canada, representing a time period from 1984 to 2017, was analyzed for virulence diversity and geographical distribution. Virulence of 140 P. striiformis f. sp. tritici isolates was evaluated on 17 near-isogenic wheat lines in the 'Avocet S' background, each containing a single resistance gene along with an 18th line 'Tyee'. Seedlings were inoculated with a urediniospore/talc mixture and infection types were evaluated on a scale of 0 to 9. In total, 89 races were identified with various combinations of defeated Yr genes. Clear changes in pathogen virulence have been observed through time that are confirmed by clustering algorithms. The results showed that the tested P. striiformis f. sp. tritici isolates remained avirulent on Yr1, Yr5, and Yr15, and have very low frequency of virulence on Yr76, but had high frequencies of virulence on Yr6, Yr7, Yr8, Yr9, Yr17, Yr43, Yr44, YrTr1, and YrExp2. P. striiformis f. sp. tritici virulence spiked on Yr7, Yr8, and Yr9 for the first time in 2000, and on Yr10 and Yr27 in 2010. Overall, the predominant races in Canada were very similar to those reported in the United States (PSTv-37, PSTv-41, and PSTv-52), which indicates long-distance migration of P. striiformis f. sp. tritici from the United States to Canada. Sixty-four races had unique virulence combinations that had not been previously reported in the United States, which suggested that evolution of virulence/avirulence for host resistance by mutation at local scale, is possible. Analysis of diversity between Canadian isolates and races from the United States since 2010 showed that the P. striiformis f. sp. tritici population in western Canada is similar to that in the western states of the United States, and that the population in eastern Canada is similar to the eastern and/or central regions of the United States, supporting the hypothesis that specific P. striiformis f. sp. tritici populations in North America travel through different wind trajectories.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Ryan Gourlie
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Eric Amundsen
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
25
|
Long L, Yao F, Guan F, Cheng Y, Duan L, Zhao X, Li H, Pu Z, Li W, Jiang Q, Wei Y, Ma J, Kang H, Dai S, Qi P, Xu Q, Deng M, Zheng Y, Jiang Y, Chen G. A Stable Quantitative Trait Locus on Chromosome 5BL Combined with Yr18 Conferring High-Level Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Anyuehong. PHYTOPATHOLOGY 2021; 111:1594-1601. [PMID: 33599530 DOI: 10.1094/phyto-10-20-0465-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chinese wheat landrace Anyuehong (AYH) has displayed high levels of stable adult plant resistance (APR) to stripe rust for >15 years. To identify quantitative trait loci (QTLs) for stripe rust resistance in AYH, a set of 110 recombinant inbred lines (RILs) was developed from a cross between AYH and susceptible cultivar Taichung 29. The parents and RILs were evaluated for final disease severity (FDS) in six field tests with a mixture of predominant Puccinia striiformis f. sp. tritici races at the adult plant stage and genotyped via the wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,143 SNP markers. Three QTLs, designated as QYr.AYH-1AS, QYr.AYH-5BL, and QYr.AYH-7DS, were mapped on chromosome 1AS, 5BL, and 7DS, respectively. RILs combining three QTLs showed significantly lower FDS compared with the lines in other combinations. Of them, QYr.AYH-5BL and QYr.AYH-7DS were stably detected in all environments, explaining 13.6 to 21.4% and 17.6 to 33.6% of phenotypic variation, respectively. Compared with previous studies, QYr.AYH-5BL may be a new QTL, whereas QYr.AYH-7DS may be Yr18. Haplotype analysis revealed that QYr.AYH-5BL is probably present in 6.2% of the 323 surveyed Chinese wheat landraces. The kompetitive allele specific PCR (KASP) markers for QYr.AYH-5BL were developed by the linked SNP markers to successfully confirm the effects of the QTL in a validation population derived from a residual heterozygous line and were further assessed in 38 Chinese wheat landraces and 92 cultivars. Our results indicated that QYr.AYH-5BL with linked KASP markers has potential value for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
26
|
Bai Q, Wan A, Wang M, See DR, Chen X. Molecular Characterization of Wheat Stripe Rust Pathogen ( Puccinia striiformis f. sp. tritici) Collections from Nine Countries. Int J Mol Sci 2021; 22:ijms22179457. [PMID: 34502363 PMCID: PMC8430876 DOI: 10.3390/ijms22179457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. To understand the worldwide distribution of its molecular groups, as well as the diversity, differentiation, and migration of the Pst populations, 567 isolates collected from nine countries (China, Pakistan, Italy, Egypt, Ethiopia, Canada, Mexico, Ecuador, and the U.S.) in 2010–2018 were genotyped using 14 codominant simple sequence repeat markers. A total of 433, including 333 new multi-locus genotypes (MLGs), were identified, which were clustered into ten molecular groups (MGs). The MGs and country-wise populations differed in genetic diversity, heterozygosity, and correlation coefficient between the marker and virulence data. Many isolates from different countries, especially the isolates from Mexico, Ecuador, and the U.S., were found to be identical or closely related MLGs, and some of the MGs were present in all countries, indicating Pst migrations among different countries. The analysis of molecular variance revealed 78% variation among isolates, 12% variation among countries, and 10% variation within countries. Only low levels of differentiation were found by the pairwise comparisons of country populations. Of the 10 MGs, 5 were found to be involved in sexual and/or somatic recombination. Identical and closely related MLGs identified from different countries indicated international migrations. The study provides information on the distributions of various Pst genetic groups in different countries and evidence for the global migrations, which should be useful in understanding the pathogen evolution and in stressing the need for continual monitoring of the disease and pathogen populations at the global scale.
Collapse
Affiliation(s)
- Qing Bai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (A.W.); (M.W.); (D.R.S.)
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (A.W.); (M.W.); (D.R.S.)
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (A.W.); (M.W.); (D.R.S.)
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (A.W.); (M.W.); (D.R.S.)
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Q.B.); (A.W.); (M.W.); (D.R.S.)
