1
|
Khechmar S, Chesnais Q, Villeroy C, Brault V, Drucker M. Interplay between a polerovirus and a closterovirus decreases aphid transmission of the polerovirus. Microbiol Spectr 2024; 12:e0111524. [PMID: 39387567 PMCID: PMC11537018 DOI: 10.1128/spectrum.01115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 10/15/2024] Open
Abstract
Multi-infection of plants by viruses is very common and can change drastically infection parameters such as virus accumulation, distribution, and vector transmission. Sugar beet is an important crop that is frequently co-infected by the polerovirus beet chlorosis virus (BChV) and the closterovirus beet yellows virus (BYV), both vectored by the green peach aphid (Myzus persicae). These phloem-limited viruses are acquired while aphids ingest phloem sap from infected plants. Here we found that co-infection decreased transmission of BChV by ~50% but had no impact on BYV transmission. The drastic reduction of BChV transmission was due to neither lower accumulation of BChV in co-infected plants nor reduced phloem sap ingestion by aphids from these plants. Using the signal amplification by exchange reaction fluorescent in situ hybridization technique on plants, we observed that 40% of the infected phloem cells were co-infected and that co-infection caused redistribution of BYV in these cells. The BYV accumulation pattern changed from distinct intracellular spherical inclusions in mono-infected cells to a diffuse form in co-infected cells. There, BYV co-localized with BChV throughout the cytoplasm, indicative of virus-virus interactions. We propose that BYV-BChV interactions could restrict BChV access to the sieve tubes and reduce its accessibility for aphids and present a model of how co-infection could alter BChV intracellular movement and/or phloem loading and reduce BChV transmission.IMPORTANCEMixed viral infections in plants are understudied yet can have significant influences on disease dynamics and virus transmission. We investigated how co-infection with two unrelated viruses, BChV and BYV, affects aphid transmission of the viruses in sugar beet plants. We show that co-infection reduced BChV transmission by about 50% without affecting BYV transmission, despite similar virus accumulation rates in co-infected and mono-infected plants. Follow-up experiments examined the localization and intracellular distribution of the viruses, leading to the discovery that co-infection caused a redistribution of BYV in the phloem vessels and altered its repartition pattern within plant cells, suggesting virus-virus interactions. In conclusion, the interplay between BChV and BYV affects the transmission of BChV but not BYV, possibly through direct or indirect virus-virus interactions at the cellular level. Understanding these interactions could be crucial for managing virus propagation in crops and preventing yield losses.
Collapse
Affiliation(s)
- Souheyla Khechmar
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Quentin Chesnais
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | | | - Véronique Brault
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| | - Martin Drucker
- SVQV, UMR 1131, INRAE Centre Grand Est, Colmar, France
- Université Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Zohoungbogbo HPF, Vihou F, Achigan-Dako EG, Barchenger DW. Current knowledge and breeding strategies for management of aphid-transmitted viruses of pepper ( Capsicum spp.) in Africa. FRONTIERS IN PLANT SCIENCE 2024; 15:1449889. [PMID: 39524558 PMCID: PMC11543480 DOI: 10.3389/fpls.2024.1449889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Aphid-transmitted viruses cause significant losses in pepper production worldwide, negatively affecting yield and quality. The emergence of new aphid-transmitted viruses or development of variants as well as the occurrence in mixed infections make management a challenge. Here, we overview the current status of the distribution, incidence and phylogeny of aphids and the viruses they transmit in pepper in Africa; outline the available genetic resources, including sources of resistance, resistance genes and molecular markers; and discuss the recent advances in understanding the genetic basis of resistance to the predominant African viruses infecting pepper. Pepper veinal mottle virus (PVMV; Potyvirus); Potato virus Y (PVY; Potyvirus), Chili veinal mottle virus (ChiVMV; Potyvirus), Cucumber mosaic virus (CMV; Cucumovirus) and Pepper veins yellow virus (PeVYV; Polerovirus) have been reported to be the most widespread and devastating aphid-transmitted viruses infecting pepper across Africa. Co-infection or mixed infection between aphid-transmitted viruses has been detected and the interrelationship between viruses that co-infect chili peppers is poorly understood. Establishing and evaluating existing and new diversity sets with more genetic diversity is an important component of developing host resistance and implementing integrated management strategies. However, more work needs to be done to characterize the aphid-transmitted viral strains across Africa and understand their phylogeny in order to develop more durable host resistance. In addition, a limited number of QTLs associated with resistance to the aphid-transmitted virus have been reported and QTL data are only available for PVY, ChiVMV and CMV mainly against European and Asian strains, although PVMV is likely the most important aphid-transmitted viral disease in Africa. There is a need to identify germplasm resources with resistance against various aphid-transmitted virus strains, and subsequent pyramiding of the resistance using marker-assisted selection could be an effective strategy. The recent advances in understanding the genetic basis of the resistance to the virus and the new breeding techniques that can be leveraged to accelerate breeding for aphid-transmitted virus in pepper are proposed as strategies to more efficiently develop resistant cultivars. The deployment of multi-genetic resistances in pepper is an effective and desirable method of managing viral-diseases in Africa and limit losses for farmers in a sustainable manner.
