1
|
Larrea-Sarmiento AE, Galanti R, Olmedo-Velarde A, Wang X, Al Rwahnih M, Borth W, Lutgen H, Fitch MM, Sugano J, Sewake K, Suzuki J, Wall MM, Melzer M, Hu J. Characterization of Two Novel Viruses Within a Complex Virome from Flowering Ginger in Hawaii. PLANT DISEASE 2024; 108:3001-3009. [PMID: 39327791 DOI: 10.1094/pdis-10-23-2181-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Flowering ginger (Alpinia purpurata) is economically and culturally important in Hawaii. In the past decade, a slow decline syndrome has impacted the production of this crop in the state. RNA sequencing analyses and virus indexing surveys were done on samples collected from four of the Hawaiian Islands. Viral sequences corresponding to six viruses were recovered from transcriptomic data from samples with virus-like symptoms. Canna yellow mottle virus (CaYMV, genus Badnavirus) and two novel viruses, Alpinia vein clearing virus (ApVCV, genus Ampelovirus) and Alpinia vein streaking virus (ApVSV, genus Betanucleorhabdovirus), were found at a moderate incidence in diseased plants. Conversely, three other viruses, including the two potyviruses, banana bract mosaic virus and bean common mosaic virus, and a badnavirus, banana streak GF virus, were also found but at a low incidence. Virus detection in potential insect vectors and transmission assays identified the mealybug Planococcus citri as a vector of CaYMV and ApVCV, whereas the aphid Pentalonia caladii was identified as a vector of the novel ApVSV. Both P. citri and P. caladii are common pests of flowering ginger in Hawaii. Transmission of ApVSV was achieved using P. caladii colonies either established in the laboratory or naturally feeding on infected plants, although no transmission was obtained using viruliferous aphids originally reared on taro (Colocasia esculenta). Our study provides insights into the potential association between viral infections and the observed decline symptoms of flowering ginger in Hawaii. However, more definitive studies are needed to link single or mixed viral infections with decline symptoms.
Collapse
Affiliation(s)
| | - Russell Galanti
- Department of Tropical Plant and Soil Sciences, University of Hawaii, Honolulu, HI 96848
| | - Alejandro Olmedo-Velarde
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Xupeng Wang
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Maher Al Rwahnih
- Department of Plant Pathology, Foundation Plant Services, University of California, Davis, CA 95616
| | - Wayne Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Hannah Lutgen
- Department of Tropical Plant and Soil Sciences, University of Hawaii, Honolulu, HI 96848
| | | | - Jari Sugano
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Kelvin Sewake
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - Jon Suzuki
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720
| | - Marisa M Wall
- United States Department of Agriculture, Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI 96720
| | - Michael Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822
| |
Collapse
|
2
|
Wei J, Lu Y, Niu M, Cai B, Shi H, Ji W. Novel insights into hotspots of insect vectors of GLRaV-3: Dynamics and global distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171664. [PMID: 38508278 DOI: 10.1016/j.scitotenv.2024.171664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is the most prevalent and economically damaging virus in grapevines and is found on nearly all continents, except Antarctica. Ten mealybugs act as vector insects transmitting the GLRaV-3. Understanding the potential distribution range of vector insects under climate change is crucial for preventing and managing vector insects and controlling and delaying the spread of GLRaV-3. This study investigated the potential geographical range of insect vectors of GLRaV-3 worldwide using MaxEnt (maximum entropy) based on occurrence data under environmental variables. The potential distributions of these insects were projected for the 2030s, 2050s, 2070s, and 2090s under the three climate change scenarios. The results showed that the potential distribution range of most vector insects is concentrated in Southeastern North America, Europe, Asia, and Southeast Australia. Most vector insects contract their potential distribution ranges under climate-change conditions. The stacked model suggested that potential distribution hotspots of vector insects were present in Southeastern North America, Europe, Southeast Asia, and Southeast Australia. The potential distribution range of hotspots would shrink with climate change. These results provide important information for governmental decision-makers and farmers in developing control and management strategies against vector insects of GLRaV-3. They can also serve as references for studies on other insect vectors.
Collapse
Affiliation(s)
- Jiufeng Wei
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Yunyun Lu
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Minmin Niu
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Bo Cai
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, Haikou 570311, China
| | - Huafeng Shi
- Bureau of Agriculture and Rural Affairs of Yuncheng City, Yanhu 044000, China
| | - Wei Ji
- Bureau of Agriculture and Rural Affairs of Yuncheng City, Yanhu 044000, China; College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
3
|
Sisterson MS, Uchima SY. Planococcus ficus (Hemiptera: Pseudococcidae) movement and demography: methods for generating cohorts for laboratory studies. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:118-126. [PMID: 37978043 DOI: 10.1093/jee/toad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Planococcus ficus (Signoret) is a worldwide pest of grapevine. Mealybugs overwinter under bark and move into the grape canopy as the season progresses. Because crawlers are more active than later stages, mealybug movement behavior is likely to be stage specific. To quantify P. ficus demography and movement behavior, a series of laboratory experiments were conducted. First, P. ficus populations were monitored on grapevine seedlings to describe survival, change in size, timing of male pupation, and timing of oviposition over a 6-wk period. Subsequently, cohorts of mealybugs were generated by infesting grapevines with crawlers and holding infested grapevines for a specified duration of 0 (crawlers), 1, 2, 3, or 4 wk. Crawlers (0-wk) were more likely to move upwards and towards a light source, than all other age cohorts tested. Further, mealybugs from 4-wk-old cohorts were more likely to move downward than all other age cohorts tested. Results suggest that crawlers are more likely to move to the top of grapevines by moving upwards and orienting towards either the sun or the moon than all other age cohorts tested, whereas older gravid females are more likely to move downward. Passive movement of mealybugs on farm machinery or animals requires surviving a host free period. To quantify risk of passive movement, establishment rates and effects of starvation on each age cohort were quantified. Larger and older mealybugs were more likely to establish on grapevines than smaller and younger mealybugs. Further, mealybug longevity in absence of food was greater for older cohorts compared to younger cohorts. Crawlers survived an average of 2 days without food, whereas females from 4-wk-old cohorts survived for an average of 11 days without food. Further, 70% of starved females from 4-wk-old cohorts deposited fertile eggs. In the absence of food, some mealybugs from cohorts aged 2-, 3-, and 4-wk formed pupa with viable males emerging. Adult males from starved nymphs lived for an average of 3 days post-emergence. Results provide methods for producing cohorts of mealybugs of predictable size and stage and provides insight into P. ficus demography and movement behavior.
Collapse
Affiliation(s)
- Mark S Sisterson
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Sean Y Uchima
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| |
Collapse
|
4
|
Corcoran JA, Mahaffee WF. Identification of a receptor for the sex pheromone of the vine mealybug, Planococcus ficus. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100072. [PMID: 38314008 PMCID: PMC10837065 DOI: 10.1016/j.cris.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
The vine mealybug, Planococcus ficus, is a significant pest of vineyards in all major grape growing regions of the world. This pest causes significant aesthetic damage to berry clusters through its feeding behavior and secretion of "honeydew", which leads to significant decreases in crop marketability. More importantly, the vine mealybug is a vector of several grapevine viruses which are the causal agent of grapevine leafroll disease, one of the most destructive and economically devastating diseases of the grape industry worldwide. As there is no cure for grapevine leafroll disease, the only control measures available to reduce its spread are to remove infected vines whilst simultaneously controlling mealybug populations. Using transcriptomic libraries prepared from male and female mealybugs and a draft genome, we identified and evaluated expression levels of members of the odorant receptor gene family. Interestingly, of the 50 odorant receptors identified from these P. ficus genetic resources, only 23 were found to be expressed in females, suggesting this flightless life stage has a decreased reliance on the olfactory system. In contrast, 46 odorant receptors were found to be expressed in the alate male life stage. Heterologous expression of eight of these receptors, along with the obligate co-receptor, Orco, in HEK293 cells allowed for the identification of two receptors that respond to lavandulyl senecioate, the sole constituent of the sex pheromone used by this species. Interestingly, one of these receptors, PficOR8, also responded to the sex pheromone used by the Japanese mealybug, Planococcus kraunhiae. The data presented here represent the first report of odorant receptor gene family expression levels, as well as the identification of the first sex pheromone receptor, in soft-scale insects. The identification of a receptor for the vine mealybug sex pheromone will allow for the development of novel, species-specific pest control tools and monitoring devices.
Collapse
Affiliation(s)
- Jacob A Corcoran
- USDA - Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, USA
| | - Walter F Mahaffee
- USDA - Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Mansour R, Bauer AL, Goodarzi M, Hoffmann C. Toxicity of Pesticides Applied in European Vineyards on Anagyrus vladimiri and Trichogramma evanescens, Parasitoids of Planococcus ficus and Lobesia botrana. INSECTS 2023; 14:907. [PMID: 38132581 PMCID: PMC10744053 DOI: 10.3390/insects14120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Risk assessments of chemical pesticides toward natural enemies are crucial for ensuring sustainable grapevine-integrated pest management. In this context, laboratory experiments were conducted to evaluate the toxicity of four insecticides (lambda-cyhalothrin, flupyradifurone, acetamiprid, and cyantraniliprole) and one fungicide (spiroxamine) commonly applied in German (European) vineyards on the pupae and adults of both Anagyrus vladimiri, a parasitoid of the vine mealybug Planococcus ficus, and Trichogramma evanescens, a parasitoid of the European grapevine moth, Lobesia botrana. The tested pesticides did not significantly affect the development of the pupal stage inside mealybug mummies or the emergence of the parasitoid A. vladimiri. The pesticides flupyradifurone, acetamiprid, and spiroxamine resulted in the highest mortality percentages for all emerged A. vladimiri parasitoids at 8 and 10 days after treatment compared with either in lambda-cyhalothrin or cyantraniliprole. However, all pesticides, except the diamide insecticide cyantraniliprole, significantly affected the development of the pupal stage and the emergence of the parasitoid T. evanescens. The percentages of T. evanescens emergence following the application of the fungicide spiroxamine or either lambda-cyhalothrin or flupyradifurone were significantly higher than those observed in the acetamiprid treatment. Regarding direct contact toxicity, the highest percentages (100%) of A. vladimiri adult parasitoid mortality were obtained in the flupyradifurone, acetamiprid, and spiroxamine treatments, while the lowest mortality percentages were observed in lambda-cyhalothrin, cyantraniliprole, and untreated control treatments. According to the IOBC classes of toxicity, flupyradifurone, acetamiprid, and spiroxamine were classified as harmful, while both lambda-cyhalothrin and cyantraniliprole were classified as slightly harmful to A. vladimiri adults. As such, all pesticides had a significant impact on the survival of exposed T. evanescens adults. The highest percentages of adult T. evanescens mortality were obtained in the flupyradifurone, acetamiprid, and spiroxamine treatments, with the fungicide spiroxamine resulting in significantly higher mortality percentages than either flupyradifurone or acetamiprid, while the lowest mortality percentages were found in the lambda-cyhalothrin and cyantraniliprole treatments. Therefore, applying the insecticides acetamiprid and/or flupyradifurone and the fungicide spiroxamine should be avoided when A. vladimiri and/or T. evanescens are naturally present or released in grapes. The insights gained from these two easy-to-rear parasitoid species allow analogous conclusions to be drawn for closely related species in vineyards belonging to either family Encyrtidae or Trichogrammatidae, which are not easy to rear. Interestingly, using the safer insecticides lambda-cyhalothrin and/or cyantraniliprole could be compatible with both parasitoid species, which could be sustainably exploited in either conservation or augmentative biological control in vineyards.