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
27
|
Bai Q, Wan A, Wang M, See DR, Chen X. Population Diversity, Dynamics, and Differentiation of Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici From 2010 to 2017 and Comparison With 1968 to 2009 in the United States. Front Microbiol 2021; 12:696835. [PMID: 34367096 PMCID: PMC8339480 DOI: 10.3389/fmicb.2021.696835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/14/2021] [Indexed: 01/25/2023] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a serious disease on wheat in the United States, especially after 2000. In the present study, 2,247 Pst isolates collected over all stripe rust epidemiological regions in the United States from 2010 to 2017 were genotyped at 14 simple sequence repeat (SSR) loci to investigate the population diversity, dynamics, and differentiation. A total of 1,454 multilocus genotypes (MLGs) were detected. In general, the populations in the west (regions 1-6) had more MLGs and higher diversities than the populations in the east (regions 7-12). The populations of 2010 and 2011 were more different from the other years. Genetic variation was higher among years than among regions, indicating the fast changes of the population. The divergence (Gst) was bigger between the west population and east population than among regions within either the west or east population. Gene flow was stronger among the regional populations in the east than in the west. Clustering analyses revealed 3 major molecular groups (MGs) and 10 sub-MGs by combining the genotypic data of 2010-2017 isolates with those of 1968-2009. MG1 contained both 1968-2009 isolates (23.1%) and 2010-2017 isolates (76.9%). MG2 had 99.4% of isolates from 1968-2009. MG3, which was the most recent and distinct group, had 99.1% of isolates from 2010-2017. Of the 10 sub-MGs, 5 (MG1-3, MG1-5, MG3-2, MG3-3, and MG3-4) were detected only from 2011 to 2017. The SSR genotypes had a moderate, but significant correlation (r = 0.325; p < 0.0001) with the virulence phenotype data. The standard index values of association (rbarD = 0.11) based on either regional or yearly populations suggest clonal reproduction. This study indicated high diversity, fast dynamics, and various levels of differentiation of the Pst population over the years and among epidemiological regions, and the results should be useful for managing wheat stripe rust.
Collapse
Affiliation(s)
- Qing Bai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Pullman, WA, United States
| |
Collapse
|
28
|
Sinha P, Chen X. Potential Infection Risks of the Wheat Stripe Rust and Stem Rust Pathogens on Barberry in Asia and Southeastern Europe. PLANTS 2021; 10:plants10050957. [PMID: 34064962 PMCID: PMC8151100 DOI: 10.3390/plants10050957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022]
Abstract
Barberry (Berberis spp.) is an alternate host for both the stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), and the stem rust pathogen, P. graminis f. sp. tritici (Pgt), infecting wheat. Infection risk was assessed to determine whether barberry could be infected by either of the pathogens in Asia and Southeastern Europe, known for recurring epidemics on wheat and the presence of barberry habitats. For assessing infection risk, mechanistic infection models were used to calculate infection indices for both pathogens on barberry following a modeling framework. In East Asia, Bhutan, China, and Nepal were found to have low risks of barberry infection by Pst but high risks by Pgt. In Central Asia, Azerbaijan, Iran, Kazakhstan, southern Russia, and Uzbekistan were identified to have low to high risks of barberry infection for both Pst and Pgt. In Northwest Asia, risk levels of both pathogens in Turkey and the Republic of Georgia were determined to be high to very high. In Southwest Asia, no or low risk was found. In Southeastern Europe, similar high or very high risks for both pathogens were noted for all countries. The potential risks of barberry infection by Pst and/or Pgt should provide guidelines for monitoring barberry infections and could be valuable for developing rust management programs in these regions. The framework used in this study may be useful to predict rust infection risk in other regions.
Collapse
Affiliation(s)
- Parimal Sinha
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- US Department of Agriculture—Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
29
|
Ward BP, Merrill K, Bulli P, Pumphrey M, Mason RE, Mergoum M, Johnson J, Sapkota S, Lopez B, Marshall D, Brown-Guedira G. Analysis of the primary sources of quantitative adult plant resistance to stripe rust in U.S. soft red winter wheat germplasm. THE PLANT GENOME 2021; 14:e20082. [PMID: 33595199 DOI: 10.1002/tpg2.20082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Stripe rust, or yellow rust (Puccinia striiformis Westend. f. sp. tritic), is a disease of wheat (Triticum aestivum L.) historically causing significant economic losses in cooler growing regions. Novel isolates of stripe rust with increased tolerance for high temperatures were detected in the United States circa 2000. This increased heat tolerance puts geographic regions, such as the soft red winter wheat (SRWW) growing region of the southeastern United States, at greater risk of stripe rust induced losses. In order to identify sources of stripe rust resistance in contemporary germplasm, we conducted genome-wide association (GWA) studies on stripe rust severity measured in two panels. The first consisted of 273 older varieties, landraces, and some modern elite breeding lines and was evaluated in environments in the U.S. Pacific Northwest and the southeastern United States. The second panel consisted of 588 modern, elite SRWW breeding lines and was evaluated in four environments in Arkansas and Georgia. The analyses identified three major resistance loci on chromosomes: 2AS (presumably the 2NS:2AS alien introgression from Aegilops ventricosa Tausch; syn. Ae. caudata L.), 3BS, and 4BL. The 4BL locus explained a greater portion of variance in resistance than either the 2AS or 3BS loci in southeastern environments. However, its effects were unstable across different environments and sets of germplasm, possibly a result of its involvement in epistatic interactions. Relatively few lines carry resistance alleles at all three loci, suggesting that there is a pre-existing reservoir of enhanced stripe rust resistance that may be further exploited by regional breeding programs.
Collapse
Affiliation(s)
- Brian P Ward
- USDA Agricultural Research Service Plant Science Research Unit, Raleigh, NC, 27607, USA
- Current Address: Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | - Keith Merrill
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Mike Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Richard Esten Mason
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Current Address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - Jerry Johnson
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - Suraj Sapkota
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - Benjamin Lopez
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - David Marshall
- USDA Agricultural Research Service Plant Science Research Unit, Raleigh, NC, 27607, USA
| | - Gina Brown-Guedira
- USDA Agricultural Research Service Plant Science Research Unit, Raleigh, NC, 27607, USA
| |
Collapse
|
30
|
Wang Y, Yu C, Cheng Y, Yao F, Long L, Wu Y, Li J, Li H, Wang J, Jiang Q, Li W, Pu Z, Qi P, Ma J, Deng M, Wei Y, Chen X, Chen G, Kang H, Jiang Y, Zheng Y. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics 2021; 22:34. [PMID: 33413106 PMCID: PMC7791647 DOI: 10.1186/s12864-020-07331-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. RESULTS Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99-23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. CONCLUSIONS Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit; and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
31
|
Habib M, Awan FS, Sadia B, Zia MA. Genome-Wide Association Mapping for Stripe Rust Resistance in Pakistani Spring Wheat Genotypes. PLANTS 2020; 9:plants9091056. [PMID: 32824927 PMCID: PMC7570266 DOI: 10.3390/plants9091056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Stripe rust caused by the pathogen Puccinia striiformis f. sp. tritici (Pst) is a major threat for wheat, resulting in low yield and grain quality loss in many countries. Genetic resistance is a prevalent method to combat the disease. Mapping the resistant loci and their association with traits is highly exploited in this era. A panel of 465 Pakistani spring wheat genotypes were evaluated for their phenotypic response to stripe rust at the seedling and adult plant stages. A total of 765 single nucleotide polymorphism (SNP) markers were applied on 465 wheat genotypes to evaluate their stripe rust response against nine races during the seedling test and in three locations for the field test. Currently, twenty SNPs dispersed on twelve chromosomal regions (1A, 1B, 1D, 2A, 2B, 4A, 4B, 5B, 6A, 6B, 6D and 7B) have been identified that were associated with rust race-specific resistance at the seedling stage. Thirty SNPs dispersed on eighteen chromosomal regions (1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5A, 5B, 6A, 6B, 6D, 7A, 7B and 7D) are associated with adult plant resistance. SNP loci IWB3662 was linked with all three Pakistani races, and likewise IWA2344 and IWA4096 were found to be linked with three different USA races. The present research findings can be applied by wheat breeders to increase their resistant capability and yield potential of their cultivars, through marker-assisted selection.