Collapse
Affiliation(s)
- Herbaud P. F. Zohoungbogbo
- World Vegetable Center, West and Central Africa–Coastal and Humid Regions, Cotonou, Benin
- Genetics, Biotechnology and Seed Science Unit, Laboratory of Crop Production, Physiology and Plant Breeding, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Fabrice Vihou
- Genetics, Biotechnology and Seed Science Unit, Laboratory of Crop Production, Physiology and Plant Breeding, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Enoch G. Achigan-Dako
- Genetics, Biotechnology and Seed Science Unit, Laboratory of Crop Production, Physiology and Plant Breeding, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | | |
Collapse
|
3
|
Fouad N, Granier M, Blanc S, Thébaud G, Urbino C. Demonstration of Insect Vector-Mediated Transfer of a Betasatellite between Two Helper Viruses. Viruses 2024; 16:1420. [PMID: 39339896 PMCID: PMC11436227 DOI: 10.3390/v16091420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments.
Collapse
Affiliation(s)
- Noun Fouad
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Martine Granier
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Stéphane Blanc
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Cica Urbino
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| |
Collapse
|
4
|
Chen Y, Liang Q, Wei L, Zhou X. Alfalfa Mosaic Virus and White Clover Mosaic Virus Combined Infection Leads to Chloroplast Destruction and Alterations in Photosynthetic Characteristics of Nicotiana benthamiana. Viruses 2024; 16:1255. [PMID: 39205229 PMCID: PMC11359596 DOI: 10.3390/v16081255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alfalfa mosaic virus (AMV) is one of the most widely distributed viruses; it often exhibits combined infection with white clover mosaic virus (WCMV). Even so, little is known about the effects of co-infection with AMV and WCMV on plants. To determine whether there is a synergistic effect of AMV and WCMV co-infection, virus co-infection was studied by electron microscopy, the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and real-time fluorescence quantitative PCR (RT-qPCR) of AMV and WCMV co-infection in Nicotiana benthamiana. Meanwhile, measurements were carried out on the photosynthetic pigments, photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters. The results showed that the most severe disease development was induced by AMV and WCMV co-infection, and the disease grade was scale 7. N. benthamiana leaves induced mottled yellow-green alternating patterns, leaf wrinkling, and chlorosis, and chloroplasts were observed to be on the verge of disintegration. The relative accumulation of AMV CP and WCMV CP was significantly increased by 15.44-fold and 10.04-fold upon co-infection compared to that with AMV and WCMV single infection at 21 dpi. In addition, chlorophyll a, chlorophyll b, total chlorophyll, the net photosynthetic rate, the water use efficiency, the apparent electron transport rate, the PSII maximum photochemical efficiency, the actual photochemical quantum yield, and photochemical quenching were significantly reduced in leaves co-infected with AMV and WCMV compared to AMV- or WCMV-infected leaves and CK. On the contrary, the carotenoid content, transpiration rate, stomatal conductance, intercellular CO2 concentration, minimal fluorescence value, and non-photochemical quenching were significantly increased. These findings suggest that there was a synergistic effect between AMV and WCMV, and AMV and WCMV co-infection severely impacted the normal function of photosynthesis in N. benthamiana.
