1
|
Etesami H. Enhancing crop disease management through integrating biocontrol bacteria and silicon fertilizers: Challenges and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123102. [PMID: 39471603 DOI: 10.1016/j.jenvman.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
To achieve sustainable disease management in agriculture, there's a growing interest in using beneficial microorganisms as alternatives to chemical pesticides. Bacteria, in particular, have been extensively studied as biological control agents, but their inconsistent performance and limited availability hinder broader adoption. Research continues to explore innovative biocontrol technologies, which can be enhanced by combining silicon (Si) with biocontrol plant growth-promoting rhizobacteria (PGPR). Both biocontrol PGPR and Si demonstrate effectiveness in reducing plant disease under stress conditions, potentially leading to synergistic effects when used together. This review examines the individual mechanisms by which biocontrol PGPR and Si fertilizers manage plant diseases, emphasizing their roles in enhancing plant defense and decreasing disease incidence. Various Si fertilizer sources allow for flexible application methods, suitable for different target diseases and plant species. However, challenges exist, such as inconsistent soil Si data, lack of standardized soil tests, and limited availability of Si fertilizers. Addressing these issues necessitates collaborative efforts to develop improved Si fertilizers and tailored application strategies for specific cropping systems. Additionally, exploring silicate-solubilizing biocontrol bacteria to enhance Si availability in soils introduces intriguing research avenues. Investigating these bacteria's diversity and mechanisms can optimize Si access for plants and bolster disease resistance. Overall, combining biocontrol PGPR and Si fertilizers or silicate-solubilizing biocontrol bacteria shows promise for sustainable agriculture, enhancing crop productivity while reducing reliance on chemical inputs and promoting environmental sustainability.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Yan P, Wang Y, Yu C, Piao J, Li S, Liu Y, Li S. The Targeted Regulation of BDUbc and BDSKL1 Enhances Resistance to Blight in Bambusa pervariabilis × Dendrocalamopsis grandis. Int J Mol Sci 2024; 25:569. [PMID: 38203739 PMCID: PMC10779405 DOI: 10.3390/ijms25010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Arthrinium phaeospermum is the major pathogen responsible for the significant stem disease "blight" in B. pervariabilis × D. grandis. The interacting proteins of the key pathogenic factor ApCtf1β, BDUbc and BDSKL1, have previously been obtained by two-hybrid, BiFC, GST pull-down yeast assays. However, the functions of these interacting proteins remain unknown. This study successfully obtained transgenic plants overexpressing BDUbc, BDSKL1, and BDUbc + BDSKL1 via Agrobacterium-mediated gene overexpression. qRT-PCR analysis revealed significantly increased expression levels of BDUbc and BDSKL1 in the transgenic plants. After infection with the pathogenic spore suspension, the disease incidence and severity index significantly decreased across all three transgenic plants, accompanied by a marked increase in defense enzyme levels. Notably, the co-transformed plant, OE-BDUbc + BDSKL1, demonstrated the lowest disease incidence and severity index among the transgenic variants. These results not only indicate that BDUbc and BDSKL1 are disease-resistant genes, but also that these two genes may exhibit a synergistic enhancement effect, which further improves the resistance to blight in Bambusa pervariabilis × Dendrocalamopsis grandis.
Collapse
Affiliation(s)
- Peng Yan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (P.Y.); (Y.W.); (C.Y.); (J.P.); (S.L.); (Y.L.)
| | - Yisi Wang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (P.Y.); (Y.W.); (C.Y.); (J.P.); (S.L.); (Y.L.)
| | - Cailin Yu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (P.Y.); (Y.W.); (C.Y.); (J.P.); (S.L.); (Y.L.)
| | - Jingmei Piao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (P.Y.); (Y.W.); (C.Y.); (J.P.); (S.L.); (Y.L.)
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (P.Y.); (Y.W.); (C.Y.); (J.P.); (S.L.); (Y.L.)
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (P.Y.); (Y.W.); (C.Y.); (J.P.); (S.L.); (Y.L.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (P.Y.); (Y.W.); (C.Y.); (J.P.); (S.L.); (Y.L.)
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu 611130, China
| |
Collapse
|
3
|
Elshahawy I, Saied N, Abd-El-Kareem F. Hot water treatment in combination with silicate salts dipping for controlling apple gray mold caused by Botrytis cinerea Pers.:Fr. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2023; 47:102. [DOI: 10.1186/s42269-023-01080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/29/2023] [Indexed: 09/02/2023]
Abstract
Abstract
Background
Gray mold is the most prevalent postharvest disease of apple fruits in Egypt. In this study, five isolates of Botrytis cinerea were isolated from apple fruits that had postharvest decay symptoms. Investigations were made into the pathogenicity tests of these isolates as well as the molecular identification of the most virulent isolate. A study was done in vitro to see how B. cinerea's mycelial growth and conidial germination would be affected by hot water treatments (HWT) at temperatures of 25, 50, 52, 54, or 56 °C for 10, 20, 30, or 40 s as well as silicate salts (SS), specifically potassium silicate and sodium silicate at 0.0, 2.0, 4.0, and 6.0%. The effectiveness of hot water treatment and silicate salts dipping (SSD), both separately and together, for preventing B. cinerea infection and preserving the natural qualities of apple fruits was investigated in vivo.
Results
Pathogenicity tests on apples (Anna cv.) revealed that B. cinerea isolate (Bc-1) was found to be the most virulent. This isolate was identified as belonging to the fungus B. cinerea through molecular testing using internal transcribed spacer (ITS) sequencing and phylogenetic analyses, and it has since been added to Gene Bank with the accession number ON1498639.1. The lethal temperature for B. cinerea mycelial growth and spore germination in vitro was 54 °C/30 s and 54 °C/10 s, respectively. At a 6.0%, the SS, specifically potassium silicate and sodium silicate, completely prevented pathogen growth. When applied separately, HWT (60 °C/30 s) and SSD (6.0%/1 min) significantly reduced B. cinerea decay of apple fruits stored at 20 ± 2 °C for 15 days. In terms of control efficacy, the HWT (60 °C/30 s) and SSD (6.0%/1 min) combination performed better.
