1
|
Lindqvist-Kreuze H, Bonierbale M, Grüneberg WJ, Mendes T, De Boeck B, Campos H. Potato and sweetpotato breeding at the international potato center: approaches, outcomes and the way forward. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:12. [PMID: 38112758 PMCID: PMC10730645 DOI: 10.1007/s00122-023-04515-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Root and tuber crop breeding is at the front and center of CIP's science program, which seeks to develop and disseminate sustainable agri-food technologies, information and practices to serve objectives including poverty alleviation, income generation, food security and the sustainable use of natural resources. CIP was established in 1971 in Peru, which is part of potato's center of origin and diversity, with an initial mandate on potato and expanding to include sweetpotato in 1986. Potato and sweetpotato are among the top 10 most consumed food staples globally and provide some of the most affordable sources of energy and vital nutrients. Sweetpotato plays a key role in securing food for many households in Africa and South Asia, while potato is important worldwide. Both crops grow in a range of conditions with relatively few inputs and simple agronomic techniques. Potato is adapted to the cooler environments, while sweetpotato grows well in hot climates, and hence, the two crops complement each other. Germplasm enhancement (pre-breeding), the development of new varieties and building capacity for breeding and variety testing in changing climates with emphasis on adaptation, resistance, nutritional quality and resource-use efficiency are CIP's central activities with significant benefits to the poor. Investments in potato and sweetpotato breeding and allied disciplines at CIP have resulted in the release of many varieties some of which have had documented impact in the release countries. Partnership with diverse types of organizations has been key to the centers way of working toward improving livelihoods through crop production in the global South.
Collapse
Affiliation(s)
| | - Merideth Bonierbale
- International Potato Center, Lima 12, 1558, Apartado, Peru
- Calle Bolivia, 12 Manilva, 29690, Malaga, Spain
| | | | - Thiago Mendes
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Bert De Boeck
- International Potato Center, Lima 12, 1558, Apartado, Peru
| | - Hugo Campos
- International Potato Center, Lima 12, 1558, Apartado, Peru
| |
Collapse
|
2
|
De la Cruz G, Blas R, Pérez W, Neyra E, Ortiz R. Foliar transcriptomes reveal candidate genes for late blight resistance in cultivars of diploid potato Solanum tuberosum L. Andigenum Group. FRONTIERS IN PLANT SCIENCE 2023; 14:1210046. [PMID: 37780511 PMCID: PMC10535101 DOI: 10.3389/fpls.2023.1210046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023]
Abstract
Characterization of major resistance (R) genes to late blight (LB) -caused by the oomycete Phytophthora infestans- is very important for potato breeding. The objective of this study was to identify novel genes for resistance to LB from diploid Solanum tuberosum L. Andigenum Group (StAG) cultivar accessions. Using comparative analysis with a edgeR bioconductor package for differential expression analysis of transcriptomes, two of these accessions with contrasting levels of resistance to LB were analyzed using digital gene expression data. As a result, various differentially expressed genes (P ≤ 0.0001, Log2FC ≥ 2, FDR < 0.001) were noted. The combination of transcriptomic analysis provided 303 candidate genes that are overexpressed and underexpressed, thereby giving high resistance to LB. The functional analysis showed differential expression of R genes and their corresponding proteins related to disease resistance, NBS-LRR domain proteins, and specific disease resistance proteins. Comparative analysis of specific tissue transcriptomes in resistant and susceptible genotypes can be used for rapidly identifying candidate R genes, thus adding novel genes from diploid StAG cultivar accessions for host plant resistance to P. infestans in potato.
