1
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
2
|
Trkulja V, Tomić A, Matić S, Trkulja N, Iličić R, Popović Milovanović T. An Overview of the Emergence of Plant Pathogen ' Candidatus Liberibacter solanacearum' in Europe. Microorganisms 2023; 11:1699. [PMID: 37512871 PMCID: PMC10383523 DOI: 10.3390/microorganisms11071699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In this paper, a comprehensive overview of the 'Candidatus Liberibacter solanacearum' presence in Europe was provided. The analyzed findings revealed that, since the first appearance of this pathogen in Finland and Spain in 2008, it has spread to 13 new European countries. Therefore, 'Ca. L. solanacearum' has spread very quickly across the European continent, as evident from the emergence of new host plants within the Apiaceae, Urticaceae, and Polygonaceae families, as well as new haplotypes of this pathogen. Thus far, 5 of the 15 'Ca. L. solanacearum' haplotypes determined across the globe have been confirmed in Europe (haplotypes C, D, E, U, and H). Fully competent 'Ca. L. solanacearum' vectors include Bactericera cockerelli, Trioza apicalis, and B. trigonica; however, only T. apicalis and B. trigonica are presently established in Europe and are very important for plants from the Apiaceae family in particular. Moreover, psyllid species such as B. tremblayi, T. urticae, and T. anthrisci have also been confirmed positive for 'Ca. L. solanacearum'. Constant monitoring of its spread in the field (in both symptomatic and asymptomatic plants), use of sensitive molecular diagnostic techniques, and application of timely management strategies are, therefore, of utmost importance for the control of this destructive pathogen.
Collapse
Affiliation(s)
- Vojislav Trkulja
- Agricultural Institute of Republic of Srpska, Knjaza Miloša 17, 78000 Banja Luka, Bosnia and Herzegovina
| | - Andrija Tomić
- Faculty of Agriculture, University of East Sarajevo, Vuka Karadžića 30, 71123 East Sarajevo, Bosnia and Herzegovina
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
| | - Nenad Trkulja
- Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia
| | - Renata Iličić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | | |
Collapse
|
3
|
Batarseh TN, Batarseh SN, Morales-Cruz A, Gaut BS. Comparative genomics of the Liberibacter genus reveals widespread diversity in genomic content and positive selection history. Front Microbiol 2023; 14:1206094. [PMID: 37434713 PMCID: PMC10330825 DOI: 10.3389/fmicb.2023.1206094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
'Candidatus Liberibacter' is a group of bacterial species that are obligate intracellular plant pathogens and cause Huanglongbing disease of citrus trees and Zebra Chip in potatoes. Here, we examined the extent of intra- and interspecific genetic diversity across the genus using comparative genomics. Our approach examined a wide set of Liberibacter genome sequences including five pathogenic species and one species not known to cause disease. By performing comparative genomics analyses, we sought to understand the evolutionary history of this genus and to identify genes or genome regions that may affect pathogenicity. With a set of 52 genomes, we performed comparative genomics, measured genome rearrangement, and completed statistical tests of positive selection. We explored markers of genetic diversity across the genus, such as average nucleotide identity across the whole genome. These analyses revealed the highest intraspecific diversity amongst the 'Ca. Liberibacter solanacearum' species, which also has the largest plant host range. We identified sets of core and accessory genes across the genus and within each species and measured the ratio of nonsynonymous to synonymous mutations (dN/dS) across genes. We identified ten genes with evidence of a history of positive selection in the Liberibacter genus, including genes in the Tad complex, which have been previously implicated as being highly divergent in the 'Ca. L. capsica' species based on high values of dN.
