1
|
Liu R, Zhang L, Xiao S, Chen H, Han Y, Niu B, Wu W, Gao H. Ursolic acid, the main component of blueberry cuticular wax, inhibits Botrytis cinerea growth by damaging cell membrane integrity. Food Chem 2023; 415:135753. [PMID: 36870211 DOI: 10.1016/j.foodchem.2023.135753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Cuticular wax has been reported to play an essential role in resisting pathogens in various fruits. This study investigated the antifungal ability of the components in blueberry cuticular wax. We showed that the cuticular wax of blueberry inhibited the growth of Botrytis cinerea and ursolic acid (UA) was the key antifungal compound. UA inhibited B. cinerea growth in vitro and in vivo. Furthermore, UA increased extracellular conductivity and cellular leakage in B. cinerea, deformed the mycelial morphology, and destroyed cell ultrastructure. We also demonstrated that UA stimulated the accumulation of reactive oxygen species (ROS) and inactivated ROS scavenging enzymes. These results indicate that UA may exert antifungal effects against B. cinerea by disrupting cell membrane integrity. Thus, UA has significant potential as an agent for the control of gray mold in blueberry.
Collapse
Affiliation(s)
- Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shangyue Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Mustafa MH, Corre MN, Heurtevin L, Bassi D, Cirilli M, Quilot-Turion B. Stone fruit phenolic and triterpenoid compounds modulate gene expression of Monilinia spp. in culture media. Fungal Biol 2023; 127:1085-1097. [PMID: 37495299 DOI: 10.1016/j.funbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
Phenolic and triterpenoid compounds are essential components in stone fruit skin and flesh tissues. They are thought to possess general antimicrobial activity. However, regarding brown rot disease, investigations were only confined to a limited number of phenolics, especially chlorogenic acid. The activity of triterpenoids against Monilinia spp., as an essential part of the peach cuticular wax, has not been studied before. In this work, the anti-fungal effect of some phenolics, triterpenoids, and fruit surface compound (FSC) extracts of peach fruit at two developmental stages were investigated on Monilinia fructicola and Monilinia laxa characteristics during in vitro growth. A new procedure for assaying anti-fungal activity of triterpenoids, which are notoriously difficult to assess in vitro because of their hydrophobicity, has been developed. Measurements of colony diameter, sporulation, and germination of second-generation conidia were recorded. Furthermore, the expression of twelve genes of M. fructicola associated with germination and/or appressorium formation and virulence-related genes was studied relative to the presence of the compounds. The study revealed that certain phenolics and triterpenoids showed modest anti-fungal activity while dramatically modulating gene expression in mycelium of M. fructicola on culture medium. MfRGAE1 gene was overexpressed by chlorogenic and ferulic acids and MfCUT1 by betulinic acid, at 4- and 7- days of mycelium incubation. The stage II FSC extract, corresponding to the period when the fruit is resistant to Monilinia spp., considerably up-regulated the MfLAE1 gene. These findings effectively contribute to the knowledge of biochemical compounds effects on fungi on in vitro conditions.
Collapse
Affiliation(s)
- Majid Hassan Mustafa
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy; INRAE, GAFL, F-84143, Montfavet, France
| | | | | | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
3
|
Zhang M, Wang T, Li Y, Bi Y, Li R, Yuan J, Xu W, Prusky D. AaHog1 Regulates Infective Structural Differentiation Mediated by Physicochemical Signals from Pear Fruit Cuticular Wax, Stress Response, and Alternaria alternata Pathogenicity. J Fungi (Basel) 2022; 8:jof8030266. [PMID: 35330268 PMCID: PMC8952436 DOI: 10.3390/jof8030266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
The high-osmolarity glycerol response kinase, Hog1, affects several cellular responses, but the precise regulatory role of the Hog1 mitogen-activated protein (MAP) kinase in the differentiation of the infective structure of Alternariaalternata induced by pear cuticular wax and hydrophobicity has not yet clarified. In this study, the AaHog1 in A. alternata was identified and functionally characterized. AaHog1 has threonine-glycine-tyrosine (TGY) phosphorylation sites. Moreover, the expression level of AaHog1 was significantly upregulated during the stages of appressorium formation of A. alternata on the fruit-wax-extract-coated GelBond hydrophobic film surface. Importantly, our results showed that the appressorium and infection hyphae formation rates were significantly reduced in ΔAaHog1 mutants. Furthermore, AaHog1 is beneficial for the growth and development, stress tolerance, virulence, and cell-wall-degrading enzyme activity of A. alternata. These findings may be useful for dissecting the AaHog1 regulatory mechanism in relation to the pathogenesis of A. alternata.
Collapse
Affiliation(s)
- Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
- Correspondence:
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
| | - Rong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
| | - Jing Yuan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
| | - Wenyi Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (M.Z.); (T.W.); (Y.B.); (R.L.); (J.Y.); (W.X.); (D.P.)
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Rishon LeZion 50250, Israel
| |
Collapse
|
4
|
Klavins L, Mezulis M, Nikolajeva V, Klavins M. Composition, sun protective and antimicrobial activity of lipophilic bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) extract fractions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Zhang M, Li Y, Wang T, Bi Y, Li R, Huang Y, Mao R, Jiang Q, Liu Y, Prusky DB. AaPKAc Regulates Differentiation of Infection Structures Induced by Physicochemical Signals From Pear Fruit Cuticular Wax, Secondary Metabolism, and Pathogenicity of Alternaria alternata. FRONTIERS IN PLANT SCIENCE 2021; 12:642601. [PMID: 33968101 PMCID: PMC8096925 DOI: 10.3389/fpls.2021.642601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Alternaria alternata, the casual agent of black rot of pear fruit, can sense and respond to the physicochemical cues from the host surface and form infection structures during infection. To evaluate the role of cyclic AMP-dependent protein kinase (cAMP-PKA) signaling in surface sensing of A. alternata, we isolated and functionally characterized the cyclic adenosine monophosphate-dependent protein kinase A catalytic subunit gene (AaPKAc). Gene expression results showed that AaPKAc was strongly expressed during the early stages of appressorium formation on hydrophobic surfaces. Knockout mutants ΔAaPKAc were generated by replacing the target genes via homologous recombination events. We found that intracellular cAMP content increased but PKA content decreased in ΔAaPKAc mutant strain. Appressorium formation and infection hyphae were reduced in the ΔAaPKAc mutant strain, and the ability of the ΔAaPKAc mutant strain to recognize and respond to high hydrophobicity surfaces and different surface waxes was lower than in the wild type (WT) strain. In comparison with the WT strain, the appressorium formation rate of the ΔAaPKAc mutant strain on high hydrophobicity and fruit wax extract surface was reduced by 31.6 and 49.3% 4 h after incubation, respectively. In addition, AaPKAc is required for the hypha growth, biomass, pathogenicity, and toxin production of A. alternata. However, AaPKAc negatively regulated conidia formation, melanin production, and osmotic stress resistance. Collectively, AaPKAc is required for pre-penetration, developmental, physiological, and pathological processes in A. alternata.