Conclusions
When apple fruits are stored at 20 ± 2 °C for 15 days, the combination of HWT (60 °C/30 s) and SSD (6.0%/1 min) may be an efficient way to control the gray mold disease. The amount of total soluble solids (TSS) in apple fruits was unaffected by these treatments, but they significantly lessened fruit weight loss after 40 days of storage at 20 ± 2 °C.
Collapse
|
4
|
Wei HY, Li Y, Yan J, Peng SY, Wei SJ, Yin Y, Li KT, Cheng X. Root cell wall remodeling: A way for exopolysaccharides to mitigate cadmium toxicity in rice seedling. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130186. [PMID: 36265381 DOI: 10.1016/j.jhazmat.2022.130186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Exopolysaccharides (EPS) are macromolecules with environment beneficial properties. Currently, numerous studies focus on the absorption of heavy metals by EPS, but less attention has been paid to the effects of EPS on the plants. This study explored the effects of EPS from Lactobacillus plantarum LPC-1 on the structure and function of cell walls in rice seedling roots under cadmium (Cd) stress. The results showed that EPS could regulate the remodeling process of the cell walls of rice roots. EPS affects the synthesis efficiency and the content of the substances that made up the cell wall, and thus plays an essential role in limiting the uptake and transport of Cd in rice root. Furthermore, EPS could induce plant resistance to heavy metals by regulating the lignin biosynthesis pathway in rice roots. Finally, the cell wall remodeling induced by EPS likely contributes to plant stress responses by activating the reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- Hong-Yu Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yi Li
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jiao Yan
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shuai-Ying Peng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sai-Jin Wei
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yanbin Yin
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
| | - Kun-Tai Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of food science and technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xin Cheng
- Institute of Applied Microbiology, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Silicon Controls Bacterial Wilt Disease in Tomato Plants and Inhibits the Virulence-Related Gene Expression of Ralstonia solanacearum. Int J Mol Sci 2022; 23:ijms23136965. [PMID: 35805970 PMCID: PMC9266643 DOI: 10.3390/ijms23136965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Silicon (Si) has a multifunctional role in improving plant growth and enhancing plant disease resistance, but its mechanisms are not fully understood. In this study, we investigated the impacts of silicon application on the control of bacterial wilt and elucidated the molecular mechanisms using transcriptome sequencing. Compared to non-Si treatment, Si application (0.5–2 mM) significantly reduces tomato bacterial wilt index by 46.31–72.23%. However, Si does not influence the growth of R. solanacearum. Si application negatively influences R. solanacearum exopolysaccharide (EPS) synthesis and biofilm formation. Transcriptome analysis showed that Si treatment significantly downregulates the expression of virulence genes’ transcriptional regulator (xpsR), EPS synthesis-related genes (epsD and tek), and type III effectors (HrpB2, SpaO, and EscR) in R. solanacearum. In addition, Si remarkably upregulates the expression of twitch motor-related genes (pilE2, pilE, fimT, and PilX). These findings suggest that silicon-suppressed tomato wilt incidence may be due to the regulation of the virulence-related genes of R. solanacearum by Si. Our research adds new knowledge to the application of Si in the field of disease control.
Collapse
|
6
|
Peng H, Hu H, Xi K, Zhu X, Zhou J, Yin J, Guo F, Liu Y, Zhu Y. Silicon Nanoparticles Enhance Ginger Rhizomes Tolerance to Postharvest Deterioration and Resistance to Fusarium solani. FRONTIERS IN PLANT SCIENCE 2022; 13:816143. [PMID: 35371177 PMCID: PMC8965286 DOI: 10.3389/fpls.2022.816143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Postharvest deterioration of ginger rhizome caused by microorganisms or wound infections causes significant economic losses. Fusarium solani is one of the important causal agents of prevalent ginger disease soft rot across the world. The massive and continuous use of chemical fungicides in postharvest preservation pose risks to human health and produce environmental contamination. Hence, new alternative tools are required to reduce postharvest deterioration and extend the postharvest life of ginger. In this study, the use of silicon nanoparticles (SiNPs) on the storability of ginger rhizomes during postharvest storage and their resistance to Fusarium solani was investigated. The results showed that 50, 100, and 150 mg L-1 of SiNPs increased the firmness of the ginger rhizome during storage but decreased the decay severity, water loss, total color difference, and the reactive oxygen species (ROS; H2O2 and superoxide anion) accumulation. Specifically, 100 mg L-1 (SiNP100) demonstrated the best effect in the extension of postharvest life and improved the quality of the ginger rhizomes. SiNP100 application increased the activities of antioxidant enzymes (SOD and CAT) and the total phenolics and flavonoid contents, thereby reducing the ROS accumulation and malondialdehyde (MDA) content. Meanwhile, SiNP100 treatment negatively impacts the peroxidase (POD) and polyphenol oxidase (PPO) activities, which may have contributed to the lower level of lignin and decreased total color difference. SiNP100 likely decreased water loss and the transfer of water by altering the expression of aquaporin genes. Moreover, SiNP100 modulated the expression of lignin synthesis and phytopathogenic responses genes including MYB and LysM genes. Furthermore, SiNP100 inhibited Fusarium solani by preventing the penetration of hyphae into cells, thus decreasing the severity of postharvest pathogenic decay. In summary, this study revealed the physiology and molecular mechanisms of SiNPs-induced tolerance to postharvest deterioration and resistance to disease, which provides a foundation for using SiNPs resources as a promising alternative tool to maintain ginger quality and control postharvest diseases.
Collapse
Affiliation(s)
- Huimin Peng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Haijun Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Keyong Xi
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiongmeng Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jie Zhou
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fengling Guo
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yiqing Liu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
7
|
Saja-Garbarz D, Libik-Konieczny M, Fellner M, Jurczyk B, Janowiak F. Silicon-induced alterations in the expression of aquaporins and antioxidant system activity in well-watered and drought-stressed oilseed rape. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:73-86. [PMID: 35151109 DOI: 10.1016/j.plaphy.2022.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Progressing climate change necessitates the search for solutions of plant protection against the effects of water deficit. One of these solutions could be silicon supplementation. The aim of the study was to verify the hypothesis that silicon changes aquaporin expression and antioxidant system activity in a direction which may alleviate the effects of drought stress in oilseed rape. The accumulation of BnPIP1, BnPIP2-1-7 and BnTIP1;1 aquaporins and the expression of their genes, the level of catalase, superoxide dismutase activities and hydrogen peroxide content as well as total non-enzymatic antioxidant activity were analyzed in leaf tissue from control and silicon-treated oilseed rape plants growing under well-watered and drought conditions. Silicon was applied in two forms - pure silicon and a silicon complex. It was shown that under drought conditions, both pure silicon and the silicon complex (with Fe) significantly increased the accumulation of aquaporins and improved the activity of enzymatic and non-enzymatic components of the antioxidant system, while under well-watered conditions, these effects were observed only in the case of the silicon complex. The presented study proves that silicon supplementation in oilseed rape improves the regulation of water management and contributes to the protection against oxidative stress caused by drought.