Collapse
Affiliation(s)
- Madiha Habib
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan; (M.H.); (B.S.)
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan; (M.H.); (B.S.)
- Correspondence: ; Tel.: +92-41-9201087
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan; (M.H.); (B.S.)
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
32
|
Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico. Sci Rep 2020; 10:10908. [PMID: 32616836 PMCID: PMC7331708 DOI: 10.1038/s41598-020-67874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022] Open
Abstract
Stripe or yellow rust (YR) caused by Puccinia striiformis Westend. f. sp. tritici Erikss. is a persistent biotic-stress threatening global wheat production. To broaden our understanding of the shared genetic basis of YR resistance across multi-site and multi-year evaluations, we performed a large genome-wide association study using 43,706 YR observations on 23,346 wheat lines from the International Maize and Wheat Improvement Center evaluated between 2013 and 2019 at sites in India, Kenya and Mexico, against predominant races prevalent in the countries. We identified 114 repeatable markers tagging 20 quantitative trait loci (QTL) associated with YR on ten chromosomes including 1D, 2A, 2B, 2D, 3A, 4A, 4D, 5A, 5B and 6B, among which four QTL, QYr.cim-2DL.2, QYr.cim-2AS.1, QYr.cim-2BS.2 and QYr.cim-2BS.3 were significant in more than ten datasets. Furthermore, we report YR-associated allelic fingerprints for the largest panel of wheat breeding lines (52,067 lines) till date, creating substantial opportunities for YR favorable allele enrichment using molecular markers. Overall, the markers and fingerprints reported in this study provide excellent insights into the genetic architecture of YR resistance in different geographical regions, time-periods and wheat germplasm and are a huge resource to the global wheat breeding community for accelerating YR resistance breeding efforts.
Collapse
|
33
|
Carmona M, Sautua F, Pérez-Hérnandez O, Reis EM. Role of Fungicide Applications on the Integrated Management of Wheat Stripe Rust. FRONTIERS IN PLANT SCIENCE 2020; 11:733. [PMID: 32582257 PMCID: PMC7296138 DOI: 10.3389/fpls.2020.00733] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 05/14/2023]
Abstract
First described in Europe in 1777, stripe rust (SR) caused by Puccinia striiformis Westend. f. sp. tritici Erikss (Pst) is one of the most important and destructive diseases of wheat worldwide. Until 2000, SR was mainly endemic to cooler regions, but since then, new aggressive strains have emerged, spread intercontinentally, and caused severe epidemics in warmer regions across the world. This has put SR as a disease that poses a threat to the world food security. At present, the preferred strategy for control of SR is the access to wheat cultivars with adequate levels of SR resistance. However, wheat breeding programs are not sufficiently advanced to cope with the recently emerged Pst strains. Under this scenario, foliar fungicide applications have become an important component of SR management, but information on the effects of fungicide applications on SR control and wheat cultivar yield response is scarce. This review seeks to provide an overview of the impact and role of fungicides on SR management. With focus on wheat management in the major wheat-growing regions of the world, the review addresses: (a) the efficacy of different fungicide active ingredients, optimal fungicide timing and number of applications in controlling SR, and (b) the impact of fungicide on wheat grain yield response. Inclusion of fungicides in an integrated crop management approach is discussed.
Collapse
Affiliation(s)
- Marcelo Carmona
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francisco Sautua
- Cátedra de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Oscar Pérez-Hérnandez
- School of Agricultural Sciences, Northwest Missouri State University, Maryville, MO, United States
| | - Erlei M. Reis
- Escuela Para Graduados “Alberto Soriano”, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
34
|
Alternate Hosts of Puccinia striiformis f. sp. tritici and Their Role. Pathogens 2020; 9:pathogens9060434. [PMID: 32498285 PMCID: PMC7350320 DOI: 10.3390/pathogens9060434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023] Open
Abstract
Understanding the interactions between the host and the pathogen is important in developing resistant cultivars and strategies for controlling the disease. Since the discovery of Berberis and Mahonia spp. as alternate hosts of the wheat stripe rust pathogen, Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst), their possible role in generating new races of Pst through sexual reproduction has become a hot topic. To date, all the investigations about the role of alternate hosts in the occurrence of the wheat stripe rust epidemics revealed that it depends on alternate host species and environmental conditions. In this review, we summarized the current status of alternate hosts of Pst, their interactions with the pathogen, their importance in genetic diversity and disease epidemics. Most importantly, the recent research progress in understanding the role of alternate hosts of Pst is provided.
