1
|
McCoy AG, Jacobs JL, Chilvers MI. Host Range Characterization of Phytophthora sansomeana Across Corn, Soybean, Wheat, Winter Cereal Rye, Dry Bean, and Oats and an In Vitro Assessment of Seed Treatment Sensitivity. PLANT DISEASE 2024; 108:2710-2721. [PMID: 38600772 DOI: 10.1094/pdis-11-23-2303-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Formally described in 2009, Phytophthora sansomeana is a pathogen of increasing interest in native, agricultural, and horticulturally important plant species. The objective of this study was to elucidate the symptomatic and asymptomatic host range of P. sansomeana on six agricultural crop species commonly used in field crop rotations in Michigan. In addition, sensitivity to oomicides commonly used in seed treatments, including oxathiapiprolin, mefenoxam, ethaboxam, and pyraclostrobin, was performed to aid in disease management recommendations. Plant biomass, quantity of P. sansomeana DNA in roots, and reisolations were used to assess pathogenicity and virulence of 18 isolates of P. sansomeana on each plant species using an inoculated seedling growth chamber assay. Isolates displayed varying levels of virulence to the hosts tested. Reisolations were completed for each plant species tested, and varying quantities of P. sansomeana DNA were found within all plant species root samples. Corn, wheat, soybean, dry bean, and winter cereal rye plants were symptomatic hosts with significant reduction observed in the total plant biomass. No significant reduction in total plant biomass was observed in oats, and oat roots harbored the least amount of P. sansomeana DNA. No P. sansomeana isolates were insensitive to the oomicide compounds tested with mean absolute inhibition (EC50) values of fungicide required for 50% growth inhibition values of 7.8 × 10-2 μg/ml for mefenoxam, 1.13 × 10-1 μg/ml for ethaboxam, 2.6 × 10-2 μg/ml for oxathiapiprolin, and 3.04 × 10-1 μg/ml for pyraclostrobin. These results suggest that common crop rotations in Michigan may not be a viable option to reduce soilborne inoculum accumulation and oomicide seed treatments could be considered for early-season management of P. sansomeana.
Collapse
Affiliation(s)
- Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Janette L Jacobs
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
2
|
Li Z, Feng W, Zhu Z, Lu S, Lin M, Dong J, Wang Z, Liu F, Chen Q. Cas-OPRAD: a one-pot RPA/PCR CRISPR/Cas12 assay for on-site Phytophthora root rot detection. Front Microbiol 2024; 15:1390422. [PMID: 38903797 PMCID: PMC11188302 DOI: 10.3389/fmicb.2024.1390422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Phytophthora sojae is a devastating plant pathogen that causes soybean Phytophthora root rot worldwide. Early on-site and accurate detection of the causal pathogen is critical for successful management. In this study, we have developed a novel and specific one-pot RPA/PCR-CRISPR/Cas12 assay for on-site detection (Cas-OPRAD) of Phytophthora root rot (P. sojae). Compared to the traditional RPA/PCR detection methods, the Cas-OPRAD assay has significant detection performance. The Cas-OPRAD platform has excellent specificity to distinguish 33 P. sojae from closely related oomycetes or fungal species. The PCR-Cas12a assay had a consistent detection limit of 100 pg. μL-1, while the RPA-Cas12a assay achieved a detection limit of 10 pg. μL-1. Furthermore, the Cas-OPRAD assay was equipped with a lateral flow assay for on-site diagnosis and enabled the visual detection of P. sojae on the infected field soybean samples. This assay provides a simple, efficient, rapid (<1 h), and visual detection platform for diagnosing Phytophthora root rot based on the one-pot CRISPR/Cas12a assay. Our work provides important methods for early and accurate on-site detection of Phytophthora root rot in the field or customs fields.
Collapse
Affiliation(s)
- Zhiting Li
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Zaobing Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shengdan Lu
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Mingze Lin
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Jiali Dong
- Sanya Institute of China Agricultural University, Sanya, China
| | - Zhixin Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Post-Entry Quarantine Center for Tropical Plant, Haikou, China
| | - Fuxiu Liu
- Post-Entry Quarantine Center for Tropical Plant, Haikou, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
3
|
Stahr MN, Parada-Rojas C, Childs KL, Alfenas RF, Fernandes FM, Avila K, Quesada-Ocampo LM. Long-Read Sequencing Genome Assembly of Ceratocystis fimbriata Enables Development of Molecular Diagnostics for Sweetpotato Black Rot. PHYTOPATHOLOGY 2024; 114:1411-1420. [PMID: 38264989 DOI: 10.1094/phyto-09-23-0341-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Ceratocystis fimbriata is a destructive fungal pathogen of sweetpotato (Ipomoea batatas) that leads to losses at all stages of sweetpotato production. Accurate detection of C. fimbriata would allow for more efficient deployment of management tactics in sweetpotato production. To develop a diagnostic assay, a hybrid genome assembly of C. fimbriata isolate AS236 was generated. The resulting 31.7-MB assembly was near-chromosome level, with 18 contigs, 6,481 predicted genes, and a BUSCO completion score of 98.4% when compared with the fungus-specific lineage database. Additional Illumina DNA reads from C. manginecans, C. platani, and a second C. fimbriata isolate (C1421) were then mapped to the assembled genome using BOWTIE2 and counted using HTSeq, which identified 148 genes present only within C. fimbriata as molecular diagnostic candidates; 6 single-copy and 35 highly multi-copy (>40 BLAST hits), as determined through a self-BLAST-P alignment. Primers for PCR were designed in the 200-bp flanking region of the first exon for each candidate, and the candidates were validated against a diverse DNA panel containing Ceratocystis species, sweetpotato pathogens, and plants. After validation, two diagnostic candidates amplified only C. fimbriata DNA and were considered to be highly specific to the species. These genetic markers will serve as valuable diagnostic tools with multiple applications including the detection of C. fimbriata in seed, soil, and wash water in sweetpotato production.