Collapse
Affiliation(s)
- Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Yongcai Li,
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Rong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Renyan Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qianqian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov B. Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| |
Collapse
|
6
|
Larkin PMK, Lawson KL, Contreras DA, Le CQ, Trejo M, Realegeno S, Hilt EE, Chandrasekaran S, Garner OB, Fishbein GA, Yang S. Amplicon-Based Next-Generation Sequencing for Detection of Fungi in Formalin-Fixed, Paraffin-Embedded Tissues: Correlation with Histopathology and Clinical Applications. J Mol Diagn 2020; 22:1287-1293. [PMID: 32738297 DOI: 10.1016/j.jmoldx.2020.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 01/13/2023] Open
Abstract
Invasive fungal infections are increasing in prevalence because of an expanding population of immunocompromised individuals. To reduce morbidity and mortality, it is critical to accurately identify fungal pathogens to guide treatment. Current methods rely on histopathology, fungal culture, and serology, which are often insufficient for diagnosis. Herein, we describe the use of a laboratory-developed internal transcribed spacer-targeted amplicon-based next-generation sequencing (NGS) assay for the identification of fungal etiology in fungal stain-positive formalin-fixed, paraffin-embedded tissues by using Illumina MiSeq. A total of 44 specimens from 35 patients were included in this study, with varying degrees of fungal burden from multiple anatomic sites. NGS identified 20 unique species across the 54 total organisms detected, including 40 molds, 10 yeasts, and 4 dimorphic fungi. The histopathologic morphology and the organisms suspected by surgical pathologist were compared with the organisms identified by NGS, with 100% (44/44) and 93.2% (41/44) concordance, respectively. In contrast, fungal culture only provided an identification in 27.3% (12/44) of specimens. We demonstrated that NGS is a powerful method for accurate and unbiased fungal identification in formalin-fixed, paraffin-embedded tissues. A retrospective evaluation of the clinical utility of the NGS results also suggests this technology can potentially improve both the speed and the accuracy of diagnosis for invasive fungal infections.
Collapse
Affiliation(s)
- Paige M K Larkin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katy L Lawson
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Deisy A Contreras
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Catherine Q Le
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Marisol Trejo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Susan Realegeno
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Evann E Hilt
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sukantha Chandrasekaran
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
7
|
Chai Y, Li A, Chit Wai S, Song C, Zhao Y, Duan Y, Zhang B, Lin Q. Cuticular wax composition changes of 10 apple cultivars during postharvest storage. Food Chem 2020; 324:126903. [PMID: 32361095 DOI: 10.1016/j.foodchem.2020.126903] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Cuticular wax chemicals differ among fruit cultivars and contribute to storage ability. However, wax analysis in apple cultivars, particularly during storage, has not been described. In this work, the chemicals and crystal structures of cuticular wax in 10 apple cultivars were analyzed to observe wax functions in apple during storage. Results showed that alkanes and primary alcohols decreased while fatty acids increased in stored fruits of all cultivars compared with the fruits before storage. Terpenoids, aldehydes, and phenols were observed in stored fruits but not in the fruits before storage in all cultivars except 'Red Star' fruit. The weight loss rate was significantly correlated with six components including C13 alcohol, C14 alkanes, total alkanes, total wax, C13 alkanes and C54 alkanes in 10 cultivar apple fruits during storage. Our findings indicate that the total wax, particularly alkanes, in the peel of apple fruits is essential for storage and quality control.
Collapse
Affiliation(s)
- Yifeng Chai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Shenyang Agricultural University, Liaoning 100193, People's Republic of China
| | - Ang Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Su Chit Wai
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Congcong Song
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yaoyao Zhao
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yuquan Duan
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Baiqing Zhang
- Shenyang Agricultural University, Liaoning 100193, People's Republic of China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
8
|
Evaluation of the Foliar Damage That Threatens a Millennial-Age Tree, Araucaria araucana (Molina) K. Koch, Using Leaf Waxes. FORESTS 2020. [DOI: 10.3390/f11010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A. araucana is an endemic species of the temperate forests from Chile and Argentina; protected in both countries and categorized as in danger of extinction. Individuals of this species have begun to show foliar damage (i.e., discoloration) in branches and upper parts. The discoloration begins from the base to the top and from the trunk to the branches with necrotic rings appearing; in some cases causing death; and is currently attributed to an as yet unknown disease. This study focuses on the first protective layer of plants against environmental stress and pathogens; known as leaf waxes. The abundance and distribution of three classes of leaf waxes (long chain fatty acids; alkanes and alcohols) were measured in healthy individuals of A. araucana from different sites and individuals that present foliar damage (sick individuals). In the case of sick individuals; their leaf waxes were measured considering the level of leaf damage; that is; leaves without; medium and full foliar damage. The most abundant class of leaf wax in both sick and healthy individuals was fatty acids; followed by alkanes and then alcohols; with common dominant chains; C28 fatty acid; C29 alkane and C24 alcohol. Sick individuals have higher abundances of alkanes and alcohols than healthy individuals. The leaves of sick individuals have lower values of distribution indices (the carbon preference index of fatty acids and average chain length of alkanes) as foliar damage increases that are interpreted as a reduction of in vivo biosynthesis of waxes. This is the first evidence of A. araucana response to a still unknown disease that is killing individuals of this endemic species.
Collapse
|
9
|
Zhang YL, You CX, Li YY, Hao YJ. Advances in Biosynthesis, Regulation, and Function of Apple Cuticular Wax. FRONTIERS IN PLANT SCIENCE 2020; 11:1165. [PMID: 32849720 PMCID: PMC7419609 DOI: 10.3389/fpls.2020.01165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 05/05/2023]
Abstract
A layer of cuticular wax is deposited on the surface of terrestrial plants, which reduces the damage caused by environmental stress and maintains growth in a relatively stable internal environment. Apple cuticular wax is an important part of the fruit epidermis that plays an essential role in apple development, storage, and adaptation to environmental stress. The formation of cuticular wax has been described at the transcriptional, post-transcriptional, and translational levels in Arabidopsis, whereas less research has been performed on apple cuticular wax. Here, we provide a brief overview of how apple cuticular wax is formed, as well as its structure, composition, and function. An association among the environment, genes, and apple cuticular wax deposition was revealed. Cuticular wax prevents fruit rust from occurring on apple. Taken together, a detailed understanding of apple cuticular wax is discussed. The results will act as a reference for extending the storage period and increasing the commodity value of apple.