Collapse
Affiliation(s)
- Germán De la Cruz
- Laboratorio de Genética y Biotecnología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de San Cristóbal de Huamanga (UNSCH), Ayacucho, Peru
| | - Raúl Blas
- Instituto de Biotecnologia (IBT), Facultad de Agronomia, Universidad Nacional Agraria La Molina (UNALM), Lima, Peru
| | - Willmer Pérez
- Plant Pathology Laboratory, Crop and Systems Sciences Division, International Potato Center, Lima, Peru
| | - Edgar Neyra
- Unidad de Genómica, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento Académico de Tecnología Médica, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
3
|
Perez W, Alarcon L, Rojas T, Correa Y, Juarez H, Andrade-Piedra JL, Anglin NL, Ellis D. Screening South American Potato Landraces and Potato Wild Relatives for Novel Sources of Late Blight Resistance. PLANT DISEASE 2022; 106:1845-1856. [PMID: 35072509 DOI: 10.1094/pdis-07-21-1582-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans is one of the most important biotic constraints for potato production worldwide. This study assessed 508 accessions (79 wild potato species and 429 landraces from a cultivated core collection) held at the International Potato Center genebank for resistance to LB. One P. infestans isolate belonging to the EC-1 lineage, which is currently the predominant type of P. infestans in Peru, Ecuador, and Colombia, was used in whole plant assays under greenhouse conditions. Novel sources of resistance to LB were found in accessions of Solanum albornozii, S. andreanum, S. lesteri, S. longiconicum, S. morelliforme, S. stenophyllidium, S. mochiquense, S. cajamarquense, and S. huancabambense. All of these species are endemic to South America and thus could provide novel sources of resistance for potato breeding programs. We found that the level of resistance to LB in wild species and potato landraces cannot be predicted from altitude and bioclimatic variables of the locations where the accessions were collected. The high percentage (73%) of potato landraces susceptible to LB in our study suggests the importance of implementing disease control measures, including planting susceptible genotypes in less humid areas and seasons or switching to genotypes identified as resistant. In addition, this study points out a high risk of genetic erosion in potato biodiversity at high altitudes of the Andes due to susceptibility to LB in the native landraces, which has been exacerbated by climatic change that favors the development of LB in those regions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Willmer Perez
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Lesly Alarcon
- Universidad Nacional del Centro del Peru, Huancayo, Peru
| | - Tania Rojas
- Universidad Nacional Agraria La Molina, Lima, Peru
| | - Yanina Correa
- Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Peru
| | - Henry Juarez
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Jorge L Andrade-Piedra
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - Noelle L Anglin
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| | - David Ellis
- Centro Internacional de la Papa, CGIAR Research Program on Roots, Tubers and Bananas, Lima, Peru
| |
Collapse
|
4
|
Morales JG, Gaviria AE, Gilchrist E. Allelic Variation and Selection in Effector Genes of Phytophthora infestans (Mont.) de Bary. Pathogens 2020; 9:pathogens9070551. [PMID: 32659973 PMCID: PMC7400436 DOI: 10.3390/pathogens9070551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phytophthora infestans is a devastating plant pathogen in several crops such as potato (Solanum tuberosum), tomato (Solanum lycopersicum) and Andean fruits such as tree tomato (Solanum betaceum), lulo (Solanum quitoense), uchuva (Physalis peruviana) and wild species in the genus Solanum sp. Despite intense research performed around the world, P. infestans populations from Colombia, South America, are poorly understood. Of particular importance is knowledge about pathogen effector proteins, which are responsible for virulence. The present work was performed with the objective to analyze gene sequences coding for effector proteins of P. infestans from isolates collected from different hosts and geographical regions. Several genetic parameters, phylogenetic analyses and neutrality tests for non-synonymous and synonymous substitutions were calculated. Non-synonymous substitutions were identified for all genes that exhibited polymorphisms at the DNA level. Significant negative selection values were found for two genes (PITG_08994 and PITG_12737) suggesting active coevolution with the corresponding host resistance proteins. Implications for pathogen virulence mechanisms and disease management are discussed.