Collapse
Affiliation(s)
- Diana Saja-Garbarz
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Marta Libik-Konieczny
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Martin Fellner
- Group of Molecular Physiology, Laboratory of Growth Regulators, Palacky University in Olomouc & Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 27, Olomouc-Holice, 783 71, Czech Republic.
| | - Barbara Jurczyk
- Department of Physiology, Plant Breeding and Seed Science, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland.
| | - Franciszek Janowiak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
8
|
Palmieri D, Barone G, Cigliano RA, De Curtis F, Lima G, Castoria R, Ianiri G. Complete genome sequence of the biocontrol yeast Papiliotrema terrestris strain LS28. G3 GENES|GENOMES|GENETICS 2021; 11:6371956. [PMID: 34534326 PMCID: PMC8664472 DOI: 10.1093/g3journal/jkab332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022]
Abstract
Papiliotrema terrestris strain LS28 is a biocontrol agent selected for its antagonistic activity against several plant pathogens both in the field and postharvest. The availability of a genome sequencing sets the foundation for the identification of the genetic mechanisms of its antagonistic activity. The genome size is 21.29 Mbp with a G+C content of 58.65%, and genome annotation predicts 8,626 protein-encoding genes. Phylogenetic analysis based on whole-genome data confirms that P. terrestris is a Tremellomycetes more closely related to Papiliotrema flavescens than Papiliotrema laurentii.
Collapse
Affiliation(s)
- Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Barone
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | | | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Lima
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
9
|
Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. PLANTS 2021; 10:plants10102163. [PMID: 34685972 PMCID: PMC8537781 DOI: 10.3390/plants10102163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Silicon (Si) has never been acknowledged as a vital nutrient though it confers a crucial role in a variety of plants. Si may usually be expressed more clearly in Si-accumulating plants subjected to biotic stress. It safeguards several plant species from disease. It is considered as a common element in the lithosphere of up to 30% of soils, with most minerals and rocks containing silicon, and is classified as a "significant non-essential" element for plants. Plant roots absorb Si, which is subsequently transferred to the aboveground parts through transpiration stream. The soluble Si in cytosol activates metabolic processes that create jasmonic acid and herbivore-induced organic compounds in plants to extend their defense against biotic stressors. The soluble Si in the plant tissues also attracts natural predators and parasitoids during pest infestation to boost biological control, and it acts as a natural insect repellent. However, so far scientists, policymakers, and farmers have paid little attention to its usage as a pesticide. The recent developments in the era of genomics and metabolomics have opened a new window of knowledge in designing molecular strategies integrated with the role of Si in stress mitigation in plants. Accordingly, the present review summarizes the current status of Si-mediated plant defense against insect, fungal, and bacterial attacks. It was noted that the Si-application quenches biotic stress on a long-term basis, which could be beneficial for ecologically integrated strategy instead of using pesticides in the near future for crop improvement and to enhance productivity.
Collapse
|
10
|
|
11
|
Song XP, Verma KK, Tian DD, Zhang XQ, Liang YJ, Huang X, Li CN, Li YR. Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biol Res 2021; 54:19. [PMID: 34238380 PMCID: PMC8265040 DOI: 10.1186/s40659-021-00344-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.
Collapse
Affiliation(s)
- Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Xiao-Qiu Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yong-Jian Liang
- Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, 532200, Guangxi, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Chang-Ning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, 530007, Guangxi, China.
| |
Collapse
|
12
|
Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity. Appl Environ Microbiol 2021; 87:AEM.02910-20. [PMID: 33452020 DOI: 10.1128/aem.02910-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/01/2021] [Indexed: 01/19/2023] Open
Abstract
Fungal attacks on stored fruit and vegetables are responsible for losses of products. There is an active research field to develop alternative strategies for postharvest disease management, and the use of biocontrol agents represents a promising approach. Understanding the molecular bases of the biocontrol activity of these agents is crucial to potentiate their effectiveness. The yeast Papiliotrema terrestris is a biocontrol agent against postharvest pathogens. Phenotypic studies suggest that it exerts its antagonistic activity through competition for nutrients and space, which relies on its resistance to oxidative and other cellular stresses. In this study, we developed tools for genetic manipulation in P. terrestris to perform targeted gene replacement and functional complementation of the transcription factors Yap1 and Rim101. In vitro phenotypic analyses revealed a conserved role of Yap1 and Rim101 in broad resistance to oxidative stress and alkaline pH sensing, respectively. In vivo analyses revealed that P. terrestris yap1Δ and rim101Δ mutants display decreased ability to colonize wounded fruit compared to that of the parental wild-type (WT) strain; the yap1Δ mutant also displays reduced biocontrol activity against the postharvest pathogens Penicillium expansum and Monilinia fructigena, indicating an important role for resistance to oxidative stress in timely wound colonization and biocontrol activity of P. terrestris In conclusion, the availability of molecular tools developed in the present study provides a foundation to elucidate the genetic mechanisms underlying biocontrol activity of P. terrestris, with the goal of enhancing this activity for the practical use of P. terrestris in pest management programs based on biological and integrated control.IMPORTANCE The use of fungicides represents the most effective and widely used strategy for controlling postharvest diseases. However, their extensive use has raised several concerns, such as the emergence of plant pathogens' resistance as well as the health risks associated with the persistence of chemical residues in fruit, in vegetables, and in the environment. These factors have brought attention to alternative methods for controlling postharvest diseases, such as the utilization of biocontrol agents. In the present study, we developed genetic resources to investigate at the molecular level the mechanisms involved in the biocontrol activity of Papiliotrema terrestris, a basidiomycete yeast that is an effective biocontrol agent against widespread fungal pathogens, including Penicillium expansum, the etiological agent of blue mold disease of pome fruits. A deeper understanding of how postharvest biocontrol agents operate is the basic requirement to promote the utilization of biological (and integrated) control for the reduction of chemical fungicides.