Collapse
Affiliation(s)
| | | | | | - Yu-Jin Hao
- *Correspondence: Yuan-Yuan Li, ; Yu-Jin Hao,
| |
Collapse
|
10
|
Lara I, Heredia A, Domínguez E. Shelf Life Potential and the Fruit Cuticle: The Unexpected Player. FRONTIERS IN PLANT SCIENCE 2019; 10:770. [PMID: 31244879 PMCID: PMC6581714 DOI: 10.3389/fpls.2019.00770] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 05/18/2023]
Abstract
The plant cuticle is an extracellular barrier that protects the aerial, non-lignified parts of plants from the surrounding environment, and furthermore plays important functions in organ growth and development. The role of the cuticle in post-harvest quality of fruits is a topic currently driving a lot of interest since an increasing bulk of research data show its modulating influence on a number of important traits determining shelf life and storage potential, including water transpiration and fruit dehydration, susceptibility to rots, pests and disorders, and even firmness. Moreover, the properties of fruit cuticles keep evolving after harvest, and have also been shown to be highly responsive to the external conditions surrounding the fruit. Indeed, common post-harvest treatments will have an impact on cuticle integrity and performance that needs to be evaluated for a deeper understanding of changes in post-harvest quality. In this review, chemical and biophysical properties of fruit cuticles are summarized. An overview is also provided of post-harvest changes in cuticles and the effects thereupon of some post-harvest procedures, with the purpose of offering a comprehensive summary of currently available information. Identification of natural sources of variability in relevant quality traits would allow breeding for the improvement of post-harvest life of fruit commodities.
Collapse
Affiliation(s)
- Isabel Lara
- Unitat de Postcollita-XaRTA, AGROTÈCNIO, Departament de Química, Universitat de Lleida, Lleida, Spain
| | - Antonio Heredia
- IHSM La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Eva Domínguez
- IHSM La Mayora, Departamento de Mejora Genética y Biotecnología, Consejo Superior de Investigaciones Científicas, Málaga, Spain
| |
Collapse
|
11
|
Trivedi P, Karppinen K, Klavins L, Kviesis J, Sundqvist P, Nguyen N, Heinonen E, Klavins M, Jaakola L, Väänänen J, Remes J, Häggman H. Compositional and morphological analyses of wax in northern wild berry species. Food Chem 2019; 295:441-448. [PMID: 31174780 DOI: 10.1016/j.foodchem.2019.05.134] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
Abstract
Aerial surfaces of plants are covered by a waxy cuticle protecting plants from excessive water loss and UV light. In the present study, composition and morphology of cuticular waxes of northern wild berry species bilberry (Vaccinium myrtillus L.), lingonberry (V. vitis-idaea L.), bog bilberry (V. uliginosum L.) and crowberry (Empetrum nigrum L.) were investigated. Scanning electron microscopy (SEM) revealed differences in epicuticular wax morphology, and gas chromatography-mass spectrometry (GC-MS) analysis confirmed variation in chemical composition of cuticular waxes between the berry species. The dominant compounds in bilberry and lingonberry cuticular waxes were triterpenoids, while fatty acids and alkanes were the dominant ones in bog bilberry and crowberry, respectively. Wax extracted by supercritical fluid extraction (SFE) from industrial press cakes of bilberry and lingonberry contained linoleic acid and γ-linolenic acid as the dominant compounds. Furthermore, in vitro sun protection factor (SPF) of berry waxes depicted good UV-B absorbing capacities.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Katja Karppinen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Linards Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Jorens Kviesis
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Petri Sundqvist
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| | - Esa Heinonen
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Maris Klavins
- Department of Environmental Science, University of Latvia, LV-1004 Riga, Latvia.
| | - Laura Jaakola
- NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway; Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Juha Väänänen
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Janne Remes
- Centre of Microscopy and Nanotechnology, University of Oulu, FI-90014 Oulu, Finland.
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
12
|
Trivedi P, Nguyen N, Hykkerud AL, Häggman H, Martinussen I, Jaakola L, Karppinen K. Developmental and Environmental Regulation of Cuticular Wax Biosynthesis in Fleshy Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:431. [PMID: 31110509 PMCID: PMC6499192 DOI: 10.3389/fpls.2019.00431] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
The aerial parts of land plants are covered by a hydrophobic layer called cuticle that limits non-stomatal water loss and provides protection against external biotic and abiotic stresses. The cuticle is composed of polymer cutin and wax comprising a mixture of very-long-chain fatty acids and their derivatives, while also bioactive secondary metabolites such as triterpenoids are present. Fleshy fruits are also covered by the cuticle, which has an important protective role during the fruit development and ripening. Research related to the biosynthesis and composition of cuticles on vegetative plant parts has largely promoted the research on cuticular waxes in fruits. The chemical composition of the cuticular wax varies greatly between fruit species and is modified by developmental and environmental cues affecting the protective properties of the wax. This review focuses on the current knowledge of the cuticular wax biosynthesis during fleshy fruits development, and on the effect of environmental factors in regulation of the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed, as well as the potential for recycling of industrial fruit residues as a valuable raw material for natural wax to be used in food, cosmetics and medicine.
Collapse
Affiliation(s)
- Priyanka Trivedi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Nga Nguyen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Laura Jaakola
- Norwegian Institute of Bioeconomy Research, Ås, Norway
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Katja Karppinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Dai P, Liang X, Wang Y, Gleason ML, Zhang R, Sun G. High Humidity and Age-Dependent Fruit Susceptibility Promote Development of Trichothecium Black Spot on Apple. PLANT DISEASE 2019; 103:259-267. [PMID: 30520696 DOI: 10.1094/pdis-05-18-0734-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fruit bagging is a widely used orchard practice in China. Trichothecium black spot (TBS) is a disease highly associated with the fruit bagging. In this study, we characterized in vitro factors affecting the causal agent, Trichothecium roseum, and TBS development and infection histology on field-bagged apple fruit in situ. Under in vitro conditions, conidial germination required exogenous nutrients, and the germination rate was significantly promoted by high humidity, a condition mimicking the bag microenvironment. Germ tubes penetrated fruit via natural openings including stomata, lenticels, and surface cracks. To determine the chronology of infection by T. roseum, 'Fuji' fruit were inoculated in the field at different developmental stages. The earliest infection occurred 60 days after full bloom (dafb), and disease incidence increased as fruit maturity advanced. At harvest time (165 dafb), lesions on more recently inoculated fruit (105 dafb, 150 dafb) were larger than lesions from fruit inoculated on earlier dates. Histological observation showed that infection of younger fruit elicited stronger host lignification responses restricting lesion development. Taken together, our results support the hypothesis that high humidity in sealed bags and increased susceptibility associated with advancing fruit maturity are key factors promoting T. roseum infection and TBS symptom development on bagged apple fruit.