Collapse
Affiliation(s)
- Juan G. Morales
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Correspondence: ; Tel.: +0057-4-4309088
| | - Astrid E. Gaviria
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
| | - Elizabeth Gilchrist
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Universidad EAFIT, 050034 Medellín, Colombia
| |
Collapse
|
5
|
Ristaino JB. The Importance of Mycological and Plant Herbaria in Tracking Plant Killers. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
6
|
Palomares-Rius JE, Belaj A, León L, de la Rosa R, Rapoport HF, Castillo P. Evaluation of the Phytopathological Reaction of Wild and Cultivated Olives as a Means of Finding Promising New Sources of Genetic Diversity for Resistance to Root-Knot Nematodes. PLANT DISEASE 2019; 103:2559-2568. [PMID: 31432752 DOI: 10.1094/pdis-02-19-0322-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Olive (Olea europaea L.) is one of the most important fruit crops in the Mediterranean Basin, because it occupies significant acreage in these countries and often has important cultural heritage and landscape value. This crop can be infected by several Meloidogyne species (M. javanica, M. arenaria, and M. incognita, among others), and only a few cultivars with some level of resistance to these nematodes have been found. Innovations in intensive olive growing using high planting densities, irrigation, and substantial amounts of fertilizers could increase the nematode population to further damaging levels. To further understand the interactions involved between olive and pathogenic nematodes and in the hope of finding solutions to the agricultural risks, this research aimed to determine the reaction of important olive cultivars in Spain and wild olives to M. javanica infection, including genotypes of the same and other O. europaea subspecies. All olive cultivars tested were good hosts for M. javanica, but high levels of nematode reproduction found in three cultivars (Gordal Sevillana, Hojiblanca, and Manzanilla de Sevilla) were substantially different. In the wild accessions, O. europaea subsp. cerasiformis (genotype W147) and O. europaea subsp. europaea var. sylvestris (genotype W224) were resistant to M. javanica at different levels, with strong resistance in W147 (reproduction factor [Rf] = 0.0003) and moderate resistance in W224 (Rf = 0.79). The defense reaction of W147 to M. javanica showed a strong increase of phenolic compounds but no hypersensitive reaction.
Collapse
Affiliation(s)
- Juan E Palomares-Rius
- Institute for Sustainable Agriculture, Spanish National Research Council, Campus de Excelencia Internacional Agroalimentario, 14004 Córdoba, Spain
| | - Angjelina Belaj
- Centro Alameda del Obispo, Instituto Andaluz de Investigación y Formación Agraria Pesquera Alimentaria y de la Producción Ecológica, Córdoba, Spain
| | - Lorenzo León
- Centro Alameda del Obispo, Instituto Andaluz de Investigación y Formación Agraria Pesquera Alimentaria y de la Producción Ecológica, Córdoba, Spain
| | - Raúl de la Rosa
- Centro Alameda del Obispo, Instituto Andaluz de Investigación y Formación Agraria Pesquera Alimentaria y de la Producción Ecológica, Córdoba, Spain
| | - Hava F Rapoport
- Institute for Sustainable Agriculture, Spanish National Research Council, Campus de Excelencia Internacional Agroalimentario, 14004 Córdoba, Spain
| | - Pablo Castillo
- Institute for Sustainable Agriculture, Spanish National Research Council, Campus de Excelencia Internacional Agroalimentario, 14004 Córdoba, Spain
| |
Collapse
|
7
|
Saville A, Ristaino JB. Genetic Structure and Subclonal Variation of Extant and Recent U.S. Lineages of Phytophthora infestans. PHYTOPATHOLOGY 2019; 109:1614-1627. [PMID: 31066347 DOI: 10.1094/phyto-09-18-0357-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The oomycete Phytophthora infestans is an important plant pathogen on potato and tomato crops. We examined the genetic structure of extant 20th and 21st century U.S. lineages of P. infestans and compared them with populations from South America and Mexico to examine genetic relationships and potential sources of lineages. US-23, currently the most prevalent lineage detected in the United States, shared genetic similarity primarily with the BR-1 lineage identified in the 1990s from Bolivia and Brazil. Lineages US-8, US-14, and US-24, predominantly virulent on potato, formed a cluster distinct from other U.S. lineages. Many of the other U.S. lineages shared significant genetic similarity with Mexican populations. The US-1 lineage, dominant in the mid-20th century, clustered with US-1 lineages from Peru. A survey of the presence of RXLR effector PiAVR2 revealed that some lineages carried PiAVR2, its resistance-breaking variant PiAVR2-like, or both. Minimum spanning networks developed from simple sequence repeat genotype datasets from USABlight outbreaks clearly showed the expansion of US-23 over a 6-year time period and geographic substructuring of some lineages in the western United States. Many clonal lineages of P. infestans in the United States have come from introductions from Mexico, but the US-23 and US-1 lineages were most likely introduced from other sources.