Collapse
Affiliation(s)
- M N Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| | - C Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| | - K L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - R F Alfenas
- Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - F M Fernandes
- Department of Plant Pathology, Universidade Federal de Viçosa, Minas Gerais State, 36570-900, Brazil
| | - K Avila
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| | - L M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27695-7825, U.S.A
| |
Collapse
|
4
|
Wang R, Zhou R, Meng Y, Zheng J, Lu W, Yang Y, Yang J, Wu Y, Shan W. Specific Detection of Phytophthora parasitica by Recombinase Polymerase Amplification Assays Based on a Unique Multicopy Genomic Sequence. PLANT DISEASE 2024; 108:987-995. [PMID: 37884481 DOI: 10.1094/pdis-04-23-0722-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Phytophthora parasitica is a highly destructive oomycete plant pathogen that is capable of infecting a wide range of hosts including many agricultural cash crops, fruit trees, and ornamental garden plants. One of the most important diseases caused by P. parasitica worldwide is black shank of tobacco. Rapid, sensitive, and specific pathogen detection is crucial for early rapid diagnosis, which can facilitate effective disease management. In this study, we used a genomics approach to identify repeated sequences in the genome of P. parasitica by genome sequence alignment and identified a 203-bp P. parasitica-specific sequence, PpM34, that is present in 31 to 60 copies in the genome. The P. parasitica genome specificity of PpM34 was supported by PCR amplification of 24 genetically diverse strains of P. parasitica, 32 strains representing 12 other Phytophthora species, one Pythium species, six fungal species, and three bacterial species, all of which are plant pathogens. Our PCR and real-time PCR assays showed that the PpM34 sequence was highly sensitive in specifically detecting P. parasitica. Finally, we developed a PpM34-based high-efficiency recombinase polymerase amplification assay, which allowed us to specifically detect as little as 1 pg of P. parasitica total DNA from both pure cultures and infected Nicotiana benthamiana at 39°C using a fluorometric thermal cycler. The sensitivity, specificity, convenience, and rapidity of this assay represent a major improvement for early diagnosis of P. parasitica infection.
Collapse
Affiliation(s)
- Rongsheng Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ran Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiapeng Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Lin F, Salman M, Zhang Z, McCoy AG, Li W, Magar RT, Mitchell D, Zhao M, Gu C, Chilvers MI, Wang D. Identification and molecular mapping of a major gene conferring resistance to Phytophthora sansomeana in soybean 'Colfax'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:55. [PMID: 38386094 DOI: 10.1007/s00122-024-04556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE The first single dominant resistance gene contributing major resistance to the oomycete pathogen Phytophthora sansomeana was identified and mapped from soybean 'Colfax'. Phytophthora root rot (PRR) is one of the most important diseases in soybean (Glycine max). PRR is well known to be caused by Phytophthora sojae, but recent studies showed that P. sansomeana also causes extensive root rot of soybean. Depending upon the isolate, it might produce aggressive symptoms, especially in seeds and seedlings. Unlike P. sojae which can be effectively managed by Rps genes, no known major resistance genes have yet been reported for P. sansomeana. Our previous study screened 470 soybean germplasm lines for resistance to P. sansomeana and found that soybean 'Colfax' (PI 573008) carries major resistance to the pathogen. In this study, we crossed 'Colfax' with a susceptible parent, 'Senaki', and developed three mapping populations with a total of 234 F2:3 families. Inheritance pattern analysis indicated a 1:2:1 ratio for resistant: segregating: susceptible lines among all the three populations, indicating a single dominant gene conferring the resistance in 'Colfax' (designated as Rpsan1). Linkage analysis using extreme phenotypes anchored Rpsan1 to a 30 Mb region on chromosome 3. By selecting nine polymorphic SNP markers within the region, Rpsan1 was genetically delimited into a 21.3 cM region between Gm03_4487138_A_C and Gm03_5451606_A_C, which corresponds to a 1.06 Mb genomic region containing nine NBS-LRR genes based on Gmax2.0 assembly. The mapping results were then validated using two breeding populations derived from 'E12076T-03' × 'Colfax' and 'E16099' × 'Colfax'. Marker-assisted resistance spectrum analyses with 9 additional isolates of P. sansomeana indicated that Rpsan1 may be effective towards a broader range of P. sansomeana isolates and has strong merit in protecting soybean to this pathogen in the future.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA.
| | - Muhammad Salman
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, 38000, Pakistan
| | - Zhanguo Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
- Northeast Agricultural University, National Soybean Engineering Research Center, Harbin, 150030, Heilongjiang Province, China
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Wenlong Li
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071001, Hebei Province, China
| | - Raju Thada Magar
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Drew Mitchell
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA.
| |
Collapse
|
6
|
Guo Y, Xia H, Dai T, Liu T. RPA-CRISPR/Cas12a mediated isothermal amplification for visual detection of Phytophthora sojae. Front Cell Infect Microbiol 2023; 13:1208837. [PMID: 37305413 PMCID: PMC10250720 DOI: 10.3389/fcimb.2023.1208837] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Phytophthora sojae is among the most devastating pathogens of soybean (Glycine max) and severely impacts soybean production in several countries. The resulting disease can be difficult to diagnose and other Phytophthora species can also infect soybean. Accurate diagnosis is important for management of the disease caused by P. sojae. Methods In this study, recombinase polymerase amplification (RPA) in combination with the CRISPR/Cas12a system were used for detection of P. sojae. The assay was highly specific to P. sojae. Results The test results were positive for 29 isolates of P. sojae, but negative for 64 isolates of 29 Phytophthora species, 7 Phytopythium and Pythium species, 32 fungal species, and 2 Bursaphelenchus species. The method was highly sensitive, detecting as little as 10 pg.µL-1 of P. sojae genomic DNA at 37°C in 20 min. The test results were visible under UV light and readout coming from fluorophores. In addition, P. sojae was detected from natural inoculated hypocotyls of soybean seedlings using this novel assay. The rapidity and accuracy of the method were verified using 30 soybean rhizosphere samples. Discussion In conclusion, the RPA-CRISPR/Cas12a detection assay developed here is sensitive, efficient, and convenient, and has potential for further development as a kit for monitoring root rot of soybean in the field.
Collapse
Affiliation(s)
- Yufang Guo
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Hongming Xia
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
7
|
Hosseini B, Voegele RT, Link TI. Diagnosis of Soybean Diseases Caused by Fungal and Oomycete Pathogens: Existing Methods and New Developments. J Fungi (Basel) 2023; 9:jof9050587. [PMID: 37233298 DOI: 10.3390/jof9050587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Soybean (Glycine max) acreage is increasing dramatically, together with the use of soybean as a source of vegetable protein and oil. However, soybean production is affected by several diseases, especially diseases caused by fungal seed-borne pathogens. As infected seeds often appear symptomless, diagnosis by applying accurate detection techniques is essential to prevent propagation of pathogens. Seed incubation on culture media is the traditional method to detect such pathogens. This method is simple, but fungi have to develop axenically and expert mycologists are required for species identification. Even experts may not be able to provide reliable type level identification because of close similarities between species. Other pathogens are soil-borne. Here, traditional methods for detection and identification pose even greater problems. Recently, molecular methods, based on analyzing DNA, have been developed for sensitive and specific identification. Here, we provide an overview of available molecular assays to identify species of the genera Diaporthe, Sclerotinia, Colletotrichum, Fusarium, Cercospora, Septoria, Macrophomina, Phialophora, Rhizoctonia, Phakopsora, Phytophthora, and Pythium, causing soybean diseases. We also describe the basic steps in establishing PCR-based detection methods, and we discuss potentials and challenges in using such assays.