Collapse
Affiliation(s)
- Pengbo Dai
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
14
|
Rosli H, Batzer JC, Harrington TC, Gleason ML. Peltaster gemmifer: A new species in the sooty blotch and flyspeck species complex from the United States. Mycologia 2018; 110:822-834. [PMID: 30240341 DOI: 10.1080/00275514.2018.1486679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Sooty blotch and flyspeck (SBFS) fungi infect the cuticle of fruit, including apple fruit, and produce pigmented colonies. A new member of this fungal complex in the genus Peltaster is described on the basis of molecular and morphological evidence. The SBFS complex is a diverse group of ectophytic fungi that reside primarily within the order Capnodiales. Sooty blotch and flyspeck isolates from apple orchards in the central United States were subjected to parsimony and Bayesian analyses based on the internal transcribed spacer regions of nuc rDNA, the partial translation elongation factor 1-α gene, and the partial mitochondrial small subunit rRNA gene. Phylogenetic analysis delineated a new species, Peltaster gemmifer, from P. cerophilus and P. fructicola. Peltaster gemmifer conidiophores bear primary conidia that produce secondary conidia either through budding or through microcyclic conidiation; these were not seen in cultures of P. cerophilus and P. fructicola. On cellulose membrane that was placed on water agar amended with apple juice, P. gemmifer produced brown to black pycnothyria in a superficial brownish mycelial mat, similar to the colonies produced on apple fruit. Findings from the present study add to the >80 named and putative SBFS species so far described worldwide.
Collapse
Affiliation(s)
- Hafizi Rosli
- a School of Biological Sciences, Universiti Sains Malaysia , 11800 Penang , Malaysia
| | - Jean C Batzer
- b Department of Plant Pathology and Microbiology , ATRB Building, 2213 Pammel Drive, Iowa State University , Ames , Iowa 50011
| | - Thomas C Harrington
- b Department of Plant Pathology and Microbiology , ATRB Building, 2213 Pammel Drive, Iowa State University , Ames , Iowa 50011
| | - Mark L Gleason
- b Department of Plant Pathology and Microbiology , ATRB Building, 2213 Pammel Drive, Iowa State University , Ames , Iowa 50011
| |
Collapse
|
15
|
Poirier BC, Buchanan DA, Rudell DR, Mattheis JP. Differential Partitioning of Triterpenes and Triterpene Esters in Apple Peel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1800-1806. [PMID: 29356521 DOI: 10.1021/acs.jafc.7b04509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Apple peel is a rich source of secondary metabolites, and several studies have outlined the dietary health benefits of ursane-type triterpenes in apple. Changes in triterpene metabolism have also been associated with the development of superficial scald, a postharvest apple peel browning disorder, and postharvest applications of diphenylamine and 1-methylcyclopropene. Previously, studies have generated metabolite profiles for whole apple peel or apple wax. In this study, we report separate metabolic analyses of isolated wax fractions and peel epidermis to investigate the spatial distribution of secondary metabolites in peel. In addition to examining previously reported triterpenes, we identified several unreported fatty acid esters of ursane-type triterpenes (C14-C22). All free pentacyclic triterpenes and triterpenic acids, with the exception of β-amyrin, were localized in the wax layer, along with esters of ursolic acid and uvaol. All sterols, sterol derivatives and α-amyrin esters were localized in the dewaxed peel epidermis.
Collapse
Affiliation(s)
- Brenton C Poirier
- Tree Fruit Research Laboratory, USDA-ARS , Wenatchee, Washington 98801, United States
| | - David A Buchanan
- Tree Fruit Research Laboratory, USDA-ARS , Wenatchee, Washington 98801, United States
| | - David R Rudell
- Tree Fruit Research Laboratory, USDA-ARS , Wenatchee, Washington 98801, United States
| | - James P Mattheis
- Tree Fruit Research Laboratory, USDA-ARS , Wenatchee, Washington 98801, United States
| |
Collapse
|
16
|
Xu C, Zhang R, Sun G, Gleason ML. Comparative Genome Analysis Reveals Adaptation to the Ectophytic Lifestyle of Sooty Blotch and Flyspeck Fungi. Genome Biol Evol 2017; 9:3137-3151. [PMID: 29126189 PMCID: PMC5737583 DOI: 10.1093/gbe/evx229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2017] [Indexed: 01/04/2023] Open
Abstract
Sooty blotch and flyspeck (SBFS) fungi are a distinctive group of plant pathogens which, although phylogenetically diverse, occupy an exclusively surface-dwelling niche. They cause economic losses by superficially blemishing the fruit of several tree crops, principally apple, in moist temperate regions worldwide. In this study, we performed genome-wide comparative analyses separately within three pairs of species of ascomycete pathogens; each pair contained an SBFS species as well as a closely related but plant-penetrating parasite (PPP) species. Our results showed that all three of the SBFS pathogens had significantly smaller genome sizes, gene numbers and repeat ratios than their counterpart PPPs. The pathogenicity-related genes encoding MFS transporters, secreted proteins (mainly effectors and peptidases), plant cell wall degrading enzymes, and secondary metabolism enzymes were also drastically reduced in the SBFS fungi compared with their PPP relatives. We hypothesize that the above differences in genome composition are due largely to different levels of acquisition, loss, expansion, and contraction of gene families and emergence of orphan genes. Furthermore, results suggested that horizontal gene transfer may have played a role, although limited, in the divergent evolutionary paths of SBFS pathogens and PPPs; repeat-induced point mutation could have inhibited the propagation of transposable elements and expansion of gene families in the SBFS group, given that this mechanism is stronger in the SBFS fungi than in their PPP relatives. These results substantially broaden understanding of evolutionary mechanisms of adaptation of fungi to the epicuticular niche of plants.