Collapse
Affiliation(s)
- Amanda Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
8
|
Gómez-González S, Castañeda-Sánchez D, Morales-Osorio J. Media preferences, micro-morphometric analysis, and cardinal growth temperature determination for Phytophthora infestans sensu lato isolated from different hosts in Colombia. BRAZ J BIOL 2019; 80:167-179. [PMID: 31017243 DOI: 10.1590/1519-6984.206460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
Abstract
During the last years Phytophthora infestans sensu lato (Mont. De Bary) has caused epidemics in Colombia in Andean fruit crops such as Solanum quitoense and Solanum betaceum. Establishment of new or modified experimental procedures to study this pathogen is a mandatory subject for scientists. Twelve isolates of Phytophthora spp. obtained from six different Solanum hosts in Colombia were used to evaluate the effect of five different solid media for growth and ability to produce sporangia and liberate zoospores. Determination of the best media culture and optimal growth temperature were necessary to perform measurements and correlate the provenance of isolates with phenotypic traits. Modifications were made to use ingredients available in local markets on the following media: lime bean agar (LBA), Tree tomato or tree tomato agar (TA), carrot agar (AZ), Rye A modified agar and 32% non-clarified V8 agar. Cardinal temperature determination was performed at 10, 15, 20, and 25 °C. Morphometric traits were measured once the optimal media culture and temperature were defined. Correlation analysis showed that there is a relationship between the host and isolate's preferences for media culture and optimal growth temperature. In addition, the production of characteristic sporangia, sporangiophore and mycelia was related with the media type used and host from which the isolate was collected. In this work useful information was provided to make studies about the biology and development of isolates gathered from cultivated and wild non-traditional hosts.
Collapse
Affiliation(s)
- S Gómez-González
- Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Calle 59A No. 63-20, Núcleo El Volador, Bloque 11, Oficina 117-13, Medellín, Colombia
| | - D Castañeda-Sánchez
- Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Calle 59A No. 63-20, Núcleo El Volador, Bloque 11, Oficina 117-13, Medellín, Colombia
| | - J Morales-Osorio
- Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Calle 59A No. 63-20, Núcleo El Volador, Bloque 11, Oficina 117-13, Medellín, Colombia
| |
Collapse
|
9
|
Jiang R, Li J, Tian Z, Du J, Armstrong M, Baker K, Tze-Yin Lim J, Vossen JH, He H, Portal L, Zhou J, Bonierbale M, Hein I, Lindqvist-Kreuze H, Xie C. Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1545-1555. [PMID: 29385612 PMCID: PMC5889011 DOI: 10.1093/jxb/ery021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 05/24/2023]
Abstract
Following the often short-lived protection that major nucleotide binding, leucine-rich-repeat (NB-LRR) resistance genes offer against the potato pathogen Phytophthora infestans, field resistance was thought to provide a more durable alternative to prevent late blight disease. We previously identified the QTL dPI09c on potato chromosome 9 as a more durable field resistance source against late blight. Here, the resistance QTL was fine-mapped to a 186 kb region. The interval corresponds to a larger, 389 kb, genomic region in the potato reference genome of Solanum tuberosum Group Phureja doubled monoploid clone DM1-3 (DM) and from which functional NB-LRRs R8, R9a, Rpi-moc1, and Rpi_vnt1 have arisen independently in wild species. dRenSeq analysis of parental clones alongside resistant and susceptible bulks of the segregating population B3C1HP showed full sequence representation of R8. This was independently validated using long-range PCR and screening of a bespoke bacterial artificial chromosome library. The latter enabled a comparative analysis of the sequence variation in this locus in diverse Solanaceae. We reveal for the first time that broad spectrum and durable field resistance against P. infestans is conferred by the NB-LRR gene R8, which is thought to provide narrow spectrum race-specific resistance.
Collapse
Affiliation(s)
- Rui Jiang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingcai Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- School of Life Sciences, Huanggang Normal College, Huanggang, Hubei, China
| | - Zhendong Tian
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | - Juan Du
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
| | - Miles Armstrong
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Katie Baker
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Joanne Tze-Yin Lim
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research, AJ Wageningen, The Netherlands
| | - Huan He
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | | | - Jun Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. Navigating complexity to breed disease-resistant crops. Nat Rev Genet 2017; 19:21-33. [PMID: 29109524 DOI: 10.1038/nrg.2017.82] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant diseases are responsible for substantial crop losses each year and pose a threat to global food security and agricultural sustainability. Improving crop resistance to pathogens through breeding is an environmentally sound method for managing disease and minimizing these losses. However, it is challenging to breed varieties with resistance that is effective, stable and broad-spectrum. Recent advances in genetic and genomic technologies have contributed to a better understanding of the complexity of host-pathogen interactions and have identified some of the genes and mechanisms that underlie resistance. This new knowledge is benefiting crop improvement through better-informed breeding strategies that utilize diverse forms of resistance at different scales, from the genome of a single plant to the plant varieties deployed across a region.