Collapse
Affiliation(s)
| | - Qiaolan Liang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | | | | |
Collapse
|
5
|
Cao X, Huang M, Wang S, Li T, Huang Y. Tomato yellow leaf curl virus: Characteristics, influence, and regulation mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108812. [PMID: 38875781 DOI: 10.1016/j.plaphy.2024.108812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV), a DNA virus belonging to the genus Begomovirus, significantly impedes the growth and development of numerous host plants, including tomatoes and peppers. Due to its rapid mutation rate and frequent recombination events, achieving complete control of TYLCV proves exceptionally challenging. Consequently, identifying resistance mechanisms become crucial for safeguarding host plants from TYLCV-induced damage. This review article delves into the global distribution, dispersal patterns, and defining characteristics of TYLCV. Moreover, the intricate interplay between TYLCV and various influencing factors, such as insect vectors, susceptible host plants, and abiotic stresses, plays a pivotal role in plant-TYLCV interactions. The review offers an updated perspective on recent investigations focused on plant response mechanisms to TYLCV infection, including the intricate relationship between TYLCV, whiteflies, and regulatory factors. This comprehensive analysis aims to establish a foundation for future research endeavors exploring the molecular mechanisms underlying TYLCV infection and the development of plant resistance through breeding programs.
Collapse
Affiliation(s)
- Xue Cao
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Mengna Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China
| | - Shimei Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Tong Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Tea Science, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| | - Ying Huang
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
6
|
Lee YH, Kim YH, Hong JK. Light- and Relative Humidity-Regulated Hypersensitive Cell Death and Plant Immunity in Chinese Cabbage Leaves by a Non-adapted Bacteria Xanthomonas campestris pv. vesicatoria. THE PLANT PATHOLOGY JOURNAL 2024; 40:358-376. [PMID: 39117335 PMCID: PMC11309840 DOI: 10.5423/ppj.oa.03.2024.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Inoculation of Chinese cabbage leaves with high titer (107 cfu/ml) of the non-adapted bacteria Xanthomonas campestris pv. vesicatoria (Xcv) strain Bv5-4a.1 triggered rapid leaf tissue collapses and hypersensitive cell death (HCD) at 24 h. Electrolyte leakage and lipid peroxidation markedly increased in the Xcv-inoculated leaves. Defence-related gene expressions (BrPR1, BrPR4, BrChi1, BrGST1 and BrAPX1) were preferentially activated in the Xcv-inoculated leaves. The Xcv-triggered HCD was attenuated by continuous light but accelerated by a dark environment, and the prolonged high relative humidity also alleviated the HCD. Constant dark and increased relative humidity provided favorable conditions for the Xcv bacterial growth in the leaves. Pretreated fluridone (biosynthetic inhibitor of endogenous abscisic acid [ABA]) increased the HCD in the Xcv-inoculated leaves, but exogenous ABA attenuated the HCD. The pretreated ABA also reduced the Xcv bacterial growth in the leaves. These results highlight that the onset of HCD in Chinese cabbage leaves initiated by non-adapted pathogen Xcv Bv5-4a.1 and in planta bacterial growth was differently modulated by internal and external conditional changes.