Collapse
Affiliation(s)
- Behnoush Hosseini
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Ralf Thomas Voegele
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| | - Tobias Immanuel Link
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany
| |
Collapse
|
8
|
Higgins DS, Miles TD, Byrne JM, Hausbeck MK. Optimizing Molecular Detection for the Hop Downy Mildew Pathogen Pseudoperonospora humuli in Plant Tissue. PHYTOPATHOLOGY 2022; 112:2426-2439. [PMID: 35722890 DOI: 10.1094/phyto-01-22-0013-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Downy mildew-free hop plantlets and rhizomes are essential to limit the introduction of this destructive pathogen, Pseudoperonospora humuli, into hopyards. The objective of this research was to determine which DNA-based diagnostic tools are optimal for P. humuli detection in plant tissue. Quantitative real-time PCR (qPCR) assays with TaqMan probes for nuclear (c125015.3e1) and mitochondrial (orf359) DNA loci were developed and tested side by side. A recombinase polymerase amplification (RPA) assay was designed based on the orf359 DNA locus. The mitochondrial qPCR assay had a 10-fold lower limit of detection (100 fg of genomic DNA) and was 60% more effective in detecting P. humuli in asymptomatic stems than the nuclear-based assay. Both qPCR assays had linear standard curves (R2 > 0.99) but lacked the quantitative precision to differentiate leaf infections beyond 1 day postinoculation. A wide range of Cq values (≥4.9) in standardized tests was observed among isolates, suggesting that the number of mitochondria and nuclear DNA targets can vary. The absence of P. humuli DNA in symptomatic rhizomes was explained, in part, by the detection of Phytophthora DNA. However, the Phytophthora-specific atp9-nad9 assay cross-reacted with P. humuli, leading to false positive amplification. Sensitivity in the RPA assay was reduced by crude plant DNA extract. Improvements to the objectivity of calling positive amplifications and determining the onset of amplification from RPA fluorescence data were realized by applying the first and second derivatives, respectively. The orf359 qPCR assay is specific and sensitive, making it well suited for P. humuli diagnostics in plant tissue.
Collapse
Affiliation(s)
- Douglas S Higgins
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Jan M Byrne
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Mary K Hausbeck
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
9
|
Bhat AI, Aman R, Mahfouz M. Onsite detection of plant viruses using isothermal amplification assays. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1859-1873. [PMID: 35689490 PMCID: PMC9491455 DOI: 10.1111/pbi.13871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 05/09/2023]
Abstract
Plant diseases caused by viruses limit crop production and quality, resulting in significant losses. However, options for managing viruses are limited; for example, as systemic obligate parasites, they cannot be killed by chemicals. Sensitive, robust, affordable diagnostic assays are needed to detect the presence of viruses in plant materials such as seeds, vegetative parts, insect vectors, or alternative hosts and then prevent or limit their introduction into the field by destroying infected plant materials or controlling insect hosts. Diagnostics based on biological and physical properties are not very sensitive and are time-consuming, but assays based on viral proteins and nucleic acids are more specific, sensitive, and rapid. However, most such assays require laboratories with sophisticated equipment and technical skills. By contrast, isothermal-based assays such as loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) are simple, easy to perform, reliable, specific, and rapid and do not require specialized equipment or skills. Isothermal amplification assays can be performed using lateral flow devices, making them suitable for onsite detection or testing in the field. To overcome non-specific amplification and cross-contamination issues, isothermal amplification assays can be coupled with CRISPR/Cas technology. Indeed, the collateral activity associated with some CRISPR/Cas systems has been successfully harnessed for visual detection of plant viruses. Here, we briefly describe traditional methods for detecting viruses and then examine the various isothermal assays that are being harnessed to detect viruses.
Collapse
Affiliation(s)
- Alangar I. Bhat
- ICAR‐Indian Institute of Spices ResearchKozhikodeKeralaIndia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
10
|
Chou MY, Luo J, Clarke BB, Murphy JA, Zhang N, Vines PL, Koch PL. Rapid Detection of the Recently Identified Turfgrass Pathogen Magnaporthiopsis meyeri-festucae Using Recombinase Polymerase Amplification. PLANT DISEASE 2022; 106:2441-2446. [PMID: 35188416 DOI: 10.1094/pdis-08-21-1732-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnaporthiopsis meyeri-festucae is a recently identified root-infecting pathogen of fine fescue (Festuca spp.) turfgrasses. Although it is phylogenetically similar to other root-infecting turfgrass pathogens such as M. poae, management of M. meyeri-festucae is distinct and highlights the need for fast and accurate identification. The objective of this study was to develop a rapid detection method for M. meyeri-festucae using recombinase polymerase amplification (RPA) to assist turfgrass managers in identifying the disease in the field and facilitate further epidemiological research on the pathogen. Three isolates of M. meyeri-festucae and eight isolates from four related Magnaporthiopsis species were used to test the specificity of the RPA assay targeting M. meyeri-festucae. Rapid visualization of the RPA assay results using a mixture of purified amplicon and SYBR-Safe fluorescence emitting asymmetrical cyanine dye showed that the assay was effective at detecting M. meyeri-festucae on turfgrass roots with no observed incidence of false positives or false negatives. The assay also differentiated between M. meyeri-festucae and other Magnaporthiopsis species, although overall sensitivity was lower compared with a PCR-based method. The RPA assay successfully detected M. meyeri-festucae following inoculation onto and grinding of turfgrass roots, indicating possible use as a rapid field diagnostic tool for turfgrass managers. The fast and accurate RPA M. meyeri-festucae detection method presented here will be used for additional field and laboratory applications that will help improve the management of this emerging pathogen.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Jing Luo
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901
| | - Bruce B Clarke
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901
| | - James A Murphy
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901
| | - Phillip L Vines
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901
| | - Paul L Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
11
|
Botella JR. Point-of-Care DNA Amplification for Disease Diagnosis and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:1-20. [PMID: 36027938 DOI: 10.1146/annurev-phyto-021621-115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early detection of pests and pathogens is of paramount importance in reducing agricultural losses. One approach to early detection is point-of-care (POC) diagnostics, which can provide early warning and therefore allow fast deployment of preventive measures to slow down the establishment of crop diseases. Among the available diagnostic technologies, nucleic acid amplification-based diagnostics provide the highest sensitivity and specificity, and those technologies that forego the requirement for thermocycling show the most potential for use at POC. In this review, I discuss the progress, advantages, and disadvantages of the established and most promising POC amplification technologies. The success and usefulness of POC amplification are ultimately dependent on the availability of POC-friendly nucleic acid extraction methods and amplification readouts, which are also briefly discussed in the review.