Collapse
Affiliation(s)
| | - Sarah N. Batarseh
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Abraham Morales-Cruz
- U.S. Department of Energy, Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Keshet-Sitton A, Piasezky A, Assoline N, Dror O, Bahar O. Effect of Plant Age, Temperature, and Vector Load on ' Candidatus Liberibacter solanacearum' in Planta Titer and Shoot Proliferation Symptoms in Carrot. PHYTOPATHOLOGY 2022; 112:154-162. [PMID: 34282951 DOI: 10.1094/phyto-04-21-0135-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A decade ago, shoot proliferation symptoms (i.e., witches' broom) in carrots were believed to be the cause of 'Candidatus Phytoplasma' and Spiroplasma infection, yet in recent years this association appeared to have weakened, and a closer association was found with the yet-unculturable, psyllid-transmitted Gram-negative bacterium 'Candidatus Liberibacter solanacearum'. In Israel, carrots are grown throughout the year, yet shoot proliferation symptoms tend to appear only in mature plants and mostly in late spring to early summer. We hypothesized that factors such as plant age, temperature, and vector load, which vary during the year, have a critical effect on symptom development and examined these factors under controlled conditions. Here we show that young carrot seedlings are as prone as older plants to develop shoot proliferation symptoms after 'Ca. L. solanacearum' inoculation. Surprisingly, we found that the local 'Ca. L. solanacearum' haplotype was extremely sensitive to constant temperature of 30°C, which led to a significant reduction in bacterial growth and symptom development compared with 18°C, which was very conducive to symptom development. We have also found that inoculations with 10 or 20 psyllids per plant results in faster symptom development compared with inoculations with two psyllids per plant; however, the difference between vector loads in disease progress rate was not significant. These data provide important insights to the effects of plant age, growth temperature, and vector load on 'Ca. L. solanacearum' and its associated symptoms and further strengthen the notion that 'Ca. L. solanacearum' is the main responsible agent for carrot witches' broom in Israel.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Atalya Keshet-Sitton
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Alon Piasezky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nofar Assoline
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orit Dror
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
5
|
Wang J, Haapalainen M, Nissinen AI, Pirhonen M. Dual Transcriptional Profiling of Carrot and ' Candidatus Liberibacter solanacearum' at Different Stages of Infection Suggests Complex Host-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1281-1297. [PMID: 34319773 DOI: 10.1094/mpmi-10-20-0274-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interactions between the phloem-limited pathogen 'Candidatus Liberibacter solanacearum' haplotype C and carrot (Daucus carota subsp. sativus) were studied at 4, 5, and 9 weeks postinoculation (wpi), by combining dual RNA-Seq results with data on bacterial colonization and observations of the plant phenotype. In the infected plants, genes involved in jasmonate biosynthesis, salicylate signaling, pathogen-associated molecular pattern- and effector-triggered immunity, and production of pathogenesis-related proteins were up-regulated. At 4 wpi, terpenoid synthesis-related genes were up-regulated, presumably as a response to the psyllid feeding, whereas at 5 and 9 wpi, genes involved in both the terpenoid and flavonoid production were down-regulated and phenylpropanoid genes were up-regulated. Chloroplast-related gene expression was down-regulated, in concordance with the observed yellowing of the infected plant leaves. Both the RNA-Seq data and electron microscopy suggested callose accumulation in the infected phloem vessels, likely to impair the transport of photosynthates, while phloem regeneration was suggested by the formation of new sieve cells and the upregulation of cell wall-related gene expression. The 'Ca. L. solanacearum' genes involved in replication, transcription, and translation were expressed at high levels at 4 and 5 wpi, whereas, at 9 wpi, the Flp pilus genes were highly expressed, suggesting adherence and reduced mobility of the bacteria. The 'Ca. L. solanacearum' genes encoding ATP and C4-dicarboxylate uptake were differentially expressed between the early and late infection stages, suggesting a change in the dependence on different host-derived energy sources. HPE1 effector and salicylate hydroxylase were expressed, presumably to suppress host cell death and salicylic acid-dependent defenses during the infection.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jinhui Wang
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Minna Haapalainen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| | - Anne I Nissinen
- Natural Resources Institute Finland (Luke), Natural Resources, Tietotie 2C, FI-31600 Jokioinen, Finland
| | - Minna Pirhonen
- University of Helsinki, Department of Agricultural Sciences, P. O. Box 27, FI-00014 University of Helsinki, Finland