Collapse
Affiliation(s)
- Ramzi Mansour
- Julius Kühn-Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833 Siebeldingen, Germany
- Higher Institute for Preparatory Studies in Biology-Geology (ISEP-BG), Section of Biological Sciences, University of Carthage, Tunis, La Soukra 2036, Tunisia
| | - Anna Lena Bauer
- Julius Kühn-Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833 Siebeldingen, Germany
| | - Maryam Goodarzi
- Julius Kühn-Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833 Siebeldingen, Germany
| | - Christoph Hoffmann
- Julius Kühn-Institute—Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, 76833 Siebeldingen, Germany
| |
Collapse
|
6
|
Nita M, Jones T, McHenry D, Bush E, Oliver C, Kawaguchi A, Nita A, Katori M. A NitroPure Nitrocellulose Membrane-Based Grapevine Virus Sampling Kit: Development and Deployment to Survey Japanese Vineyards and Nurseries. Viruses 2023; 15:2102. [PMID: 37896878 PMCID: PMC10612103 DOI: 10.3390/v15102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
We developed a NitroPure Nitrocellulose (NPN) membrane-based method for sampling and storing grapevine sap for grapevine virus detection. We devised an efficient nucleic acid extraction method for the NPN membrane, resulting in 100% amplification success for grapevine leafroll-associated virus 2 (GLRaV2) and 3 (GLRaV3), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A, grapevine virus B, and grapevine red blotch virus (GRBV). This method also allowed the storage of recoverable nucleic acid for 18 months at room temperature. We created a sampling kit to survey GLRaV2, GLRaV3, and GRBV in Japanese vineyards. We tested the kits in the field in 2018 and then conducted mail-in surveys in 2020-2021. The results showed a substantial prevalence of GLRaV3, with 48.5% of 132 sampled vines being positive. On the other hand, only 3% of samples tested positive for GLRaV2 and none for GRBV.
Collapse
Affiliation(s)
- Mizuho Nita
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
- Department of Law and Economics, Shinshu University, Nagano 390-8621, Japan
| | - Taylor Jones
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Diana McHenry
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Elizabeth Bush
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Charlotte Oliver
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Akira Kawaguchi
- National Agriculture and Food Research Organization (NARO), Western Region Agricultural Research Center, Hiroshima 721-8514, Japan
| | - Akiko Nita
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University (Virginia Tech), Winchester, VA 22602, USA (E.B.); (C.O.)
| | - Miyuki Katori
- Department of Law and Economics, Shinshu University, Nagano 390-8621, Japan
| |
Collapse
|
7
|
Wang G, Wu W, Tan S, Liang Y, He C, Chen H, Huang X, Yi K. Development of a Specific Nested PCR Assay for the Detection of 16SrI Group Phytoplasmas Associated with Sisal Purple Leafroll Disease in Sisal Plants and Mealybugs. PLANTS (BASEL, SWITZERLAND) 2022; 11:2817. [PMID: 36365270 PMCID: PMC9658197 DOI: 10.3390/plants11212817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Sisal purple leafroll disease (SPLD) is currently the most destructive disease affecting sisal in China, yet its aetiology remains unclear. In our previous research, it was verified to be associated with phytoplasmas, and nested PCR based on the 16S rRNA gene using universal primers R16mF2/R16mR1 followed by R16F2n/R16R2 was confirmed as the most effective molecular method for the detection of phytoplasmas associated with SPLD (SPLDaP). However, the method has a shortcoming of inaccuracy, for it could produce false positive results. To further manage the disease, accurate detection is needed. In this study, we developed a specific nested PCR assay using universal primers R16F2n/R16R2, followed by a set of primers designed on 16Sr gene sequences amplified from SPLDaP, nontarget bacteria from sisal plants, and other phytoplasma subgroups or groups. This established method is accurate, specific, and effective for detection of 16SrI group phytoplasma in sisal, and its sensitivity is up to 10 fg/μL of total DNA. It also minimized the false positive problem of nested PCR using universal primers R16mF2/R16mR1 followed by R16F2n/R16R2. This method was further used to verify the presence of phytoplasma in Dysmicoccusneobrevipes, and the results showed that D. neobrevipes could be infected by SPLDaP and thus could be a candidate for vector transmission assays.
Collapse
Affiliation(s)
- Guihua Wang
- College of Ecology and Environment, Hainan University, Haikou 570228, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Forestry, Hainan University, Haikou 570228, China
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Shibei Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yanqiong Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chunping He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Helong Chen
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
| |
Collapse
|
8
|
Transmission of Grapevine Ampelo- and Vitiviruses by the Bohemian Mealybug Heliococcus bohemicus Šulc (Hemiptera: Pseudococcidae). Viruses 2022; 14:v14071430. [PMID: 35891410 PMCID: PMC9319757 DOI: 10.3390/v14071430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/10/2022] Open
Abstract
Grapevine-infecting ampelo- and vitiviruses are transmitted by several scale insect species, including the Bohemian mealybug, Heliococcus bohemicus Šulc. Virus infectivity experiments were performed with this species to study the transmission ability of natural populations living in infected vineyards in Alsace, France. Mealybugs were sampled on vines infected by grapevine leafroll-associated viruses (GLRaV-1, -2, and -3) and by grapevine virus A (GVA), either alone or in combinations. Out of six natural populations tested, only one, located at Bennwihr, was able to transmit GLRaV-1 and -3 to healthy vines, though with low transmission rates (1.6 and 11.8%, respectively). Mealybugs from Bennwihr were also able to transmit GLRaV-3 from grapevines of another location where H. bohemicus was not a vector. Conversely, mealybugs from two other locations did not transmit any virus acquired from infected grapevines at Bennwihr. These results suggest differences in vector ability between H. bohemicus populations. Moreover, laboratory experiments were developed to estimate the minimal acquisition and inoculation access periods (AAP and IAP, respectively) for virus transmission of GLRaV-1 and -3, and GVA. First instar nymphs transmitted GLRaV-1 after 6 h AAP, GLRaV-3 and GVA together after 1 h AAP, and the three viruses after only 1 h IAP, supporting a semi-persistent mode of transmission. Second instar nymphs fed on multi-infected grapevine for 72 h then starved or fed on potatoes tested positive by RT-PCR for GLRaV-1 and -3 after up to 35 and 40 days, respectively, contrasting with the short retention times generally observed for mealybugs. These findings provide new knowledge of the vector ability of H. bohemicus.
Collapse
|
9
|
Zhang H, Zhao X, Cao X, Khan LU, Zhao R, Wang H, Huang X. Transmission of Areca Palm Velarivirus 1 by Mealybugs Causes Yellow Leaf Disease in Betel Palm ( Areca catechu). PHYTOPATHOLOGY 2022; 112:700-707. [PMID: 34491795 DOI: 10.1094/phyto-06-21-0261-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Yellow leaf disease (YLD) is the most destructive disease of betel palm (Areca catechu). A strong association between YLD and areca palm velarivirus 1 (APV1) has been observed. However, the causal relationship between APV1 and disease, and the transmission mode, warrant further investigation. This work showed that APV1 was transmitted by both Ferrisia virgata and Pseudococcus cryptus mealybugs and caused YLD symptoms in betel palm seedlings; therefore, we demonstrate that APV1 is a causal agent of YLD. APV1 was detected in the stylets, foreguts, midguts, and hindguts of the vectors via both immunocapture reverse transcription PCR and immunofluorescence assays. APV1 was not transmitted transovarially from viruliferous female F. virgata to their progeny. In summary, the transmission of APV1 by F. virgata may occur in a noncirculative, semipersistent manner. This study fills important gaps in our knowledge of velarivirus transmission, which is critical for developing YLD management practices.
Collapse
Affiliation(s)
- Huaiwen Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xue Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xianmei Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Latif Ullah Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Ruibai Zhao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Hongxing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, P. R. China
| |
Collapse
|
10
|
Buja I, Sabella E, Monteduro AG, Rizzato S, Bellis LD, Elicio V, Formica L, Luvisi A, Maruccio G. Detection of Ampelovirus and Nepovirus by Lab-on-a-Chip: A Promising Alternative to ELISA Test for Large Scale Health Screening of Grapevine. BIOSENSORS 2022; 12:bios12030147. [PMID: 35323417 PMCID: PMC8945899 DOI: 10.3390/bios12030147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
The Ampelovirus Grapevine leafroll-associated virus 3 (GLRaV-3) and the Nepovirus Grapevine fanleaf virus (GFLV) are pathogens reported in many grapevine-growing areas all over the world, main causal agents of grapevine leafroll disease and grapevine fanleaf disease, respectively. Prevention of virus spread thanks to rapid diagnosis of infected plants is a key factor for control of both diseases. Although serological (e.g., enzyme-linked immunosorbent assay-ELISA test) and molecular methods are available to reveal the presence of the viruses, they turn out to be quite expensive, time-consuming and laborious, especially for large-scale health screening. Here we report the optimization of a lab-on-a-chip (LOC) for GLRaV-3 and GFLV detection, based on an electrochemical transduction and a microfluidic multichamber design for measurements in quadruplicate and simultaneous detection of both targets. The LOC detect GLRaV-3 and GFLV at dilution factors more than 15 times higher than ELISA, providing a higher sensitivity in the detection of both viruses. Furthermore, the platform offers several advantages as easy-to-use, rapid-test, portability and low costs, favoring its potential application for large-scale monitoring programs. Compared to other grapevine virus biosensors, our sensing platform is the first one to provide a dose-dependent calibration curve combined with a microfluidic module for sample analysis and a portable electronics providing an operator-independent read-out scheme.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Vito Elicio
- Agritest s.r.l., Tecnopolis Casamassima, Km. 3, Strada Provinciale Ceglie Valenzano, 70010 Valenzano, Italy; (V.E.); (L.F.)
| | - Lilia Formica
- Agritest s.r.l., Tecnopolis Casamassima, Km. 3, Strada Provinciale Ceglie Valenzano, 70010 Valenzano, Italy; (V.E.); (L.F.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| |
Collapse
|
11
|
Rodríguez-Verástegui LL, Ramírez-Zavaleta CY, Capilla-Hernández MF, Gregorio-Jorge J. Viruses Infecting Trees and Herbs That Produce Edible Fleshy Fruits with a Prominent Value in the Global Market: An Evolutionary Perspective. PLANTS (BASEL, SWITZERLAND) 2022; 11:203. [PMID: 35050091 PMCID: PMC8778216 DOI: 10.3390/plants11020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 05/12/2023]
Abstract
Trees and herbs that produce fruits represent the most valuable agricultural food commodities in the world. However, the yield of these crops is not fully achieved due to biotic factors such as bacteria, fungi, and viruses. Viruses are capable of causing alterations in plant growth and development, thereby impacting the yield of their hosts significantly. In this work, we first compiled the world's most comprehensive list of known edible fruits that fits our definition. Then, plant viruses infecting those trees and herbs that produce fruits with commercial importance in the global market were identified. The identified plant viruses belong to 30 families, most of them containing single-stranded RNA genomes. Importantly, we show the overall picture of the host range for some virus families following an evolutionary approach. Further, the current knowledge about plant-virus interactions, focusing on the main disorders they cause, as well as yield losses, is summarized. Additionally, since accurate diagnosis methods are of pivotal importance for viral diseases control, the current and emerging technologies for the detection of these plant pathogens are described. Finally, the most promising strategies employed to control viral diseases in the field are presented, focusing on solutions that are long-lasting.