Collapse
Affiliation(s)
- José R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia;
| |
Collapse
|
12
|
Abstract
INTRODUCTION Recombinase polymerase amplification (RPA) is a promising and emerging technology for rapidly amplifying target nucleic acid from minimally processed samples and through small portable instruments. RPA is suitable for point-of-care testing (POCT) and on-site field testing, and it is compatible with microfluidic devices. Several detection assays have been developed, but limited research has dug deeper into the chemistry of RPA to understand its kinetics and fix its shortcomings. AREAS COVERED This review provides a detailed introduction of RPA molecular mechanism, kits formats, optimization, application, pros, and cons. Moreover, this critical review discusses the nonspecificity issue of RPA, highlights its consequences, and emphasizes the need for more research to resolve it. This review discusses the reaction kinetics of RPA in relation to target length, product quantity, and sensitivity. This critical review also questions the novelty of recombinase-aided amplification (RAA). In short, this review discusses many aspects of RPA technology that have not been discussed previously and provides a deeper insight and new perspectives of the technology. EXPERT OPINION RPA is an excellent choice for pathogen detection, especially in low-resource settings. It has a potential to replace PCR for all purposes, provided its shortcomings are fixed and its reagent accessibility is improved.
Collapse
Affiliation(s)
- Mustafa Ahmad Munawar
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Clark KJ, Anchieta AG, da Silva MB, Kandel SL, Choi YJ, Martin FN, Correll JC, Van Denyze A, Brummer EC, Klosterman SJ. Early Detection of the Spinach Downy Mildew Pathogen in Leaves by Recombinase Polymerase Amplification. PLANT DISEASE 2022; 106:1793-1802. [PMID: 35253491 DOI: 10.1094/pdis-11-21-2398-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Downy mildew of spinach, caused by Peronospora effusa, is a major economic threat to both organic and conventional spinach production. Symptomatic spinach leaves are unmarketable and spinach with latent infections are problematic because symptoms can develop postharvest. Therefore, early detection methods for P. effusa could help producers identify infection before visible symptoms appear. Recombinase polymerase amplification (RPA) provides sensitive and specific detection of pathogen DNA and is a rapid, field-applicable method that does not require advanced technical knowledge or equipment-heavy DNA extraction. Here, we used comparative genomics to identify a unique region of the P. effusa mitochondrial genome to develop an RPA assay for the early detection of P. effusa in spinach leaves. In tandem, we established a TaqMan quantitative PCR (qPCR) assay and used this assay to validate the P. effusa specificity of the locus across Peronospora spp. and to compare assay performance. Neither the TaqMan qPCR nor the RPA showed cross reactivity with the closely related beet downy mildew pathogen, P. schachtii. TaqMan qPCR and RPA have detection thresholds of 100 and 900 fg of DNA, respectively. Both assays could detect P. effusa in presymptomatic leaves, with RPA-based detection occurring as early as 5 days before the appearance of symptoms and TaqMan qPCR-based detection occurring after 24 h of plant exposure to airborne spores. Implementation of the RPA detection method could provide real-time information for point-of-care management strategies at field sites.
Collapse
Affiliation(s)
- Kelley J Clark
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Amy G Anchieta
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Mychele B da Silva
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Shyam L Kandel
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - Young-Joon Choi
- Department of Biology, Kunsan National University, Gunsan, 54150, Korea
| | - Frank N Martin
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Allen Van Denyze
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - E Charles Brummer
- Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Steven J Klosterman
- United States Department of Agriculture-Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905, U.S.A
| |
Collapse
|
14
|
Trichoderma atroviride seed dressing influenced the fungal community and pathogenic fungi in the wheat rhizosphere. Sci Rep 2022; 12:9677. [PMID: 35690652 PMCID: PMC9188553 DOI: 10.1038/s41598-022-13669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/26/2022] [Indexed: 11/27/2022] Open
Abstract
Fusarium crown rot and wheat sharp eyespot are major soil-borne diseases of wheat, causing serious losses to wheat yield in China. We applied high-throughput sequencing combined with qPCR to determine the effect of winter wheat seed dressing, with either Trichoderma atroviride HB20111 spore suspension or a chemical fungicide consisting of 6% tebuconazole, on the fungal community composition and absolute content of pathogens Fusarium pseudograminearum and Rhizoctonia cerealis in the rhizosphere at 180 days after planting. The results showed that the Trichoderma and chemical fungicide significantly reduced the amount of F. pseudograminearum in the rhizosphere soil (p < 0.05), and also changed the composition and structure of the fungal community. In addition, field disease investigation and yield measurement showed that T. atroviride HB20111 treatment reduced the whiteheads with an average control effect of 60.1%, 14.9% higher than the chemical treatment; T. atroviride HB20111 increased yield by 7.7%, which was slightly more than the chemical treatment. Therefore, T. atroviride HB20111 was found to have the potential to replace chemical fungicides to control an extended range of soil-borne diseases of wheat and to improve wheat yield.
Collapse
|
15
|
Lin F, Li W, McCoy AG, Gao X, Collins PJ, Zhang N, Wen Z, Cao S, Wani SH, Gu C, Chilvers MI, Wang D. Molecular mapping of quantitative disease resistance loci for soybean partial resistance to Phytophthora sansomeana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1977-1987. [PMID: 33721030 DOI: 10.1007/s00122-021-03799-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Two soybean QDRL were identified with additive interaction to P. sansomeana isolate MPS17-22. Further analyses uncovered four interaction patterns between the two QDRL and seven additional P. sansomeana isolates. Phytophthora sansomeana is a recently recognized species that contributes to root rot in soybean. Previous studies indicated that P. sansomeana is widely distributed among soybean growing regions and has a much wider host range than P. sojae, a well-known pathogen of soybean. Unlike P. sojae, no known disease resistance genes have been documented that can effectively control P. sansomeana. Therefore, it is important to identify resistance that can be quickly integrated into future soybean varieties. E13901 is an improved soybean line that confers partial resistance to P. sansomeana. A mapping population of 228 F4:5 families was developed from a cross between E13901 and a susceptible improved soybean variety E13390. Using a composite interval mapping method, two quantitative disease resistance loci (QDRL) were identified on Chromosomes 5 (designated qPsan5.1) and 16 (designated qPsan16.1), respectively. qPsan5.1 was mapped at 54.71 cM between Gm05_32565157_T_C and Gm05_32327497_T_C. qPsan5.1 was contributed by E13390 and explained about 6% of the disease resistance variation. qPsan16.1 was located at 39.01 cM between Gm16_35700223_G_T and Gm16_35933600/ Gm16_35816475. qPsan16.1 was from E13901 and could explain 5.5% of partial disease resistance. Further analysis indicated an additive interaction of qPsan5.1 and qPsan16.1 against P. sansomeana isolate MPS17-22. Marker assisted resistance spectrum analysis and progeny tests verified the two QDRL and their interaction patterns with other P. sansomeana isolates. Both QDRL can be quickly integrated into soybean varieties using marker assisted selection.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Wenlong Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
- Hebei Agricultural University, Baoding, 071001, Hebei Province, China
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Xuan Gao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China
| | - Paul J Collins
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Na Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Sizhe Cao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA.
| |
Collapse
|
16
|
Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics. PLANTS 2021; 10:plants10030435. [PMID: 33668762 PMCID: PMC7996204 DOI: 10.3390/plants10030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022]
Abstract
Downy mildews affect important crops and cause severe losses in production worldwide. Accurate identification and monitoring of these plant pathogens, especially at early stages of the disease, is fundamental in achieving effective disease control. The rapid development of molecular methods for diagnosis has provided more specific, fast, reliable, sensitive, and portable alternatives for plant pathogen detection and quantification than traditional approaches. In this review, we provide information on the use of molecular markers, serological techniques, and nucleic acid amplification technologies for downy mildew diagnosis, highlighting the benefits and disadvantages of the technologies and target selection. We emphasize the importance of incorporating information on pathogen variability in virulence and fungicide resistance for disease management and how the development and application of diagnostic assays based on standard and promising technologies, including high-throughput sequencing and genomics, are revolutionizing the development of species-specific assays suitable for in-field diagnosis. Our review provides an overview of molecular detection technologies and a practical guide for selecting the best approaches for diagnosis.