Collapse
|
13
|
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104641. [PMID: 32711774 DOI: 10.1016/j.pestbp.2020.104641] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Farghama Khalil
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
14
|
Zhang X, Li B, Zhang Z, Chen Y, Tian S. Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. J Fungi (Basel) 2020; 6:E158. [PMID: 32878102 PMCID: PMC7558569 DOI: 10.3390/jof6030158] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Fruit plays an important role in human diet. Whereas, fungal pathogens cause huge losses of fruit during storage and transportation, abuse of chemical fungicides leads to serious environmental pollution and endangers human health. Antagonistic yeasts (also known as biocontrol yeasts) are promising substitutes for chemical fungicides in the control of postharvest decay owing to their widespread distribution, antagonistic ability, environmentally friendly nature, and safety for humans. Over the past few decades, the biocontrol mechanisms of antagonistic yeasts have been extensively studied, such as nutrition and space competition, mycoparasitism, and induction of host resistance. Moreover, combination of antagonistic yeasts with other agents or treatments were developed to improve the biocontrol efficacy. Several antagonistic yeasts are used commercially. In this review, the application of antagonistic yeasts for postharvest decay control is summarized, including the antagonistic yeast species and sources, antagonistic mechanisms, commercial applications, and efficacy improvement. Issues requiring further study are also discussed.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (X.Z.); (B.L.); (Z.Z.); (Y.C.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Li B, Chen Y, Zhang Z, Qin G, Chen T, Tian S. Molecular basis and regulation of pathogenicity and patulin biosynthesis in
Penicillium expansum. Compr Rev Food Sci Food Saf 2020; 19:3416-3438. [DOI: 10.1111/1541-4337.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China
- Key Laboratory of Post‐Harvest Handing of Fruits Ministry of Agriculture Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
16
|
Yu L, Qiao N, Zhao J, Zhang H, Tian F, Zhai Q, Chen W. Postharvest control of Penicillium expansum in fruits: A review. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Kosawang C, Sørensen H, Kjær ED, Dilokpimol A, McKinney LV, Collinge DB, Nielsen LR. Defining the twig fungal communities of Fraxinus species and Fraxinus excelsior genotypes with differences in susceptibility to ash dieback. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Cai J, Chen T, Zhang Z, Li B, Qin G, Tian S. Metabolic Dynamics During Loquat Fruit Ripening and Postharvest Technologies. FRONTIERS IN PLANT SCIENCE 2019; 10:619. [PMID: 31178876 PMCID: PMC6543895 DOI: 10.3389/fpls.2019.00619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Loquat is an important fruit widely cultivated worldwide with high commercial value. During loquat fruit development, ripening, and storage, many important metabolites undergo dramatic changes, resulting in accumulation of a diverse mixture of nutrients. Given the value of loquat fruit, significant progresses have been achieved in understanding the metabolic changes during fruit ripening and storage, as well as postharvest technologies applied in loquat fruit in recent years. The objective of the present review is to summarize currently available knowledge and provide new references for improving loquat fruit quality.
Collapse
Affiliation(s)
- Jianghua Cai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture, Beijing, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture, Beijing, China
- *Correspondence: Shiping Tian,
| |
Collapse
|
19
|
Harun-Or-Rashid M, Kim HJ, Yeom SI, Yu HA, Manir MM, Moon SS, Kang YJ, Chung YR. Bacillus velezensis YC7010 Enhances Plant Defenses Against Brown Planthopper Through Transcriptomic and Metabolic Changes in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1904. [PMID: 30622550 PMCID: PMC6308211 DOI: 10.3389/fpls.2018.01904] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 05/23/2023]
Abstract
Brown planthopper (BPH; Nilaparvata lugens Stål) is one of the most serious insect pests, which reduce rice yield remarkably in many rice-growing areas. A few plant growth-promoting rhizobacteria induce systemic resistance against herbivorous insects. Here we show that root drenching of rice seedlings with an endophytic strain Bacillus velezensis YC7010 enhanced defenses against BPH. Based on high-throughput transcriptome analysis, systemic resistance against BPH was induced by B. velezensis YC7010 via salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways. Increased leaf contents of secondary metabolites, tricin and C-glycosyl flavone and cell-wall contents of lignin and cellulose were the key defense mechanisms inducing resistance against BPH during the three-way interaction. This study shows for the first time that chemical changes and strengthening of physical barriers play important roles simultaneously in plant defense against BPH in rice by the endophytic bacteria. This defense was induced by lipopeptides including a novel bacillopeptin X.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biologyand Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Entomology, Bangladesh Agricultural Research Institute, Rangpur, Bangladesh
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Department of Food Science and Technology, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | | | | | - Surk-Sik Moon
- Department of Chemistry, Kongju National University, Gongju, South Korea
| | - Yang Jae Kang
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biologyand Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Young Ryun Chung
- Division of Applied Life Science (BK21 Plus), Plant Molecular Biologyand Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
20
|
Tu KY, Tsai SF, Guo TW, Lin HH, Yang ZW, Liao CT, Chuang WP. The Role of Plant Abiotic Factors on the Interactions Between Cnaphalocrocis medinalis (Lepidoptera: Crambidae) and its Host Plant. ENVIRONMENTAL ENTOMOLOGY 2018; 47:857-866. [PMID: 29762698 DOI: 10.1093/ee/nvy066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 05/16/2023]
Abstract
Atmospheric temperature increases along with increasing atmospheric CO2 concentration. This is a major concern for agroecosystems. Although the impact of an elevated temperature or increased CO2 has been widely reported, there are few studies investigating the combined effect of these two environmental factors on plant-insect interactions. In this study, plant responses (phenological traits, defensive enzyme activity, secondary compounds, defense-related gene expression and phytohormone) of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) -susceptible and resistant rice under various conditions (environment, soil type, variety, C. medinalis infestation) were used to examine the rice-C. medinalis interaction. The results showed that leaf chlorophyll content and trichome density in rice were variety-dependent. Plant defensive enzyme activities were affected environment, variety, or C. medinalis infestation. In addition, total phenolic content of rice leaves was decreased by elevated CO2 and temperature and C. medinalis infestation. Defense-related gene expression patterns were affected by environment, soil type, or C. medinalis infestation. Abscisic acid and salicylic acid content were decreased by C. medinalis infestation. However, jasmonic acid content was increased by C. medinalis infestation. Furthermore, under elevated CO2 and temperature, rice plants had higher abscisic acid content than plants under ambient conditions. The adult morphological traits of C. medinalis also were affected by environment. Under elevated CO2 and temperature, C. medinalis adults had greater body length in the second and third generations. Taken together these results indicated that elevated CO2 and temperature not only affects plants but also the specialized insects that feed on them.