| |
Collapse
|
6
|
Kwak Y, Sun P, Meduri VR, Percy DM, Mauck KE, Hansen AK. Uncovering Symbionts Across the Psyllid Tree of Life and the Discovery of a New Liberibacter Species, " Candidatus" Liberibacter capsica. Front Microbiol 2021; 12:739763. [PMID: 34659173 PMCID: PMC8511784 DOI: 10.3389/fmicb.2021.739763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022] Open
Abstract
Sap-feeding insects in the order Hemiptera associate with obligate endosymbionts that are required for survival and facultative endosymbionts that can potentially modify resistance to stress, enemies, development, and reproduction. In the superfamily Psylloidea, the jumping plant lice (psyllids), less is known about the diversity and prevalence of their endosymbionts compared to other sap-feeding pests such as aphids (Aphididae). To address this knowledge gap, using 16S rRNA sequencing we identify symbionts across divergent psyllid host lineages from around the world. Taking advantage of a new comprehensive phylogenomic analyses of Psylloidea, we included psyllid samples from 44 species of 35 genera of five families, collected from 11 international locations for this study. Across psyllid lineages, a total of 91 OTUs were recovered, predominantly of the Enterobacteriaceae (68%). The diversity of endosymbionts harbored by each psyllid species was low with an average of approximately 3 OTUs. Two clades of endosymbionts (clade 1 and 2), belonging to Enterobacteriaceae, were identified that appear to be long term endosymbionts of the psyllid families Triozidae and Psyllidae, respectively. We also conducted high throughput metagenomic sequencing on three Ca. Liberibacter infected psyllid species (Russelliana capsici, Trichochermes walkeri, and Macrohomotoma gladiata), initially identified from 16S rRNA sequencing, to obtain more genomic information on these putative Liberibacter plant pathogens. The phylogenomic analyses from these data identified a new Ca. Liberibacter species, Candidatus Liberibacter capsica, that is a potential pathogen of solanaceous crops. This new species shares a distant ancestor with Ca. L. americanus, which occurs in the same range as R. capsici in South America. We also detected the first association between a psyllid specializing on woody hosts and the Liberibacter species Ca. L. psyllaurous, which is a globally distributed pathogen of herbaceous crop hosts in the Solanaceae. Finally, we detected a potential association between a psyllid pest of figs (M. gladiata) and a Ca. Liberibacter related to Ca. L. asiaticus, which causes severe disease in citrus. Our findings reveal a wider diversity of associations between facultative symbionts and psyllids than previously reported and suggest numerous avenues for future work to clarify novel associations of ecological, evolutionary, and pathogenic interest.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | | | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
7
|
Sumner-Kalkun JC, Highet F, Arnsdorf YM, Back E, Carnegie M, Madden S, Carboni S, Billaud W, Lawrence Z, Kenyon D. 'Candidatus Liberibacter solanacearum' distribution and diversity in Scotland and the characterisation of novel haplotypes from Craspedolepta spp. (Psyllidae: Aphalaridae). Sci Rep 2020; 10:16567. [PMID: 33024134 PMCID: PMC7538894 DOI: 10.1038/s41598-020-73382-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
The phloem limited bacterium 'Candidatus Liberibacter solanacearum' (Lso) is associated with disease in Solanaceous and Apiaceous crops. This bacterium has previously been found in the UK in Trioza anthrisci, but its impact on UK crops is unknown. Psyllid and Lso diversity and distribution among fields across the major carrot growing areas of Scotland were assessed using real-time PCR and DNA barcoding techniques. Four Lso haplotypes were found: C, U, and two novel haplotypes. Lso haplotype C was also found in a small percentage of asymptomatic carrot plants (9.34%, n = 139) from a field in Milnathort where known vectors of this haplotype were not found. This is the first report of Lso in cultivated carrot growing in the UK and raises concern for the carrot and potato growing industry regarding the potential spread of new and existing Lso haplotypes into crops. Trioza anthrisci was found present only in sites in Elgin, Moray with 100% of individuals harbouring Lso haplotype C. Lso haplotype U was found at all sites infecting Trioza urticae and at some sites infecting Urtica dioica with 77.55% and 24.37% average infection, respectively. The two novel haplotypes were found in Craspedolepta nebulosa and Craspedolepta subpunctata and named Cras1 and Cras2. This is the first report of Lso in psyllids from the Aphalaridae. These new haplotypes were most closely related to Lso haplotype H recently found in carrot and parsnip. Lso was also detected in several weed plants surrounding carrot and parsnip fields. These included two Apiaceous species Aegropodium podagraria (hap undetermined) and Anthriscus sylvestris (hap C); one Gallium sp. (Rubiaceae) (hap undetermined); and Chenopodium album (Amaranthaceae) (hap undetermined).