Collapse
|
17
|
Göpfert L, Elsner M, Seidel M. Isothermal haRPA detection of bla CTX-M in bacterial isolates from water samples and comparison with qPCR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:552-557. [PMID: 33410433 DOI: 10.1039/d0ay02000a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antibiotic resistant bacteria complicate infection treatment worldwide. Rapid and inexpensive detection of the current occurrence of antibiotic resistant bacteria in surface and irrigation water as well as treated wastewater is essential to minimize exposure and further spread. To reduce cost and analysis time compared to current qPCR (quantitative polymerase chain reaction), isothermal nucleic acid amplification tests are promising bioanalytical methods which can be integrated in simplified molecular biological detection systems. This study establishes heterogeneous asymmetric recombinase polymerase amplification (haRPA) for the detection of antibiotic resistance genes in water. After DNA extraction of bacteria cultivated from water, the target DNA for blaCTX-M cluster 1 was amplified at 39 °C for 40 min on a microfluidic DNA chip. The amplified DNA on each spot was quantified by a flow-based chemiluminescence reaction. Even though slightly less sensitive than conventional qPCR, the haRPA method was successful in identifying the blaCTX-M cluster 1 in bacterial isolates with a limit of detection of 0.013 ng μL-1. In a proof-of-principle study, 37 bacterial isolates from environmental water samples were classified according to blaCTX-M cluster 1 occurrence and gave 100% agreement in cross-reference with PCR. Importantly, haRPA allows for a quick in-field monitoring at low incubation temperatures and by an easy visual readout. This study paves the path to establish haRPA as a quick on-site monitoring option for antibiotic resistance gene occurrence without the need for a thermal cycling device or long data processing.
Collapse
Affiliation(s)
- Lisa Göpfert
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistr. 17, 81377 Munich, Germany.
| | | | | |
Collapse
|
18
|
Ciampi-Guillardi M, Ramiro J, Moraes MHDD, Barbieri MCG, Massola NS. Multiplex qPCR Assay for Direct Detection and Quantification of Colletotrichum truncatum, Corynespora cassiicola, and Sclerotinia sclerotiorum in Soybean Seeds. PLANT DISEASE 2020; 104:3002-3009. [PMID: 32822262 DOI: 10.1094/pdis-02-20-0231-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise diagnosis of plant diseases is one of the most effective tools to minimize yield losses. Colletotrichum truncatum, Corynespora cassiicola, and Sclerotinia sclerotiorum are common soilborne pathogens that affect soybeans all over the world. We developed a multiplex quantitative real-time polymerase chain reaction (qPCR) assay to simultaneously detect and quantify the three pathogens in soybean seeds and to survey their occurrence in the main soybean production areas in Brazil. Species-specific primers and probes for C. truncatum and C. cassiicola were designed based on GAPDH and TEF1 genes, respectively, to be combined with qPCR detection of S. sclerotiorum previously reported. The multiplex qPCR assay was successful in the simultaneous detection of C. truncatum, C. cassiicola, and S. sclerotiorum, along with a host internal control. The four pathogens were detected and quantified in artificially and naturally infested soybean seeds, even in the lowest incidence level tested of 0.0625% or 1 infected seed out of 1,599 healthy ones. From 81 seed samples tested, C. truncatum was the most frequently detected pathogen and with higher incidence levels (0.25 to 0.125%), followed by S. sclerotiorum and C. cassiicola, both with lower incidence levels (0.125 to 0.0625%). Together, the results evidenced the high sensitivity of the multiplex qPCR assay, indicating its usefulness for a quick and reliable diagnosis of soybean diseases in seeds.
Collapse
Affiliation(s)
- Maísa Ciampi-Guillardi
- Department of Plant Pathology and Nematology, ESALQ, University of São Paulo, Piracicaba/SP, Brazil
| | - Juliana Ramiro
- Department of Plant Pathology and Nematology, ESALQ, University of São Paulo, Piracicaba/SP, Brazil
| | | | | | - Nelson S Massola
- Department of Plant Pathology and Nematology, ESALQ, University of São Paulo, Piracicaba/SP, Brazil
| |
Collapse
|
19
|
Validation of a Preformulated, Field Deployable, Recombinase Polymerase Amplification Assay for Phytophthora Species. PLANTS 2020; 9:plants9040466. [PMID: 32272704 PMCID: PMC7238109 DOI: 10.3390/plants9040466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022]
Abstract
Recombinase polymerase amplification (RPA) assays are valuable molecular diagnostic tools that can detect and identify plant pathogens in the field without time-consuming DNA extractions. Historically, RPA assay reagents were commercially available as a lyophilized pellet in microfuge strip tubes, but have become available in liquid form more recently—both require the addition of primers and probes prior to use, which can be challenging to handle in a field setting. Lyophilization of primers and probes, along with RPA reagents, contained within a single tube limits the risk of contamination, eliminates the need for refrigeration, as the lyophilized reagents are stable at ambient temperatures, and simplifies field use of the assays. This study investigates the potential effect of preformulation on assay performance using a previously validated Phytophthora genus-specific RPA assay, lyophilized with primers and probes included with the RPA reagents. The preformulated lyophilized Phytophthora RPA assay was compared with a quantitative polymerase chain reaction (qPCR) assay and commercially available RPA kits using three qPCR platforms (BioRad CFX96, QuantStudio 6 and Applied Biosystems ViiA7) and one isothermal platform (Axxin T16-ISO RPA), with experiments run in four separate labs. The assay was tested for sensitivity (ranging from 500 to 0.33 pg of DNA) and specificity using purified oomycete DNA, as well as crude extracts of Phytophthora-infected and non-infected plants. The limit of detection (LOD) using purified DNA was 33 pg in the CFX96 and ViiA7 qPCR platforms using the preformulated kits, while the Axxin T16-ISO RPA chamber and the QuantStudio 6 platform could detect down to 3.3 pg with or without added plant extract. The LOD using a crude plant extract for the BioRad CFX96 was 330 pg, whereas the LOD for the ViiA7 system was 33 pg. These trials demonstrate the consistency and uniformity of pathogen detection with preformulated RPA kits for Phytophthora detection when conducted by different labs using different instruments for measuring results.