Collapse
Affiliation(s)
| | - Candy Yuriria Ramírez-Zavaleta
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - María Fernanda Capilla-Hernández
- Cuerpo Académico Procesos Biotecnológicos, Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica 1, San Pedro Xalcaltzinco 90180, Mexico; (C.Y.R.-Z.); (M.F.C.-H.)
| | - Josefat Gregorio-Jorge
- Consejo Nacional de Ciencia y Tecnología, Universidad Politécnica de Tlaxcala, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Ciudad de Mexico 03940, Mexico
| |
Collapse
|
12
|
Song Y, Hanner RH, Meng B. Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes. Viruses 2021; 13:v13040593. [PMID: 33807294 PMCID: PMC8066071 DOI: 10.3390/v13040593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
13
|
Messmer N, Bohnert P, Schumacher S, Fuchs R. Studies on the Occurrence of Viruses in Planting Material of Grapevines in Southwestern Germany. Viruses 2021; 13:v13020248. [PMID: 33562555 PMCID: PMC7915916 DOI: 10.3390/v13020248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/02/2022] Open
Abstract
Viral diseases in viticulture lead to annual losses in the quantity and quality of grape production. Since no direct control measures are available in practice, preventive measures are taken to keep the vines healthy. These include, for example, the testing of propagation material for viruses such as Arabis mosaic virus (ArMV), Grapevine fanleaf virus (GFLV) or Grapevine leafroll-associated virus 1 (GLRaV-1) and 3 (GLRaV-3). As long-term investigations have shown, GLRaV-1 (2.1%) occurs most frequently in southwestern German wine-growing regions, whereas GLRaV-3 (<0.1%) is almost never found. However, tests conducted over 12 years indicate that there is no general decline in virus-infected planting material. Thus, it can be assumed that a spread of the viruses via corresponding vectors still takes place unhindered. Beyond the examinations regulated within the German Wine Growing Ordinance, one-time tests were carried out on Grapevine Pinot gris virus (GPGV). This analysis showed that GPGV was found in 17.2% of the samples.
Collapse
Affiliation(s)
| | | | | | - René Fuchs
- Correspondence: ; Tel.: +49-761-40165-1101
| |
Collapse
|
14
|
Agranovsky A. Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells 2021; 10:cells10010090. [PMID: 33430410 PMCID: PMC7827187 DOI: 10.3390/cells10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/02/2022] Open
Abstract
Vector transmission of plant viruses is basically of two types that depend on the virus helper component proteins or the capsid proteins. A number of plant viruses belonging to disparate groups have developed unusual capsid proteins providing for interactions with the vector. Thus, cauliflower mosaic virus, a plant pararetrovirus, employs a virion associated p3 protein, the major capsid protein, and a helper component for the semi-persistent transmission by aphids. Benyviruses encode a capsid protein readthrough domain (CP-RTD) located at one end of the rod-like helical particle, which serves for the virus transmission by soil fungal zoospores. Likewise, the CP-RTD, being a minor component of the luteovirus icosahedral virions, provides for persistent, circulative aphid transmission. Closteroviruses encode several CPs and virion-associated proteins that form the filamentous helical particles and mediate transmission by aphid, whitefly, or mealybug vectors. The variable strategies of transmission and evolutionary ‘inventions’ of the unusual capsid proteins of plant RNA viruses are discussed.
Collapse
|
15
|
Daane KM, Yokota GY, Walton VM, Hogg BN, Cooper ML, Bentley WJ, Millar JG. Development of a Mating Disruption Program for a Mealybug, Planococcus ficus, in Vineyards. INSECTS 2020; 11:insects11090635. [PMID: 32947862 PMCID: PMC7563353 DOI: 10.3390/insects11090635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary The vine mealybug is a key insect pest of vineyards that currently is controlled by one or more insecticide applications per season. Here, we sought to develop a more sustainable control tool by using the mealybug’s sex pheromone to reduce mating and thereby lower pest damage. The mature female mealybug emits a sex pheromone that the winged adult male uses to find and mate with females. Synthetically produced sex pheromone, specific to the vine mealybug, was enclosed in commercial dispensers and deployed in vineyards in 2004–2007 studies to determine if mating disruption could provide a viable control option. Trials were conducted in commercial vineyards with cooperating farmers. Across all trials, mating disruption reduced pheromone trap captures of adult male mealybugs—an indication that the population numbers were lowered—and there was often a reduction mealybug numbers on vines and/or crop damage. There was not a clear reduction in the proportion of female mealybugs with ovisacs (a cottony-like mass containing mealybug eggs), but this may have resulted from the production of non-viable ovisacs that were not differentiated in the field samples. Pheromone trap captures were never lowered to zero (often called trap shut down), possibly because trials were conducted in vineyards with unusually high mealybug densities. Trap capture patterns commonly began low in April-May, increased in mid-July or August, and often decreased in September–October when post-harvest insecticides were applied. Results over all years suggest season-long coverage or late season coverage may be as or more important than dose per hectare. This research was used to help initiate the commercialization of mating disruption products for the vine mealybug, which are now being successfully used throughout the world’s grape-growing regions where this pest is found. Abstract The vine mealybug (VMB), Planococcus ficus (Hemiptera: Pseudococcidae), is a key insect pest of vineyards, and improvements in sustainable control of this pest are needed to meet increasing consumer demand for organically farmed products. One promising option is mating disruption. In a series of experiments conducted from 2004 to 2007, we tested the effects of mating disruption on trap captures of Pl. ficus males in pheromone-baited traps, on Pl. ficus numbers and age structure on vines, and on damage to grape clusters. From 2004 to 2005, the effects of dispenser load (mg active ingredient per dispenser) were also assessed, and dispensers were compared to a flowable formulation. Across all trials, mating disruption consistently reduced pheromone trap captures and often reduced mealybug numbers on vines and/or crop damage, regardless of the pheromone dose that was applied. Reductions in Pl. ficus densities in mating disruption plots were not accompanied by clear effects on mealybug population age structure; however, production of non-viable ovisacs by unmated females may have obscured differences in proportional representation of ovisacs. Pheromone trap captures were never lowered to zero (often called trap shut down), possibly because trials were conducted in vineyards with unusually high Pl. ficus densities. Trap-capture patterns in both treated and control plots commonly began low in April–May, increased in mid-July or August, and often decreased in September–October when post-harvest insecticides were applied. During the four-year trial, the release rate from plastic sachet dispensers was improved by industry cooperators as pheromone was released too quickly (2004) or not completely released during the season (2005–2006). The flowable formulation performed slightly better than dispensers at the same application dose. Results over all years suggest season-long coverage or late-season coverage may be as or more important than dose per hectare. Development of a dispenser with optimized season-long pheromone emission or targeted seasonal periods should be a future goal.
Collapse
Affiliation(s)
- Kent M. Daane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA;
- Correspondence: ; Tel.: +1-559-646-6522
| | - Glenn Y. Yokota
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA;
| | - Vaughn M. Walton
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA;
| | - Brian N. Hogg
- USDA-ARS, Invasive Species and Pollinator Health Research Unit, Albany, CA 94710, USA;
| | - Monica L. Cooper
- University of California Cooperative Extension, 1710 Soscol Avenue, Napa, CA 94559, USA;
| | - Walter J. Bentley
- Kearney Agricultural Center, University of California IPM Program, Parlier, CA 93648, USA;
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
16
|
Wu Q, Habili N, Constable F, Al Rwahnih M, Goszczynski DE, Wang Y, Pagay V. Virus Pathogens in Australian Vineyards with an Emphasis on Shiraz Disease. Viruses 2020; 12:v12080818. [PMID: 32731601 PMCID: PMC7472089 DOI: 10.3390/v12080818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Grapevine viruses are found throughout the viticultural world and have detrimental effects on vine productivity and grape and wine quality. This report provides a comprehensive and up-to-date review on grapevine viruses in Australia with a focus on “Shiraz Disease” (SD) and its two major associated viruses, grapevine virus A (GVA) and grapevine leafroll-associated virus 3 (GLRaV-3). Sensitive grapevine cultivars like Shiraz infected with GVA alone or with a co-infection of a leafroll virus, primarily GLRaV-3, show symptoms of SD leading to significant yield and quality reductions in Australia and in South Africa. Symptom descriptors for SD will be outlined and a phylogenetic tree will be presented indicating the SD-associated isolates of GVA in both countries belong to the same clade. Virus transmission, which occurs through infected propagation material, grafting, and naturally vectored by mealybugs and scale insects, will be discussed. Laboratory and field-based indexing will also be discussed along with management strategies including rogueing and replanting certified stock that decrease the incidence and spread of SD. Finally, we present several cases of SD incidence in South Australian vineyards and their effects on vine productivity. We conclude by offering strategies for virus detection and management that can be adopted by viticulturists. Novel technologies such as high throughput sequencing and remote sensing for virus detection will be outlined.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide 5064, South Australia, Australia;
| | - Nuredin Habili
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide 5064, South Australia, Australia;
| | - Fiona Constable
- Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, Bundoora, Melbourne 3083, Victoria, Australia;
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, CA 95616, USA;
| | - Darius E. Goszczynski
- Plant Protection Research Institute, Agricultural Research Council, Private Bag X134, Pretoria 0001, South Africa;
| | - Yeniu Wang
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
| | - Vinay Pagay
- School of Agriculture, Food & Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, Adelaide 5064, South Australia, Australia; (Q.W.); (Y.W.)
- Correspondence:
| |
Collapse
|
17
|
Detection of Grapevine Leafroll-Associated Virus 1 and 3 in White and Red Grapevine Cultivars Using Hyperspectral Imaging. REMOTE SENSING 2020. [DOI: 10.3390/rs12101693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Grapevine leafroll disease (GLD) is considered one of the most widespread grapevine virus diseases, causing severe economic losses worldwide. To date, six grapevine leafroll-associated viruses (GLRaVs) are known as causal agents of the disease, of which GLRaV-1 and -3 induce the strongest symptoms. Due to the lack of efficient curative treatments in the vineyard, identification of infected plants and subsequent uprooting is crucial to reduce the spread of this disease. Ground-based hyperspectral imaging (400–2500 nm) was used in this study in order to identify white and red grapevine plants infected with GLRaV-1 or -3. Disease detection models have been successfully developed for greenhouse plants discriminating symptomatic, asymptomatic, and healthy plants. Furthermore, field tests conducted over three consecutive years showed high detection rates for symptomatic white and red cultivars, respectively. The most important detection wavelengths were used to simulate a multispectral system that achieved classification accuracies comparable to the hyperspectral approach. Although differentiation of asymptomatic and healthy field-grown grapevines showed promising results further investigations are needed to improve classification accuracy. Symptoms caused by GLRaV-1 and -3 could be differentiated.
Collapse
|
18
|
Ricciardi R, Lucchi A, Benelli G, Suckling DM. Multiple Mating in the Citrophilous Mealybug Pseudococcus calceolariae: Implications for Mating Disruption. INSECTS 2019; 10:insects10090285. [PMID: 31491887 PMCID: PMC6780847 DOI: 10.3390/insects10090285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022]
Abstract
The citrophilous mealybug Pseudococcus calceolariae (Maskell) (Hemiptera, Pseudococcidae) is a primary pest of various crops, including grapevines. The use of insecticides against this species is difficult in most cases because its life cycle includes an extended duration of eggs, juveniles, and adults under the bark and on the roots. Pheromone-based control strategies can present new eco-friendly opportunities to manage this species, as in the case of Planococcus ficus (Signoret) and Planococcus citri (Risso). With this aim it is critical to understand behavioral aspects that may influence pheromone-based control strategies. Herein, the capability of males to fertilize multiple females was investigated, trying to understand whether this behavior could negatively impact the efficacy of mass trapping, mating disruption, or the lure and kill technique. Results showed that a P. calceolariae male can successfully mate and fertilize up to 13 females. The copulation time in subsequent mating events and the time between copulations did not change over time but the number of matings per day significantly decreased. In a further experiment, we investigated the mate location strategy of P. calceolariae males, testing the attractiveness of different loadings of sex pheromone on males in a flight tunnel. Males constantly exposed to 16 rubber septa loaded with the sex pheromone showed a significant decrease in female detection at 1 and 30 μg loadings (0.18 and 0.74 visits per female for each visit per septum, respectively), whereas in the control about 9.2-fold more of the released males successfully detected the female in the center of the array of 16 septa without pheromone. Male location of females in the control (45%) was significantly higher than in the arrays with surrounding pheromone (5% and 20% at 1 and 30 μg loadings, respectively). Mating only occurred in the control arrays (45%). This study represents a useful first step to developing pheromone-based strategies for the control of citrophilous mealybugs.