Collapse
Affiliation(s)
- Chao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Department of Plant Pathology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
17
|
Wang B, Liang X, Gleason ML, Zhang R, Sun G. Genome sequence of the ectophytic fungus Ramichloridium luteum reveals unique evolutionary adaptations to plant surface niche. BMC Genomics 2017; 18:729. [PMID: 28915794 PMCID: PMC5602860 DOI: 10.1186/s12864-017-4118-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ectophytic fungi occupy the waxy plant surface, an extreme environment characterized by prolonged desiccation, nutrient limitation, and exposure to solar radiation. The nature of mechanisms that facilitate adaptation to this environment remains unclear. In this study, we sequenced the complete genome of an ectophytic fungus, Ramichloridium luteum, which colonizes the surface of apple fruit, and carried out comparative genomic and transcriptome analysis. RESULTS The R. luteum genome was 28.18 Mb and encoded 9466 genes containing 1.85% repetitive elements. Compared with cell-penetrating pathogens, genes encoding plant cell wall degrading enzymes (PCWDEs), PTH11-like G protein-coupled receptors (GPCRs) and effectors were drastically reduced. In contrast, genes encoding cutinases and secretory lipases were strikingly expanded, and four of nine secretory lipases were probably acquired by horizontal gene transfer from Basidiomycota. Transcriptomic analysis revealed elevated expression of genes involved in cuticle degradation (cutinase, secretory lipase) and stress responses (melanin biosynthesis, aquaporins, lysozymes and HOG pathway). CONCLUSIONS Taken together, our results highlight genomic features associated with evolution of surface niche adaptation by the ectophytic fungus R. luteum, namely the contraction of PCWDEs, PTH11-like GPCRs and effectors, and the expansion of cuticle degradation and stress tolerance.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| | - Mark L. Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011 USA
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100 China
| |
Collapse
|
18
|
Batzer JC, Arias MMD, Harrington TC, Gleason ML, Groenewald JZ, Crous PW. Four species of Zygophiala (Schizothyriaceae, Capnodiales) are associated with the sooty blotch and flyspeck complex on apple. Mycologia 2017. [DOI: 10.1080/15572536.2008.11832480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Mark L. Gleason
- Department of Plant Pathology, Iowa State University, Ames, Iowa 50011
| | | | - Pedro W. Crous
- CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, the Netherlands
| |
Collapse
|
19
|
Xu C, Chen H, Gleason ML, Xu JR, Liu H, Zhang R, Sun G. Peltaster fructicola genome reveals evolution from an invasive phytopathogen to an ectophytic parasite. Sci Rep 2016; 6:22926. [PMID: 26964666 PMCID: PMC4786788 DOI: 10.1038/srep22926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/24/2016] [Indexed: 11/26/2022] Open
Abstract
Sooty blotch and flyspeck (SBFS) fungi are unconventional plant pathogens that cause economic losses by blemishing the surface appearance of infected fruit. Here, we introduce the 18.14-Mb genome of Peltaster fructicola, one of the most prevalent SBFS species on apple. This undersized assembly contains only 8,334 predicted protein-coding genes and a very small repertoire of repetitive elements. Phylogenomics and comparative genomics revealed that P. fructicola had undergone a reductive evolution, during which the numbers of orphan genes and genes involved in plant cell wall degradation, secondary metabolism, and secreted peptidases and effectors were drastically reduced. In contrast, the genes controlling 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis and appressorium-mediated penetration were retained substantially. Additionally, microscopic examination of the surfaces of infected apple indicated for the first time that P. fructicola can not only dissolve epicuticular waxes but also partially penetrate the cuticle proper. Our findings indicate that genome contraction, characterized mainly by the massive loss of pathogenicity-related genes, has played an important role in the evolution of P. fructicola (and by implication other SBFS species) from a plant-penetrating ancestor to a non-invasive ectophyte, displaying a novel form of trophic interaction between plants and fungi.
Collapse
Affiliation(s)
- Chao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mark L. Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Ismail SI, Batzer JC, Harrington TC, Gleason ML. Phenology of Infection on Apple Fruit by Sooty Blotch and Flyspeck Species in Iowa Apple Orchards. PLANT DISEASE 2016; 100:352-359. [PMID: 30694131 DOI: 10.1094/pdis-02-15-0137-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sooty blotch and flyspeck (SBFS) is a fungal disease complex that can cause significant economic losses to apple growers by blemishing the fruit surface with dark-colored colonies. Little is known about the phenology of host infection for this diverse group of epiphytes. In 2009 and 2010, we investigated the timing of infection of apple fruit by SBFS species in six commercial apple orchards in Iowa. Five trees in each orchard received no fungicide sprays after fruit set. Within 3 weeks after fruit set, 60 apples per tree were covered with Japanese fruit bags to minimize inoculum deposition. Subsequently, a subsample of bagged apples was exposed for a single 2-week-long period and then rebagged for the remainder of the growing season. Experimental treatments included seven consecutive 2-week-long exposure periods; control treatments were apples that were either bagged or exposed for the entire season. After apples had been stored at 2°C for 6 weeks following harvest, all SBFS colonies on the apples were identified to species using a PCR-RFLP protocol. A total of 15 species were identified. For the seven most prevalent species, the number of infections per cm2 of fruit surface was greatest on apples that had been exposed early in the season. Two SBFS species, Peltaster fructicola and Colletogloeopsis-like FG2, differed significantly from each other in time required to attain 50% of the total number of colonies per apple, and analysis of variance indicated a significant interaction of SBFS taxon with exposure period. Our findings are the first evidence of species-specific patterns in timing of SBFS inoculum deposition and infection on apple fruit, and strengthen previous observations that most SBFS infections resulting in visible colonies at harvest develop from infections that occur early in the fruit development period. By defining taxon-specific phenological patterns of fruit infection, our findings, when combined with knowledge of region-specific patterns of taxon prevalence, provide a foundation for development of more efficient and cost-effective SBFS management tactics.
Collapse
Affiliation(s)
- S I Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - J C Batzer
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - T C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - M L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| |
Collapse
|
21
|
Ismail SI, Batzer JC, Harrington TC, Crous PW, Lavrov DV, Li H, Gleason ML. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple. Mycologia 2016; 108:292-302. [PMID: 26740537 DOI: 10.3852/15-036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 11/07/2015] [Indexed: 01/07/2023]
Abstract
Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi.
Collapse
Affiliation(s)
- Siti Izera Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jean Carlson Batzer
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Thomas C Harrington
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Pedro W Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands MicrobiologyDepartment of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the NetherlandsWageningen University and Research Center (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011
| | - Huanyu Li
- Department of Plant Pathology, Gansu Agricultural University, Lanzhou City, Gansu, China
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
22
|
Gao L, Ma Y, Zhao W, Wei Z, Gleason ML, Chen H, Hao L, Sun G, Zhang R. Three New Species of Cyphellophora (Chaetothyriales) Associated with Sooty Blotch and Flyspeck. PLoS One 2015; 10:e0136857. [PMID: 26398347 PMCID: PMC4580582 DOI: 10.1371/journal.pone.0136857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 11/18/2022] Open
Abstract
The genus Cyphellophora includes human- and plant-related species from mammal skin and nails, plant materials, and food. On the basis of analysis of ITS, LSU, TUB2 and RPB1 data and morphological characters, three new species, Cyphellophora phyllostachysdis, C. artocarpi and C. musae, associated with sooty blotch and flyspeck disease, were added to this genus. The 2D structure of ITS1 and ITS2 confirmed this taxonomic status. Pathogenicity tests on apple fruit indicated that C. artocarpi could be a sooty blotch and flyspeck pathogen of apple.