Collapse
Affiliation(s)
| | - Fiona Highet
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | | | - Emma Back
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | - Mairi Carnegie
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | | | - Silvia Carboni
- Dipartimento Di Agraria, Universita Degli Studi Di Sassari, Viale, Italia 39, 07100, Sassari, Italy
| | | | - Zoë Lawrence
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| | - David Kenyon
- SASA, Roddinglaw Road, Edinburgh, EH12 9FJ, Midlothian, UK
| |
Collapse
|
8
|
Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain. Microorganisms 2020; 8:microorganisms8091446. [PMID: 32967215 PMCID: PMC7565762 DOI: 10.3390/microorganisms8091446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022] Open
Abstract
Liberibacter is a bacterial group causing different diseases and disorders in plants. Among liberibacters, Candidatus Liberibacter solanaceraum (CLso) produces disorders in several species mainly within Apiaceae and Solanaceae families. CLso isolates are usually grouped in defined haplotypes according to single nucleotide polymorphisms in genes associated with ribosomal elements. In order to characterize more precisely isolates of CLso identified in potato in Spain, a Multilocus Sequence Analysis (MLSA) was applied. This methodology was validated by a complete analysis of ten housekeeping genes that showed an absence of positive selection and a nearly neutral mechanism for their evolution. Most of the analysis performed with single housekeeping genes, as well as MLSA, grouped together isolates of CLso detected in potato crops in Spain within the haplotype E, undistinguishable from those infecting carrots, parsnips or celery. Moreover, the information from these housekeeping genes was used to estimate the evolutionary divergence among the different CLso by using the concatenated sequences of the genes assayed. Data obtained on the divergence among CLso haplotypes support the hypothesis of evolutionary events connected with different hosts, in different geographic areas, and possibly associated with different vectors. Our results demonstrate the absence in Spain of CLso isolates molecularly classified as haplotypes A and B, traditionally considered causal agents of zebra chip in potato, as well as the uncertain possibility of the present haplotype to produce major disease outbreaks in potato that may depend on many factors that should be further evaluated in future works.
Collapse
|
9
|
Quintana-González de Chaves M, Teresani GR, Hernández-Suárez E, Bertolini E, Moreno A, Fereres A, Cambra M, Siverio F. ' Candidatus Liberibacter Solanacearum' Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae. INSECTS 2020; 11:insects11080514. [PMID: 32784442 PMCID: PMC7469162 DOI: 10.3390/insects11080514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Bacteria belonging to 'Candidatus Liberibacter spp.' are associated with various severe diseases in the five continents. The African citrus psyllid Trioza erytreae (Hemiptera: Triozidae) is an efficient vector of citrus huanglongbing-HLB disease, absent in the Mediterranean basin. This psyllid is currently present in the islands and mainland Portugal and Spain, where the prevalence of 'Ca. Liberibacter solanacearum' (CaLsol) associated to a carrot disease is high. Trioza erytreae normally feeds on citrus plants but has also been observed on other crops. It would be a great concern to the Mediterranean citrus industry if T. erytreae could transmit this bacterium from carrots to citrus and cause disease; therefore, the transmission of CaLsol from carrot plants to citrus plants was experimentally assessed. Although CaLsol was initially detected on receptor citrus plants in transmission assays by dodder and budding, the infection was not established. The feeding behavior by electrical penetration graphs and oviposition of T. erytreae on carrot plants versus citrus plants was evaluated. Trioza erytreae only reached the phloem in citrus plants. However, it was able to acquire CaLsol from infected carrots but unable to transmit it to citrus plants. CaLsol was detected in some carrot plants immediately after 7 and 14 days (inoculation access period), but it was not detected after one month. Trioza erytreae was unable to complete its life cycle on carrot plants. In conclusion, the efficient vector of bacteria associated to huanglongbing was unable to transmit CaLsol from carrot to citrus plants, but it acquired and transmitted the bacterium from carrot to carrot plants with low efficiency.
Collapse
Affiliation(s)
- María Quintana-González de Chaves
- Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Crta. El Boquerón s/n, 38270 La Laguna, Spain; (E.H.-S.); (F.S.)
- Correspondence:
| | - Gabriela R. Teresani
- APTA-Instituto Agronômico (IAC)-Centro de Pesquisa e Desenvolvimento de Fitossanidade, Campinas 13020-902, Brazil;
| | - Estrella Hernández-Suárez
- Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Crta. El Boquerón s/n, 38270 La Laguna, Spain; (E.H.-S.); (F.S.)
| | - Edson Bertolini
- Faculdade de Agronomia, Departamento de Fitosanidade, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 7712, Porto Alegre 91540-000, Brazil;
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano, 115, 28006 Madrid, Spain; (A.M.); (A.F.)
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano, 115, 28006 Madrid, Spain; (A.M.); (A.F.)
| | - Mariano Cambra
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Carretera CV-315, Km 10.7, 46113 Moncada, Spain;
| | - Felipe Siverio
- Departamento de Protección Vegetal, Instituto Canario de Investigaciones Agrarias (ICIA), Crta. El Boquerón s/n, 38270 La Laguna, Spain; (E.H.-S.); (F.S.)