Collapse
Affiliation(s)
- Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - David Maxwell Suckling
- The New Zealand Institute for Plant & Food Research Limited, PB 4704, Christchurch 8140, New Zealand
- School of Biological Sciences, University of Auckland, Tamaki Campus, PB 92019, Auckland 1142, New Zealand
| |
Collapse
|
19
|
Thurman JH, Northfield TD, Snyder WE. Weaver Ants Provide Ecosystem Services to Tropical Tree Crops. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Lucchi A, Suma P, Ladurner E, Iodice A, Savino F, Ricciardi R, Cosci F, Marchesini E, Conte G, Benelli G. Managing the vine mealybug, Planococcus ficus, through pheromone-mediated mating disruption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10708-10718. [PMID: 30778939 DOI: 10.1007/s11356-019-04530-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
The vine mealybug (VMB), Planococcus ficus (Hemiptera: Pseudococcidae), is a key insect pest of vineyards. While pheromone-based mating disruption (MD) has been successfully tested against a wide range of insect pests, knowledge about its efficacy against key mealybug species, such as P. ficus, is scarce. In this study, a novel MD product, Isonet® PF, was evaluated by testing 300, 400, and 500 dispensers/ha at four study sites located in Northern (Veneto) and Southern (Sicily) Italy. Experiments were carried out over 2 years by monitoring the mealybug populations in wine grape and table grape vineyards managed with and without the application of MD. Pheromone dispensers were periodically collected during the grapevine-growing season, extracted, and analyzed by GC-MS, to determine their pheromone content and the release in mg/ha/day. The results showed that use of the MD dispenser Isonet® PF reduced the percentage of VMB-infested bunches and the number of VMB specimens per bunch compared with the untreated controls. This was recorded over 2 years at all experimental sites. Differences in the incidence of infested bunches among the three tested rates of Isonet® PF were not detected. Overall, the results presented here contribute to optimizing the sex pheromone dosage used in MD control programs against VMB allowing a reduction of broad-spectrum insecticides currently employed to manage this important pest.
Collapse
Affiliation(s)
- Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Pompeo Suma
- Department of Agriculture, Food and Environment, University of Catania, via S. Sofia, 100, 95123, Catania, Italy
| | - Edith Ladurner
- Biogard Division, CBC (Europe) Srl, via E. Majorana 2, 20834, Nova Milanese, MB, Italy
| | - Andrea Iodice
- Biogard Division, CBC (Europe) Srl, via E. Majorana 2, 20834, Nova Milanese, MB, Italy
| | - Francesco Savino
- Biogard Division, CBC (Europe) Srl, via E. Majorana 2, 20834, Nova Milanese, MB, Italy
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Enrico Marchesini
- AGREA S.r.l. Centro Studi, via Garibaldi 5/16, 37057, San Giovanni Lupatoto, VR, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
21
|
Diaz-Lara A, Klaassen V, Stevens K, Sudarshana MR, Rowhani A, Maree HJ, Chooi KM, Blouin AG, Habili N, Song Y, Aram K, Arnold K, Cooper ML, Wunderlich L, Battany MC, Bettiga LJ, Smith RJ, Bester R, Xiao H, Meng B, Preece JE, Golino D, Al Rwahnih M. Characterization of grapevine leafroll-associated virus 3 genetic variants and application towards RT-qPCR assay design. PLoS One 2018; 13:e0208862. [PMID: 30540844 PMCID: PMC6291115 DOI: 10.1371/journal.pone.0208862] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/24/2018] [Indexed: 11/18/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is the most widely prevalent and economically important of the complex of RNA viruses associated with grapevine leafroll disease (GLD). Phylogenetic studies have grouped GLRaV-3 isolates into nine different monophyletic groups and four supergroups, making GLRaV-3 a genetically highly diverse virus species. In addition, new divergent variants have been discovered recently around the world. Accurate identification of the virus is an essential component in the management and control of GLRaV-3; however, the diversity of GLRaV-3, coupled with the limited sequence information, have complicated the development of a reliable detection assay. In this study, GLRaV-3 sequence data available in GenBank and those generated at Foundation Plant Services, University of California-Davis, was used to develop a new RT-qPCR assay with the capacity to detect all known GLRaV-3 variants. The new assay, referred to as FPST, was challenged against samples that included plants infected with different GLRaV-3 variants and originating from 46 countries. The FPST assay detected all known GLRaV-3 variants, including the highly divergent variants, by amplifying a small highly conserved region in the 3' untranslated terminal region (UTR) of the virus genome. The reliability of the new RT-qPCR assay was confirmed by an enzyme linked immunosorbent assay (ELISA) that can detect all known GLRaV-3 variants characterized to date. Additionally, three new GLRaV-3 divergent variants, represented by four isolates, were identified using a hierarchical testing process involving the FPST assay, GLRaV-3 variant-specific assays and high-throughput sequencing analysis. These variants were distantly related to groups I, II, III, V, VI, VII and IX, but much similar to GLRaV-3 variants with no assigned group; thus, they may represent new clades. Finally, based on the phylogenetic analysis, a new GLRaV-3 subclade is proposed and named as group X.
Collapse
Affiliation(s)
- Alfredo Diaz-Lara
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Vicki Klaassen
- Foundation Plant Services, University of California-Davis, Davis, California, United States of America
| | - Kristian Stevens
- Department of Evolution and Ecology, University of California-Davis, Davis, California, United States of America
| | - Mysore R. Sudarshana
- United States Department of Agriculture, Agriculture Research Service, University of California-Davis, Davis, California, United States of America
| | - Adib Rowhani
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Arnaud G. Blouin
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nuredin Habili
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kamyar Aram
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Kari Arnold
- University of California, Cooperative Extension-Stanislaus County, Modesto, California, United States of America
| | - Monica L. Cooper
- University of California, Cooperative Extension-Napa County, Napa, California, United States of America
| | - Lynn Wunderlich
- University of California, Cooperative Extension-Central Sierra, Placerville, California, United States of America
| | - Mark C. Battany
- University of California, Cooperative Extension-San Luis Obispo County, San Luis Obispo, California, United States of America
| | - Larry J. Bettiga
- University of California, Cooperative Extension-Monterey County, Monterey, California, United States of America
| | - Rhonda J. Smith
- University of California, Cooperative Extension-Sonoma County, Sonoma, California, United States of America
| | - Rachelle Bester
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - John E. Preece
- National Clonal Germplasm Repository, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
| | - Deborah Golino
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| |
Collapse
|
22
|
Cocco A, Muscas E, Mura A, Iodice A, Savino F, Lentini A. Influence of mating disruption on the reproductive biology of the vine mealybug, Planococcus ficus (Hemiptera: Pseudococcidae), under field conditions. PEST MANAGEMENT SCIENCE 2018; 74:2806-2816. [PMID: 29737603 DOI: 10.1002/ps.5067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although mating disruption is increasingly being used to control the worldwide grapevine pest vine mealybug, Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), its mode of action remains unclear. A 3-year field experiment was carried out to investigate the effects of mating disruption on the development and reproduction of the vine mealybug. The influence of mating disruption applied over consecutive years on the pest population density was also evaluated. RESULTS The percentage of ovipositing females was significantly reduced in disrupted plots by 18.8-66.2%, depending on the year. The absence of ovipositing females in disrupted plots in the autumn of the second and third years indicates the effectiveness of mating disruption throughout the whole growing season. Mating disruption consistently prolonged the pre-oviposition period in all years by up to 12.5 days. CONCLUSION Our findings provide new insights into the mechanisms underlying the pheromone-based control of the vine mealybug and indicate that the reduction of the pest population density is attributable to both a decrease and a delay in female mating. In addition, the population density of vine mealybugs under mating disruption decreased over the years, indicating that consecutive applications of this control strategy would significantly increase the effectiveness of control of the vine mealybug by mating disruption. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Arturo Cocco
- Dipartimento di Agraria, Research Unit Patologia Vegetale ed Entomologia, University of Sassari, Sassari, Italy
| | - Enrico Muscas
- Dipartimento di Agraria, Research Unit Patologia Vegetale ed Entomologia, University of Sassari, Sassari, Italy
| | - Alessandra Mura
- Dipartimento di Agraria, Research Unit Patologia Vegetale ed Entomologia, University of Sassari, Sassari, Italy
| | - Andrea Iodice
- CBC (Europe) Srl, Biogard Division, Nova Milanese, Italy
| | | | - Andrea Lentini
- Dipartimento di Agraria, Research Unit Patologia Vegetale ed Entomologia, University of Sassari, Sassari, Italy
| |
Collapse
|
23
|
Xiao H, Shabanian M, Moore C, Li C, Meng B. Survey for major viruses in commercial Vitis vinifera wine grapes in Ontario. Virol J 2018; 15:127. [PMID: 30103767 PMCID: PMC6090770 DOI: 10.1186/s12985-018-1036-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In recent years, the Ontario grape and wine industry has experienced outbreaks of viral diseases across the province. Little is known about the prevalence of viruses and viral diseases in Ontario. Since 2015, we have conducted large-scale surveys for major viruses in commercial wine grapes in order to obtain a comprehensive understanding of the prevalence and severity of viral diseases in Ontario. METHODS A total of 657 composite leaf samples representing 3285 vines collected from 137 vine blocks of 33 vineyards from three appellations: Niagara Peninsula, Lake Erie North Shore and Prince Edward County. These samples covered six major red cultivars and five major white grape cultivars. Using a multiplex RT-PCR format, we tested these samples for 17 viruses including those involved in all major viral diseases of the grapevine, such as five grapevine leafroll-associated viruses (GLRaV-1, 2, 3, 4, 7), grapevine red blotch virus (GRBV), grapevine Pinot gris virus (GPGV), grapevine rupestris stem sitting-associated virus (GRSPaV), grapevine virus A (GVA), grapevine virus B (GVB), grapevine fleck virus (GFkV), arabis mosaic virus (ArMV), tomato ringspot virus (ToRSV), trapevine fanleaf virus (GFLV), among others. RESULTS Fourteen of the 17 viruses were detected from these samples and the predominant viruses are GRSPaV, GLRaV-3, GFkV, GPGV and GRBaV with an incidence of 84.0, 47.9, 21.8, 21.6 and 18.3%, respectively. As expected, mixed infections with multiple viruses are common. 95.6% of the samples included in the survey were infected with at least one virus; 67% of the samples with 2-4 viruses and 4.7% of the samples with 5-6 viruses. The major grape cultivars all tested positive for these major viruses. The results also suggested that the use of infected planting material may have been one of the chief factors responsible for the recent outbreaks of viral diseases across the province. CONCLUSIONS This is the first such comprehensive survey for grapevine viruses in Ontario and one of the most extensive surveys ever conducted in Canada. The recent outbreaks of viral diseases in Ontario vineyards were likely caused by GLRaV-3, GRBV and GPGV. Findings from this survey provides a baseline for the grape and wine industry in developing strategies for managing grapevine viral diseases in Ontario vineyards.