Collapse
Affiliation(s)
- Liu Gao
- Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yongqiang Ma
- Institute of Plant Protection, Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai Province, China
| | - Wanyu Zhao
- Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhuoya Wei
- Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mark L. Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Hongcai Chen
- Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lu Hao
- Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Guangyu Sun
- Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rong Zhang
- Department of State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
23
|
Li J, Guo Y, Li Z, Lin Y, Liu L, Zhang X, Deng H. Supercritical Carbon Dioxide and Hexane Extraction of Wax from Apple Peel Pomace: Content, Composition and Thermal Properties. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2015.1020951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Lara I, Belge B, Goulao LF. A focus on the biosynthesis and composition of cuticle in fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4005-19. [PMID: 25850334 DOI: 10.1021/acs.jafc.5b00013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cuticles are plant structures, composed mostly by lipidic layers, synthesized by nonwoody aerial plant organs and deposited on the surface of outer epidermal cell walls. Although its significance has been often disregarded, cuticle deposition modifies organ chemistry, influences mechanical properties, and plays a central role in sensing and interacting with the surrounding environment. Even though some research has been undertaken addressing cuticle biosynthesis and composition in vegetative plant tissues, comparatively less information is available regarding cuticle composition in the epidermis of fruits. However, recent work points to a role for cuticles in the modulation of fruit quality and postharvest performance, indicating that current models for the investigation of fruit development, metabolism, and quality need to integrate a comprehensive knowledge of the cuticle layer. This paper provides an overview of recent findings and observations regarding cuticle biosynthesis and composition in fruits from species of agronomic and economic relevance. Important, but often neglected differences in cuticle composition and biosynthesis patterns among diverse fruit species are described herein to generate an atlas of what is currently known about fruit cuticles and to highlight what remains to be explored. Emphasis is placed on the need to investigate each genetic background considering its own specificities, to permit correlations with the particular physiology of each species considered. Both specific composition and changes during maturation and ripening are reviewed.
Collapse
Affiliation(s)
- Isabel Lara
- †Departament de Quı́mica, Unitat de Postcollita-XaRTA, Universitat de Lleida, Rovira Roure 191, 25198 Lleida, Spain
| | - Burcu Belge
- †Departament de Quı́mica, Unitat de Postcollita-XaRTA, Universitat de Lleida, Rovira Roure 191, 25198 Lleida, Spain
| | - Luis F Goulao
- §Agri4Safe/BioTrop, Instituto de Investigação Cientı́fica Tropical (IICT), Polo Mendes Ferrão - Pavilhão de Agro-Indústrias e Agronomia Tropical, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
25
|
Ciccoritti R, Pasquini M, Sgrulletta D, Nocente F. Effect of 5-n-alkylresorcinol extracts from durum wheat whole grain on the growth of fusarium head blight (FHB) causal agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:43-50. [PMID: 25496267 DOI: 10.1021/jf5054518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In an approach toward the identification of ecofriendly compounds for fusarium head blight biocontrol, the in vitro antifungal activity of 5-n-alkylresorcinol (AR) extracts, obtained from durum wheat intact kernels, was tested. In comparison with ethyl acetate and acetone extracts containing AR, total inhibition of Fusarium graminearum spore germination was observed with cyclohexane extract, which also exhibited a significant fungistatic activity against F. graminearum, Fusarium culmorum, Fusarium avenaceum, and Fusarium poae. Additionally, the study of the influence of such variables as predrying of seeds and durum wheat genotype on AR cyclohexane extract properties allowed the association of its highest antifungal activity with the AR homologue composition and, in particular, with the presence of a higher C21:0/C23:0 ratio. The interesting finding of this study suggests a potential application of the AR homologues in crop protection systems and could be an important step toward the development of commercial formulations suitable to the prevention of fungal diseases.
Collapse
|
26
|
Belge B, Llovera M, Comabella E, Gatius F, Guillén P, Graell J, Lara I. Characterization of cuticle composition after cold storage of "Celeste" and "Somerset" sweet cherry fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8722-9. [PMID: 25089645 DOI: 10.1021/jf502650t] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cuticle composition and structure may be relevant factors affecting the storage potential of fruits, but very few studies have analyzed fruit cuticle composition from a postharvest perspective. In this work, the chemical composition of waxes and cutin (major cuticular components) was analyzed in cuticle samples isolated from "Celeste" and "Somerset" cherries (Prunus avium L.) after cold storage at 0 °C. Total cuticle amounts per surface unit (μg cm(-2)) increased along with cold storage. The triterpene ursolic acid, the alkane nonacosane, linoleic acid, and β-sitosterol were the most abundant components of cuticular waxes, whereas cutin composition was dominated by C18-type monomers. In spite of being comprised of similar chemical families, cultivar-related differences were found regarding the abundance and the evolution of some compound families during cold storage. To the best of our knowledge, this is the first report on changes in cuticle composition of sweet cherry during postharvest storage.
Collapse
Affiliation(s)
- Burcu Belge
- Departament de Química, ‡Unitat de Postcollita-XaRTA, §Serveis Científico-Tècnics, ∥Departament de Tecnologia d'Aliments, Universitat de Lleida , Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Li Y, Yin Y, Chen S, Bi Y, Ge Y. Chemical composition of cuticular waxes during fruit development of Pingguoli pear and their potential role on early events of Alternaria alternata infection. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:313-320. [PMID: 32480991 DOI: 10.1071/fp13184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/19/2013] [Indexed: 06/11/2023]
Abstract
To elucidate the role of fruit wax in fungal infection, changes in chemical composition of wax during fruit development of Pingguoli pear, and their role in Alternaria alternata infection were studied. Results showed that wax content increased during fruit development. Fruit harvested 130 days after full bloom (DAFB) had a peak wax content that was eight times higher than from fruit at 100 DAFB. There were differences in the relative chain-length distribution of wax classes during development. Alkanes were major components during early development, whereas alkanes and triterpenoids predominated during late development. Results of in vitro tests showed that conidial germination and mycelial growth of A. alternata could be inhibited by wax extracted from the fruit surface at different developmental stages. These results shed new light on the chemical basis for wax involvement in fungal infection.
Collapse
Affiliation(s)
- Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Yan Yin
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Songjiang Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Yonghong Ge
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| |
Collapse
|
28
|
Wang J, Hao H, Liu R, Ma Q, Xu J, Chen F, Cheng Y, Deng X. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chem 2013; 153:177-85. [PMID: 24491718 DOI: 10.1016/j.foodchem.2013.12.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Surface wax of mature Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) was analysed by crystal morphology, chemical composition, and gene expression levels. The epicuticular and total waxes of both citrus cultivars were mostly composed of aldehydes, alkanes, fatty acids and primary alcohols. The epicuticular wax accounted for 80% of the total wax in the Newhall fruits and was higher than that in the Satsuma fruits. Scanning electron microscopy showed that larger and more wax platelets were deposited on the surface of Newhall fruits than on the Satsuma fruits. Moreover, the expression levels of genes involved in the wax formation were consistent with the biochemical and crystal morphological analyses. These diversities of fruit wax between the two cultivars may contribute to the differences of fruit postharvest storage properties, which can provide important information for the production of synthetic wax for citrus fruits.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haohao Hao
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Runsheng Liu
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qiaoli Ma
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
29
|
Szakiel A, Pączkowski C, Pensec F, Bertsch C. Fruit cuticular waxes as a source of biologically active triterpenoids. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2012; 11:263-284. [PMID: 23519009 PMCID: PMC3601259 DOI: 10.1007/s11101-012-9241-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/04/2012] [Indexed: 05/07/2023]
Abstract
The health benefits associated with a diet rich in fruit and vegetables include reduction of the risk of chronic diseases such as cardiovascular disease, diabetes and cancer, that are becoming prevalent in the aging human population. Triterpenoids, polycyclic compounds derived from the linear hydrocarbon squalene, are widely distributed in edible and medicinal plants and are an integral part of the human diet. As an important group of phytochemicals that exert numerous biological effects and display various pharmacological activities, triterpenoids are being evaluated for use in new functional foods, drugs, cosmetics and healthcare products. Screening plant material in the search for triterpenoid-rich plant tissues has identified fruit peel and especially fruit cuticular waxes as promising and highly available sources. The chemical composition, abundance and biological activities of triterpenoids occurring in cuticular waxes of some economically important fruits, like apple, grape berry, olive, tomato and others, are described in this review. The need for environmentally valuable and potentially profitable technologies for the recovery, recycling and upgrading of residues from fruit processing is also discussed.