Collapse
Affiliation(s)
- Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Randall Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Peter Balint-Kurti
- United States Department of Agriculture Agricultural Research Service (USDA-ARS), Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA
| |
Collapse
|
11
|
Stam R, Scheikl D, Tellier A. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations. PeerJ 2017; 5:e2910. [PMID: 28133579 PMCID: PMC5248578 DOI: 10.7717/peerj.2910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Martin MD, Vieira FG, Ho SYW, Wales N, Schubert M, Seguin-Orlando A, Ristaino JB, Gilbert MTP. Genomic Characterization of a South American Phytophthora Hybrid Mandates Reassessment of the Geographic Origins of Phytophthora infestans. Mol Biol Evol 2016; 33:478-91. [PMID: 26576850 PMCID: PMC4866541 DOI: 10.1093/molbev/msv241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As the oomycete pathogen causing potato late blight disease, Phytophthora infestans triggered the famous 19th-century Irish potato famine and remains the leading cause of global commercial potato crop destruction. But the geographic origin of the genotype that caused this devastating initial outbreak remains disputed, as does the New World center of origin of the species itself. Both Mexico and South America have been proposed, generating considerable controversy. Here, we readdress the pathogen's origins using a genomic data set encompassing 71 globally sourced modern and historical samples of P. infestans and the hybrid species P. andina, a close relative known only from the Andean highlands. Previous studies have suggested that the nuclear DNA lineage behind the initial outbreaks in Europe in 1845 is now extinct. Analysis of P. andina's phased haplotypes recovered eight haploid genome sequences, four of which represent a previously unknown basal lineage of P. infestans closely related to the famine-era lineage. Our analyses further reveal that clonal lineages of both P. andina and historical P. infestans diverged earlier than modern Mexican lineages, casting doubt on recent claims of a Mexican center of origin. Finally, we use haplotype phasing to demonstrate that basal branches of the clade comprising Mexican samples are occupied by clonal isolates collected from wild Solanum hosts, suggesting that modern Mexican P. infestans diversified on Solanum tuberosum after a host jump from a wild species and that the origins of P. infestans are more complex than was previously thought.
Collapse
Affiliation(s)
- Michael D Martin
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark Department of Integrative Biology, Center for Theoretical Evolutionary Genomics, University of California, Berkeley
| | - Filipe G Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Schubert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andaine Seguin-Orlando
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Jean B Ristaino
- Department of Plant Pathology, North Carolina State University
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Perth, WA, Australia
| |
Collapse
|
13
|
Shakya SK, Goss EM, Dufault NS, van Bruggen AHC. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change. PHYTOPATHOLOGY 2015; 105:230-238. [PMID: 25140388 DOI: 10.1094/phyto-05-14-0132-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P < 0.005), as hypothesized. Infection efficiency, lesion growth rate, and sporulation increased under small temperature oscillations compared with constant temperatures but decreased when temperature oscillations were large. Thus, diurnal amplitude in temperature should be considered in models of potato late blight, particularly when predicting effects of global climate change on disease development.
Collapse
|
14
|
Lindqvist-Kreuze H, Gastelo M, Perez W, Forbes GA, de Koeyer D, Bonierbale M. Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. PHYTOPATHOLOGY 2014; 104:624-633. [PMID: 24423400 DOI: 10.1094/phyto-10-13-0270-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Potato genotypes from a breeding population adapted to tropical highlands were analyzed for the stability of late blight resistance and also for marker-phenotype association. We harmonized the historical evaluation data, consisting of observations spanning 6 years from two field sites utilizing a resistance scale constructed by comparing the area under the disease progress curve (AUDPC) values of 172 genotypes with that of susceptible control 'Yungay'. In total, 70 potato genotypes had a coefficient of variability <0.5 and were considered stable across the environments tested. A principal component analysis demonstrated that the ensemble of experiments formed two distinct groups that reflect the stability of genotype resistance to late blight. Phytophthora infestans isolates present in the experimental fields belonged to the EC-1 clonal lineage and showed variation in virulence beyond the concept of the avirulence determined by the conventionally used R1-R11 differential set. A single-nucleotide polymorphism (SNP) marker on chromosome 9 was associated with late blight resistance and linked to instability. Genotypes with either AACC or AAAC combinations for this SNP were highly resistant only in some environments, while the genotypes with the AAAA combination had more moderate levels of resistance but were stable across environments.