Collapse
|
35
|
Klymiuk V, Fatiukha A, Raats D, Bocharova V, Huang L, Feng L, Jaiwar S, Pozniak C, Coaker G, Dubcovsky J, Fahima T. Three previously characterized resistances to yellow rust are encoded by a single locus Wtk1. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2561-2572. [PMID: 31942623 PMCID: PMC7210774 DOI: 10.1093/jxb/eraa020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/12/2020] [Indexed: 05/21/2023]
Abstract
The wild emmer wheat (Triticum turgidum ssp. dicoccoides; WEW) yellow (stripe) rust resistance genes Yr15, YrG303, and YrH52 were discovered in natural populations from different geographic locations. They all localize to chromosome 1B but were thought to be non-allelic based on differences in resistance response. We recently cloned Yr15 as a Wheat Tandem Kinase 1 (WTK1) and show here that these three resistance loci co-segregate in fine-mapping populations and share an identical full-length genomic sequence of functional Wtk1. Independent ethyl methanesulfonate (EMS)-mutagenized susceptible yrG303 and yrH52 lines carried single nucleotide mutations in Wtk1 that disrupted function. A comparison of the mutations for yr15, yrG303, and yrH52 mutants showed that while key conserved residues were intact, other conserved regions in critical kinase subdomains were frequently affected. Thus, we concluded that Yr15-, YrG303-, and YrH52-mediated resistances to yellow rust are encoded by a single locus, Wtk1. Introgression of Wtk1 into multiple genetic backgrounds resulted in variable phenotypic responses, confirming that Wtk1-mediated resistance is part of a complex immune response network. WEW natural populations subjected to natural selection and adaptation have potential to serve as a good source for evolutionary studies of different traits and multifaceted gene networks.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Andrii Fatiukha
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Dina Raats
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Valeria Bocharova
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Lin Huang
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Lihua Feng
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Samidha Jaiwar
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Gitta Coaker
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, Haifa, Israel
- Correspondence:
| |
Collapse
|
36
|
Sharma-Poudyal D, Bai Q, Wan A, Wang M, See D, Chen X. Molecular Characterization of International Collections of the Wheat Stripe Rust Pathogen Puccinia striiformis f. sp. tritici Reveals High Diversity and Intercontinental Migration. PHYTOPATHOLOGY 2020; 110:933-942. [PMID: 31895005 DOI: 10.1094/phyto-09-19-0355-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Puccinia striiformis f. sp. tritici causes stripe rust (yellow rust), one of the most important wheat diseases worldwide. To understand the genetic variation of the pathogen in a global scale, 283 P. striiformis f. sp. tritici isolates collected from 16 countries in eight geographic regions were genotyped using 24 codominant simple sequence repeat markers. The overall collection had a high level of genetic diversity, and the diversity levels in the Asian populations were generally higher than those of the other regions. Heterozygosity of isolates ranged from 0 to 75%, with an average of 46%. Mean heterozygosity in individual countries ranged from 34 to 59%. A total of 265 multilocus genotypes (MLGs) were detected, which were classified into eight molecular groups. Some of the molecular groups were present in all geographic regions. Moreover, many isolates from different regions were found to be identical or very closely related MLGs. Analysis of molecular variance revealed high variation within countries and intermediate variation between countries, but it revealed low and insignificant variation among geographic regions. Pairwise comparisons of regional populations detected considerable effective migrants and only low to moderate levels of differentiation. The molecular genotypes had a moderate level of correlation with the virulence phenotypes, and some of the molecular/virulence groups contained isolates from different continents. The results indicate tremendous migrations of P. striiformis f. sp. tritici and warrant the development of management strategies considering the global pathogen population.
Collapse
Affiliation(s)
- Dipak Sharma-Poudyal
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Qing Bai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Anmin Wan
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | - Deven See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
- Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-6430
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
- Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA 99164-6430
| |
Collapse
|
37
|
Mehmood S, Sajid M, Husnain SK, Zhao J, Huang L, Kang Z. Study of Inheritance and Linkage of Virulence Genes in a Selfing Population of a Pakistani Dominant Race of Puccinia striiformis f. sp. tritici. Int J Mol Sci 2020; 21:ijms21051685. [PMID: 32121459 PMCID: PMC7084513 DOI: 10.3390/ijms21051685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
Wheat stripe rust is a severe threat of almost all wheat-growing regions in the world. Being an obligate biotrophic fungus, Puccinia striiformis f. sp. tritici (PST) produces new virulent races that break the resistance of wheat varieties. In this study, 115 progeny isolates were generated through sexual reproduction on susceptible Himalayan Berberis pseudumbellata using a dominant Pakistani race (574232) of PST. The parental isolate and progeny isolates were characterized using 24 wheat Yr single-gene lines and ten simple sequence repeat (SSR) markers. From the one-hundred-and-fifteen progeny isolates, 25 virulence phenotypes (VPs) and 60 multilocus genotypes were identified. The parental and all progeny isolates were avirulent to Yr5, Yr10, Yr15, Yr24, Yr32, Yr43, YrSp, YrTr1, YrExp2, Yr26, and YrTye and virulent to Yr1, Yr2, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr28, YrA, Yr44, and Yr3. Based on the avirulence/virulence phenotypes, we found that VPs virulent to Yr1, Yr2, Yr9, Yr17, Yr47, and YrA were controlled by one dominant gene; those to YrSp, YrTr1, and Yr10 by two dominant genes; and those to YrExp2 by two complementary dominant genes. The results are useful in breeding stripe rust-resistant wheat varieties and understanding virulence diversity.
Collapse
Affiliation(s)
- Sajid Mehmood
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
| | - Marina Sajid
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China;
| | - Syed Kamil Husnain
- Plant Pathology Section, Barani Agricultural Research Institute, Chakwal 48800, Punjab, Pakistan;
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
- Correspondence: (J.Z.); (L.H.); Tel.: +86-29-870-18-1317 (J.Z.); +86-29-8709-1312 (L.H.)
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
- Correspondence: (J.Z.); (L.H.); Tel.: +86-29-870-18-1317 (J.Z.); +86-29-8709-1312 (L.H.)
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.M.); (Z.K.)
| |
Collapse
|
38
|
Liu Y, Qie Y, Li X, Wang M, Chen X. Genome-Wide Mapping of Quantitative Trait Loci Conferring All-Stage and High-Temperature Adult-Plant Resistance to Stripe Rust in Spring Wheat Landrace PI 181410. Int J Mol Sci 2020; 21:ijms21020478. [PMID: 31940871 PMCID: PMC7014124 DOI: 10.3390/ijms21020478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Genetic resistance is the best strategy for control of the disease. Spring wheat landrace PI 181410 has shown high level resistance to stripe rust. The present study characterized the landrace to have both race-specific all-stage resistance and nonrace-specific high-temperature adult-plant (HTAP) resistance. To map quantitative trait loci (QTL) for the resistance in PI 181410, it was crossed with Avocet S (AvS), from which a recombinant inbred line population was developed. The F5–F8 populations were consecutively phenotyped for stripe rust response in multiple field environments under natural Pst infection, and the F7 population was phenotyped in seedlings at low temperature and in adult-plant stage with selected Pst races in the greenhouse. The F7 population was genotyped using the 90K wheat SNP chip. Three QTL, QYrPI181410.wgp-4AS, QYrPI181410.wgp-4BL, and QYrPI181410.wgp-5BL.1, from PI 181410 for all-stage resistance, were mapped on chromosome arms 4AS, 4BL, and 5BL, respectively. Four QTL, QYrPI181410.wgp-1BL, QYrPI181410.wgp-4BL, QYrPI181410.wgp-5AS, and QYrPI181410.wgp-5BL.2, were identified from PI 181410 for HTAP resistance and mapped to 1BL, 4BL, 5AS, and 5BL, respectively. Two QTL with minor effects on stripe rust response were identified from AvS and mapped to 2BS and 2BL. Four of the QTL from PI 181410 and one from AvS were potentially new. As the 4BL QTL was most effective and likely a new gene for stripe rust resistance, three kompetitive allele specific PCR (KASP) markers were developed for incorporating this gene into new wheat cultivars.