Collapse
Affiliation(s)
- Kun-Yu Tu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Shin-Fu Tsai
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Tzu-Wei Guo
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Hou-Ho Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Zhi-Wei Yang
- Crop Improvement Division, Taoyuan District Agricultural Research and Extension Station, Houzhuang, Sinwu District, Taoyuan City, Taiwan (R.O.C.)
| | - Chung-Ta Liao
- Crop Enviroment Division, Taichung District Agricultural Research and Extension Station, COA, Dacun Township, Changhua County, Taiwan (R.O.C.)
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan (R.O.C.)
| |
Collapse
|
21
|
Hua L, Yong C, Zhanquan Z, Boqiang L, Guozheng Q, Shiping T. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy016] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Li Hua
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Chen Yong
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
| | - Zhang Zhanquan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Li Boqiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Qin Guozheng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| | - Tian Shiping
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing
- University of Chinese Academy of Sciences, Beijing
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture of China, Institute of Botany, Chinese Academy of Sciences, China
| |
Collapse
|
22
|
Zhou X, Shen Y, Fu X, Wu F. Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities. FRONTIERS IN PLANT SCIENCE 2018; 9:624. [PMID: 29868080 PMCID: PMC5958222 DOI: 10.3389/fpls.2018.00624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/19/2018] [Indexed: 05/06/2023]
Abstract
Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L.) seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC) were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling resistance to Fusarium wilt by changing soil microbial communities rather than by directly inhibiting the growth of FOC.
Collapse
Affiliation(s)
- Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| | - Yanhui Shen
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Xuepeng Fu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
| |
Collapse
|
23
|
Helaly MN, El-Hoseiny H, El-Sheery NI, Rastogi A, Kalaji HM. Regulation and physiological role of silicon in alleviating drought stress of mango. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:31-44. [PMID: 28603082 DOI: 10.1016/j.plaphy.2017.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 05/27/2023]
Abstract
Improvement of drought stress of mango plants requires intensive research that focuses on physiological processes. In three successive seasons (2014, 2015and 2016) field experiments with four different strains of mango were subjected to two water regimes. The growth and physiological parameters of possible relevance for drought stress tolerances in mango were investigated. Yield and its components were also evaluated. The data showed that all growth and physiological parameters were increased under K2SiO3 (Si) supplement and were followed by the interaction treatment (Si treatment and its combination with drought stress) compared to that of the controlled condition. Drought stress decreased the concentration of auxins (IAA), gibberellins (GA) and cytokinins (CK) in the three mango cultivars leaves, whereas, it increased the concentration of abscisic acid (ABA). On the contrary, IAA, GA, and CK (promoters) endogenous levels were improved by supplementing Si, in contrary ABA was decreased. Drought stress increased the activity of peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD) in the leaves of all mango cultivars grown during three experimental seasons. However, Si supplementation reduced the levels of all these antioxidative enzymes, especially the concentration of SOD when compared to that of control leaves. Fruit quality was improved in three successive seasons when Si was applied. Our results clearly show that the increment in drought tolerance was associated with an increase in antioxidative enzyme activity, allowing mango plants to cope better with drought stress. Si possesses an efficient system for scavenging reactive oxygen species, which protects the plant against destructive oxidative reactions, thereby improving the ability of the mango trees to withstand environmental stress in arid regions.
Collapse
Affiliation(s)
- Mohamed Naser Helaly
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, El-Mansoura, Egypt
| | - Hanan El-Hoseiny
- Horticultural Research Institute, Agricultural Research Center, Giza, Egypt
| | | | - Anshu Rastogi
- Department of Meteorology, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland; Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976 Nitra, Slovak Republic
| | - Hazem M Kalaji
- Department of Plant Physiology, Faculty of Agriculture and Biology, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland; SI TECHNOLOGY, Gorczewska 226C/26, 01-460 Warsaw, Poland.
| |
Collapse
|
24
|
Wang M, Gao L, Dong S, Sun Y, Shen Q, Guo S. Role of Silicon on Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:701. [PMID: 28529517 PMCID: PMC5418358 DOI: 10.3389/fpls.2017.00701] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Although silicon (Si) is not recognized as an essential element for general higher plants, it has beneficial effects on the growth and production of a wide range of plant species. Si is known to effectively mitigate various environmental stresses and enhance plant resistance against both fungal and bacterial pathogens. In this review, the effects of Si on plant-pathogen interactions are analyzed, mainly on physical, biochemical, and molecular aspects. In most cases, the Si-induced biochemical/molecular resistance during plant-pathogen interactions were dominated as joint resistance, involving activating defense-related enzymes activates, stimulating antimicrobial compound production, regulating the complex network of signal pathways, and activating of the expression of defense-related genes. The most previous studies described an independent process, however, the whole plant resistances were rarely considered, especially the interaction of different process in higher plants. Si can act as a modulator influencing plant defense responses and interacting with key components of plant stress signaling systems leading to induced resistance. Priming of plant defense responses, alterations in phytohormone homeostasis, and networking by defense signaling components are all potential mechanisms involved in Si-triggered resistance responses. This review summarizes the roles of Si in plant-microbe interactions, evaluates the potential for improving plant resistance by modifying Si fertilizer inputs, and highlights future research concerning the role of Si in agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
25
|
|
26
|
Song A, Xue G, Cui P, Fan F, Liu H, Yin C, Sun W, Liang Y. The role of silicon in enhancing resistance to bacterial blight of hydroponic- and soil-cultured rice. Sci Rep 2016; 6:24640. [PMID: 27091552 PMCID: PMC4835757 DOI: 10.1038/srep24640] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/04/2016] [Indexed: 12/13/2022] Open
Abstract
Here we report for the first time that bacterial blight of rice can be alleviated by silicon (Si) added. In both inoculated and uninoculated plants, shoot dry weight was significantly higher in the +Si plants than in the -Si plants. A soil-cultured trial showed that disease severity was 24.3% lower in the Si-amended plants than in the non-Si-amended plants. Plants that were switched from -Si to +Si nutrient solution and simultaneously inoculated with Xoo also exhibited the same high resistance to bacterial blight as the plants that were treated continuously with Si, with control efficiencies of 52.8 and 62.9%, respectively. Moreover, total concentrations of soluble phenolics and lignin in rice leaves were significantly higher in the +Si plants than in the -Si plants. Polyphenoloxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities in rice leaves were observed to be higher in the +Si plants than in the -Si plants. The expression levels of Os03g0109600, Prla, Rcht2 and Lox2osPil, were also higher in +Si plants than in -Si plants post-inoculation during the experimental time. Addition of Si resulted in increased Pal transcription, and inhibited CatA and Os03g0126000 expression in the earlier and later stages of bacterial inoculation, respectively.