- Sección de Laboratorio de Sanidad Vegetal, Consejería de Agricultura, Ganadería y Pesca, Gobierno de Canarias, Ctra. El Boquerón s/n, 28270 La Laguna, Spain
| |
Collapse
|
10
|
Contreras-Rendón A, Sánchez-Pale JR, Fuentes-Aragón D, Alanís-Martínez I, Silva-Rojas HV. Conventional and qPCR reveals the presence of 'Candidatus Liberibacter solanacearum' haplotypes A, and B in Physalis philadelphica plant, seed, and Βactericera cockerelli psyllids, with the assignment of a new haplotype H in Convolvulaceae. Antonie van Leeuwenhoek 2019; 113:533-551. [PMID: 31776768 DOI: 10.1007/s10482-019-01362-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
The husk tomato (Physalis philadelphica Lam.) is an important Solanaceae native to Mesoamerica that is grown for its green fruit used as an important ingredient in domestic and international cuisine. Nevertheless, husk tomato plants with symptoms resembling those caused by 'Candidatus Liberibacter solanacearum' (CLso) have been observed during the last decade in plantations located in the State of Mexico, Michoacan and Sinaloa in Mexico. These areas are located near other solanaceous crops where Bactericera cockerelli the well-known psyllid transmitter of CLso is frequently present. Thus, the goal of this study was to determine if CLso haplotypes are present in husk tomato varieties in commercial fields in Mexico. From 2015 to 2016, plants and fruit showing evident symptoms of CLso infection, as well as psyllids were collected in these states and assayed by PCR for CLso using primer sets OA2/OI2c and LpFrag 1-25F/427R. Phylogenetic reconstruction was performed with Bayesian analysis and maximum likelihood methods using amplicon sequences obtained in this work along with those deposited in the GenBank database corresponding to the CLso detected in Solanaceae, Apiaceae, and Convolvulaceae host families. In addition, all the sequences were subjected to haplotype determination through an analysis of DNA polymorphisms using the DnaSP software. Furthermore, quantitative PCR (qPCR) was performed using CLso-specific primers and probes. Phylogenetic reconstruction and qPCR confirmed the presence of CLso in plants, seeds and insect-vectors, and CLso sequences from plants and seeds completely matched haplotype B, whereas CLso haplotypes A and B were detected in B. cockerelli psyllids. Polymorphism analysis identified a novel Convolvulaceae-associated CLso haplotype, which was named haplotype H. The results of this study will enable the dissemination of infected seeds to new husk tomato production areas to be avoided.
Collapse
Affiliation(s)
- Alejandra Contreras-Rendón
- Facultad de Ciencias Agricolas, Universidad Autonoma del Estado de Mexico, Campus El Cerrillo, Toluca, Estado de Mexico, Mexico
| | - Jesús Ricardo Sánchez-Pale
- Facultad de Ciencias Agricolas, Universidad Autonoma del Estado de Mexico, Campus El Cerrillo, Toluca, Estado de Mexico, Mexico
| | - Dionicio Fuentes-Aragón
- Posgrado en Fitopatologia, Fitosanidad, Colegio de Postgraduados, Campus Montecillo, 56230, Texcoco, Estado de Mexico, Mexico
| | - Iobana Alanís-Martínez
- Estacion Nacional de Epidemiologia, Cuarentena y Saneamiento Vegetal, SENASICA, Queretaro, Mexico
| | - Hilda Victoria Silva-Rojas
- Produccion de Semillas, Colegio de Postgraduados, Campus Montecillo, 56230, Texcoco, Estado de Mexico, Mexico.
| |
Collapse
|
11
|
Dahan J, Wenninger EJ, Thompson BD, Eid S, Olsen N, Karasev AV. Prevalence of ' Candidatus Liberibacter solanacearum' Haplotypes in Potato Tubers and Psyllid Vectors in Idaho From 2012 to 2018. PLANT DISEASE 2019; 103:2587-2591. [PMID: 31432751 DOI: 10.1094/pdis-11-18-2113-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is an uncultured, phloem-associated bacterium causing a severe tuber disease in potato called zebra chip (ZC). Seven haplotypes of Lso have been described in different hosts, with haplotypes A and B found associated with infections in potato and tomato. In the field, Lso is transmitted by the potato psyllid (Bactericera cockerelli), and between 2011 and 2015, a significant change in Lso haplotype prevalence was previously reported in Idaho: from exclusively A haplotype found in tested psyllids in 2012 to mainly B haplotype found in collected psyllids in 2015. However, prevalence of Lso haplotypes in Idaho was not analyzed in potato tubers exhibiting symptoms of ZC. To fill in this knowledge gap, prevalence of Lso haplotypes was investigated in potato tubers harvested in southern Idaho between 2012 and 2018, and it was found to change from exclusively A haplotype in the 2012 season to an almost equal A and B haplotype distribution during the 2016 season. During the same period, haplotype distribution of Lso in psyllid vectors collected using yellow sticky traps also changed, but in psyllids, the shift from A haplotype of Lso to B haplotype was complete, with no A haplotype detected in 2016 to 2018. The changes in the haplotype prevalence of the Lso circulating in potato fields in southern Idaho may be, among other factors, responsible for a decrease in the ZC incidence in Idaho potato fields between an outbreak of the disease in 2012 and a very low level of ZC afterward.