Collapse
Affiliation(s)
- Yan Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
| | - Yanmin Qie
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, 162 Hengshan Street, Gaoxin District, Shijiazhuang, Hebei 050035, China
| | - Xing Li
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA; (Y.L.); (Y.Q.); (X.L.); (M.W.)
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430, USA
- Correspondence: ; Tel.: +1-509-335-8086
| |
Collapse
|
39
|
Siyoum GZ, Zeng Q, Zhao J, Chen X, Badebo A, Tian Y, Huang L, Kang Z, Zhan G. Inheritance of Virulence and Linkages of Virulence Genes in an Ethiopian Isolate of the Wheat Stripe Rust Pathogen ( Puccinia striiformis f. sp. tritici) Determined Through Sexual Recombination on Berberis holstii. PLANT DISEASE 2019; 103:2451-2459. [PMID: 31322491 DOI: 10.1094/pdis-02-19-0269-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most devastating wheat diseases in Ethiopia. To study virulence genetics of the pathogen, 117 progeny isolates were produced through sexual reproduction of an Ethiopian isolate of the stripe rust pathogen on Berberis holstii plants under controlled conditions. The parental and progeny isolates were characterized by phenotyping on wheat lines carrying single Yr genes for resistance and genotyped using 10 polymorphic simple sequence repeated (SSR) markers. The progeny isolates were classified into 37 virulence phenotypes and 75 multilocus genotypes. The parental isolate and progeny isolates were all avirulent to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrTr1, YrSP, and Yr76 but virulent to Yr1 and Yr2, indicating that the parental isolate was homozygous avirulent or homozygous virulent at these loci. The progeny isolates segregated for virulence to 12 Yr genes. Virulence phenotypes to Yr6, Yr28, Yr43, and Yr44 were controlled by a single dominant gene; those to Yr7, Yr9, Yr17, Yr27, Yr25, Yr31, and YrExp2 were each controlled by two dominant genes; and the virulence phenotype to Yr8 was controlled by two complementary dominant genes. A linkage map was constructed with seven SSR markers, and 16 virulence loci corresponding to 11 Yr resistance genes were mapped with some loci linked to each other. These results are useful in understanding host-pathogen interactions and selecting resistance genes to develop wheat cultivars with highly effective resistance to stripe rust.
Collapse
Affiliation(s)
- Gebreslasie Zeray Siyoum
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, U.S. Department of Agriculture Agricultural Research Service, Pullman, WA 99164-6430, U.S.A
| | - Ayele Badebo
- International Maize and Wheat Improvement Center (CIMMYT) Ethiopia, International Livestock Research Institute Gurd Shola Campus, Addis Ababa, Ethiopia
| | - Yuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
40
|
Khalid M, Afzal F, Gul A, Amir R, Subhani A, Ahmed Z, Mahmood Z, Xia X, Rasheed A, He Z. Molecular Characterization of 87 Functional Genes in Wheat Diversity Panel and Their Association With Phenotypes Under Well-Watered and Water-Limited Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:717. [PMID: 31214230 PMCID: PMC6558208 DOI: 10.3389/fpls.2019.00717] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/15/2019] [Indexed: 05/18/2023]
Abstract
Modern breeding imposed selection for improved productivity that largely influenced the frequency of superior alleles underpinning traits of breeding interest. Therefore, molecular diagnosis for the allelic variations of such genes is important to manipulate beneficial alleles in wheat molecular breeding. We analyzed a diversity panel largely consisted of advanced lines derived from synthetic hexaploid wheats for allelic variation at 87 functional genes or loci of breeding importance using 124 high-throughput KASP markers. We also developed two KASP markers for water-soluble carbohydrate genes (TaSST-D1 and TaSST-A1) associated with plant height and thousand grain weight (TGW) in the diversity panel. KASP genotyping results indicated that beneficial alleles for genes underpinning flowering time (Ppd-D1 and Vrn-D3), thousand grain weight (TaCKX-D1, TaTGW6-A1, TaSus1-7B, and TaCwi-D1), water-soluble carbohydrates (TaSST-A1), yellow-pigment content (Psy-B1 and Zds-D1), and root lesion nematodes (Rlnn1) were fixed in diversity panel with frequency ranged from 96.4 to 100%. The association analysis of functional genes with agronomic and biochemical traits under well-watered (WW) and water-limited (WL) conditions revealed that 21 marker-trait associations (MTAs) were consistently detected in both moisture conditions. The major developmental genes such as Vrn-A1, Rht-D1, and Ppd-B1 had the confounding effect on several agronomic traits including plant height, grain size and weight, and grain yield in both WW and WL conditions. The accumulation of favorable alleles for grain size and weight genes additively enhanced grain weight in the diversity panel. Graphical genotyping approach was used to identify accessions with maximum number of favorable alleles, thus likely to have high breeding value. These results improved our knowledge on the selection of favorable and unfavorable alleles through unconscious selection breeding and identified the opportunities to deploy alleles with effects in wheat breeding.