Collapse
Affiliation(s)
- Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Gaofeng Xue
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Peiyuan Cui
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Hongfang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Chang Yin
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Wanchun Sun
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Niu LL, Bi Y, Bai XD, Zhang SG, Xue HL, Li YC, Wang Y, Calderón-Urrea A. Damage to Trichothecium roseum caused by sodium silicate is independent from pH. Can J Microbiol 2016; 62:161-72. [DOI: 10.1139/cjm-2015-0657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li-li Niu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
- College of Grassland Sciences and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
| | - Xiao-dong Bai
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
| | - Sheng-gui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
| | - Hua-li Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
| | - Yong-cai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, People’s Republic of China
| | | |
Collapse
|
28
|
Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements. Folia Microbiol (Praha) 2015; 61:199-207. [DOI: 10.1007/s12223-015-0424-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
29
|
Vivancos J, Labbé C, Menzies JG, Bélanger RR. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. MOLECULAR PLANT PATHOLOGY 2015; 16:572-82. [PMID: 25346281 PMCID: PMC6638373 DOI: 10.1111/mpp.12213] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses.
Collapse
Affiliation(s)
- Julien Vivancos
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC, Canada, G1V 0A6
| | - Caroline Labbé
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC, Canada, G1V 0A6
| | - James G Menzies
- Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, Canada, R6M 1Y5
| | - Richard R Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC, Canada, G1V 0A6
| |
Collapse
|
30
|
Zong Y, Li B, Tian S. Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum. Int J Food Microbiol 2015; 206:102-8. [DOI: 10.1016/j.ijfoodmicro.2015.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/17/2022]
|
31
|
Inhibitory Effect of Selenium Against Penicillium expansum and Its Possible Mechanisms of Action. Curr Microbiol 2014; 69:192-201. [DOI: 10.1007/s00284-014-0573-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 02/08/2014] [Indexed: 10/25/2022]
|
32
|
Lai T, Chen Y, Li B, Qin G, Tian S. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis. J Proteomics 2014; 103:47-56. [PMID: 24675182 DOI: 10.1016/j.jprot.2014.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/18/2014] [Accepted: 03/12/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Penicillium expansum is an important fungal pathogen, which causes blue mold rot in various fruits and produces a mycotoxin (patulin) with potential damage to public health. Here, we found that nitric oxide (NO) donor could significantly inhibit germinability of P. expansum spores, resulting in lower virulence to apple fruit. Based on two dimension electrophoresis (2-DE) and mass spectrometry (MS) analysis, we identified ten differentially expressed proteins in response to exogenous NO in P. expansum. Among of them, five proteins, such as glutamine synthetase (GS), amidohydrolase, nitrilases, nitric oxide dioxygenase (NOD) and heat shock protein 70, were up-regulated. Others including tetratricopeptide repeat domain, UDP-N-acetylglucosamine pyrophosphorylase, enolase (Eno), heat shock protein 60 and K homology RNA-binding domain were down-regulated. The expression of three genes associated with the identified proteins (GS, NOD, and Eno) was evaluated at the mRNA level by RT-PCR. Our results provide the novel evidence for understanding the mechanism, by which NO regulates growth of P. expansum and its virulence. BIOLOGICAL SIGNIFICANCE Crop diseases caused by fungal pathogens lead to huge economic losses every year in the world. Application of chemical fungicides to control diseases brings the concern about food and environmental safety. Screening new antimicrobial compounds and exploring involved mechanisms have great significance to development of new disease management strategies. Nitric oxide (NO), as an important intracellular signaling molecule, has been proved to be involved in many physiological processes and defense responses during plant-pathogen interactions. In this study, we firstly found that NO at high concentration could distinctly delay spore germination and significantly reduce virulence of P. expansum to fruit host, identified some important proteins in response to NO stress and characterized the functions of these proteins. These results provide novel evidence for understanding the mechanism of NO regulating virulence of the fungal pathogen, but are beneficial for screening new targets of antifungal compounds.
Collapse
Affiliation(s)
- Tongfei Lai
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Xiangshan Nanxincun 20, Haidian District, Beijing 100093, China.