Collapse
Affiliation(s)
- Huogen Xiao
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
| | - Mehdi Shabanian
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
| | - Clayton Moore
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
| | - Caihong Li
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
24
|
Daane KM, Middleton MC, Sforza RFH, Kamps-Hughes N, Watson GW, Almeida RPP, Correa MCG, Downie DA, Walton VM. Determining the geographic origin of invasive populations of the mealybug Planococcus ficus based on molecular genetic analysis. PLoS One 2018; 13:e0193852. [PMID: 29565996 PMCID: PMC5863958 DOI: 10.1371/journal.pone.0193852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
Determining the most likely source of an invasive pest species might help to improve their management by establishing efficient quarantine measures and heading the search of efficient biological control agents. Planococcus ficus is an invasive mealybug pest of vineyards in Argentina, California, Mexico, Peru and South Africa. This mealybug pest had a previously known geographic distribution spanning southern Europe, the Middle East, and parts of northern Africa. In North America, Pl. ficus was first discovered in the early 1990s and soon thereafter in Mexico. To determine the origin of invasive populations in North America, Pl. ficus from California and Mexico were compared with material throughout its presumptive native range in the Mediterranean region, as well as material collected from an older invasion in South Africa and recently invaded Argentina. From each sample location, genomic DNA was sequenced for the nuclear internal transcribed spacer one (ITS1) and the mitochondrial cytochrome c. oxidase one (CO1). Phylogenetic analyses of CO1, ITS1 and concatenated CO1 and ITS1 data-sets using Bayesian and neighbor-joining analysis support two major divisions: a European grouping (Europe, Tunisia, Turkey) and a Middle Eastern grouping (Israel and Egypt). The invasive populations in Argentina and South Africa align with the European group and the invasive populations in North America align with the Middle Eastern group, with one Israel sample aligning closely with the North American clade, suggesting that Israel was the origin of those populations.
Collapse
Affiliation(s)
- Kent M. Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
- * E-mail:
| | - Mathew C. Middleton
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - René F. H. Sforza
- USDA-ARS- European Biological Control Laboratory, Campus International de Baillarguet CS90013 Montferrier-sur-Lez, St-Gély du Fesc, France
| | - Nicholas Kamps-Hughes
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - Gillian W. Watson
- California Department of Food & Agriculture, Plant Pest Diagnostic Center, Sacramento CA, United States of America
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - Margarita C. G. Correa
- Université Côte d'Azur, INRA, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Doug A. Downie
- Department of Pesticide Regulation, Pest Management and Licensing, Sacramento, CA
| | - Vaughn M. Walton
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
25
|
Mansour R, Grissa-Lebdi K, Khemakhem M, Chaari I, Trabelsi I, Sabri A, Marti S. Pheromone-mediated mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in Tunisian vineyards: Effect on insect population dynamics. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Poojari S, Boulé J, DeLury N, Lowery DT, Rott M, Schmidt AM, Úrbez-Torres JR. Epidemiology and Genetic Diversity of Grapevine Leafroll-Associated Viruses in British Columbia. PLANT DISEASE 2017; 101:2088-2097. [PMID: 30677387 DOI: 10.1094/pdis-04-17-0497-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grapevine leafroll disease (GLD) is a complex associated with one or more virus species belonging to the family Closteroviridae. The majority of viruses in this complex are vectored by one or more species of mealybugs (Pseudococcidae) and/or scale insects (Coccidae). Grape-growing regions of British Columbia (BC), including Okanagan, Similkameen, and Fraser valleys and Kamloops (BC central interior), Vancouver, and Gulf islands, were surveyed during the 2014 and 2015 growing seasons for the presence of four major grapevine leafroll-associated viruses, including Grapevine leafroll-associated virus 1 (GLRaV-1), GLRaV-2, GLRaV-3, and GLRaV-4. In total, 3,056 composite five-vine samples were collected from 153 Vitis vinifera and three interspecific hybrid vineyard blocks. The results showed GLRaV-3 to be the most widespread, occurring in 16.7% of the composite samples, followed by GLRaV-4 (3.9%), GLRaV-1 (3.8%), and GLRaV-2 (3.0%). Mixed infections of two or more GLRaVs were found in 4.1% of the total samples. The relative incidence of GLRaVs differed among regions and vineyard blocks of a different age. Characterization of partial CO1 region from a total of 241 insect specimens revealed the presence of Pseudococcus maritimus, Parthenolecanium corni, and other Pulvinaria sp. in BC vineyards. Spatial patterns of GLRaV-3 infected grapevines in three vineyard blocks from three different regions in the Okanagan Valley showed variable degrees of increase in disease spread ranging from 0 to 19.4% over three growing seasons. Regional differences in the relative incidence and spread of GLD underline the need for region-based management programs for BC vineyards.
Collapse
Affiliation(s)
- S Poojari
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - J Boulé
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - N DeLury
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - D T Lowery
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| | - M Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, Sidney, BC, Canada V8L1H3
| | - A-M Schmidt
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, Sidney, BC, Canada V8L1H3
| | - J R Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC, Canada V0H1Z0
| |
Collapse
|
27
|
Donda BP, Jarugula S, Naidu RA. An Analysis of the Complete Genome Sequence and Subgenomic RNAs Reveals Unique Features of the Ampelovirus, Grapevine leafroll-associated virus 1. PHYTOPATHOLOGY 2017; 107:1069-1079. [PMID: 28686140 DOI: 10.1094/phyto-02-17-0061-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite being the first closterovirus documented in grapevines (Vitis sp.), the molecular biology of Grapevine leafroll-associated virus 1 (GLRaV-1, genus Ampelovirus, family Closteroviridae) is still in its infancy. In this study, the complete genome sequence of two GLRaV-1 isolates was determined to be 18,731 (isolate WA-CH) and 18,946 (isolate WA-PN) nucleotides (nt). The genome of WA-CH and WA-PN isolates encodes nine putative open reading frames (ORFs) and the arrangement of these ORFs in both isolates was similar to that of Australian and Canadian isolates. In addition to two divergent copies of the coat protein (CP), the genome of GLRaV-1 isolates contain CP-homologous domain in four genes, making the virus unique among Closteroviridae members. The 5' and 3' nontranslated regions (NTRs) of WA-CH and WA-PN isolates showed differences in size and sequence composition, with 5' NTR having variable number of ∼65-nt-long repeats. Using the 5' NTR sequences, a reverse transcription-polymerase chain reaction and restriction fragment length polymorphism method was developed to distinguish GLRaV-1 variants in vineyards. Northern analysis of total RNA from GLRaV-1-infected grapevine samples revealed three subgenomic RNAs (sgRNAs), corresponding tentatively to CP, p21, and p24 ORFs, present at higher levels, with p24 sgRNA observed at relatively higher abundance than the other two sgRNAs. The 5' terminus of sgRNAs corresponding to CP, CPd1, CPd2, p21, and p24 were mapped to the virus genome and the leader sequence for these five sgRNAs determined to be 68, 27, 15, 49, and 18 nt, respectively. Taken together, this study provided a foundation for further elucidation of the comparative molecular biology of closteroviruses infecting grapevines.
Collapse
Affiliation(s)
- Bhanu Priya Donda
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Sridhar Jarugula
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| | - Rayapati A Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350
| |
Collapse
|
28
|
Vončina D, Al Rwahnih M, Rowhani A, Gouran M, Almeida RPP. Viral Diversity in Autochthonous Croatian Grapevine Cultivars. PLANT DISEASE 2017; 101:1230-1235. [PMID: 30682947 DOI: 10.1094/pdis-10-16-1543-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A survey was conducted on nine autochthonous grapevine cultivars grown along the Croatian coastal region. In total, 48 vines (44 from germplasm collection, 4 from vineyards) originating from 23 sites were tested for 26 viruses using molecular methods. Results revealed high infection rates with Grapevine leafroll-associated virus 3 (GLRaV-3); Grapevine virus A (GVA, both 91.7%); Grapevine fleck virus (GFkV, 87.5%); and Grapevine rupestris stem pitting-associated virus (GRSPaV, 83.3%). Other detected viruses were: Grapevine fanleaf virus (GFLV); Grapevine leafroll-associated viruses 1, 2, and strains of 4 (GLRaV-1, GLRaV-2, GLRaV-4); Grapevine viruses B, D, F (GVB, GVD, GVF); Grapevine red globe virus (GRGV); Grapevine vein feathering virus (GVFV); Grapevine Syrah virus 1 (GSyV-1); and Grapevine Pinot gris virus (GPGV). No virus-free vine was found. Mixed infections were determined in all vines, the number of viruses in a single vine ranged from three to nine. GLRaV-3 variant typing confirmed presence of group I, II, and III. Four vines with leaf deformation and mottling were positive for GPGV. Seven viruses (GLRaV-4-like group, GVD, GVE, GVF, GRGV, GSyV-1, and GVFV) were detected for the first time in Croatia. This survey confirmed the deteriorated sanitary status of autochthonous Croatian grapevine cultivars.
Collapse
Affiliation(s)
- Darko Vončina
- Department of Plant Pathology, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California, Davis, USA
| | - Adib Rowhani
- Department of Plant Pathology, University of California, Davis, USA
| | | | - Rodrigo P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, USA
| |
Collapse
|
29
|
Arnold K, Golino DA, McRoberts N. A Synoptic Analysis of the Temporal and Spatial Aspects of Grapevine Leafroll Disease in a Historic Napa Vineyard and Experimental Vine Blocks. PHYTOPATHOLOGY 2017; 107:418-426. [PMID: 27938242 DOI: 10.1094/phyto-06-16-0235-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Five Grapevine leafroll-associated virus 3 (GLRaV-3) epidemics were analyzed utilizing a standardized approach to robustly characterize the temporal and spatial parameters. Published data included in the analysis are from Spain, New Zealand, and Napa Valley, CA together with new data from a historic vineyard in Napa Valley, CA. Linear regression analyses of logit-transformed incidence data indicated a maximum average increase of 11% per year in disease incidence, with considerable variation among locations. Spatial analyses, including distribution fitting, examination of the effective sample size, and evaluation of the parameters of the binary power law fitted to variance data for disease incidence, indicated a high degree of consistency among the data sets. In all cases, except at very low disease incidence, a high degree of spatial aggregation was noted, with evidence that the degree of aggregation varied as a function of mean disease incidence. The polyetic dynamics of disease follow a logistic-like pattern over multiple seasons, consistent with limitation by inoculum availability (infected vines) at low incidence and limitation by disease-free vines at high incidence.