Collapse
|
20
|
PHYCI_587572: An RxLR Effector Gene and New Biomarker in A Recombinase Polymerase Amplification Assay for Rapid Detection of Phytophthora cinnamomi. FORESTS 2020. [DOI: 10.3390/f11030306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phytophthora cinnamomi is a devastating pathogen causing root and crown rot and dieback diseases of nearly 5000 plant species. Accurate and rapid detection of P. cinnamomi plays a fundamental role within the current disease prevention and management programs. In this study, a novel effector gene PHYCI_587572 was found as unique to P. cinnamomi based on a comparative genomic analysis of 12 Phytophthora species. Its avirulence homolog protein 87 (Avh87) is characterized by the Arg-Xaa-Leu-Arg (RxLR) motif. Avh87 suppressed the pro-apoptotic protein BAX- and elicitin protein INF1-mediated cell death of Nicotiana benthamiana. Furthermore, a recombinase polymerase amplification-lateral flow dipstick detection assay targeting this P. cinnamomi-specific biomarker was developed. While successfully detected 19 P. cinnamomi isolates of a global distribution, this assay lacked detection of 37 other oomycete and fungal species, including P. parvispora, a sister taxon of P. cinnamomi. In addition, it detected P. cinnamomi from artificially inoculated leaves of Cedrus deodara. Moreover, the RPA-LFD assay was found to be more sensitive than a conventional PCR assay, by detecting as low as 2 pg of genomic DNA in a 50-µL reaction. It detected P. cinnamomi in 13 infested soil samples, while the detection rate was 46.2% using PCR. Results in this study indicated that PHYCI_587572 is a unique biomarker for detecting P. cinnamomi. Although PHYCI_587572 was identified as an effector gene based on the RxLR motif of Avh87 and the avirulence activity on Nicotiana, its exact genetic background and biological function on the natural hosts of P. cinnamomi warrant further investigations.
Collapse
|
21
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|
22
|
Roth MG, Oudman KA, Griffin A, Jacobs JL, Sang H, Chilvers MI. Diagnostic qPCR Assay to Detect Fusarium brasiliense, a Causal Agent of Soybean Sudden Death Syndrome and Root Rot of Dry Bean. PLANT DISEASE 2020; 104:246-254. [PMID: 31644390 DOI: 10.1094/pdis-01-19-0016-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Species within clade 2 of the Fusarium solani species complex (FSSC) are significant pathogens of dry bean (Phaseolus vulgaris) and soybean (Glycine max), causing root rot and/or sudden death syndrome (SDS). These species are morphologically difficult to distinguish and often require molecular tools for proper diagnosis to a species level. Here, a TaqMan probe-based quantitative PCR (qPCR) assay was developed to distinguish Fusarium brasiliense from other closely related species within clade 2 of the FSSC. The assay displays high specificity against close relatives and high sensitivity, with a detection limit of 100 fg. This assay was able to detect F. brasiliense from purified mycelia, infected dry bean roots, and soil samples throughout Michigan. When multiplexed with an existing qPCR assay specific to Fusarium virguliforme, accurate quantification of both F. brasiliense and F. virguliforme was obtained, which can facilitate accurate diagnoses and identify coinfections with a single reaction. The assay is compatible with multiple qPCR thermal cycling platforms and will be helpful in providing accurate detection of F. brasiliense. Management of root rot and SDS pathogens in clade 2 of the FSSC is challenging and must be done proactively, because no midseason management strategies currently exist. However, accurate detection can facilitate management decisions for subsequent growing seasons to successfully manage these pathogens.
Collapse
Affiliation(s)
- Mitchell G Roth
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
- Genetics Graduate Program, Michigan State University, East Lansing, MI 48824
| | - Kjersten A Oudman
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Amanda Griffin
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Janette L Jacobs
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences Michigan State University, East Lansing, MI 48824
- Genetics Graduate Program, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
23
|
Dai T, Yang X, Hu T, Li Z, Xu Y, Lu C. A Novel LAMP Assay for the Detection of Phytophthora cinnamomi Utilizing a New Target Gene Identified From Genome Sequences. PLANT DISEASE 2019; 103:3101-3107. [PMID: 31613192 DOI: 10.1094/pdis-04-19-0781-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora cinnamomi is an ecologically and agriculturally significant plant pathogen. Early and accurate detection of P. cinnamomi is paramount to disease prevention and management. In this study, a loop-mediated isothermal amplification (LAMP) assay utilizing a new target gene Pcinn100006 identified from genomic sequence data was developed and evaluated for the detection of P. cinnamomi. This Pcinn100006 LAMP assay was found highly specific to P. cinnamomi. All 10 tested isolates of P. cinnamomi yielded positive results, whereas 50 isolates belonging to 16 other Phytophthora species, Globisporangium ultimum, and 14 fungal species lacked detection. This assay was 10 times more sensitive (100 pg in a 25-µl reaction mixture) than a conventional PCR assay (2 ng in a 50-µl reaction mixture) for detecting the genomic DNA of P. cinnamomi. In addition, it detected P. cinnamomi from artificially inoculated leaves of Cedrus deodara. Moreover, detection rates of P. cinnamomi using environmental DNAs extracted from 13 naturally infested rhizosphere samples were 100% in the Pcinn100006 LAMP assay versus 46% in the conventional PCR assay. Considering its higher accuracy and shorter time span, this Pcinn100006 LAMP assay is a promising diagnostic tool to replace conventional PCR-based and culture-dependent assays for screening of P. cinnamomi in regions at risk of infection or contamination.
Collapse
Affiliation(s)
- Tingting Dai
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiao Yang
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, U.S.A
| | - Tao Hu
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhongyan Li
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yue Xu
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Chenchen Lu
- Lianyungang Customs (formerly Lianyungang Entry-Exit Inspection and Quarantine Bureau), Lianyungang, China
| |
Collapse
|
24
|
Dai T, Hu T, Yang X, Shen D, Jiao B, Tian W, Xu Y. A recombinase polymerase amplification-lateral flow dipstick assay for rapid detection of the quarantine citrus pathogen in China, Phytophthora hibernalis. PeerJ 2019; 7:e8083. [PMID: 31763074 PMCID: PMC6870529 DOI: 10.7717/peerj.8083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Phytophthora hibernalis, the causal agent of brown rot of citrus fruit, is an important worldwide pathogen and a quarantine pest in China. Current diagnosis of the disease relies on disease symptoms, pathogen isolation and identification by DNA sequencing. However, symptoms caused by P. hibernalis can be confused with those by other Phytophthora and fungal species. Moreover, pathogen isolation, PCR amplification and sequencing are time-consuming. In this study, a rapid assay including 20-min recombinase polymerase amplification targeting the Ypt1 gene and 5-min visualization using lateral flow dipsticks was developed for detecting P. hibernalis. This assay was able to detect 0.2 ng of P. hibernalis genomic DNA in a 50-µL reaction system. It was specific to P. hibernalis without detection of other tested species including P. citrophthora, P. nicotianae, P. palmivora and P. syringae, four other important citrus pathogens. Using this assay, P. hibernalis was also detected from artificially inoculated orange fruits. Results in this study indicated that this assay has the potential application to detect P. hibernalis at diagnostic laboratories and plant quarantine departments of customs, especially under time- and resource-limited conditions.