Collapse
Affiliation(s)
- Young Hee Lee
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Korea
| | - Yun-Hee Kim
- Laboratory of Plant Molecular Physiology, Department of Biology Education, Gyeongsang National University, Jinju 52828, Korea
| | - Jeum Kyu Hong
- Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju 52725, Korea
| |
Collapse
|
7
|
Codod CB, Severns PM, Sparks AN, Srinivasan R, Kemerait RC, Dutta B. Assessment of Prickly Sida as a Potential Inoculum Source for Sida Golden Mosaic Virus in Commercial Snap Bean Farms in Georgia, United States. PLANT DISEASE 2024; 108:1776-1785. [PMID: 38243178 DOI: 10.1094/pdis-09-23-1901-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Sida golden mosaic virus (SiGMV), an obligate pathogen that infects snap beans (Phaseolus vulgaris), is known to infect prickly sida (Sida spinosa L.), which is a common weed in agricultural farms in Georgia. Prickly sida has also been reported as a suitable host of sweetpotato whitefly (Bemisia tabaci), the vector of SiGMV. Despite being a host for both SiGMV and its vector, the role of prickly sida as a reservoir and inoculum source for SiGMV in snap bean farms has not been evaluated. This study was conducted to document the occurrence of SiGMV-infected prickly sida plants and to assess its potential role as a source of SiGMV inoculum in snap bean farms. A survey of 17 commercial snap bean farms conducted in spring 2021 confirmed the presence of SiGMV-infected prickly sida in southern Georgia. In fall 2021 and 2022, on-farm field trials were conducted in four commercial farms where SiGMV-infected prickly sida plants were documented earlier as a part of survey in spring 2021. The spatial distribution and temporal patterns of adult whiteflies and SiGMV on snap bean were compared between macroplots (13.7 × 30.5 m) "with prickly sida" or "without prickly sida" that were at least 232 m apart from each other. We did not observe any consistent differences in counts of adult whiteflies between macroplots with or without prickly sida in the four commercial farms. SiGMV infection was detected earlier and with higher incidences in snap bean macroplots "with prickly sida" compared with macroplots "without prickly sida." An apparent disease gradient was observed in two of the four farms assessed. Higher SiGMV incidences were observed on the edges of macroplots "with prickly sida." These findings indicate prickly sida as a potential natural reservoir and a source for SiGMV spread in snap bean farms in southern Georgia.
Collapse
Affiliation(s)
- Clarence B Codod
- Department of Plant Pathology, The University of Georgia, Tifton, GA
| | - Paul M Severns
- Department of Plant Pathology, The University of Georgia, Athens, GA
| | - Alton N Sparks
- Department of Entomology, The University of Georgia, Tifton, GA
| | | | - Robert C Kemerait
- Department of Plant Pathology, The University of Georgia, Tifton, GA
| | - Bhabesh Dutta
- Department of Plant Pathology, The University of Georgia, Tifton, GA
| |
Collapse
|
8
|
Gu T, Feng C, Hua Y, Liu D, Chen H, He Z, Xu K, Zhang K. Molecular Characterization and Pathogenicity of an Infectious cDNA Clone of Youcai Mosaic Virus on Solanum nigrum. Int J Mol Sci 2024; 25:1620. [PMID: 38338897 PMCID: PMC10855738 DOI: 10.3390/ijms25031620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Virus infections cause devastative economic losses for various plant species, and early diagnosis and prevention are the most effective strategies to avoid the losses. Exploring virus genomic evolution and constructing virus infectious cDNA clones is essential to achieve a deeper understanding of the interaction between host plant and virus. Therefore, this work aims to guide people to better prevent, control, and utilize the youcai mosaic virus (YoMV). Here, the YoMV was found to infect the Solanum nigrum under natural conditions. Then, an infectious cDNA clone of YoMV was successfully constructed using triple-shuttling vector-based yeast recombination. Furthermore, we established phylogenetic trees based on the complete genomic sequences, the replicase gene, movement protein gene, and coat protein gene using the corresponding deposited sequences in NCBI. Simultaneously, the evolutionary relationship of the YoMV discovered on S. nigrum to others was determined and analyzed. Moreover, the constructed cDNA infectious clone of YoMV from S. nigrum could systematically infect the Nicotiana benthamiana and S. nigrum by agrobacterium-mediated infiltration. Our investigation supplied a reverse genetic tool for YoMV study, which will also contribute to in-depth study and profound understanding of the interaction between YoMV and host plant.