Collapse
|
15
|
Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2013; 2:e00731. [PMID: 23741619 PMCID: PMC3667578 DOI: 10.7554/elife.00731] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/10/2013] [Indexed: 12/19/2022] Open
Abstract
Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the 19th century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the 20th century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity. DOI:http://dx.doi.org/10.7554/eLife.00731.001.
Collapse
|
16
|
Yoshida K, Schuenemann VJ, Cano LM, Pais M, Mishra B, Sharma R, Lanz C, Martin FN, Kamoun S, Krause J, Thines M, Weigel D, Burbano HA. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine. eLife 2013. [PMID: 23741619 DOI: 10.7554/elife.00731.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the 19th century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the 20th century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity. DOI:http://dx.doi.org/10.7554/eLife.00731.001.
Collapse
|
17
|
Li J, Lindqvist-Kreuze H, Tian Z, Liu J, Song B, Landeo J, Portal L, Gastelo M, Frisancho J, Sanchez L, Meijer D, Xie C, Bonierbale M. Conditional QTL underlying resistance to late blight in a diploid potato population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1339-1350. [PMID: 22274766 DOI: 10.1007/s00122-012-1791-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
A large number of quantitative trait loci (QTL) for resistance to late blight of potato have been reported with a "conventional" method in which each phenotypic trait reflects the cumulative genetic effects for the duration of the disease process. However, as genes controlling response to disease may have unique contributions with specific temporal features, it is important to consider the phenotype as dynamic. Here, using the net genetic effects evidenced at consecutive time points during disease development, we report the first conditional mapping of QTL underlying late blight resistance in potato under five environments in Peru. Six conditional QTL were mapped, one each on chromosome 2, 7 and 12 and three on chromosome 9. These QTL represent distinct contributions to the phenotypic variation at different stages of disease development. By comparison, when conventional mapping was conducted, only one QTL was detected on chromosome 9. This QTL was the same as one of the conditional QTL. The results imply that conditional QTL reflect genes that function at particular stages during the host-pathogen interaction. The dynamics revealed by conditional QTL mapping could contribute to the understanding of the molecular mechanism of late blight resistance and these QTL could be used to target genes for marker development or manipulation to improve resistance.
Collapse
Affiliation(s)
- Jingcai Li
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Ministry of Education, National Center for Vegetable Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Blandón-Díaz JU, Widmark AK, Hannukkala A, Andersson B, Högberg N, Yuen JE. Phenotypic variation within a clonal lineage of Phytophthora infestans infecting both tomato and potato in Nicaragua. PHYTOPATHOLOGY 2012; 102:323-330. [PMID: 22085300 DOI: 10.1094/phyto-02-11-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Late blight caused by Phytophthora infestans (Mont.) de Bary is a constraint to both potato and tomato crops in Nicaragua. The hypothesis that the Nicaraguan population of P. infestans is genotypically and phenotypically diverse and potentially subdivided based on host association was tested. A collection of isolates was analyzed using genotypic markers (microsatellites and mitochondrial DNA haplotype) and phenotypic markers (mating type, virulence, and fungicide sensitivity). The genotypic analysis revealed no polymorphism in 121 of 132 isolates of P. infestans tested. Only the Ia haplotype and the A2 mating type were detected. Most of the tested isolates were resistant to metalaxyl. The virulence testing showed variation among isolates of P. infestans. No evidence was found of population differentiation among potato and tomato isolates of P. infestans based on the genotypic and phenotypic analysis. We conclude that the Nicaraguan population of P. infestans consists of a single clonal lineage (NI-1) which belongs to the A2 mating type and the Ia mitochondrial DNA haplotype. Moreover, based on the markers used, this population of P. infestans does not resemble the population in countries from which potato seed is imported to Nicaragua or the population in neighboring countries. The data presented here indicate that the NI-1 clonal lineage is the primary pathogen on both potato and tomato, and its success on both host species is unique in a South American context.