Collapse
Affiliation(s)
- K Arnold
- All authors: Department of Plant Pathology, and second author: Foundation Plant Services, University of California, Davis 95616
| | - D A Golino
- All authors: Department of Plant Pathology, and second author: Foundation Plant Services, University of California, Davis 95616
| | - N McRoberts
- All authors: Department of Plant Pathology, and second author: Foundation Plant Services, University of California, Davis 95616
| |
Collapse
|
30
|
Bahder BW, Zalom FG, Jayanth M, Sudarshana MR. Phylogeny of Geminivirus Coat Protein Sequences and Digital PCR Aid in Identifying Spissistilus festinus as a Vector of Grapevine red blotch-associated virus. PHYTOPATHOLOGY 2016; 106:1223-1230. [PMID: 27111804 DOI: 10.1094/phyto-03-16-0125-fi] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Grapevine red blotch-associated virus (GRBaV) is a single-stranded DNA virus, proposed to be a member of the family Geminiviridae, and is associated with grapevines showing red blotch symptoms in North America. The existence of the virus was reported in 2012, and subsequently detected in grapevines in major grape production regions. We investigated if a vector exists that can transmit GRBaV in vineyards. Phylogenetic analysis of the predicted amino acid sequence of coat protein (CP) of GRBaV with the CP of 23 geminiviruses representing all seven genera of the family Geminiviridae revealed that GRBaV-CP was most similar to that of Tomato pseudo-curly top virus, a geminivirus known to be transmitted by a treehopper (Membracidae), a family that is closely related to leafhoppers (Cicadellidae). To identify vectors of GRBaV, hemipteran species within and nearby wine grape vineyards where virus spread was suspected were collected and transmission assays were conducted. Among the species tested, the three-cornered alfalfa hopper Spissistilus festinus (Hemiptera: Membracidae) was able to both acquire the virus from a grapevine infected with GRBaV and transmit the virus to healthy grapevines in the laboratory. In commercial vineyards, lateral shoots of grapevines girdled due to feeding injury by the adult three-cornered alfalfa hopper also tested positive for the virus using digital PCR. These findings represent an important step in understanding the biology of GRBaV and develop management guidelines.
Collapse
Affiliation(s)
- Brian W Bahder
- First, third, and fourth authors: U.S. Department of Agriculture-Agriculture Research Services, Department of Plant Pathology, University of California, One Shields Ave., Davis 95616; and first and second authors: Department of Entomology and Nematology, University of California, One Shields Ave., Davis 95616
| | - Frank G Zalom
- First, third, and fourth authors: U.S. Department of Agriculture-Agriculture Research Services, Department of Plant Pathology, University of California, One Shields Ave., Davis 95616; and first and second authors: Department of Entomology and Nematology, University of California, One Shields Ave., Davis 95616
| | - Maya Jayanth
- First, third, and fourth authors: U.S. Department of Agriculture-Agriculture Research Services, Department of Plant Pathology, University of California, One Shields Ave., Davis 95616; and first and second authors: Department of Entomology and Nematology, University of California, One Shields Ave., Davis 95616
| | - Mysore R Sudarshana
- First, third, and fourth authors: U.S. Department of Agriculture-Agriculture Research Services, Department of Plant Pathology, University of California, One Shields Ave., Davis 95616; and first and second authors: Department of Entomology and Nematology, University of California, One Shields Ave., Davis 95616
| |
Collapse
|
31
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|
32
|
Bertin S, Cavalieri V, Gribaudo I, Sacco D, Marzachì C, Bosco D. Transmission of Grapevine virus A and Grapevine leafroll-associated virus 1 and 3 by Heliococcus bohemicus (Hemiptera: Pseudococcidae) Nymphs From Plants With Mixed Infections. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1504-1511. [PMID: 27329628 DOI: 10.1093/jee/tow120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Mealybugs (Hemiptera: Pseudococcidae) represent a serious threat for viticulture as vectors of phloem-restricted viruses associated with the grapevine rugose wood and leafroll diseases. Heliococcus bohemicus (Šulc) is known to be involved in the spread of these two viral diseases, being a vector of the Grapevine virus A (GVA) and the Grapevine leafroll-associated virus 1 and 3 (GLRaV-1 and GLRaV-3). This study investigated the acquisition and transmission efficiency of H. bohemicus fed on mixed-infected plants. Nymphs were field-collected onto GVA, GLRaV-1, and GLRaV-3 multiple-infected grapevines in two vineyards in North-Western Italy, and were used in transmission experiments under controlled conditions. Even if most of the collected nymphs were positive to at least one virus, transmission occurred only to a low number of test grapevines. The transmission frequency of GLRaV-3 was the highest, whereas GVA was transmitted to few test plants. The transmission of multiple viruses occurred at low rates, and nymphs that acquired all the three viruses then failed to transmit them together. Statistical analyses showed that the three viruses were independently acquired and transmitted by H. bohemicus and neither synergistic nor antagonistic interactions occurred among them. GVA and GLRaVs transmission efficiencies by H. bohemicus were lower than those reported for other mealybug vectors. This finding is consistent with the slow spread of leafroll and rugose wood diseases observed in Northern Italy, where H. bohemicus is the predominant vector species.
Collapse
Affiliation(s)
- S Bertin
- DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy (; ; ; ), CREA - PAV, Via C.G. Bertero 22, 00156 Roma, Italy
| | - V Cavalieri
- DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy (; ; ; ), CNR - IPSP, Sezione Secondaria di Bari, Via Amendola 122/D, 70126 Bari, Italy
| | - I Gribaudo
- CNR - IPSP, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - D Sacco
- DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy (; ; ; )
| | - C Marzachì
- CNR - IPSP, Strada delle Cacce 73, 10135 Torino, Italy , and
| | - D Bosco
- DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy (; ; ; ), CNR - IPSP, Strada delle Cacce 73, 10135 Torino, Italy , and
| |
Collapse
|
33
|
Wistrom CM, Blaisdell GK, Wunderlich LR, Almeida RPP, Daane KM. Ferrisia gilli (Hemiptera: Pseudococcidae) Transmits Grapevine Leafroll-Associated Viruses. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1519-1523. [PMID: 27329635 DOI: 10.1093/jee/tow124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Several mealybug species are vectors of grapevine leafroll-associated viruses (GLRaV), which cause the economically important grapevine leafroll disease in grape-producing regions worldwide. The mealybug Ferrisia gilli Gullan is a new pest of grapevines in El Dorado County, located in the Sierra Foothill wine-growing region of California. GLRaV species 1, 2, 3, and 4LV have been detected in vineyards with symptomatic vines in the Sierra Foothills. We conducted controlled virus acquisition and transmission experiments using source vine accessions infected with different combinations of GLRaV. We determined that F. gilli acquired GLRaV 1, 2, 3, and 4LV, and transmitted GLRaV-3 and GLRaV-4LV to uninfected recipient vines. Like numerous other mealybug species, in addition to causing direct damage to vines, F. gilli poses a threat to the grape industry as a vector of economically damaging viruses.
Collapse
Affiliation(s)
- C M Wistrom
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114 (; ; ; )
| | - G K Blaisdell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114 (; ; ; )
| | - L R Wunderlich
- University of California Cooperative Extension, Central Sierra Region, Placerville, CA 95667 , and
| | - R P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114 (; ; ; )
| | - K M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114 (; ; ; )
| |
Collapse
|
34
|
Chang KP, Kolli BK. New "light" for one-world approach toward safe and effective control of animal diseases and insect vectors from leishmaniac perspectives. Parasit Vectors 2016; 9:396. [PMID: 27412129 PMCID: PMC4942964 DOI: 10.1186/s13071-016-1674-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 01/03/2023] Open
Abstract
Light is known to excite photosensitizers (PS) to produce cytotoxic reactive oxygen species (ROS) in the presence of oxygen. This modality is attractive for designing control measures against animal diseases and pests. Many PS have a proven safety record. Also, the ROS cytotoxicity selects no resistant mutants, unlike other drugs and pesticides. Photodynamic therapy (PDT) refers to the use of PS as light activable tumoricides, microbicides and pesticides in medicine and agriculture. Here we describe “photodynamic vaccination” (PDV) that uses PDT-inactivation of parasites, i.e. Leishmania as whole-cell vaccines against leishmaniasis, and as a universal carrier to deliver transgenic add-on vaccines against other infectious and malignant diseases. The efficacy of Leishmania for vaccine delivery makes use of their inherent attributes to parasitize antigen (vaccine)-presenting cells. Inactivation of Leishmania by PDT provides safety for their use. This is accomplished in two different ways: (i) chemical engineering of PS to enhance their uptake, e.g. Si-phthalocyanines; and (ii) transgenic approach to render Leishmania inducible for porphyrinogenesis. Three different schemes of Leishmania-based PDV are presented diagrammatically to depict the cellular events resulting in cell-mediated immunity, as seen experimentally against leishmaniasis and Leishmania-delivered antigen in vitro and in vivo. Safety versus efficacy evaluations are under way for PDT-inactivated Leishmania, including those further processed to facilitate their storage and transport. Leishmania transfected to express cancer and viral vaccine candidates are being prepared accordingly for experimental trials. We have begun to examine PS-mediated photodynamic insecticides (PDI). Mosquito cells take up rose bengal/cyanosine, rendering them light-sensitive to undergo disintegration in vitro, thereby providing a cellular basis for the larvicidal activity seen by the same treatments. Ineffectiveness of phthalocyanines and porphyrins for PDI underscores its requirement for different PS. Differential uptake of PS by insect versus other cells to account for this difference is under study. The ongoing work is patterned after the one-world approach by enlisting the participation of experts in medicinal chemistry, cell/molecular biology, immunology, parasitology, entomology, cancer research, tropical medicine and veterinary medicine. The availability of multidisciplinary expertise is indispensable for implementation of the necessary studies to move the project toward product development.
Collapse
Affiliation(s)
- Kwang Poo Chang
- Department of Microbiology/Immunology, Chicago Medical School/Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA.
| | - Bala K Kolli
- Department of Microbiology/Immunology, Chicago Medical School/Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | | |
Collapse
|
35
|
Alabi OJ, Casassa LF, Gutha LR, Larsen RC, Henick-Kling T, Harbertson JF, Naidu RA. Impacts of Grapevine Leafroll Disease on Fruit Yield and Grape and Wine Chemistry in a Wine Grape (Vitis vinifera L.) Cultivar. PLoS One 2016; 11:e0149666. [PMID: 26919614 PMCID: PMC4769264 DOI: 10.1371/journal.pone.0149666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/17/2016] [Indexed: 12/26/2022] Open
Abstract
Grapevine leafroll disease (GLD) is an economically important virus disease affecting wine grapes (Vitis vinifera L.), but little is known about its effect on wine chemistry and sensory composition of wines. In this study, impacts of GLD on fruit yield, berry quality and wine chemistry and sensory features were investigated in a red wine grape cultivar planted in a commercial vineyard. Own-rooted Merlot vines showing GLD symptoms and tested positive for Grapevine leafroll-associated virus 3 and adjacent non-symptomatic vines that tested negative for the virus were compared during three consecutive seasons. Number and total weight of clusters per vine were significantly less in symptomatic relative to non-symptomatic vines. In contrast to previous studies, a time-course analysis of juice from grapes harvested at different stages of berry development from symptomatic and non-symptomatic vines indicated more prominent negative impacts of GLD on total soluble solids (TSS) and berry skin anthocyanins than in juice pH and titratable acidity. Differences in TSS between grapes of symptomatic and non-symptomatic vines were more pronounced after the onset of véraison, with significantly lower concentrations of TSS in grapes from symptomatic vines throughout berry ripening until harvest. Wines made from grapes of GLD-affected vines had significantly lower alcohol, polymeric pigments, and anthocyanins compared to corresponding wines from grapes of non-symptomatic vines. Sensory descriptive analysis of 2010 wines indicated significant differences in color, aroma and astringency between wines made from grapes harvested from GLD-affected and unaffected vines. The impacts of GLD on yield and fruit and wine quality traits were variable between the seasons, with greater impacts observed during a cooler season, suggesting the influence of host plant × environment interactions on overall impacts of the disease.