Collapse
Affiliation(s)
- Tianxiao Gu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.G.); (Y.H.); (D.L.); (H.C.); (Z.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, East Wenhui Road No. 48, Yangzhou 225009, China
| | - Chenwei Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.G.); (Y.H.); (D.L.); (H.C.); (Z.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, East Wenhui Road No. 48, Yangzhou 225009, China
| | - Yanhong Hua
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.G.); (Y.H.); (D.L.); (H.C.); (Z.H.)
| | - Duxuan Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.G.); (Y.H.); (D.L.); (H.C.); (Z.H.)
| | - Haoyu Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.G.); (Y.H.); (D.L.); (H.C.); (Z.H.)
| | - Zhen He
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.G.); (Y.H.); (D.L.); (H.C.); (Z.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, East Wenhui Road No. 48, Yangzhou 225009, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Kun Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.G.); (Y.H.); (D.L.); (H.C.); (Z.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, East Wenhui Road No. 48, Yangzhou 225009, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| |
Collapse
|
9
|
Ontiveros I, Diaz-Pendón JA, López-Moya JJ. Experimental Transmission of Plant Viruses by Aphids or Whiteflies. Methods Mol Biol 2024; 2724:165-179. [PMID: 37987905 DOI: 10.1007/978-1-0716-3485-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Numerous species of plant viruses are naturally transmitted by insect vectors, mainly homopterans like aphids and whiteflies. Depending on the vector specificity and the mode of transmission, different durations of the periods for acquisition, retention, and inoculation are required for a successful transmission. Therefore, the experimental setup to perform controlled transmission experiments under laboratory conditions involves handling the vector organisms and managing the times for the different steps of the process to optimize and standardize the results. This chapter describes some basic procedures that can be applied to vector-mediated transmission experiments with selected viruses using aphids or whiteflies and different host plants.
Collapse
Affiliation(s)
- Irene Ontiveros
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, Málaga, Spain
| | - Juan Antonio Diaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, Málaga, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, Málaga, Spain.
| |
Collapse
|
10
|
Ontiveros I, Fernández-Pozo N, Esteve-Codina A, López-Moya JJ, Díaz-Pendón JA. Enhanced Susceptibility to Tomato Chlorosis Virus (ToCV) in Hsp90- and Sgt1-Silenced Plants: Insights from Gene Expression Dynamics. Viruses 2023; 15:2370. [PMID: 38140611 PMCID: PMC10747942 DOI: 10.3390/v15122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The emerging whitefly-transmitted crinivirus tomato chlorosis virus (ToCV) causes substantial economic losses by inducing yellow leaf disorder in tomato crops. This study explores potential resistance mechanisms by examining early-stage molecular responses to ToCV. A time-course transcriptome analysis compared naïve, mock, and ToCV-infected plants at 2, 7, and 14 days post-infection (dpi). Gene expression changes were most notable at 2 and 14 dpi, likely corresponding to whitefly feeding and viral infection. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed key genes and pathways associated with ToCV infection, including those related to plant immunity, flavonoid and steroid biosynthesis, photosynthesis, and hormone signaling. Additionally, virus-derived small interfering RNAs (vsRNAs) originating from ToCV predominantly came from RNA2 and were 22 nucleotides in length. Furthermore, two genes involved in plant immunity, Hsp90 (heat shock protein 90) and its co-chaperone Sgt1 (suppressor of the G2 allele of Skp1) were targeted through viral-induced gene silencing (VIGS), showing a potential contribution to basal resistance against viral infections since their reduction correlated with increased ToCV accumulation. This study provides insights into tomato plant responses to ToCV, with potential implications for developing effective disease control strategies.
