1
|
Luo Y, Liao W, Li Y, Chen W, Zhong S, Wu C, Yao K, Yang R, Ma M, Gong G. A Rapid and Reliable Propidium Monoazide Polymerase Chain Reaction for Detecting Viable Pseudomonas syringae pv. actinidiae. Curr Issues Mol Biol 2025; 47:103. [PMID: 39996824 PMCID: PMC11853844 DOI: 10.3390/cimb47020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is responsible for causing kiwifruit canker disease. The detection of Psa is commonly carried out using normal PCR and culture-based isolation. However, normal PCR does not differentiate between live and dead cells, potentially resulting in the incorrect estimation of the amount of infectious substance in a sample. Such an incorrect estimation could result in unnecessary phytosanitary strategies and control measures. This study attempts to establish a specific assay for detecting only live Psa bacterial cells. To achieve this, a pair of strain-specific primers designed from HopZ3 effector were used, and the traditional PCR method was assessed using a nucleic acid-binding dye (propidium monoazide-PMA), establishing a PMA-PCR system and conditions for detecting live Psa in this study. Sensitivity tests showed a detection limit of 10 cfu/mL and 1 pg/μL. This method was also tested in diseased kiwifruit tissues and can be seen as a rapid and dependable replacement to PCR methods for detecting only those infective kiwifruit materials with viable Psa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guoshu Gong
- Plant Protection Department and Major Crop Disease Laboratory, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (W.L.); (Y.L.); (W.C.); (S.Z.); (C.W.); (K.Y.); (R.Y.); (M.M.)
| |
Collapse
|
2
|
Noh E, Cedeno C, Bull CT, Keinath AP, Wechter WP, Wang H. A Quantitative PCR Assay for Specific Detection of Pseudomonas cannabina pv. alisalensis. PLANT DISEASE 2025; 109:461-470. [PMID: 39320374 DOI: 10.1094/pdis-06-24-1217-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Pseudomonas cannabina pv. alisalensis is a gram-negative bacterium that causes bacterial leaf blight in Brassica crops, an important disease that could bring severe damage to the host plants. The aim of this study was to develop a tool that can reliably and accurately quantify P. cannabina pv. alisalensis and distinguish it from other closely related bacterial pathogens. Two species and six pathovars of Pseudomonas were tested: three pathovars, P. syringae pv. coriandricola, P. syringae pv. philadelphi, and P. syringae strains from Vicia faba, were found or confirmed to be members of P. cannabina based on the multilocus sequence analysis and repetitive element sequence-based PCR results. The quantitative PCR (qPCR) assay was evaluated for specificity and examined for detection limit in pure bacterial cells and bacteria-spiked plant samples. The assay was applied in monitoring the quantities of the P. cannabina pv. alisalensis DNA over time in inoculated turnip green leaves. The newly developed qPCR assay detected the target DNA in P. cannabina pv. alisalensis suspension as low as 100 CFU/ml and did not detect any of the nontarget bacteria. The qPCR assay detected P. cannabina pv. alisalensis in all the inoculated samples at least 5 days before the symptoms became visible; bacterial quantity increased significantly in the first 3 days after inoculation but slowed down afterward. The new qPCR assay for P. cannabina pv. alisalensis detection will facilitate early detection and disease diagnosis, assist research to provide epidemiological insights for the pathogen, and guide implementation of strategies to manage disease and prevent its spread.