Collapse
Affiliation(s)
- Olufemi J. Alabi
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
| | - L. Federico Casassa
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Linga R. Gutha
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
| | - Richard C. Larsen
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Thomas Henick-Kling
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - James F. Harbertson
- Viticulture and Enology Program, Washington State University, Wine Science Center, 2710 Crimson Way, Richland, Washington, United States of America
| | - Rayapati A. Naidu
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Extension Center, Prosser, Washington, United States of America
- * E-mail:
| |
Collapse
|
36
|
Sharma AM, Baraff B, Hutchins JT, Wong MK, Blaisdell GK, Cooper ML, Daane KM, Almeida RPP. Relative Prevalence of Grapevine Leafroll-Associated Virus Species in Wine Grape-Growing Regions of California. PLoS One 2015; 10:e0142120. [PMID: 26529503 PMCID: PMC4631472 DOI: 10.1371/journal.pone.0142120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
Some diseases manifest as one characteristic set of symptoms to the host, but can be caused by multiple pathogens. Control treatments based on plant symptoms can make it difficult to effectively manage such diseases, as the biology of the underlying pathogens can vary. Grapevine leafroll disease affects grapes worldwide, and is associated with several viral species in the family Closteroviridae. Whereas some of the viruses associated with this disease are transmitted by insect vectors, others are only graft-transmissible. In three regions of California, we surveyed vineyards containing diseased vines and screened symptomatic plants for all known viral species associated with grapevine leafroll disease. Relative incidence of each virus species differed among the three regions regions, particularly in relation to species with known vectors compared with those only known to be graft-transmitted. In one region, the pathogen population was dominated by species not known to have an insect vector. In contrast, populations in the other surveyed regions were dominated by virus species that are vector-transmissible. Our survey did not detect viruses associated with grapevine leafroll disease at some sites with characteristic disease symptoms. This could be explained either by undescribed genetic diversity among these viruses that prevented detection with available molecular tools at the time the survey was performed, or a misidentification of visual symptoms that may have had other underlying causes. Based on the differences in relative prevalence of each virus species among regions and among vineyards within regions, we expect that region and site-specific management strategies are needed for effective disease control.
Collapse
Affiliation(s)
- Abhineet M. Sharma
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Breanna Baraff
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - John T. Hutchins
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Michelle K. Wong
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - G. Kai Blaisdell
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Monica L. Cooper
- University of California Cooperative Extension, 1710 Soscol Avenue, Suite 4, Napa, CA, 94559, United States of America
| | - Kent M. Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, 94720, United States of America
| |
Collapse
|
37
|
Blaisdell GK, Zhang S, Bratburd JR, Daane KM, Cooper ML, Almeida RPP. Interactions Within Susceptible Hosts Drive Establishment of Genetically Distinct Variants of an Insect-Borne Pathogen. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1531-1539. [PMID: 26470292 DOI: 10.1093/jee/tov153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/15/2015] [Indexed: 06/05/2023]
Abstract
Coinfections are common, leading to pathogen interactions during transmission and establishment in a host. However, few studies have tested the relative strengths of pathogen interactions in vectors and hosts that determine the outcome of infection. We tested interactions between two genetically distinct variants of the mealybug-transmitted Grapevine leafroll-associated virus 3. The transmission efficiency of each variant in single variant inoculations by two vector species was determined. The effects of vector species, a coinfected source, and simultaneous inoculation from multiple hosts to one host on variant establishment were examined. Within-vector interactions could have a role in transmission from hosts containing mixed infections, but not when vectors were moved from separate singly infected source plants to a single recipient plant. The invasive Planococcus ficus (Signoret) was a more efficient vector than Pseudococcus viburni (Signoret). Transmission efficiency of the two variants did not differ in single variant inoculations. Overall infections were the same whether from singly or coinfected source plants. In mixed inoculations, establishment of one variant was reduced. Mixed inoculations from two singly infected source plants resulted in fewer mixed infections than expected by chance. Therefore, the observed outcome was determined subsequent to host inoculation rather than in the vector. The outcome may be due to resource competition between pathogens. Alternatively apparent competition may be responsible; the pathogens' differential ability to overcome host defenses and colonize the host may determine the final outcome of new infections. Detailed knowledge of interactions between pathogens during transmission and establishment could improve understanding and management of disease spread.
Collapse
Affiliation(s)
- G K Blaisdell
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - S Zhang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - J R Bratburd
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - K M Daane
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720
| | - M L Cooper
- Division of Agriculture and Natural Resources, University of California, UC Cooperative Extension, 1710 Soscol Ave., Suite 4, Napa, CA 94559
| | - R P P Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720.
| |
Collapse
|
38
|
Wallingford AK, Fuchs MF, Martinson T, Hesler S, Loeb GM. Slowing the Spread of Grapevine Leafroll-Associated Viruses in Commercial Vineyards With Insecticide Control of the Vector, Pseudococcus maritimus (Hemiptera: Pseudococcidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:112. [PMID: 26223949 PMCID: PMC4675723 DOI: 10.1093/jisesa/iev094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/12/2015] [Indexed: 05/10/2023]
Abstract
Vineyards were surveyed for grapevine leafroll-associated viruses and their insect vectors in New York State's Finger Lakes region in 2006-2008. Grape mealybug, Pseudococcus maritimus (Erhorn) (Hemiptera: Pseudococcidae), European Fruit Lecanium, Parthenolecanium corni (Bouche), and Cottony Maple Scale, Pulvinaria acericola (Walsh and Riley) (Hemiptera: Coccidae) were identified as vector species in this region. An increase in the incidence of Grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-3 was observed in 8 of the 20 vineyards surveyed, which implies transmission by these insect vectors. Two of the vineyards for which a temporal increase in disease incidence was documented were then used to evaluate the efficacy of foliar applications of horticultural oil and two classes of insecticides for control of P. maritimus and for slowing virus spread over 2 years of vine protection. Delayed dormant applications of horticultural oil contributed to control of early season crawlers; however, this was not the case for control of summer populations. Applications of acetamiprid and spirotetramat achieved control in summer populations; however, spirotetramat outperformed acetamiprid in percent reduction of treated compared with control vines and in a side-by-side trial. Vines treated with spirotetramat had a lower percentage of new vines testing positive for GLRaV-1 than control vines after 2 years, while no other spray program altered the increase in incidence of GLRaV-1 or -3.
Collapse
Affiliation(s)
- A K Wallingford
- Department of Entomology, Cornell University, Barton Lab, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - M F Fuchs
- Department of Plant Pathology, Cornell University, Barton Lab, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - T Martinson
- Department of Horticulture, Cornell University, Hedrick Hall, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - S Hesler
- Department of Entomology, Cornell University, Barton Lab, New York State Agricultural Experiment Station, Geneva, NY 14456
| | - G M Loeb
- Department of Entomology, Cornell University, Barton Lab, New York State Agricultural Experiment Station, Geneva, NY 14456 Corresponding author, e-mail:
| |
Collapse
|
39
|
Naidu RA, Maree HJ, Burger JT. Grapevine leafroll disease and associated viruses: a unique pathosystem. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:613-34. [PMID: 26243729 DOI: 10.1146/annurev-phyto-102313-045946] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Grapevine leafroll is the most complex and intriguing viral disease of grapevine (Vitis spp.). Several monopartite closteroviruses (family Closteroviridae) from grapevines have been molecularly characterized, yet their role in disease etiology is not completely resolved. Hence, these viruses are currently designated under the umbrella term of Grapevine leafroll-associated viruses (GLRaVs). This review examines our current understanding of the genetically divergent GLRaVs and highlights the emerging picture of several unique aspects of the leafroll disease pathosystem. A systems biology approach using contemporary technologies in molecular biology, -omics, and cell biology aids in exploring the comparative molecular biology of GLRaVs and deciphering the complex network of host-virus-vector interactions to bridge the gap between genomics and phenomics of leafroll disease. In addition, grapevine-infecting closteroviruses have a great potential as designer viruses to pursue functional genomics and for the rational design of novel disease intervention strategies in this agriculturally important perennial fruit crop.
Collapse
Affiliation(s)
- Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington 99350;
| | | | | |
Collapse
|
40
|
Abstract
Grapevine is a high value vegetatively propagated fruit crop that suffers from numerous viruses, including some that seriously affect the profitability of vineyards. Nowadays, 64 viruses belonging to different genera and families have been reported in grapevines and new virus species will likely be described in the future. Three viral diseases namely leafroll, rugose wood, and infectious degeneration are of major economic importance worldwide. The viruses associated with these diseases are transmitted by mealybugs, scale and soft scale insects, or dagger nematodes. Here, we review control measures of the major grapevine viral diseases. More specifically, emphasis is laid on (i) approaches for the production of clean stocks and propagative material through effective sanitation, robust diagnosis, as well as local and regional certification efforts, (ii) the management of vectors of viruses using cultural, biological, and chemical methods, and (iii) the production of resistant grapevines mainly through the application of genetic engineering. The benefits and limitations of the different control measures are discussed with regard to accomplishments and future research directions.
Collapse
Affiliation(s)
- Varvara I Maliogka
- Faculty of agriculture, Forestry and Natural Environment, School of Agriculture, Plant Pathology Lab, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Marc Fuchs
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, USA
| | - Nikolaos I Katis
- Faculty of agriculture, Forestry and Natural Environment, School of Agriculture, Plant Pathology Lab, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Velasco L, Bota J, Montero R, Cretazzo E. Differences of Three Ampeloviruses' Multiplication in Plant May Explain Their Incidences in Vineyards. PLANT DISEASE 2014; 98:395-400. [PMID: 30708447 DOI: 10.1094/pdis-04-13-0433-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Grapevine leafroll ampeloviruses have been recently grouped into two major clades, one for Grapevine leafroll associated virus (GLRaV) 1 and 3 and another one grouping GLRaV-4 and its variants. In order to understand biological factors mediating differential ampelovirus incidences in vineyards, quantitative real-time polymerase chain reactions were performed to assess virus populations in three grapevine varieties in which different infection status were detected: GLRaV-3 + GLRaV-4, GLRaV-3 + GLRaV-4 strain 5, and GLRaV-4 alone. Specific primers based on the RNA-dependent RNA polymerase (RdRp) domains of GLRaV-3, GLRaV-4, and GLRaV-4 strain 5 were used. Absolute and relative quantitations of the three viruses were achieved by normalization of data to the concentration of the endogenous gene actin. In spring, the populations of GLRaV-4 and GLRaV-4 strain 5 were 1.7 × 104 to 5.0 × 105 genomic RNA copies/mg of petiole tissue whereas, for GLRaV-3, values were significantly higher, ranging from 5.6 × 105 and 1.0 × 107 copies mg-1. In autumn, GLRaV-4 and GLRaV-4 strain 5 populations increased significantly, displaying values for genome copies between 4.1 × 105 and 6.3 × 106 copies mg-1, whereas GLRaV-3 populations displayed a less pronounced boost but were still significantly higher, ranging from 4.1 × 106 to 1.6 × 107 copies mg-1. To investigate whether additional viruses may interfere in the quantifications the small RNA populations, vines were analyzed by Ion Torrent high-throughput sequencing. It allowed the identification of additional viruses and viroids, including Grapevine virus A, Hop stunt viroid, Grapevine yellow speckle viroid 1, and Australian grapevine viroid. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA), 29140 Churriana, Málaga, Spain
| | - Josefina Bota
- Institut de Recerca i Formació Agrària i Pesquera de les Illes Balears, 07009 Palma de Mallorca, Spain
| | - Rafael Montero
- Institut de Recerca i Formació Agrària i Pesquera de les Illes Balears, 07009 Palma de Mallorca, Spain
| | | |
Collapse
|
42
|
Thompson JR, Fuchs M, McLane H, Celebi-Toprak F, Fischer KF, Potter JL, Perry KL. Profiling viral infections in grapevine using a randomly primed reverse transcription-polymerase chain reaction/macroarray multiplex platform. PHYTOPATHOLOGY 2014; 104:211-9. [PMID: 24111573 DOI: 10.1094/phyto-06-13-0166-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Crop-specific diagnostics to simultaneously detect a large number of pathogens provides an invaluable platform for the screening of vegetative material prior to its propagation. Here we report the use of what is to-date the largest published example of a crop-specific macroarray for the detection of 38 of the most prevalent or emergent viruses to infect grapevine. The reusable array consists of 1,578 virus-specific 60 to 70mer oligonucleotide probes and 19 plant and internal control probes spotted onto an 18 × 7 cm nylon membrane. In a survey of 99 grapevines from the United States and Europe, virus infections were detected in 46 selections of Vitis vinifera, V. labrusca, and interspecific hybrids. The majority of infected vines (30) was singly infected, while 16 were mixed-infected with viruses from two or more families. Representatives of the four main virus families Betaflexiviridae, Closteroviridae, Secoviridae, and Tymoviridae present in grapevines were found alone and in combination, with a notable bias in representation by members of the family Tymoviridae. This work demonstrates the utility of the macroarray platform for the multiplex detection of viruses in a single crop, its potential for characterizing grapevine virus associations, and usefulness for rapid diagnostics of introduced material in quarantine centers or in certification programs.