Collapse
Affiliation(s)
- Irene Ontiveros
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain;
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08913 Bellaterra, Spain
| | - Juan Antonio Díaz-Pendón
- Institute for Mediterranean and Subtropical Horticulture La Mayora (IHSM), CSIC-UMA, 29750 Algarrobo-Costa, Spain; (I.O.); (N.F.-P.)
| |
Collapse
|
11
|
Naveed H, Islam W, Jafir M, Andoh V, Chen L, Chen K. A Review of Interactions between Plants and Whitefly-Transmitted Begomoviruses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3677. [PMID: 37960034 PMCID: PMC10648457 DOI: 10.3390/plants12213677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The transmission of plant viruses from infected to healthy host plants is a process in which insects play a major role, using various transmission strategies. Environmental factors have an impact on the transmission of viruses and the subsequent development of infections or diseases. When viruses are successful, plant virus diseases can reach epidemic proportions. Many plants across different regions are vulnerable to viral infections transmitted by the whitefly vector. Begomoviruses, which are transmitted by whiteflies, represent a significant threat to agriculture worldwide. The review highlights the mechanisms of virus acquisition and transmission by whiteflies and explores the factors influencing these interactions. Understanding the impacts of these changes is crucial for managing the spread of pests and mitigating damage to crops. It underscores the need for continued research to elucidate the mechanisms driving plant-insect-virus interactions and to identify new approaches for sustainable pest management.
Collapse
Affiliation(s)
- Hassan Naveed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Waqar Islam
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Muhammad Jafir
- Department of Ecology, School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China;
| | - Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
12
|
Shahriari Z, Su X, Zheng K, Zhang Z. Advances and Prospects of Virus-Resistant Breeding in Tomatoes. Int J Mol Sci 2023; 24:15448. [PMID: 37895127 PMCID: PMC10607384 DOI: 10.3390/ijms242015448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.
Collapse
Affiliation(s)
- Zolfaghar Shahriari
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz 617-71555, Iran
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Seed Laboratory, 2238# Beijing Rd, Panlong District, Kunming 650205, China; (Z.S.); (X.S.)
| |
Collapse
|
13
|
Fortes IM, Fernández-Muñoz R, Moriones E. Crinivirus Tomato Chlorosis Virus Compromises the Control of Tomato Yellow Leaf Curl Virus in Tomato Plants by the Ty-1 Gene. PHYTOPATHOLOGY 2023; 113:1347-1359. [PMID: 36690608 DOI: 10.1094/phyto-09-22-0334-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
14
|
Matsumura EE, Kormelink R. Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant-Virus-Vector Tritrophic Communication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1411. [PMID: 36987098 PMCID: PMC10059270 DOI: 10.3390/plants12061411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen-pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens' messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus-plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination.
Collapse
|
15
|
Bellah H, Seiler NF, Croll D. Divergent Outcomes of Direct Conspecific Pathogen Strain Interaction and Plant Co-Infection Suggest Consequences for Disease Dynamics. Microbiol Spectr 2023; 11:e0444322. [PMID: 36749120 PMCID: PMC10101009 DOI: 10.1128/spectrum.04443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Plant diseases are often caused by co-infections of multiple pathogens with the potential to aggravate disease severity. In genetically diverse pathogen species, co-infections can also be caused by multiple strains of the same species. However, the outcome of such mixed infections by different conspecific genotypes is poorly understood. The interaction among pathogen strains with complex lifestyles outside and inside of the host are likely shaped by diverse traits, including metabolic capacity and the ability to overcome host immune responses. To disentangle competitive outcomes among pathogen strains, we investigated the fungal wheat pathogen Zymoseptoria tritici. The pathogen infects wheat leaves in complex strain assemblies, and highly diverse populations persist between growing seasons. We investigated a set of 14 genetically different strains collected from the same field to assess both competitive outcomes under culture conditions and on the host. Growth kinetics of cocultured strains (~100 pairs) significantly deviated from single strain expectations, indicating competitive exclusion depending on the strain genotype. We found similarly complex outcomes of lesion development on plant leaves following co-infections by the same pairs of strains. While some pairings suppressed overall damage to the host, other combinations exceeded expectations of lesion development based on single strain outcomes. Strain competition outcomes in the absence of the host were poor predictors of outcomes on the host, suggesting that the interaction with the plant immune system adds significant complexity. Intraspecific co-infection dynamics likely make important contributions to disease outcomes in the wild. IMPORTANCE Plants are often attacked by a multitude of pathogens simultaneously, and different species can facilitate or constrain the colonization by others. To what extent simultaneous colonization by different strains of the same species matters, remains unclear. We focused on intra-specific interactions between strains of the major fungal wheat pathogen Zymoseptoria tritici. The pathogen persists in the environment before infecting plant leaves early in the growing season. Leaves are typically colonized by a multitude of strains. Strains cultured in pairs without host were growing differently compared to strains cultured alone. Wheat leaves infected either with single or pairs of strains, we found also highly variable outcomes. Interactions between strains outside of the host were only poorly explaining how strains would interact when on the host, suggesting that pathogen strains engage in complex interactions dependent on the environment. Better understanding within-species interactions will improve our ability to manage crop infections.