Collapse
Affiliation(s)
- Enoch Noh
- Edisto Research and Education Center, Clemson University, Blackville, SC 29817, U.S.A
| | - Cameron Cedeno
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA 16801, U.S.A
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA 16801, U.S.A
| | - Anthony P Keinath
- Coastal Research an Education Center, Clemson University, Charleston, SC 29414, U.S.A
| | - W Patrick Wechter
- Coastal Research an Education Center, Clemson University, Charleston, SC 29414, U.S.A
| | - Hehe Wang
- Edisto Research and Education Center, Clemson University, Blackville, SC 29817, U.S.A
| |
Collapse
|
3
|
Sabuquillo P, Berruete IM, Cubero J, Palacio-Bielsa A. A reliable qPCR technique for detecting viable Xanthomonas arboricola pv. pruni cells. Appl Microbiol Biotechnol 2024; 108:472. [PMID: 39320527 PMCID: PMC11424652 DOI: 10.1007/s00253-024-13288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Xanthomonas arboricola pv. pruni (Xap) is the causal agent of bacterial spot of stone fruits and almond (Prunus spp). Detection of Xap is typically carried out using quantitative real-time PCR (qPCR) combined with culture-based isolation. However, qPCR does not differentiate between viable and dead cells, potentially leading to an overestimation of the infective population in a sample. Such overestimation could result in unnecessary phytosanitary measures. The present study aims to develop a specific protocol ideally targeting to detection of only live Xap bacterial cells. To address this challenge, the viable quantitative PCR (v-qPCR) method was evaluated using three nucleic acid-binding dyes: propidium monoazide (PMA), a combination of PMA and ethidium monoazide (EMA), and PMAxx™, an improved version of PMA. PMAxx™ proved to be the most suitable dye for the detection and quantification of living bacterial cells. This methodology was also evaluated in infected plant material over time and can be considered a rapid and reliable alternative to PCR methods for detecting only those putative infective Xap that may pose a risk for Prunus crops. KEY POINTS: • Protocol to detect biofilm and planktonic viable X. arboricola pv. pruni cells. • Host validated protocol. • Benefits, reduction of chemicals in disease control.
Collapse
Affiliation(s)
- Pilar Sabuquillo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| | - Isabel M Berruete
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Saragossa, Spain
| | - Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ana Palacio-Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Saragossa, Spain.
| |
Collapse
|
4
|
Cubero J, Zarco-Tejada PJ, Cuesta-Morrondo S, Palacio-Bielsa A, Navas-Cortés JA, Sabuquillo P, Poblete T, Landa BB, Garita-Cambronero J. New Approaches to Plant Pathogen Detection and Disease Diagnosis. PHYTOPATHOLOGY 2024; 114:1989-2006. [PMID: 39264350 DOI: 10.1094/phyto-10-23-0366-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.
Collapse
Affiliation(s)
- Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pablo J Zarco-Tejada
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Sara Cuesta-Morrondo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ana Palacio-Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón-Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Juan A Navas-Cortés
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Pilar Sabuquillo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Tomás Poblete
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science and Faculty of Engineering and Information Technology (IE-FEIT), University of Melbourne, Melbourne, VIC, Australia
| | - Blanca B Landa
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | |
Collapse
|
5
|
Panth M, Noh E, Schnabel G, Wang H. Development of a Long-Amplicon Propidium Monoazide-Quantitative PCR Assay for Detection of Viable Xanthomonas arboricola pv. pruni Cells in Peach Trees. PLANT DISEASE 2024; 108:2190-2196. [PMID: 38537137 DOI: 10.1094/pdis-01-24-0012-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Bacterial spot is one of the most serious diseases of peach caused by the pathogen Xanthomonas arboricola pv. pruni (XAP), leading to early defoliation and unmarketable fruit. The pathogen can overwinter in peach twigs and form spring cankers, which are considered the primary inoculum source for early season leaf and fruitlet infection. The amount of overwintering bacterial inoculum plays a critical role for the bacterial spot development, but no reliable quantification method is available. Thus, we developed a long-amplicon propidium monoazide (PMA)-quantitative PCR (qPCR) assay for specific detection of viable XAP cells. The optimized PMA-qPCR assay used 20 μM of PMAxx for pure bacterial suspensions and 100 μM for peach twig tissues. The Qiagen Plant Pro Kit with an additional lysozyme digestion step was the DNA extraction protocol that yielded the best detection sensitivity with the bacteria-spiked peach twig extracts. The PMA-qPCR assay was tested with different mixtures of viable and heat-killed XAP cells in pure bacterial suspensions and bacteria-spiked peach twig tissues. The results showed that this assay enabled sensitive, specific, and accurate quantification of viable XAP cells as low as 103 CFU/ml with the presence of up to 107 CFU/ml of dead XAP cells, while suppressing the amplification of DNA from dead cells. For mixtures of viable and dead cells, the PMA-qPCR results were linearly correlated with the predicted concentrations of viable XAP (R2 > 0.98). Thus, the PMA-qPCR assay will be a suitable tool for quantifying overwintering XAP population on peach trees.