Collapse
Affiliation(s)
- Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tao Hu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xiao Yang
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD, USA.,Oak Ridge Institute for Science and Education, ARS Research Participation Program, Oak Ridge, TN, USA
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Binbin Jiao
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Wen Tian
- Jiangyin Customs House, Jiangyin, China
| | - Yue Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Owati A, Agindotan B, Burrows M. Development and Application of Real-Time and Conventional SSR-PCR Assays for Rapid and Sensitive Detection of Didymella pisi Associated with Ascochyta Blight of Dry Pea. PLANT DISEASE 2019; 103:2751-2758. [PMID: 31509494 DOI: 10.1094/pdis-02-19-0381-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Didymella pisi is the primary causal pathogen of Ascochyta blight (AB) of dry pea in Montana. Diagnosis of AB is challenging because there are six different species that cause AB worldwide and that can co-occur. Additionally, agar plate identification of D. pisi is challenging due to its slow growth rate. Currently, there are no PCR-based assays developed for specific detection of D. pisi or any fungal pathogen in the AB complex of dry pea. In this study, we evaluated simple sequence repeat (SSR) primer pairs for their specificity and sensitivity in real-time and conventional SSR-PCR both in vitro and in planta. The specificity of the assay was determined by testing DNA of 10 dry pea varieties, fungal species in the AB complex, and fungal species associated with dry pea. To avoid false-negative results, plant and fungal DNA markers were included as controls in a conventional multiplex SSR-PCR, to amplify any plant or fungal DNA in the absence of the D. pisi SSR target. SYBR Green SSR-quantitative PCR (qPCR) detection was conducted using the same primer pairs but in a uniplex format. D. pisi was specifically amplified, whereas other fungi and host DNA were not. Also, sensitivity experiments showed that the detection limit was 0.01 ng of DNA of D. pisi for both assays and 100 conidia in SSR-qPCR. These assays are valuable diagnostic tools for the detection of D. pisi.
Collapse
Affiliation(s)
- Ayodeji Owati
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, U.S.A
| | - Bright Agindotan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, U.S.A
| | - Mary Burrows
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, U.S.A
| |
Collapse
|
26
|
Dai T, Yang X, Hu T, Jiao B, Xu Y, Zheng X, Shen D. Comparative Evaluation of a Novel Recombinase Polymerase Amplification-Lateral Flow Dipstick (RPA-LFD) Assay, LAMP, Conventional PCR, and Leaf-Disc Baiting Methods for Detection of Phytophthora sojae. Front Microbiol 2019; 10:1884. [PMID: 31447827 PMCID: PMC6696978 DOI: 10.3389/fmicb.2019.01884] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
Early and accurate detection of the causal pathogen Phytophthora sojae is crucial for effective prevention and control of root and stem rot and seedling damping-off of soybean. In the present study, a novel isothermal amplification assay was developed for detecting P. sojae. This 25 min assay included a two-step approach. First, a pair of novel primers, PSYPT-F and PSYPT-R were used to amplify a specific fragment of the Ypt1 gene of P. sojae in a 20 min recombinase polymerase amplification (RPA) step. Second, lateral flow dipsticks (LFD) were used to detect and visualize RPA amplicons of P. sojae within 5 min. This RPA-LFD assay was specific to P. sojae. It yielded negative detection results against 24 other Phytophthora, one Globisporangium, and 14 fungal species. It was also found to be sensitive, detecting as low as 10 pg of P. sojae genomic DNA in a 50-μL reaction. Furthermore, P. sojae was detected from artificially inoculated hypocotyls of soybean seedlings using this novel assay. In a comparative evaluation using 130 soybean rhizosphere samples, this novel assay consistently detected P. sojae in 55.4% of samples, higher than other three methods, including loop-mediated isothermal amplification (54.6%), conventional PCR (46.9%), and leaf-disc baiting (38.5-40.0%). Results in this study indicated that this rapid, specific, and sensitive RPA-LFD assay has potentially significant applications to diagnosing Phytophthora root and stem rot and damp-off of soybean, especially under time- and resource-limited conditions.
Collapse
Affiliation(s)
- Tingting Dai
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiao Yang
- Foreign Disease-Weed Science Research Unit, USDA, Agricultural Research Service, Fort Detrick, MD, United States
- ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Tao Hu
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Binbin Jiao
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Yue Xu
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Feng W, Hieno A, Kusunoki M, Suga H, Kageyama K. LAMP Detection of Four Plant-Pathogenic Oomycetes and Its Application in Lettuce Fields. PLANT DISEASE 2019; 103:298-307. [PMID: 30608214 DOI: 10.1094/pdis-05-18-0858-re] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In Kagawa Prefecture, Japan, the pathogens Phytophthora pseudolactucae, Pythium irregulare, Pythium uncinulatum, and Pythium spinosum have caused huge losses in lettuce production. We used loop-mediated isothermal amplification (LAMP) to analyze soil and plants in lettuce fields for the presence of these four pathogens. To develop an effective on-site detection method, we contrasted the Plant-LAMP and Plant Culture-LAMP procedures for plant samples, and five soil DNA extraction methods for soil samples. Plant-LAMP and a Soil DNA Isolation kit were selected to analyze three fields for the pathogen species present, infected sites, and level of soil contamination. We found that the same wilting symptoms could be caused by Phytophthora or Pythium, or a mixture of species from both genera. Ph. pseudolactucae infects the pith of the lettuce in aboveground parts, whereas Pythium spp. mainly infect roots. Ph. pseudolactucae and Py. uncinulatum caused disease more frequently than the other two pathogens. Furthermore, not all of the pathogens existed in the soil near infected lettuce plants. Therefore, the LAMP method can be used to diagnose pathogenic oomycetes in the field, and will be useful in the development of control strategies in lettuce production.