Collapse
Affiliation(s)
- Maria Khalid
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fakiha Afzal
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Rabia Amir
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Abid Subhani
- Barani Agriculture Research Institute (BARI), Chakwal, Pakistan
| | - Zubair Ahmed
- Crop Science Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Zahid Mahmood
- Crop Science Institute, National Agricultural Research Centre, Islamabad, Pakistan
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Centre (CIMMYT), CAAS, Beijing, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Maize and Wheat Improvement Centre (CIMMYT), CAAS, Beijing, China
| |
Collapse
|
41
|
Zeng Q, Wu J, Liu S, Huang S, Wang Q, Mu J, Yu S, Han D, Kang Z. A major QTL co-localized on chromosome 6BL and its epistatic interaction for enhanced wheat stripe rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1409-1424. [PMID: 30707240 DOI: 10.1007/s00122-019-03288-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
Co-localization of a major QTL for wheat stripe rust resistance to a 3.9-cM interval on chromosome 6BL across both populations and another QTL on chromosome 2B with epistatic interaction. Cultivars with diverse resistance are the optimal strategy to minimize yield losses caused by wheat stripe rust (Puccinia striiformis f. sp. tritici). Two wheat populations involving resistant wheat lines P10078 and Snb"S" from CIMMYT were evaluated for stripe rust response in multiple environments. Pool analysis by Wheat660K SNP array showed that the overlapping interval on chromosome 6B likely harbored a major QTL between two populations. Then, linkage maps were constructed using KASP markers, and a co-localized locus with large effect on chromosome 6BL was detected using QTL analysis in both populations. The coincident QTL, named QYr.nwafu-6BL.2, explained 59.7% of the phenotypic maximum variation in the Mingxian 169 × P10078 and 52.5% in the Zhengmai 9023 × Snb"S" populations, respectively. This co-localization interval spanning 3.9 cM corresponds to ~ 30.5-Mb genomic region of the newest common wheat reference genome (IWGSC RefSeq v.1.0). In addition, another QTL was also detected on chromosome 2B in Zhengmai 9023 × Snb"S" population and it can accelerate expression of QYr.nwafu-6BL.2 to enhance resistance with epistatic interaction. Allowing for Pst response, marker genotypes, pedigree analysis and relative genetic distance, QYr.nwafu-6BL.2 is likely to be a distinct adult plant resistance QTL. Haplotype analysis of QYr.nwafu-6BL.2 revealed specific SNPs or alleles in the target region from a diversity panel of 176 unrelated wheat accessions. This QTL region provides opportunity for further map-based cloning, and haplotypes analysis enables pyramiding favorable alleles into commercial cultivars by marker-assisted selection.
Collapse
Affiliation(s)
- Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
42
|
Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 2018; 9:3735. [PMID: 30282993 PMCID: PMC6170490 DOI: 10.1038/s41467-018-06138-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/26/2018] [Indexed: 01/11/2023] Open
Abstract
Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.
Collapse
Affiliation(s)
- Valentina Klymiuk
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Elitsur Yaniv
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Lin Huang
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Dina Raats
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR4 7UZ, UK
| | - Andrii Fatiukha
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Shisheng Chen
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Lihua Feng
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Zeev Frenkel
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Gabriel Lidzbarsky
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Wei Chang
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Marko J Jääskeläinen
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Christian Schudoma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR4 7UZ, UK
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Harbans Bariana
- The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Hanan Sela
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- The Institute for Cereal Crops Improvement, Tel Aviv University, P.O. Box 39040, 6139001, Tel Aviv, Israel
| | - Kamran Saleem
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | | | - Mogens S Hovmøller
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Assaf Distelfeld
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, 6139001, Tel Aviv, Israel
| | - Boulos Chalhoub
- Institute of System and Synthetic Biology-Organization and Evolution of Complex Genomes, 2 rue Gaston Crémieux CP 5708, 91057, Evry Cedex, France
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD, 20815, USA
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel
| | - Alan H Schulman
- Institute of Biotechnology, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
43
|
Wu J, Huang S, Zeng Q, Liu S, Wang Q, Mu J, Yu S, Han D, Kang Z. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1777-1792. [PMID: 29909527 DOI: 10.1007/s00122-018-3113-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
A major stripe rust resistance QTL on chromosome 4BL was localized to a 4.5-Mb interval using comparative QTL mapping methods and validated in 276 wheat genotypes by haplotype analysis. CYMMIT-derived wheat line P10103 was previously identified to have adult plant resistance (APR) to stripe rust in the greenhouse and field. The conventional approach for QTL mapping in common wheat is laborious. Here, we performed QTL detection of APR using a combination of genome-wide scanning and extreme pool-genotyping. SNP-based genetic maps were constructed using the Wheat55 K SNP array to genotype a recombinant inbred line (RIL) population derived from the cross Mingxian 169 × P10103. Five stable QTL were detected across multiple environments. A fter comparing SNP profiles from contrasting, extreme DNA pools of RILs six putative QTL were located to approximate chromosome positions. A major QTL on chromosome 4B was identified in F2:4 contrasting pools from cross Zhengmai 9023 × P10103. A consensus QTL (LOD = 26-40, PVE = 42-55%), named QYr.nwafu-4BL, was defined and localized to a 4.5-Mb interval flanked by SNP markers AX-110963704 and AX-110519862 in chromosome arm 4BL. Based on stripe rust response, marker genotypes, pedigree analysis and mapping data, QYr.nwafu-4BL is likely to be a new APR QTL. The applicability of the SNP-based markers flanking QYr.nwafu-4BL was validated on a diversity panel of 276 wheat lines. The additional minor QTL on chromosomes 4A, 5A, 5B and 6A enhanced the level of resistance conferred by QYr.nwafu-4BL. Marker-assisted pyramiding of QYr.nwafu-4BL and other favorable minor QTL in new wheat cultivars should improve the level of APR to stripe rust.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
44
|
Bartaula R, Melo ATO, Connolly BA, Jin Y, Hale I. An interspecific barberry hybrid enables genetic dissection of non-host resistance to the stem rust pathogen Puccinia graminis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2483-2493. [PMID: 29529250 PMCID: PMC5920301 DOI: 10.1093/jxb/ery066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/15/2018] [Indexed: 05/28/2023]
Abstract
Stem rust, caused by Puccinia graminis (Pg), remains a devastating disease of wheat, and the emergence of new Pg races virulent on deployed resistance genes fuels the ongoing search for sources of durable resistance. Despite its intrinsic durability, non-host resistance (NHR) is largely unexplored as a protection strategy against Pg, partly due to the inherent challenge of developing a genetically tractable system within which NHR segregates. Here, we demonstrate that Pg's far less studied ancestral host, barberry (Berberis spp.), provides such a unique pathosystem. Characterization of a natural population of B. ×ottawensis, an interspecific hybrid of Pg-susceptible B. vulgaris and Pg-resistant B. thunbergii (Bt), reveals that this uncommon nothospecies can be used to dissect the genetic mechanism(s) of Pg-NHR exhibited by Bt. Artificial inoculation of a natural population of B. ×ottawensis accessions, verified via genotyping by sequencing to be first-generation hybrids, revealed 51% susceptible, 33% resistant, and 16% intermediate phenotypes. Characterization of a B. ×ottawensis full sib family excluded the possibility of maternal inheritance of the resistance. By demonstrating segregation of Pg-NHR in a hybrid population, this study challenges the assumed irrelevance of Bt to Pg epidemiology and lays a novel foundation for the genetic dissection of NHR to one of agriculture's most studied pathogens.