Collapse
Affiliation(s)
- Milan Panth
- Edisto Research and Education Center, Clemson University, Blackville, SC 29817
| | - Enoch Noh
- Edisto Research and Education Center, Clemson University, Blackville, SC 29817
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Hehe Wang
- Edisto Research and Education Center, Clemson University, Blackville, SC 29817
| |
Collapse
|
6
|
Utami D, Meale SJ, Young AJ. Bacterial Leaf Spot Susceptibility Screening of Chili Pepper Cultivars Using qPCR Determination of Xanthomonas euvesicatoria pv. euvesicatoria Titers. PHYTOPATHOLOGY 2024; 114:681-689. [PMID: 38079287 DOI: 10.1094/phyto-12-22-0479-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Bacterial leaf spot is a serious disease of chili pepper (Capsicum spp.) caused by Xanthomonas euvesicatoria pv. euvesicatoria. Conventional resistance screening is time and resource intensive. It was considered that a quick and simple determination of cultivar susceptibility could be achieved through estimating bacterial titers of inoculated plants. A SYBR quantitative polymerase chain reaction (qPCR)-based assay was compared with conventional PCR, then used to detect and enumerate pathogen titers in serial dilutions and DNA extracted from infected plant leaves. The qPCR detection limit was approximately 1 CFU µl-1, 10 times more sensitive than conventional PCR. A linear correlation (R2 = 0.994) was obtained from the standard curve comparing plate-truthed serial dilutions of the pathogen with the qPCR cycle threshold. Six strains were used to inoculate cultivars Hugo and Warlock. One strain, X. euvesicatoria pv. euvesicatoria BRIP62403, was consistently the most virulent based on visual symptoms and pathogen titers in planta inferred by qPCR performed on DNA extracted from infected leaves 2 and 6 weeks postinoculation. Visual observations 6 weeks after inoculation were highly correlated (R2 = 0.8254) to pathogen titers. The qPCR method was used to categorize 20 chili pepper cultivars 2 weeks after inoculation. A high positive correlation (R2 = 0.6826) was observed between visual scoring and pathogen titers from 20 chili pepper cultivars, facilitating categorization of susceptible, intermediate, and resistant cultivars. The qPCR approach developed here facilitates susceptibility screening of chili pepper cultivars at an early stage of selection and could be readily adapted to a range of other pathosystems.