Collapse
Affiliation(s)
- Wenzhuo Feng
- The United Graduate School of Agriculture Science, Gifu University, Gifu 501-1193, Japan
| | - Ayaka Hieno
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| | - Mikio Kusunoki
- Kagawa Prefectural Agricultural Experiment Station Plant Protection Office, Kagawa 761-2306, Japan
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
28
|
Burkhardt A, Ramon ML, Smith B, Koike ST, Martin F. Development of Molecular Methods to Detect Macrophomina phaseolina from Strawberry Plants and Soil. PHYTOPATHOLOGY 2018; 108:1386-1394. [PMID: 29869955 DOI: 10.1094/phyto-03-18-0071-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Macrophomina phaseolina is a broad-host-range fungus that shows some degree of host preference on strawberry, and causes symptoms that include crown rot and root rot. Recently, this pathogen has affected strawberry production as fumigation practices have changed, leaving many growers in California and around the world in need of accurate, rapid diagnostic tools for M. phaseolina in soil and infected plants. This study uses next-generation sequencing and comparative genomics to identify a locus that is unique to isolates within a main genotype shared by a majority of isolates that infect strawberry. This locus was used to develop a quantitative single-tube nested TaqMan polymerase chain reaction assay which is able to quantify as little as 2 to 3 microsclerotia/g of soil with 100% genotype specificity. An isothermal assay using recombinase polymerase amplification was developed from the same locus and has been validated on over 200 infected strawberry plants with a diagnostic sensitivity of 93% and a diagnostic specificity of 99%. Together, this work demonstrates the value of using new approaches to identify loci for detection and provides valuable diagnostic tools that can be used to monitor soil and strawberry plant samples for M. phaseolina.
Collapse
Affiliation(s)
- Alyssa Burkhardt
- First, second, third, and fifth authors: Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research Service, Salinas, CA; and fourth author: TriCal Diagnostics, Hollister, CA
| | - Marina L Ramon
- First, second, third, and fifth authors: Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research Service, Salinas, CA; and fourth author: TriCal Diagnostics, Hollister, CA
| | - Brett Smith
- First, second, third, and fifth authors: Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research Service, Salinas, CA; and fourth author: TriCal Diagnostics, Hollister, CA
| | - Steven T Koike
- First, second, third, and fifth authors: Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research Service, Salinas, CA; and fourth author: TriCal Diagnostics, Hollister, CA
| | - Frank Martin
- First, second, third, and fifth authors: Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research Service, Salinas, CA; and fourth author: TriCal Diagnostics, Hollister, CA
| |
Collapse
|
29
|
Abdullah AS, Turo C, Moffat CS, Lopez-Ruiz FJ, Gibberd MR, Hamblin J, Zerihun A. Real-Time PCR for Diagnosing and Quantifying Co-infection by Two Globally Distributed Fungal Pathogens of Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1086. [PMID: 30140271 PMCID: PMC6095046 DOI: 10.3389/fpls.2018.01086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 06/01/2023]
Abstract
Co-infections - invasions of a host-plant by multiple pathogen species or strains - are common, and are thought to have consequences for pathogen ecology and evolution. Despite their apparent significance, co-infections have received limited attention; in part due to lack of suitable quantitative tools for monitoring of co-infecting pathogens. Here, we report on a duplex real-time PCR assay that simultaneously distinguishes and quantifies co-infections by two globally important fungal pathogens of wheat: Pyrenophora tritici-repentis and Parastagonospora nodorum. These fungi share common characteristics and host species, creating a challenge for conventional disease diagnosis and subsequent management strategies. The assay uses uniquely assigned fluorogenic probes to quantify fungal biomass as nucleic acid equivalents. The probes provide highly specific target quantification with accurate discrimination against non-target closely related fungal species and host genes. Quantification of the fungal targets is linear over a wide range (5000-0.5 pg DNA μl-1) with high reproducibility (RSD ≤ 10%). In the presence of host DNA in the assay matrix, fungal biomass can be quantified up to a fungal to wheat DNA ratio of 1 to 200. The utility of the method was demonstrated using field samples of a cultivar sensitive to both pathogens. While visual and culture diagnosis suggested the presence of only one of the pathogen species, the assay revealed not only presence of both co-infecting pathogens (hence enabling asymptomatic detection) but also allowed quantification of relative abundances of the pathogens as a function of disease severity. Thus, the assay provides for accurate diagnosis; it is suitable for high-throughput screening of co-infections in epidemiological studies, and for exploring pathogen-pathogen interactions and dynamics, none of which would be possible with conventional approaches.
Collapse
Affiliation(s)
- Araz S. Abdullah
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Chala Turo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Caroline S. Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Francisco J. Lopez-Ruiz
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Mark R. Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - John Hamblin
- Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Ayalsew Zerihun
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
30
|
Crandall SG, Rahman A, Quesada-Ocampo LM, Martin FN, Bilodeau GJ, Miles TD. Advances in Diagnostics of Downy Mildews: Lessons Learned from Other Oomycetes and Future Challenges. PLANT DISEASE 2018; 102:265-275. [PMID: 30673522 DOI: 10.1094/pdis-09-17-1455-fe] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Downy mildews are plant pathogens that damage crop quality and yield worldwide. Among the most severe and notorious crop epidemics of downy mildew occurred on grapes in the mid-1880s, which almost destroyed the wine industry in France. Since then, there have been multiple outbreaks on sorghum and millet in Africa, tobacco in Europe, and recent widespread epidemics on lettuce, basil, cucurbits, and spinach throughout North America. In the mid-1970s, loss of corn to downy mildew in the Philippines was estimated at US$23 million. Today, crops that are susceptible to downy mildews are worth at least $7.5 billion of the United States' economy. Although downy mildews cause devastating economic losses in the United States and globally, this pathogen group remains understudied because they are difficult to culture and accurately identify. Early detection of downy mildews in the environment is critical to establish pathogen presence and identity, determine fungicide resistance, and understand how pathogen populations disperse. Knowing when and where pathogens emerge is also important for identifying critical control points to restrict movement and to contain populations. Reducing the spread of pathogens also decreases the likelihood of sexual recombination events and discourages the emergence of novel virulent strains. A major challenge in detecting downy mildews is that they are obligate pathogens and thus cannot be cultured in artificial media to identify and maintain specimens. However, advances in molecular detection techniques hold promise for rapid and in some cases, relatively inexpensive diagnosis. In this article, we discuss recent advances in diagnostic tools that can be used to detect downy mildews. First, we briefly describe downy mildew taxonomy and genetic loci used for detection. Next, we review issues encountered when identifying loci and compare various traditional and novel platforms for diagnostics. We discuss diagnosis of downy mildew traits and issues to consider when detecting this group of organisms in different environments. We conclude with challenges and future directions for successful downy mildew detection.
Collapse
Affiliation(s)
- Sharifa G Crandall
- California State University Monterey Bay, School of Natural Sciences, Seaside, CA, 93955
| | - Alamgir Rahman
- North Carolina State University, Department of Plant Pathology, Raleigh, NC, 27695
| | | | - Frank N Martin
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA, 93905
| | | | - Timothy D Miles
- California State University Monterey Bay, School of Natural Sciences, Seaside, CA, 93955
| |
Collapse
|