Collapse
Affiliation(s)
- Radhika Bartaula
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Arthur T O Melo
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Bryan A Connolly
- Department of Biology, Framingham State University, Framingham, MA, USA
| | - Yue Jin
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN, USA
| | - Iago Hale
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
45
|
Godoy JG, Rynearson S, Chen X, Pumphrey M. Genome-Wide Association Mapping of Loci for Resistance to Stripe Rust in North American Elite Spring Wheat Germplasm. PHYTOPATHOLOGY 2018; 108:234-245. [PMID: 28952421 DOI: 10.1094/phyto-06-17-0195-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major yield-limiting foliar disease of wheat (Triticum aestivum) worldwide. In this study, the genetic variability of elite spring wheat germplasm from North America was investigated to characterize the genetic basis of effective all-stage and adult plant resistance (APR) to stripe rust. A genome-wide association study was conducted using 237 elite spring wheat lines genotyped with an Illumina Infinium 90K single-nucleotide polymorphism array. All-stage resistance was evaluated at seedling stage in controlled conditions and field evaluations were conducted under natural disease pressure in eight environments across Washington State. High heritability estimates and correlations between infection type and severity were observed. Ten loci for race-specific all-stage resistance were confirmed from previous mapping studies. Three potentially new loci associated with race-specific all-stage resistance were identified on chromosomes 1D, 2A, and 5A. For APR, 11 highly significant quantitative trait loci (QTL) (false discovery rate < 0.01) were identified, of which 3 QTL on chromosomes 3A, 5D, and 7A are reported for the first time. The QTL identified in this study can be used to enrich the current gene pool and improve the diversity of resistance to stripe rust disease.
Collapse
Affiliation(s)
- Jayfred Gaham Godoy
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Sheri Rynearson
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Xianming Chen
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Michael Pumphrey
- First, second, and fourth authors: Department of Crop and Soil Sciences, Washington State University, Pullman 99164-6420; and third author: United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| |
Collapse
|
46
|
Wu J, Wang Q, Xu L, Chen X, Li B, Mu J, Zeng Q, Huang L, Han D, Kang Z. Combining Single Nucleotide Polymorphism Genotyping Array with Bulked Segregant Analysis to Map a Gene Controlling Adult Plant Resistance to Stripe Rust in Wheat Line 03031-1-5 H62. PHYTOPATHOLOGY 2018; 108:103-113. [PMID: 28832276 DOI: 10.1094/phyto-04-17-0153-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most devastating diseases of wheat worldwide. Growing resistant cultivars is considered the best approach to manage this disease. In order to identify the resistance gene(s) in wheat line 03031-1-5 H62, which displayed high resistance to stripe rust at adult plant stage, a cross was made between 03031-1-5 H62 and susceptible cultivar Avocet S. The mapping population was tested with Chinese P. striiformis f. sp. tritici race CYR32 through artificial inoculation in a field in Yangling, Shaanxi Province and under natural infection in Tianshui, Gansu Province. The segregation ratios indicated that the resistance was conferred by a single dominant gene, temporarily designated as YrH62. A combination of bulked segregant analysis (BSA) with wheat 90K single nucleotide polymorphism (SNP) array was used to identify molecular markers linked to YrH62. A total of 376 polymorphic SNP loci identified from the BSA analysis were located on chromosome 1B, from which 35 kompetitive allele-specific PCR (KASP) markers selected together with 84 simple sequence repeat (SSR) markers on 1B were used to screen polymorphism and a chromosome region associated with rust resistance was identified. To saturate the chromosomal region covering the YrH62 locus, a 660K SNP array was used to identify more SNP markers. To develop tightly linked markers for marker-assisted selection of YrH62 in wheat breeding, 18 SNPs were converted into KASP markers. A final linkage map consisting of 15 KASP and 3 SSR markers was constructed with KASP markers AX-109352427 and AX-109862469 flanking the YrH62 locus in a 1.0 cM interval. YrH62 explained 63.8 and 69.3% of the phenotypic variation for disease severity and infection type, respectively. YrH62 was located near the centromeric region of chromosome 1BS based on the positions of the SSR markers in 1B deletion bins. Based on the origin, responses to P. striiformis f. sp. tritici races, and marker distances, YrH62 is likely different from the other reported stripe rust resistance genes/quantitative trait loci on 1B. The gene and tightly linked KASP markers will be useful for breeding wheat cultivars with resistance to stripe rust.