Collapse
Affiliation(s)
- Desi Utami
- School of Agriculture and Food Sustainability, Faculty of Science, The University of Queensland, Queensland, 4343, Australia
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sarah J Meale
- School of Agriculture and Food Sustainability, Faculty of Science, The University of Queensland, Queensland, 4343, Australia
| | - Anthony J Young
- School of Agriculture and Food Sustainability, Faculty of Science, The University of Queensland, Queensland, 4343, Australia
| |
Collapse
|
7
|
Qiu Y, Wei F, Meng H, Peng M, Zhang J, He Y, Wei L, Ahmed W, Ji G. Whole-genome sequencing and comparative genome analysis of Xanthomonas fragariae YM2 causing angular leaf spot disease in strawberry. FRONTIERS IN PLANT SCIENCE 2023; 14:1267132. [PMID: 38192696 PMCID: PMC10773614 DOI: 10.3389/fpls.2023.1267132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Background Angular leaf spot disease caused by plant pathogenic bacterium Xanthomonas fragariae seriously threatens strawberry crop production globally. Methods In this study, we sequenced the whole genome of X. fragariae YM2, isolated from Yunnan Province, China. In addition, we performed a comparative genome analysis of X. fragariae YM2 with two existing strains of X. fragariae YL19 and SHQP01 isolated from Liaoning and Shanghai, respectively. Results The results of Nanopore sequencing showed that X. fragariae YM2 comprises one single chromosome with a contig size of 4,263,697 bp, one plasmid contig size of 0.39 Mb, a GC content ratio of 62.27%, and 3,958 predicted coding genes. The genome of YM2 comprises gum, hrp, rpf, and xps gene clusters and lipopolysaccharide (LPS), which are typical virulence factors in Xanthomonas species. By performing a comparative genomic analysis between X. fragariae strains YM2, YL19, and SHQP01, we found that strain YM2 is similar to YL19 and SHQP01 regarding genome size and GC contents. However, there are minor differences in the composition of major virulence factors and homologous gene clusters. Furthermore, the results of collinearity analysis demonstrated that YM2 has lower similarity and longer evolutionary distance with YL19 and SHQP01, but YL19 is more closely related to SHQP01. Conclusions The availability of this high-quality genetic resource will serve as a basic tool for investigating the biology, molecular pathogenesis, and virulence of X. fragariae YM2. In addition, unraveling the potential vulnerabilities in its genetic makeup will aid in developing more effective disease suppression control measures.
Collapse
Affiliation(s)
- Yue Qiu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agriculture, Anshun University, Anshun, Guizhou, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangjun Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Han Meng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Menglin Peng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinhao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yilu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lanfang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Agricultural Foundation Experiment Teaching Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Waqar Ahmed
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guanghai Ji
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Turechek WW, Winterbottom C, Meyer-Jertberg M, Wang H. Survival of Xanthomonas fragariae on Common Materials. PLANT DISEASE 2023; 107:116-124. [PMID: 35640956 DOI: 10.1094/pdis-03-22-0719-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xanthomonas fragariae causes strawberry angular leaf spot (ALS), an important disease for the strawberry nursery industry in North America. To identify potential inoculum sources, the survival of X. fragariae was examined on the surfaces of 11 common materials found in nurseries: corrugated cardboard, cotton balls, cotton cloth (t-shirt), strawberry leaf, sheet metal, plastic, rubber, Tyvek, wood (balsa), glass (microscope slide), and latex (latex glove). Prefabricated rectangular samples (7.62 by 2.54 cm) of each material were immersed in a bacterial suspension for 15 min, after which the samples were stored at approximately 20°C (room temperature) or -4°C (the cold storage temperature for dormant plants in strawberry nurseries) for 1, 3, 7, 14, 30, 60, 90, 180, 270, and 365 days after inoculation (DAI). After the storage period elapsed, bacteria were recovered from the surfaces of each of the samples with phosphate-buffered saline (PBS)-soaked cotton balls. Survival rate was determined with a viability real-time quantitative PCR procedure and in a plant bioassay that involved rub inoculation of strawberry leaflets with the PBS-soaked cotton balls used to recover bacteria from the samples. Results showed that X. fragariae could survive on all surfaces but that survival rate differed among materials and storage temperature. All materials were capable of harboring viable bacteria up to 7 DAI when stored at -4°C based on the formation of lesions on inoculated leaves in the plant bioassay. The longest survival observed was 270 DAI on cardboard stored at -4°C. At room temperature, cardboard, cotton balls, cotton t-shirt, and strawberry leaf tissue supported small bacterial populations up to 14 DAI. The information from this study can be used to improve sanitation practices for ALS management in strawberry nurseries.