Collapse
Affiliation(s)
- Jennifer Dahan
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Erik J Wenninger
- Department of Entomology, Plant Pathology and Nematology, Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Brandon D Thompson
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Sahar Eid
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| | - Nora Olsen
- Department of Plant Sciences, Kimberly Research and Extension Center, University of Idaho, Kimberly, ID
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID
| |
Collapse
|
12
|
Naranjo E, Merfa MV, Ferreira V, Jain M, Davis MJ, Bahar O, Gabriel DW, De La Fuente L. Liberibacter crescens biofilm formation in vitro: establishment of a model system for pathogenic 'Candidatus Liberibacter spp.'. Sci Rep 2019; 9:5150. [PMID: 30914689 PMCID: PMC6435755 DOI: 10.1038/s41598-019-41495-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
The Liberibacter genus comprises insect endosymbiont bacterial species that cause destructive plant diseases, including Huanglongbing in citrus and zebra chip in potato. To date, pathogenic 'Candidatus Liberibacter spp.' (CLs) remain uncultured, therefore the plant-associated Liberibacter crescens (Lcr), only cultured species of the genus, has been used as a biological model for in vitro studies. Biofilm formation by CLs has been observed on the outer midgut surface of insect vectors, but not in planta. However, the role of biofilm formation in the life cycle of these pathogens remains unclear. Here, a model system for studying CLs biofilms was developed using Lcr. By culture media modifications, bovine serum albumin (BSA) was identified as blocking initial cell-surface adhesion. Removal of BSA allowed for the first time observation of Lcr biofilms. After media optimization for biofilm formation, we demonstrated that Lcr attaches to surfaces, and form cell aggregates embedded in a polysaccharide matrix both in batch cultures and under flow conditions in microfluidic chambers. Biofilm structures may represent excellent adaptive advantages for CLs during insect vector colonization helping with host retention, immune system evasion, and transmission. Future studies using the Lcr model established here will help in the understanding of the biology of CLs.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, USA
| | - Virginia Ferreira
- Bioscience Department, College of Chemistry, University of the Republic, Montevideo, Uruguay
| | - Mukesh Jain
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | - Michael J Davis
- Citrus Research and Education Center, University of Florida, Gainesville, USA
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, ARO - Volcani Center, Bet-Dagan, Israel
| | - Dean W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, USA
| | | |
Collapse
|
13
|
Katsir L, Zhepu R, Santos Garcia D, Piasezky A, Jiang J, Sela N, Freilich S, Bahar O. Genome Analysis of Haplotype D of Candidatus Liberibacter Solanacearum. Front Microbiol 2018; 9:2933. [PMID: 30619106 PMCID: PMC6295461 DOI: 10.3389/fmicb.2018.02933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Candidatus Liberibacter solanacearum (Lso) haplotype D (LsoD) is a suspected bacterial pathogen, spread by the phloem-feeding psyllid Bactericera trigonica Hodkinson and found to infect carrot plants throughout the Mediterranean. Haplotype D is one of six haplotypes of Lso that each have specific and overlapping host preferences, disease symptoms, and psyllid vectors. Genotyping of rRNA genes has allowed for tracking the haplotype diversity of Lso and genome sequencing of several haplotypes has been performed to advance a comprehensive understanding of Lso diseases and of the phylogenetic relationships among the haplotypes. To further pursue that aim we have sequenced the genome of LsoD from its psyllid vector and report here its draft genome. Genome-based single nucleotide polymorphism analysis indicates LsoD is most closely related to the A haplotype. Genomic features and the metabolic potential of LsoD are assessed in relation to Lso haplotypes A, B, and C, as well as the facultative strain Liberibacter crescens. We identify genes unique to haplotype D as well as putative secreted effectors that may play a role in disease characteristics specific to this haplotype of Lso.