Collapse
Affiliation(s)
- Hadjer Bellah
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Nicolas F. Seiler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
16
|
AlHudaib KA, Almaghasla MI, El-Ganainy SM, Arshad M, Drou N, Sattar MN. High-Throughput Sequencing Identified Distinct Bipartite and Monopartite Begomovirus Variants Associated with DNA-Satellites from Tomato and Muskmelon Plants in Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2022; 12:6. [PMID: 36616136 PMCID: PMC9824426 DOI: 10.3390/plants12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The studies on the prevalence and genetic diversity of begomoviruses in Saudi Arabia are minimal. In this study, field-grown symptomatic tomato and muskmelon plants were collected, and initially, begomovirus infection was confirmed by the core coat protein sequences. Four tomato and two muskmelon plants with viral infections were further evaluated for Illumina MiSeq sequencing, and twelve sequences (2.7-2.8 kb) equivalent to the full-length DNA-A or DNA-B components of begomoviruses were obtained along with eight sequences (~1.3-1.4 kb) equivalent to the begomovirus-associated DNA-satellite components. Four begomovirus sequences obtained from tomato plants were variants of tomato yellow leaf curl virus (TYLCV) with nt sequence identities of 95.3-100%. Additionally, two tomato plants showed a mixed infection of TYLCV and cotton leaf curl Gezira virus (CLCuGeV), okra yellow crinkle Cameroon alphasatellite (OYCrCMA), and okra leaf curl Oman betasatellite (OLCuOMB). Meanwhile, from muskmelon plants, two sequences were closely related (99-99.6%) to the tomato leaf curl Palampur virus (ToLCPalV) DNA-A, whereas two other sequences showed 97.9-100% sequence identities to DNA-B of ToLCPalV, respectively. Complete genome sequences of CLCuGeV and associated DNA-satellites were also obtained from these muskmelon plants. The nt sequence identities of the CLCuGeV, OYCrCMA, and OLCuOMB isolates obtained were 98.3-100%, 99.5-100%, and 95.6-99.7% with their respective available variants. The recombination was only detected in TYLCV and OLCuOMB isolates. To our knowledge, this is the first identification of a mixed infection of bipartite and monopartite begomoviruses associated with DNA-satellites from tomato and muskmelon in Saudi Arabia. The begomovirus variants reported in this study were clustered with Iranian isolates of respective begomovirus components in the phylogenetic dendrogram. Thus, the Iranian agroecological route can be a possible introduction of these begomoviruses and/or their associated DNA-satellites into Saudi Arabia.