Collapse
Affiliation(s)
- Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Cezary Pączkowski
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warszawa, Poland
| | - Flora Pensec
- UFR Pluridisciplinaire Enseignement Professionnalisant Supérieur, Laboratoire Vigne Biotechnologie et Environnement EA 3391, Université de Haute-Alsace, 33, rue de Herrlisheim, 68000 Colmar, France
| | - Christophe Bertsch
- UFR Pluridisciplinaire Enseignement Professionnalisant Supérieur, Laboratoire Vigne Biotechnologie et Environnement EA 3391, Université de Haute-Alsace, 33, rue de Herrlisheim, 68000 Colmar, France
| |
Collapse
|
30
|
Cooley DR, Rosenberger DA, Gleason ML, Koehler G, Cox K, Clements JM, Sutton TB, Madeiras A, Hartman JR. Variability Among Forecast Models for the Apple Sooty Blotch/Flyspeck Disease Complex. PLANT DISEASE 2011; 95:1179-1186. [PMID: 30732062 DOI: 10.1094/pdis-03-11-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Several disease forecast models have been developed to guide treatment of the sooty blotch and flyspeck (SBFS) disease complex of apple. Generally, these empirical models are based on the accumulation of hours of leaf wetness (leaf wetness duration [LWD]) from a biofix at or near the phenological growth stage petal fall, when apple flower petals senesce and drop. The models recommend timing of the initial fungicide application targeting SBFS. However, there are significant differences among SBFS forecast models in terms of biofix and the length of LWD thresholds. A comparison of models using a single input data set generated recommendations for the first SBFS fungicide application that differed by up to 5 weeks. In an attempt to improve consistency among models, potential sources for differences were examined. Leaf wetness (LW) is a particularly variable parameter among models, depending on whether on-site or remote weather data were used, the types of sensors and their placement for on-site monitors, and the models used to estimate LW remotely. When SBFS models are applied in the field, recommended treatment thresholds do not always match the method of data acquisition, leading to potential failures. Horticultural factors, such as tree size, canopy density, and cultivar, and orchard site factors such as the distance to potential inoculum sources can impact risk of SBFS and should also be considered in forecast models. The number of fungal species identified as contributors to the SBFS disease complex has expanded tremendously in recent years. A lack of understanding of key epidemiological factors for different fungi in the complex, and which fungi represent the most challenging management problems, are obvious issues in the development of improved SBFS models. If SBFS forecast models are to be adopted, researchers will need to address these issues.
Collapse
Affiliation(s)
- Daniel R Cooley
- Department of Plant, Soil, & Insect Sciences, University of Massachusetts, Amherst
| | | | - Mark L Gleason
- Department of Plant Pathology, Iowa State University, Ames
| | - Glen Koehler
- Pest Management Office, University of Maine, Orono
| | - Kerik Cox
- Hudson Valley Lab, Cornell University, Highland, NY
| | - Jon M Clements
- Department of Plant, Soil, & Insect Sciences, University of Massachusetts, Amherst
| | - Turner B Sutton
- Department of Plant Pathology, North Carolina State University, Raleigh
| | - Angela Madeiras
- Department of Plant, Soil, & Insect Sciences, University of Massachusetts, Amherst
| | - John R Hartman
- Department of Plant Pathology, University of Kentucky, Lexington
| |
Collapse
|
31
|
Li F, Zhang X, Yao Y, Sun X, Liu L. Whole fruit staining with aniline blue at harvest is associated with superficial pathogenesis of “Fuji” apples after storage. Biotech Histochem 2010; 86:394-403. [DOI: 10.3109/10520295.2010.516685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- F Li
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Shandong Province
| | - X Zhang
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Shandong Province
| | - Y Yao
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Shandong Province
| | - X Sun
- Rohm and Haas China Inc., Beijing
| | - L Liu
- Canzhuang Fruit Technology Service, Zhaoyuan, Shandong Province, PR China
| |
Collapse
|
32
|
Hoffmann EJ, Vandervoort C, Wise JC. Plum curculio (Coleoptera: Curculionidae) adult mortality and associated fruit injury after exposure to field-aged insecticides on tart cherry branches. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:1196-1205. [PMID: 20857728 DOI: 10.1603/ec10017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), adults were exposed to field-aged residues of thiamethoxam, acetamiprid, thiacloprid, indoxacarb, or azinphos-methyl on tart cherry, Prunus cerasus L. variety Montmorency. At 1, 3, 7, and 14 d postapplication, fruit were sampled for chemical residues, and bioassays were used to assess beetle mortality and plant tissue injury. Azinphos-methyl had lethal activity within 1 d of exposure at all postapplication intervals and significant fruit protection extended to 14 d postapplication. All of the neonicotinoids had lethal activity at 3 d posttreatment, with acetamiprid activity extending to 7 d. Antifeedant and oviposition deterrent effects were seen with thiamethoxam and thiacloprid; damage incidence was significantly reduced in the absence of significant beetle mortality or intoxication. Thiamethoxam and acetamiprid penetrated into leaf and fruit tissue and were detected in the interior tissues at 14 d postapplication, but interior thiacloprid residues were not detected after day 1. Indoxacarb provided some fruit protection out to 7 d postapplication, and 14-d-old residues intoxicated beetles, but the slow action of this compound allowed significant damage to occur before beetles were incapacitated. Indoxacarb was only detected as a surface residue after the first day postapplication. These data on the plant-insect-chemistry interactions will support use and management decisions as compounds with acute contact activity are phased out.