| |
Collapse
|
33
|
Induced defense responses in rice plants against small brown planthopper infestation. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cj.2013.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Liu J, Sui Y, Wisniewski M, Droby S, Liu Y. Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 2013; 167:153-60. [DOI: 10.1016/j.ijfoodmicro.2013.09.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 01/30/2023]
|
35
|
Cerioni L, Lazarte MDLÁ, Villegas JM, Rodríguez-Montelongo L, Volentini SI. Inhibition of Penicillium expansum by an oxidative treatment. Food Microbiol 2013. [DOI: 10.1016/j.fm.2012.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Bellaloui N, Mengistu A, Zobiole LHS, Shier WT. Resistance to toxin-mediated fungal infection: role of lignins, isoflavones, other seed phenolics, sugars, and boron in the mechanism of resistance to charcoal rot disease in soybean. TOXIN REV 2012. [DOI: 10.3109/15569543.2012.691150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Li W, Bi Y, Ge Y, Li Y, Wang J, Wang Y. Effects of postharvest sodium silicate treatment on pink rot disease and oxidative stress-antioxidative system in muskmelon fruit. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1611-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Qin G, Liu J, Cao B, Li B, Tian S. Hydrogen peroxide acts on sensitive mitochondrial proteins to induce death of a fungal pathogen revealed by proteomic analysis. PLoS One 2011; 6:e21945. [PMID: 21755012 PMCID: PMC3130790 DOI: 10.1371/journal.pone.0021945] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/13/2011] [Indexed: 11/25/2022] Open
Abstract
How the host cells of plants and animals protect themselves against fungal invasion is a biologically interesting and economically important problem. Here we investigate the mechanistic process that leads to death of Penicillium expansum, a widespread phytopathogenic fungus, by identifying the cellular compounds affected by hydrogen peroxide (H2O2) that is frequently produced as a response of the host cells. We show that plasma membrane damage was not the main reason for H2O2-induced death of the fungal pathogen. Proteomic analysis of the changes of total cellular proteins in P. expansum showed that a large proportion of the differentially expressed proteins appeared to be of mitochondrial origin, implying that mitochondria may be involved in this process. We then performed mitochondrial sub-proteomic analysis to seek the H2O2-sensitive proteins in P. expansum. A set of mitochondrial proteins were identified, including respiratory chain complexes I and III, F1F0 ATP synthase, and mitochondrial phosphate carrier protein. The functions of several proteins were further investigated to determine their effects on the H2O2-induced fungal death. Through fluorescent co-localization and the use of specific inhibitor, we provide evidence that complex III of the mitochondrial respiratory chain contributes to ROS generation in fungal mitochondria under H2O2 stress. The undesirable accumulation of ROS caused oxidative damage of mitochondrial proteins and led to the collapse of mitochondrial membrane potential. Meanwhile, we demonstrate that ATP synthase is involved in the response of fungal pathogen to oxidative stress, because inhibition of ATP synthase by oligomycin decreases survival. Our data suggest that mitochondrial impairment due to functional alteration of oxidative stress-sensitive proteins is associated with fungal death caused by H2O2.
Collapse
Affiliation(s)
- Guozheng Qin
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- * E-mail: (GQ); (ST)
| | - Jia Liu
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- The Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Baohua Cao
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- The Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Boqiang Li
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- The Graduate University of the Chinese Academy of Sciences, Beijing, China
- * E-mail: (GQ); (ST)
| |
Collapse
|
39
|
Pest risk assessment ofMonilinia fructicolafor the EU territory and identification and evaluation of risk management options. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Oxidative Damage Involves in the Inhibitory Effect of Nitric Oxide on Spore Germination of Penicillium expansum. Curr Microbiol 2010; 62:229-34. [DOI: 10.1007/s00284-010-9695-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/28/2010] [Indexed: 01/28/2023]
|
41
|
Yang L, Zhao P, Wang L, Filippus I, Meng X. Synergistic effect of oligochitosan and silicon on inhibition of Monilinia fructicola infections. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:630-634. [PMID: 20355091 DOI: 10.1002/jsfa.3860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Oligochitosan has broad-spectrum antimicrobial activity and shows an obvious inhibitory effect on phytopathogens. In addition, as an exogenous elicitor, it can induce various defence responses, including affecting the activities of several defence-related enzymes and substances in some plants. Owing to this dual function of oligochitosan, it can be used to control postharvest diseases of fruits. Silicon, like oligochitosan, also has a dual function. In this study the synergistic effect of oligochitosan and silicon on the decay control of apple fruit was investigated. RESULTS In vitro, both oligochitosan and silicon significantly inhibited spore germination, germ tube elongation and mycelial growth of Monilinia fructicola, with higher concentrations having a greater effect. The synergistic effect of oligochitosan and silicon at half-maximal inhibitory concentration on disease control at 25 degrees C was much better than the effect of oligochitosan or silicon alone, not only in vitro but also in vivo. CONCLUSION The results showed that a combination of oligochitosan and silicon had a synergistic effect on the control of disease caused by M. fructicola in apple fruit at 25 degrees C.
Collapse
Affiliation(s)
- Lingyu Yang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | | | | | | | | |
Collapse
|
42
|
Liu J, Zong Y, Qin G, Li B, Tian S. Plasma Membrane Damage Contributes to Antifungal Activity of Silicon Against Penicillium digitatum. Curr Microbiol 2010; 61:274-9. [DOI: 10.1007/s00284-010-9607-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/02/2010] [Indexed: 11/28/2022]
|
43
|
Li YC, Bi Y, Ge YH, Sun XJ, Wang Y. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. J Food Sci 2009; 74:M213-8. [PMID: 19646050 DOI: 10.1111/j.1750-3841.2009.01154.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antifungal activity of sodium silicate on Fusarium sulphureum and its inhibitory effect on dry rot of potato tubers were investigated. Sodium silicate strongly inhibited spore germination and mycelial growth. Morphological changes in sodium silicate-treated hyphae such as mycelium sparsity and asymmetry, hyphal swelling, curling, and cupped shape were observed by scanning electron microscopy. Ultrastructural alterations were also observed using transmission electron microscopy, including thickening of the hyphal cell walls, cell distortion, cavity, or electron-dense material in hyphal cells. Daughter hyphae and new daughter hyphae inside of the collapsed hyphal cells were often detected in the cytoplasm of sodium silicate-treated hyphae, although the septa of treated hyphae remained uniform. In vivo testing showed that sodium silicate at 100 and 200 mM effectively controlled dry rot of tubers that were challenged by inoculation with a F. sulphureum spore suspension. These findings suggest that sodium silicate has direct fungitoxic activity against the pathogen.