Collapse
Affiliation(s)
- Leron Katsir
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Ruan Zhepu
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Piasezky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shiri Freilich
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
14
|
Mawassi M, Dror O, Bar-Joseph M, Piasezky A, Sjölund JM, Levitzky N, Shoshana N, Meslenin L, Haviv S, Porat C, Katsir L, Kontsedalov S, Ghanim M, Zelinger-Reichert E, Arnsdorf YM, Gera A, Bahar O. 'Candidatus Liberibacter solanacearum' Is Tightly Associated with Carrot Yellows Symptoms in Israel and Transmitted by the Prevalent Psyllid Vector Bactericera trigonica. PHYTOPATHOLOGY 2018; 108:1056-1066. [PMID: 29663849 DOI: 10.1094/phyto-10-17-0348-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carrot yellows disease has been associated for many years with the Gram-positive, insect-vectored bacteria, 'Candidatus Phytoplasma' and Spiroplasma citri. However, reports in the last decade also link carrot yellows symptoms with a different, Gram-negative, insect-vectored bacterium, 'Ca. Liberibacter solanacearum'. Our study shows that to date 'Ca. L. solanacearum' is tightly associated with carrot yellows symptoms across Israel. The genetic variant found in Israel is most similar to haplotype D, found around the Mediterranean Basin. We further show that the psyllid vector of 'Ca. L. solanacearum', Bactericera trigonica, is highly abundant in Israel and is an efficient vector for this pathogen. A survey conducted comparing conventional and organic carrot fields showed a marked reduction in psyllid numbers and disease incidence in the field practicing chemical control. Fluorescent in situ hybridization and scanning electron microscopy analyses further support the association of 'Ca. L. solanacearum' with disease symptoms and show that the pathogen is located in phloem sieve elements. Seed transmission experiments revealed that while approximately 30% of the tested carrot seed lots are positive for 'Ca. L. solanacearum', disease transmission was not observed. Possible scenarios that may have led to the change in association of the disease etiological agent with carrot yellows are discussed. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- M Mawassi
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - O Dror
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - M Bar-Joseph
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - A Piasezky
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - J M Sjölund
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - N Levitzky
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - N Shoshana
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - L Meslenin
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - S Haviv
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - C Porat
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - L Katsir
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - S Kontsedalov
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - M Ghanim
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - E Zelinger-Reichert
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - Y M Arnsdorf
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - A Gera
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| | - O Bahar
- First, second, third, fourth, sixth, seventh, eighth, ninth, tenth, eleventh, and seventeenth authors: Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourth and tenth authors: The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel; fifth and fifteenth: Science and Advice for Scottish Agriculture (SASA), Roddinglaw Road, Edinburgh EH12 9FJ, UK; sixth and seventh authors: Bar Ilan University, 52900 Ramat Gan, Israel; twelfth and thirteenth authors: Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; fourteenth author: CSI Microscopy Unity, The Hebrew University of Jerusalem, Faculty of Agriculture, Food and Environment; and sixteenth author: Plant Protection and Inspection Services, Ministry of Agriculture and Rural Development, Rishon LeZion, Israel
| |
Collapse
|
15
|
Haapalainen M, Wang J, Latvala S, Lehtonen MT, Pirhonen M, Nissinen AI. Genetic Variation of 'Candidatus Liberibacter solanacearum' Haplotype C and Identification of a Novel Haplotype from Trioza urticae and Stinging Nettle. PHYTOPATHOLOGY 2018; 108:925-934. [PMID: 29600888 DOI: 10.1094/phyto-12-17-0410-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
'Candidatus Liberibacter solanacearum' (CLso) haplotype C is associated with disease in carrots and transmitted by the carrot psyllid Trioza apicalis. To identify possible other sources and vectors of this pathogen in Finland, samples were taken of wild plants within and near the carrot fields, the psyllids feeding on these plants, parsnips growing next to carrots, and carrot seeds. For analyzing the genotype of the CLso-positive samples, a multilocus sequence typing (MLST) scheme was developed. CLso haplotype C was detected in 11% of the T. anthrisci samples, in 35% of the Anthriscus sylvestris plants with discoloration, and in parsnips showing leaf discoloration. MLST revealed that the CLso in T. anthrisci and most A. sylvestris plants represent different strains than the bacteria found in T. apicalis and the cultivated plants. CLso haplotype D was detected in 2 of the 34 carrot seed lots tested, but was not detected in the plants grown from these seeds. Phylogenetic analysis by unweighted-pair group method with arithmetic means clustering suggested that haplotype D is more closely related to haplotype A than to C. A novel, sixth haplotype of CLso, most closely related to A and D, was found in the psyllid T. urticae and stinging nettle (Urtica dioica, Urticaceae), and named haplotype U.