Collapse
Affiliation(s)
- Eric J Hoffmann
- USDA Arid Lands Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238, USA.
| | | | | |
Collapse
|
33
|
Al Bitar L, Voigt D, Zebitz CPW, Gorb SN. Tarsal morphology and attachment ability of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1029-1038. [PMID: 19643108 DOI: 10.1016/j.jinsphys.2009.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 05/28/2023]
Abstract
Despite several studies on the attachment ability of different insect taxa, little is known about this phenomenon in adult Lepidoptera. In this study we combined morphological and experimental analyses of tarsal adhesive devices and the attachment ability of the codling moth Cydia pomonella (L.) (Lepidoptera, Tortricidae) to smooth surfaces. Pretarsi of C. pomonella attach to smooth substrates by means of their smooth, flexible and well developed arolia. Using the centrifugal force measurement technique, friction forces of males and females were assessed on hydrophobic and hydrophilic glass surfaces. Adults of both sexes generated similar forces in spite of the noticeable difference in their body masses. That is why males showed significantly higher safety factors (attachment force divided by body weight) compared to those of females. Hydrophobicity of the substrate had no considerable effect on friction forces. For females, friction forces (sliding parallel to the substrate plane) were compared with adhesive forces (pulling off perpendicularly from the substrate plane) measured on Plexiglas surfaces. It can be concluded that the attachment system of C. pomonella is rather robust against physico-chemical properties of the substrate and is able to achieve a very good attachment on vertical and horizontal substrata.
Collapse
Affiliation(s)
- Loris Al Bitar
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany.
| | | | | | | |
Collapse
|
34
|
Crous P, Schoch C, Hyde K, Wood A, Gueidan C, de Hoog G, Groenewald J. Phylogenetic lineages in the Capnodiales. Stud Mycol 2009; 64:17-47S7. [PMID: 20169022 PMCID: PMC2816965 DOI: 10.3114/sim.2009.64.02] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Capnodiales incorporates plant and human pathogens, endophytes, saprobes and epiphytes, with a wide range of nutritional modes. Several species are lichenised, or occur as parasites on fungi, or animals. The aim of the present study was to use DNA sequence data of the nuclear ribosomal small and large subunit RNA genes to test the monophyly of the Capnodiales, and resolve families within the order. We designed primers to allow the amplification and sequencing of almost the complete nuclear ribosomal small and large subunit RNA genes. Other than the Capnodiaceae (sooty moulds), and the Davidiellaceae, which contains saprobes and plant pathogens, the order presently incorporates families of major plant pathological importance such as the Mycosphaerellaceae, Teratosphaeriaceae and Schizothyriaceae. The Piedraiaceae was not supported, but resolves in the Teratosphaeriaceae. The Dissoconiaceae is introduced as a new family to accommodate Dissoconium and Ramichloridium. Lichenisation, as well as the ability to be saprobic or plant pathogenic evolved more than once in several families, though the taxa in the upper clades of the tree lead us to conclude that the strictly plant pathogenic, nectrotrophic families evolved from saprobic ancestors (Capnodiaceae), which is the more primitive state.
Collapse
Affiliation(s)
- P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The
Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of
Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The
Netherlands
| | - C.L. Schoch
- National Center for Biotechnology Information, National Library of
Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda,
Maryland 20892-6510, U.S.A.
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai
57100, Thailand
| | - A.R. Wood
- ARC – Plant Protection Research Institute, P. Bag X5017,
Stellenbosch, 7599, South Africa
| | - C. Gueidan
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The
Netherlands
| | - G.S. de Hoog
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The
Netherlands
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The
Netherlands
| |
Collapse
|
35
|
Peschel S, Franke R, Schreiber L, Knoche M. Composition of the cuticle of developing sweet cherry fruit. PHYTOCHEMISTRY 2007; 68:1017-25. [PMID: 17328933 DOI: 10.1016/j.phytochem.2007.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 05/14/2023]
Abstract
The composition of wax and cutin from developing sweet cherry (Prunus avium) fruit was studied by GC-MS between 22 and 85 days after full bloom (DAFB). In this and our previous study, fruit mass and surface area increased in a sigmoidal pattern with time, but mass of the cuticular membrane (CM) per unit fruit surface area decreased. On a whole fruit basis, mass of CM increased up to 36 DAFB and remained constant thereafter. At maturity, triterpenes, alkanes and alcohols accounted for 75.6%, 19.1% and 1.2% of total wax, respectively. The most abundant constituents were the triterpenes ursolic (60.0%) and oleanolic acid (7.5%), the alkanes nonacosane (13.0%) and heptacosane (3.0%), and the secondary alcohol nonacosan-10-ol (1.1%). In developing fruit triterpenes per unit area decreased, but alkanes and alcohols remained essentially constant. The cutin fraction of mature fruit consisted of mostly C16 (69.5%) and, to a lower extent, C18 monomers (19.4%) comprising alkanoic, omega-hydroxyacids, alpha,omega-dicarboxylic and midchain hydroxylated acids. The most abundant constituents were 9(10),16-dihydroxy-hexadecanoic acid (53.6%) and 9,10,18-trihydroxy-octadecanoic acid (7.8%). Amounts of C16 and C18 monomers per unit area decreased in developing fruit, but remained approximately constant on a whole fruit basis. Within both classes of monomers, opposing changes occurred. Amounts of hexadecandioic, 16-hydroxy-hexadecanoic, 9(10)-hydroxy-hexadecane-1,16-dioic and 9,10-epoxy-octadecane-1,18-dioic acids increased, but 9,10,18-trihydroxy-octadecanoic and 9,10,18-trihydroxy-octadecenoic acids decreased. There were no qualitative and minor quantitative differences in wax and cutin composition between cultivars at maturity. Our data indicate that deposition of some constituents of wax and cutin ceased during early fruit development.
Collapse
Affiliation(s)
- Stefanie Peschel
- Institute for Agronomy and Crop Science, Department of Horticulture, Martin-Luther-University of Halle-Wittenberg, D-06099 Halle, Saale, Germany
| | | | | | | |
Collapse
|
36
|
Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci U S A 2004; 101:4706-11. [PMID: 15070782 PMCID: PMC384811 DOI: 10.1073/pnas.0305574101] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Indexed: 11/18/2022] Open
Abstract
Epicuticular wax forms a layer of hydrophobic material on plant aerial organs, which constitutes a protective barrier between the plant and its environment. We report here the identification of WIN1, an Arabidopsis thaliana ethylene response factor-type transcription factor, which can activate wax deposition in overexpressing plants. We constitutively expressed WIN1 in transgenic Arabidopsis plants, and found that leaf epidermal wax accumulation was up to 4.5-fold higher in these plants than in control plants. A significant increase was also found in stems. Interestingly, approximately 50% of the additional wax could only be released by complete lipid extractions, suggesting that not all of the wax is superficial. Gene expression analysis indicated that a number of genes, such as CER1, KCS1, and CER2, which are known to be involved in wax biosynthesis, were induced in WIN1 overexpressors. This observation indicates that induction of wax accumulation in transgenic plants is probably mediated through an increase in the expression of genes encoding enzymes of the wax biosynthesis pathway.
Collapse
Affiliation(s)
- Pierre Broun
- Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
| | | | | | | | | |
Collapse
|