Collapse
Affiliation(s)
- Y C Li
- Gansu Agricultural Univ., Lanzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
44
|
Liu HM, Guo JH, Liu P, Cheng YJ, Wang BQ, Long CA, Deng BX. Inhibitory activity of tea polyphenol and Candida ernobii against Diplodia natalensis infections. J Appl Microbiol 2009; 108:1066-1072. [PMID: 19796126 DOI: 10.1111/j.1365-2672.2009.04511.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIMS To investigate the effect of tea polyphenol (TP) and Candida ernobii alone or in combination against postharvest disease (Diplodia natalensis) in citrus fruit and to evaluate the possible mechanisms involved. METHODS AND RESULTS TP at concentrations of 0.1%, 0.5% and 1.0% alone, or in combination with C. ernobii (1x10(6) CFU ml(-1)), showed a lower infection rate of stem-end rot. TP at the concentration of 0.5% or above significantly inhibited the spore germination of D. natalensis. TP at the concentration of 1.0% showed inhibitary ability on mycelium growth of D. natalensis. The addition of TP did not affect the growth of C. ernobii in vitro and significantly increased the population of C. ernobii in vivo. CONCLUSIONS TP exhibited an inhibitory effect against D. natalensis and improved the biocontrol efficacy of C. ernobii. It was direct because of the inhibitory effects of TP on spore germination and mycelial growth of D. natalensis in vitro and indirect because of the increased populations of C. ernobii in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY The results suggested that TP alone or in combination with biocontrol agents has great potential in commercial management of postharvest diseases in fruits.
Collapse
Affiliation(s)
- H M Liu
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - J H Guo
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - P Liu
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Y J Cheng
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - B Q Wang
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - C A Long
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| | - B X Deng
- National Centre of Citrus Breeding, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agriculture University, Wuhan, Hubei, China
| |
Collapse
|
45
|
Li BQ, Tian SP. Effect of intracellular trehalose in Cryptococcus laurentii and exogenous lyoprotectants on its viability and biocontrol efficacy on Penicillium expansum in apple fruit. Lett Appl Microbiol 2007; 44:437-42. [PMID: 17397484 DOI: 10.1111/j.1472-765x.2006.02080.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To improve viability and biocontrol efficacy of Cryptococcus laurentii after freeze drying and in subsequent storage. METHODS AND RESULTS Viability of C. laurentii was improved after freeze drying and in subsequent storage at 4 or 25 degrees C by using skimmed milk (SM) and sugars (glucose, galactose, sucrose and trehalose) as protectants. Sugars and SM mixed together showed better protection than when they were used separately. Citric acid used as carbon source could induce accumulation of intracellular trehalose in the yeast. The yeast cells with high trehalose level (HT cells) had higher viability than those with low trehalose level (LT cells) after freeze drying and storage for 90 days. After storage for 90 days at 4 degrees C, the HT cells plus SM and sugars as protectant showed a similar biocontrol effect against blue mould rot in apple fruit caused by Penicillium expansum as fresh cells. CONCLUSIONS Increasing intracellular trehalose content of C. laurentii and adding exogenous protectant (sugars + SM) could improve its viability and maintain its biocontrol efficacy. SIGNIFICANCE AND IMPACT OF THE STUDY The results have a potential value for commercial application of C. laurentii.
Collapse
Affiliation(s)
- B Q Li
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
46
|
Qin G, Tian S, Chan Z, Li B. Crucial role of antioxidant proteins and hydrolytic enzymes in pathogenicity of Penicillium expansum: analysis based on proteomics approach. Mol Cell Proteomics 2006; 6:425-38. [PMID: 17194899 DOI: 10.1074/mcp.m600179-mcp200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Penicillium expansum, a widespread filamentous fungus, is a major causative agent of fruit decay and may lead to the production of mycotoxin that causes harmful effects on human health. In this study, we compared the cellular and extracellular proteomes of P. expansum in the absence and presence of borate, which affects the virulence of the fungal pathogen. The differentially expressed proteins were identified using ESI-Q-TOF-MS/MS. Several proteins related to stress response (glutathione S-transferase, catalase, and heat shock protein 60) and basic metabolism (glyceraldehyde-3-phosphate dehydrogenase, dihydroxy-acid dehydratase, and arginase) were identified in the cellular proteome. Catalase and glutathione S-transferase, the two antioxidant enzymes, exhibited reduced levels of expression upon exposure to borate. Because catalase and glutathione S-transferase are related to oxidative stress response, we further investigated the reactive oxygen species (ROS) levels and oxidative protein carbonylation (damaged proteins) in P. expansum. Higher amounts of ROS and carbonylated proteins were observed after borate treatment, indicating that catalase and glutathione S-transferase are important in scavenging ROS and protecting cellular proteins from oxidative damage. Additionally to find secretory proteins that contribute to the virulence, we studied the extracellular proteome of P. expansum under stress condition with reduced virulence. The expression of three protein spots were repressed in the presence of borate and identified as the same hydrolytic enzyme, polygalacturonase.
Collapse
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
47
|
Bi Y, Tian SP, Guo YR, Ge YH, Qin GZ. Sodium Silicate Reduces Postharvest Decay on Hami Melons: Induced Resistance and Fungistatic Effects. PLANT DISEASE 2006; 90:279-283. [PMID: 30786549 DOI: 10.1094/pd-90-0279] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of sodium silicate (Si) for control of decay was tested in Hami melons (Cucumis melo L. var. inodorus Jacq.). Si significantly inhibited mycelial growth of Alternaria alternata, Fusarium semitectum, and Trichothecium roseum in vitro. Si at 100 mM was more effective than Si at 25 or 50 mM at controlling the diseases caused by the three pathogens, whereas Si at 200 mM was phytotoxic. Si treatments applied at 100 mM pre-inoculation with T. roseum had lower decay incidence and severity than treatments applied post-inoculation. The protection of Si was correlated with the activation of two families of defense-related enzymes, peroxidase and chitinase. Accumulation of both enzymes was induced in fruit treated with Si and challenged by T. roseum 24 h later, and was sustained for at least 9 days in 'New Queen' and 10 days in '8601' at room temperature. It appeared that induced resistance was an important mechanism of disease control in Hami melons treated with Si.
Collapse
Affiliation(s)
- Y Bi
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and Department of Food Science, Gansu Agricultural University
| | - S P Tian
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences
| | - Y R Guo
- Department of Food Science, Gansu Agricultural University
| | - Y H Ge
- Department of Food Science, Gansu Agricultural University
| | - G Z Qin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences
| |
Collapse
|
48
|
Current awareness on yeast. Yeast 2005; 22:745-52. [PMID: 16106592 DOI: 10.1002/yea.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|