Collapse
|
43
|
Rubio L, Guerri J, Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 2013; 4:151. [PMID: 23805130 PMCID: PMC3693128 DOI: 10.3389/fmicb.2013.00151] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/29/2013] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | | | | |
Collapse
|
44
|
Ramesh R, Swaroop PS, Gonnade RG, Thirupathi C, Waterworth RA, Millar JG, Reddy DS. Syntheses and Determination of Absolute Configurations and Biological Activities of the Enantiomers of the Longtailed Mealybug Pheromone. J Org Chem 2013; 78:6281-4. [DOI: 10.1021/jo400491n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Remya Ramesh
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | | | - Rajesh G. Gonnade
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | | | - Rebeccah A. Waterworth
- Department of Entomology, University of California, Riverside California 92521,
United States
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside California 92521,
United States
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
45
|
Almeida RPP, Daane KM, Bell VA, Blaisdell GK, Cooper ML, Herrbach E, Pietersen G. Ecology and management of grapevine leafroll disease. Front Microbiol 2013; 4:94. [PMID: 23630520 PMCID: PMC3633934 DOI: 10.3389/fmicb.2013.00094] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/03/2013] [Indexed: 02/01/2023] Open
Abstract
Grapevine leafroll disease (GLD) is caused by a complex of vector-borne virus species in the family Closteroviridae. GLD is present in all grape-growing regions of the world, primarily affecting wine grape varieties. The disease has emerged in the last two decades as one of the major factors affecting grape fruit quality, leading to research efforts aimed at reducing its economic impact. Most research has focused on the pathogens themselves, such as improved detection protocols, with limited work directed toward disease ecology and the development of management practices. Here we discuss the ecology and management of GLD, focusing primarily on Grapevine leafroll-associated virus 3, the most important virus species within the complex. We contextualize research done on this system within an ecological framework that forms the backbone of the discussion regarding current and potential GLD management strategies. To reach this goal, we introduce various aspects of GLD biology and ecology, followed by disease management case studies from four different countries and continents (South Africa, New Zealand, California-USA, and France). We review ongoing regional efforts that serve as models for improved strategies to control this economically important and worldwide disease, highlighting scientific gaps that must be filled for the development of knowledge-based sustainable GLD management practices.
Collapse
Affiliation(s)
- Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California at BerkeleyBerkeley, CA, USA
| | - Kent M. Daane
- Department of Environmental Science, Policy and Management, University of California at BerkeleyBerkeley, CA, USA
| | - Vaughn A. Bell
- The New Zealand Institute for Plant and Food Research LimitedHavelock North, New Zealand
| | - G. Kai Blaisdell
- Department of Environmental Science, Policy and Management, University of California at BerkeleyBerkeley, CA, USA
| | - Monica L. Cooper
- Division of Agriculture and Natural Resources, University of California at NapaNapa, CA, USA
| | - Etienne Herrbach
- UMR1131 Santé de la Vigne et Qualité du Vin, Institut National de la Recherche AgronomiqueColmar, France
- UMR1131, Université de StrasbourgStrasbourg, France
| | - Gerhard Pietersen
- Agricultural Research Council-Plant Protection Research Institute, c/o Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Maree HJ, Almeida RPP, Bester R, Chooi KM, Cohen D, Dolja VV, Fuchs MF, Golino DA, Jooste AEC, Martelli GP, Naidu RA, Rowhani A, Saldarelli P, Burger JT. Grapevine leafroll-associated virus 3. Front Microbiol 2013; 4:82. [PMID: 23596440 PMCID: PMC3627144 DOI: 10.3389/fmicb.2013.00082] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/22/2013] [Indexed: 11/17/2022] Open
Abstract
Grapevine leafroll disease (GLD) is one of the most important grapevine viral diseases affecting grapevines worldwide. The impact on vine health, crop yield, and quality is difficult to assess due to a high number of variables, but significant economic losses are consistently reported over the lifespan of a vineyard if intervention strategies are not implemented. Several viruses from the family Closteroviridae are associated with GLD. However, Grapevine leafroll-associated virus 3 (GLRaV-3), the type species for the genus Ampelovirus, is regarded as the most important causative agent. Here we provide a general overview on various aspects of GLRaV-3, with an emphasis on the latest advances in the characterization of the genome. The full genome of several isolates have recently been sequenced and annotated, revealing the existence of several genetic variants. The classification of these variants, based on their genome sequence, will be discussed and a guideline is presented to facilitate future comparative studies. The characterization of sgRNAs produced during the infection cycle of GLRaV-3 has given some insight into the replication strategy and the putative functionality of the ORFs. The latest nucleotide sequence based molecular diagnostic techniques were shown to be more sensitive than conventional serological assays and although ELISA is not as sensitive it remains valuable for high-throughput screening and complementary to molecular diagnostics. The application of next-generation sequencing is proving to be a valuable tool to study the complexity of viral infection as well as plant pathogen interaction. Next-generation sequencing data can provide information regarding disease complexes, variants of viral species, and abundance of particular viruses. This information can be used to develop more accurate diagnostic assays. Reliable virus screening in support of robust grapevine certification programs remains the cornerstone of GLD management.
Collapse
Affiliation(s)
- Hans J. Maree
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
- Biotechnology Platform, Agricultural Research CouncilStellenbosch, South Africa
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA
| | - Rachelle Bester
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| | - Kar Mun Chooi
- School of Biological Sciences, University of AucklandAuckland, New Zealand
| | - Daniel Cohen
- The New Zealand Institute for Plant and Food ResearchAuckland, New Zealand
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
| | - Marc F. Fuchs
- Department of Plant Pathology and Plant-Microbe Biology, Cornell UniversityGeneva, NY, USA
| | - Deborah A. Golino
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | - Anna E. C. Jooste
- Plant Protection Research Institute, Agricultural Research CouncilPretoria, South Africa
| | - Giovanni P. Martelli
- Department of Soil, Plant and Food Sciences, University Aldo Moro of BariBari, Italy
| | - Rayapati A. Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State UniversityProsser, WA, USA
| | - Adib Rowhani
- Department of Plant Pathology, University of CaliforniaDavis, CA, USA
| | | | - Johan T. Burger
- Department of Genetics, Stellenbosch UniversityStellenbosch, South Africa
| |
Collapse
|
47
|
Thompson JR, Fuchs M, Fischer KF, Perry KL. Macroarray detection of grapevine leafroll-associated viruses. J Virol Methods 2012; 183:161-9. [DOI: 10.1016/j.jviromet.2012.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/17/2012] [Accepted: 04/23/2012] [Indexed: 01/18/2023]
|
48
|
Le Maguet J, Beuve M, Herrbach E, Lemaire O. Transmission of six ampeloviruses and two vitiviruses to grapevine by Phenacoccus aceris. PHYTOPATHOLOGY 2012; 102:717-723. [PMID: 22439861 DOI: 10.1094/phyto-10-11-0289] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Grapevine leafroll disease is caused by grapevine leafroll-associated viruses (GLRaVs). These viruses are common in vineyards worldwide and often associated with vitiviruses that are involved in the rugose wood complex of grapevine. Ten mealybug species are known as vectors of one or several of these grapevine viruses, including the apple mealybug Phenacoccus aceris which is widespread in Holarctic regions and able to transmit Grapevine leafroll-associated virus-1 and -3 (GLRaV-1 and -3). Our aim was to characterize the transmission features of leafroll viruses by Phenacoccus aceris in order to better understand the contribution of this mealybug to leafroll epidemics. Results showed that Phenacoccus aceris is able to transmit GLRaV-1, -3, -4, -5, -6, and -9 to grapevine but not GLRaV-7. This is the first report of GLRaV-6 transmission by a mealybug. Also, for the first time it was shown that Phenacoccus aceris could vector vitiviruses Grapevine virus A (GVA) and Grapevine virus B (GVB). First instar nymphs were the most efficient stage in transmitting GLRaV-1, -3, and GVA. This research sheds light on the transmission biology of grapevine viruses by Phenacoccus aceris and represents a step forward to leafroll disease management.
Collapse
Affiliation(s)
- J Le Maguet
- Interprofessionnel du Vin de Champagne, Epernay, France.
| | | | | | | |
Collapse
|
49
|
Esteves F, Teixeira Santos M, Eiras-Dias JE, Fonseca F. Occurrence of grapevine leafroll-associated virus 5 in Portugal: genetic variability and population structure in field-grown grapevines. Arch Virol 2012; 157:1747-65. [DOI: 10.1007/s00705-012-1371-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/06/2012] [Indexed: 11/28/2022]
|
50
|
Quito-Avila DF, Lightle D, Lee J, Martin RR. Transmission biology of Raspberry latent virus, the first aphid-borne reovirus. PHYTOPATHOLOGY 2012; 102:547-553. [PMID: 22352304 DOI: 10.1094/phyto-12-11-0331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Raspberry latent virus (RpLV) is a newly characterized reovirus found in commercial raspberry fields in the Pacific Northwest (PNW). Thus far, all members of the plant reoviruses are transmitted in a replicative, persistent manner by several species of leafhoppers or planthoppers. After several failed attempts to transmit RpLV using leafhoppers, the large raspberry aphid, commonly found in the PNW, was tested as a vector of the virus. The virus was transmitted to new, healthy raspberry plants when inoculated with groups of at least 50 viruliferous aphids, suggesting that aphids are vectors of RpLV, albeit inefficient ones. Using absolute and relative quantification methods, it was shown that the virus titer in aphids continued to increase after the acquisition period even when aphids were serially transferred onto fresh, healthy plants on a daily basis. Transmission experiments determined that RpLV has a 6-day latent period in the aphid before it becomes transmissible; however, it was not transmitted transovarially to the next generation. To our knowledge, this is the first report of a plant reovirus transmitted by an aphid. Phylogenetic analyses showed that RpLV is related most closely to but distinct from Rice ragged stunt virus (RRSV), the type member of the genus Oryzavirus. Moreover, the conserved nucleotide termini of the genomic segments of RpLV did not match those of RRSV or other plant reoviruses, allowing us to suggest that RpLV is probably the type member of a new genus in the Reoviridae comprising aphid-transmitted reoviruses.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| | | | | | | |
Collapse
|