Collapse
Affiliation(s)
- William W Turechek
- United States Department of Agriculture-Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, FL
| | | | | | - Hehe Wang
- Department of Plant and Environmental Sciences, Clemson University, Blackville, SC
| |
Collapse
|
9
|
Wang H, Wagnon R, Moreno D, Timilsina S, Jones J, Vallad G, Turechek WW. A Long-Amplicon Viability-qPCR Test for Quantifying Living Pathogens that Cause Bacterial Spot in Tomato Seed. PLANT DISEASE 2022; 106:1474-1485. [PMID: 34894749 DOI: 10.1094/pdis-11-21-2509-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial spot is one of the most serious diseases of tomato. It is caused by four species of Xanthomonas: X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria. Contaminated or infected seed can be a major source of inoculum for this disease. The use of certified pathogen-free seed is one of the primary management practices to reduce the inoculum load in commercial production. Current seed testing protocols rely mainly on plating the seed extract and conventional PCR; however, the plating method cannot detect viable but nonculturable cells, and the conventional PCR assay has limited capability to differentiate DNA extracted from viable or dead bacterial cells. To improve the sensitivity and specificity of the tomato seed testing method for bacterial spot pathogens, a long-amplicon quantitative PCR (qPCR) assay coupled with propidium monoazide (PMA-qPCR) was developed to quantify selectively the four pathogenic Xanthomonas species in tomato seed. The optimized PMA-qPCR procedure was evaluated on pure bacterial suspensions, bacteria-spiked seed extracts, and seed extracts of inoculated and naturally infected seed. A crude DNA extraction protocol also was developed, and PMA-qPCR with crude bacterial DNA extracts resulted in accurate quantification of 104 to 108 CFU/ml of viable bacteria when mixed with dead cells at concentrations as high as 107 CFU/ml in the seed extracts. With DNA purified from concentrated seed extracts, the PMA-qPCR assay was able to detect DNA of the target pathogens in seed samples spiked with ≥75 CFU/ml (about 0.5 CFU/seed) of the viable pathogens. Latent class analysis of the inoculated and naturally infected seed samples showed that the PMA-qPCR assay had greater sensitivity than plating the seed extracts on the semiselective modified Tween Medium B and CKTM media for all four target species. Being much faster and more sensitive than dilution plating, the PMA-qPCR assay has potential to be used as a standalone tool or in combination with the plating method to improve tomato seed testing and advance the production of clean seed.
Collapse
Affiliation(s)
- Hehe Wang
- EDISTO Research and Education Center, Clemson University, Blackville, SC 29817
| | - Rieanna Wagnon
- EDISTO Research and Education Center, Clemson University, Blackville, SC 29817
| | - Daniela Moreno
- EDISTO Research and Education Center, Clemson University, Blackville, SC 29817
| | | | | | - Gary Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | |
Collapse
|
10
|
Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Đermić E, Holeva MC, Jacques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J. Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 2021; 9:862. [PMID: 33923763 PMCID: PMC8073235 DOI: 10.3390/microorganisms9040862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.
Collapse
Affiliation(s)
- Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95125 Catania, Italy
| | - Jaime Cubero
- National Institute for Agricultural and Food Research and Technology (INIA), 28002 Madrid, Spain;
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland;
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, Karmiel 2161002, Israel;
| | - Claude Bragard
- UCLouvain, Earth & Life Institute, Applied Microbiology, 1348 Louvain-la-Neuve, Belgium;
| | - Edyta Đermić
- Department of Plant Pathology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maria C. Holeva
- Benaki Phytopathological Institute, Scientific Directorate of Phytopathology, Laboratory of Bacteriology, GR-14561 Kifissia, Greece;
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Univ Angers, SFR 4207 QUASAV, 49071 Beaucouzé, France;
| | - Francoise Petter
- European and Mediterranean Plant Protection Organization (EPPO/OEPP), 75011 Paris, France;
| | - Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | - Isabelle Robène
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (O.P.); (I.R.)
| | | | - Fernando Tavares
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal; or
- FCUP-Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), Univ Montpellier, Cirad, INRAe, Institut Agro, IRD, 34398 Montpellier, France;
| | - Joana Costa
- Centre for Functional Ecology-Science for People & the Planet, Department of Life Sciences, University of Coimbra, 300-456 Coimbra, Portugal
- Laboratory for Phytopathology, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|