Collapse
Affiliation(s)
- Jianhui Wu
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Qilin Wang
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Liangsheng Xu
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Xianming Chen
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Bei Li
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Jingmei Mu
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Qingdong Zeng
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Lili Huang
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Dejun Han
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| | - Zhensheng Kang
- First, second, third, seventh, eighth, and tenth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; fifth, sixth, and ninth authors: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and fourth author: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and the Department of Plant Pathology, Washington State University, Pullman
| |
Collapse
|
47
|
Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Yu S, Han D, Kang Z. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:43-58. [PMID: 28965125 DOI: 10.1007/s00122-017-2984-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/14/2017] [Indexed: 05/07/2023]
Abstract
High-throughput SNP array analysis of pooled extreme phenotypes in a segregating population by KASP marker genotyping permitted rapid, cost-effective location of a stripe rust resistance QTL in wheat. German wheat cultivar "Friedrichswerther" has exhibited high levels of adult plant resistance (APR) to stripe rust in field environments for many years. F2:3 lines and F6 recombinant inbred line (RILs) populations derived from a cross between Friedrichswerther and susceptible landrace Mingxian 169 were evaluated in the field in 2013, 2016 and 2017. Illumina 90K iSelect SNP arrays were used to genotype bulked extreme pools and parents; 286 of 1135 polymorphic SNPs were identified on chromosome 6B. Kompetitive Allele-Specific PCR (KASP) markers were used to verify the chromosome region associated with the resistance locus. A linkage map was constructed with 18 KASP-SNP markers, and a major effect QTL was identified within a 1.4 cM interval flanked by KASP markers IWB71602 and IWB55937 in the region 6BL3-0-0.36. The QTL, named QYr.nwafu-6BL, was stable across environments, and explained average 54.4 and 47.8% of the total phenotypic variation in F2:3 lines and F6 RILs, respectively. On the basis of marker genotypes, pedigree analysis and relative genetic distance QYr.nwafu-6BL is likely to be a new APR QTL. Combined high-throughput SNP array genotyping of pooled extremes and validation by KASP assays lowers sequencing costs compared to genome-wide association studies with SNP arrays, and more importantly, permits rapid isolation of major effect QTL in hexaploid wheat as well as improving accuracy of mapping in the QTL region. QYr.nwafu-6BL with flanking KASP markers developed and verified in a subset of 236 diverse lines can be used in marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
48
|
Wu J, Wang Q, Kang Z, Liu S, Li H, Mu J, Dai M, Han D, Zeng Q, Chen X. Development and Validation of KASP-SNP Markers for QTL Underlying Resistance to Stripe Rust in Common Wheat Cultivar P10057. PLANT DISEASE 2017; 101:2079-2087. [PMID: 30677371 DOI: 10.1094/pdis-04-17-0468-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust (Puccinia striiformis f. sp. tritici) is among the most important diseases of wheat (Triticum aestivum L.) globally. Utilization of adult plant resistance (APR) constitutes a key tool for maintaining protection against this disease. The CIMMYT wheat cultivar P10057 displayed a high level of APR to stripe rust in germplasm evaluation in field environments. To clarify the genetic basis and identify quantitative trait loci (QTLs) involved in stripe rust resistance in P10057, three wheat populations were used: 150 F5:6 recombinant inbred lines (RILs) derived from the cross Mingxian 169 × P10057, and 161 and 140 F2:3 lines from Avocet S × P10057 and Zhengmai 9023 × P10057, respectively. These three populations were evaluated for infection type (IT) and disease severity (DS) in Shaanxi, Gansu, and Sichuan during the 2014-15 and 2015-16 cropping seasons. Genotyping was performed with Kompetitive Allelic Specific PCR (KASP) and simple sequence repeat (SSR) markers linked to the resistance loci. Using QTL analysis, two genomic regions associated with resistance were found on chromosome arms 2BS and 3BS, respectively. These two stable QTLs, designated Qyrlov.nwafu-2BS and Qyrlov.nwafu-3BS, were detected across all environments and explained average 22.6 to 31.6% and 21.3 to 32.3% of stripe rust severity phenotypic variation, respectively. Qyrlov.nwafu-2BS may be the resistance allele derived from CIMMYT germplasm and Qyrlov.nwafu-3BS likely corresponds to the locus Sr2/Lr27/Yr30/Pbc. The KASP markers IWA5377, IWA2674, and IWA5830 linked to QYrlov.nwafu-2BS and IWB57990 and IWB6491 linked to Qyrlov.nwafu-3BS were reliable for marker-assisted selection (MAS) in the Zhengmai 9023 × P10057 population. These QTLs with KASP markers are expected to contribute in developing wheat cultivars with improved stripe rust resistance.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Haiyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Miaofei Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, United States Department of Agriculture, and Department of Plant Pathology, Washington State University, Pullman, WA
| |
Collapse
|
49
|
Zhang Z, Song L, Han H, Zhou S, Zhang J, Yang X, Li X, Liu W, Li L. Physical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat. Int J Mol Sci 2017; 18:E2403. [PMID: 29137188 PMCID: PMC5713371 DOI: 10.3390/ijms18112403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the stripe rust resistance locus from A. cristatum 6P, ten translocation lines, five deletion lines and the BC₂F₂ and BC₃F₂ populations of two wheat-A. cristatum 6P whole-arm translocation lines were tested with a mixture of two races of Pst in two sites during 2015-2016 and 2016-2017, being genotyped with genomic in situ hybridization (GISH) and molecular markers. The result indicated that the locus conferring stripe rust resistance was located on the terminal 20% of 6P short arm's length. Twenty-nine 6P-specific sequence-tagged-site (STS) markers mapped on the resistance locus have been acquired, which will be helpful for the fine mapping of the stripe rust resistance locus. The stripe rust-resistant translocation lines were found to carry some favorable agronomic traits, which could facilitate their use in wheat improvement. Collectively, the stripe rust resistance locus from A. cristatum 6P could be a novel resistance source and the screened stripe rust-resistant materials will be valuable for wheat disease breeding.
Collapse
Affiliation(s)
- Zhi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology of Sciences, Shijiazhuang 050022, China.
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
50
|
Liu T, Wan A, Liu D, Chen X. Changes of Races and Virulence Genes in Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen, in the United States from 1968 to 2009. PLANT DISEASE 2017; 101:1522-1532. [PMID: 30678601 DOI: 10.1094/pdis-12-16-1786-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici, is a serious disease of wheat in the world. The obligate biotrophic fungal pathogen changes its virulence rapidly, which can circumvent resistance in wheat cultivars and cause severe epidemics. Because P. striiformis f. sp. tritici races have been identified in the United States using different wheat genotypes in different time periods, it is difficult to make direct comparisons of the current population with historical populations. The objective of this study was to characterize historical populations with 18 Yr single-gene lines that are currently used to differentiate P. striiformis f. sp. tritici races in order to understand virulence and race changes of the pathogen over 40 years in the United States. From 908 P. striiformis f. sp. tritici isolates collected from 1968 to 2009 in the United States, 171 races were identified and their frequencies were determined. More races, more new races, and races with more virulence genes were detected since the year 2000 than prior to 2000. None of the races were virulent to Yr5 and Yr15, indicating that these genes have been effective since the late 1960s. Virulence genes to the remaining 16 Yr genes were detected in different periods, and most of them increased in frequency over time. Some virulence genes such as those to Yr17, Yr27, Yr32, Yr43, Yr44, YrTr1, and YrExp2 appeared 14 to 37 years earlier than previously reported, indicating the greater value of using Yr single-gene lines as differentials. Positive and negative associations were detected between virulence genes. The continual information on virulence and races in the P. striiformis f. sp. tritici populations is useful for understanding the evolution of the pathogen and for breeding wheat cultivars with effective resistance to stripe rust.
Collapse
Affiliation(s)
- Tinglan Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| | - Anmin Wan
- Department of Plant Pathology, Washington State University
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University
| | - Xianming Chen
- United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit and Department of Plant Pathology, Washington State University, Pullman 99164-6430
| |
Collapse
|