Collapse
Affiliation(s)
- Khalid A. AlHudaib
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Mostafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Sherif M. El-Ganainy
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Muhammad Arshad
- Bioinformatics Core, Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Nizar Drou
- Bioinformatics Core, Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Muhammad N. Sattar
- Central Laboratories, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Zhao K, Liu SS, Wang XW, Yang JG, Pan LL. Manipulation of Whitefly Behavior by Plant Viruses. Microorganisms 2022; 10:microorganisms10122410. [PMID: 36557663 PMCID: PMC9782533 DOI: 10.3390/microorganisms10122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Whiteflies of the Bemisia tabaci complex transmit hundreds of plant viruses belonging to the genera Begomovirus and Crinivirus, among others. Tripartite interactions of whitefly-virus-plant frequently occur during virus infection and transmission. Specifically, virus transmission-related behavior of whitefly, such as preference and feeding, may be altered by viruses and thus exert significant impacts on the outcome of virus spread and epidemics. Here, we provide an overview on the current understanding of the manipulation of whitefly behavior by plant viruses. Plant viruses can significantly modulate whitefly preference and feeding behavior, either directly or in a plant-mediated manner. In general, non-viruliferous whiteflies tend to prefer virus-infected plants, and viruliferous whiteflies are more likely to prefer uninfected plants. In most cases, virus infection of plants and/or whitefly seems to exhibit positive or no effects on whitefly feeding on plants. The significance and evolution of these patterns are then discussed. Finally, we suggest several future directions of research, such as the exploration of temporal dynamics and the dissection of underlying mechanisms of virus-induced changes in whitefly behavior.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Guang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence: (J.-G.Y.); (L.-L.P.)
| | - Li-Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.-G.Y.); (L.-L.P.)
| |
Collapse
|
18
|
Molecular Detection of Southern Tomato Amalgavirus Prevalent in Tomatoes and Its Genomic Characterization with Global Evolutionary Dynamics. Viruses 2022; 14:v14112481. [PMID: 36366579 PMCID: PMC9693158 DOI: 10.3390/v14112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Southern tomato amalgavirus (STV) is a cryptic pathogen that is abundant in tomato production fields and intensifies the resurgence of tomato yellow stunt disease (ToYSD), together with other phytoviruses. Here, we mapped the geographical and genomic diversity, phylogenetics, and evolutionary dynamics of STV. We found that STV prevailed across China and Pakistan, with a maximum average rate of infection of 43.19% in Beijing, China, and 40.08% in Punjab, Pakistan. Subsequently, we amplified, cloned, and annotated the complete genome sequences of STV isolates from Solanum lycopersicum L. in China (OP548653 and OP548652) and Pakistan (MT066231) using Sanger and next-generation sequencing (NGS). These STV isolates displayed close evolutionary relationships with others from Asia, America, and Europe. Whole-genome-based molecular diversity analysis showed that STV populations had 33 haplotypes with a gene diversity (Hd) of 0.977 and a nucleotide diversity (π) of 0.00404. The genetic variability of RNA-dependent RNA-polymerase (RdRp) was higher than that of the putative coat protein (CP) p42. Further analysis revealed that STV isolates were likely to be recombinant but with a lower-to-moderate level of confidence. With a variable distribution pattern of positively and negatively selected sites, negative selection pressure predominantly acted on p42 and RdRp. These findings elaborated on the molecular variability and evolutionary trends among STV populations across major tomato-producing regions of the world.
Collapse
|
19
|
Narcissus Plants: A Melting Pot of Potyviruses. Viruses 2022; 14:v14030582. [PMID: 35336988 PMCID: PMC8949890 DOI: 10.3390/v14030582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Our paper presents detailed evolutionary analyses of narcissus viruses from wild and domesticated Narcissus plants in Japan. Narcissus late season yellows virus (NLSYV) and narcissus degeneration virus (NDV) are major viruses of Narcissus plants, causing serious disease outbreaks in Japan. In this study, we collected Narcissus plants showing mosaic or striped leaves along with asymptomatic plants in Japan for evolutionary analyses. Our findings show that (1) NLSYV is widely distributed, whereas the distribution of NDV is limited to the southwest parts of Japan; (2) the genomes of NLSYV isolates share nucleotide identities of around 82%, whereas those of NDV isolates are around 94%; (3) three novel recombination type patterns were found in NLSYV; (4) NLSYV comprises at least five distinct phylogenetic groups whereas NDV has two; and (5) infection with narcissus viruses often occur as co-infection with different viruses, different isolates of the same virus, and in the presence of quasispecies (mutant clouds) of the same virus in nature. Therefore, the wild and domesticated Narcissus plants in Japan are somewhat like a melting pot of potyviruses and other viruses.
Collapse
|