Collapse
|
19
|
Cárdenas M, Grajales A, Sierra R, Rojas A, González-Almario A, Vargas A, Marín M, Fermín G, Lagos LE, Grünwald NJ, Bernal A, Salazar C, Restrepo S. Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genet 2011; 12:23. [PMID: 21303555 PMCID: PMC3046917 DOI: 10.1186/1471-2156-12-23] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/09/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana) and tree tomato (Solanum betaceum), all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a) and one mitochondrial (Cox1) region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. RESULTS Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. CONCLUSIONS The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gustavo Fermín
- Universidad de Los Andes, La Hechicera, Mérida, Venezuela
| | - Luz E Lagos
- Universidad de Nariño, Pasto, Nariño, Colombia
| | | | | | - Camilo Salazar
- Smithsonian Tropical Research Institute. Apartado 0843-03092, Panamá, República de Panamá
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | | |
Collapse
|
20
|
Lindqvist-Kreuze H, Carbajulca D, Gonzalez-Escobedo G, Pérez W, Bonierbale M. Comparison of transcript profiles in late blight-challenged Solanum cajamarquense and B3C1 potato clones. MOLECULAR PLANT PATHOLOGY 2010; 11:513-30. [PMID: 20618709 PMCID: PMC6640364 DOI: 10.1111/j.1364-3703.2010.00622.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two Solanum genotypes, a wild relative of cultivated potato S. cajamarquense (Cjm) and an advanced tetraploid clone B3C1 (B3), were inoculated with two Phytophthora infestans isolates and leaves were sampled at 72 and 96 h after inoculation. Gene expression in the inoculated versus noninoculated samples was monitored using the Institute of Genomic Research (TIGR) 10K potato array and real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The current experiment is study number 83 of the TIGR expression profiling service project, and all data are publicly available in the Solanaceae Gene Expression Database (SGED) at ftp://ftp.tigr.org/pub/data/s_tuberosum/SGED. Differentially regulated cDNA clones were selected separately for each isolate-time point interaction by significant analysis of microarray (SAM), and differentially regulated clones were classified into functional categories by MapMan. The results show that the genes activated in B3 and Cjm have largely the same biological functions and are commonly activated when plants respond to pathogen attack. The genes activated within biological function categories were considerably different between the genotypes studied, suggesting that the defence pathways activated in B3 and Cjm during the tested conditions may involve unique genes. However, as indicated by real-time RT-PCR, some of the genes thought to be genotype specific may be activated across genotypes at other time points during disease development.
Collapse
|
21
|
Vargas AM, Quesada Ocampo LM, Céspedes MC, Carreño N, González A, Rojas A, Zuluaga AP, Myers K, Fry WE, Jiménez P, Bernal AJ, Restrepo S. Characterization of Phytophthora infestans populations in Colombia: first report of the A2 mating type. PHYTOPATHOLOGY 2009; 99:82-8. [PMID: 19055438 DOI: 10.1094/phyto-99-1-0082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Phytophthora infestans, the causal agent of late blight in crops of the Solanaceae family, is one of the most important plant pathogens in Colombia. Not only are Solanum lycopersicum, and S. tuberosum at risk, but also several other solanaceous hosts (Physalis peruviana, S. betaceum, S. phureja, and S. quitoense) that have recently gained importance as new crops in Colombia may be at risk. Because little is known about the population structure of Phytophthora infestans in Colombia, we report here the phenotypic and molecular characterization of 97 isolates collected from these six different solanaceous plants in Colombia. All the isolates were analyzed for mating type, mitochondrial haplotypes, genotype for several microsatellites, and sequence of the internal transcribed spacer (ITS) region. This characterization identified a single individual of A2 mating type (from Physalis peruviana) for the first time in Colombia. All isolates had an ITS sequence that was at least 97% identical to the consensus sequence. Of the 97 isolates, 96 were mitochondrial haplotype IIa, with the single A2 isolate being Ia. All isolates were invariant for the microsatellites. Additionally, isolates collected from S. tuberosum and P. peruviana (64 isolates) were tested for: aggressiveness on both hosts, genotype for the isozymes (glucose-6-phosphate isomerase and peptidase), and restriction fragment length polymorphism fingerprint pattern as detected by RG57. Isolates from S. tuberosum were preferentially pathogenic on S. tuberosum, and isolates from P. peruviana were preferentially pathogenic on P. peruviana. The population from these two hosts was dominated by a single clonal lineage (59 of 64 individuals assayed), previously identified from Ecuador and Peru as EC-1. This lineage was mating type A1, IIa for mitochondrial DNA, invariant for two microsatellites, and invariant for both isozymes. The remaining four A1 isolates were in lineages very closely related to EC-1 (named EC-1.1, CO-1, and CO-2). The remaining lineage (the A2 mating type) had characteristics of the US-8 lineage (previously identified in Mexico, the United States, and Canada). These results have important epidemiological implications for the production of these two crops in Colombia.