Collapse
Affiliation(s)
- M Haapalainen
- First, second, and fifth authors: University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland; third and sixth authors: Natural Resources Institute Finland (Luke), Natural Resources, Tietotie, FI-31600 Jokioinen, Finland; and fourth author: Finnish Food Safety Authority Evira, FI-00790 Helsinki, Finland
| | - J Wang
- First, second, and fifth authors: University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland; third and sixth authors: Natural Resources Institute Finland (Luke), Natural Resources, Tietotie, FI-31600 Jokioinen, Finland; and fourth author: Finnish Food Safety Authority Evira, FI-00790 Helsinki, Finland
| | - S Latvala
- First, second, and fifth authors: University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland; third and sixth authors: Natural Resources Institute Finland (Luke), Natural Resources, Tietotie, FI-31600 Jokioinen, Finland; and fourth author: Finnish Food Safety Authority Evira, FI-00790 Helsinki, Finland
| | - M T Lehtonen
- First, second, and fifth authors: University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland; third and sixth authors: Natural Resources Institute Finland (Luke), Natural Resources, Tietotie, FI-31600 Jokioinen, Finland; and fourth author: Finnish Food Safety Authority Evira, FI-00790 Helsinki, Finland
| | - M Pirhonen
- First, second, and fifth authors: University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland; third and sixth authors: Natural Resources Institute Finland (Luke), Natural Resources, Tietotie, FI-31600 Jokioinen, Finland; and fourth author: Finnish Food Safety Authority Evira, FI-00790 Helsinki, Finland
| | - A I Nissinen
- First, second, and fifth authors: University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland; third and sixth authors: Natural Resources Institute Finland (Luke), Natural Resources, Tietotie, FI-31600 Jokioinen, Finland; and fourth author: Finnish Food Safety Authority Evira, FI-00790 Helsinki, Finland
| |
Collapse
|
16
|
Loiseau M, Renaudin I, Cousseau-Suhard P, Lucas PM, Forveille A, Gentit P. Lack of Evidence of Vertical Transmission of 'Candidatus Liberibacter solanacearum' by Carrot Seeds Suggests That Seed is not a Major Transmission Pathway. PLANT DISEASE 2017; 101:2104-2109. [PMID: 30677368 DOI: 10.1094/pdis-04-17-0531-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter solanacearum' is a bacterium associated with several vegetative disorders on solanaceous and apiaceous crops. Following the recent detection of the bacterium in carrots in Europe, and particularly carrot plants used for seed production in France, two independent laboratories conducted experiments on the transmission of this pathogen by seed and had discordant results: one study showed no bacterial transmission to plants, and the other showed transmission to carrot seedlings starting from the fourth month of culture. To test the hypothesis that growing conditions affect seed transmission efficiencies, trials were renewed in 2015 on four lots of 500 carrot seeds naturally contaminated with 'Ca. L. solanacearum' and two lots of 100 healthy seeds. The plants were grown for 6 months in an insect-proof NS2 greenhouse. Sets of 108 plants from the contaminated lots and 24 plants from the healthy lots were individually analyzed each month using real-time PCR to detect the bacterium. The detection tests on seeds and plants from healthy lots were always negative. During the 6 months of the trial, no plants from the contaminated seed lots tested positive for the bacterium or showed any infection symptoms. These results indicate that transmission of 'Ca. L. solanacearum' by carrot seed is rare and difficult to reproduce.
Collapse
Affiliation(s)
- Marianne Loiseau
- ANSES-Laboratoire de la Santé des Végétaux, 49044 Angers Cedex 01, France
| | - Isabelle Renaudin
- ANSES-Laboratoire de la Santé des Végétaux, 49044 Angers Cedex 01, France
| | | | - Pierre-Marie Lucas
- ANSES-Laboratoire de la Santé des Végétaux, 49044 Angers Cedex 01, France
| | - Aurélie Forveille
- ANSES-Laboratoire de la Santé des Végétaux, 49044 Angers Cedex 01, France
| | - Pascal Gentit
- ANSES-Laboratoire de la Santé des Végétaux, 49044 Angers Cedex 01, France
| |
Collapse
|