Collapse
Affiliation(s)
- Angela M Vargas
- Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hurtado-Gonzáles O, Aragon-Caballero L, Apaza-Tapia W, Donahoo R, Lamour K. Survival and spread of Phytophthora capsici in Coastal Peru. PHYTOPATHOLOGY 2008; 98:688-694. [PMID: 18944293 DOI: 10.1094/phyto-98-6-0688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytophthora capsici is a soilborne pathogen that causes significant losses to pepper production in Peru. Our objective was to investigate the mechanisms by which P. capsici is able to survive and spread. During 2005 to 2007, 227 isolates of P. capsici were collected from four species of pepper (Capsicum annum, C. baccatum, C. chinense, and C. pubescens) and tomato (Solanum lycopersicum) at 33 field sites in 13 provinces across coastal Peru. All 227 isolates were of the A2 mating type and amplified fragment length polymorphism (AFLP) analysis indicates that 221 of the isolates had the same genotype. Analyses of six polymorphic single nucleotide polymorphism (SNP) loci showed fixed heterozygosity suggesting a single clonal lineage is widely dispersed. Members of the same clonal lineage were recovered during 2005 to 2007 from geographically separate locations from each of the host types sampled. Our results indicate that clonal reproduction drives the population structure of P. capsici in Peru. The impact of continuous cropping and irrigation from common river sources on the population structure in Barranca Valley are discussed.
Collapse
Affiliation(s)
- O Hurtado-Gonzáles
- University of Tennessee, Department of Entomology and Plant Pathology, Knoxville 37996, USA
| | | | | | | | | |
Collapse
|
23
|
Gómez-Alpizar L, Carbone I, Ristaino JB. An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proc Natl Acad Sci U S A 2007; 104:3306-11. [PMID: 17360643 PMCID: PMC1805513 DOI: 10.1073/pnas.0611479104] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Indexed: 11/18/2022] Open
Abstract
Phytophthora infestans (Mont.) de Bary caused the 19th century Irish Potato Famine. We assessed the genealogical history of P. infestans using sequences from portions of two nuclear genes (beta-tubulin and Ras) and several mitochondrial loci P3, (rpl14, rpl5, tRNA) and P4 (Cox1) from 94 isolates from South, Central, and North America, as well as Ireland. Summary statistics, migration analyses and the genealogy of current populations of P. infestans for both nuclear and mitochondrial loci are consistent with an "out of South America" origin for P. infestans. Mexican populations of P. infestans from the putative center of origin in Toluca Mexico harbored less nucleotide and haplotype diversity than Andean populations. Coalescent-based genealogies of all loci were congruent and demonstrate the existence of two lineages leading to present day haplotypes of P. infestans on potatoes. The oldest lineage associated with isolates from the section Anarrhichomenun including Solanum tetrapetalum from Ecuador was identified as Phytophthora andina and evolved from a common ancestor of P. infestans. Nuclear and mitochondrial haplotypes found in Toluca Mexico were derived from only one of the two lineages, whereas haplotypes from Andean populations in Peru and Ecuador were derived from both lineages. Haplotypes found in populations from the U.S. and Ireland was derived from both ancestral lineages that occur in South America suggesting a common ancestry among these populations. The geographic distribution of mutations on the rooted gene genealogies demonstrate that the oldest mutations in P. infestans originated in South America and are consistent with a South American origin.
Collapse
Affiliation(s)
| | - Ignazio Carbone
- *Department of Plant Pathology and
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27695
| | | |
Collapse
|
24
|
Silvar C, Merino F, Díaz J. Diversity of Phytophthora capsici in Northwest Spain: Analysis of Virulence, Metalaxyl Response, and Molecular Characterization. PLANT DISEASE 2006; 90:1135-1142. [PMID: 30781092 DOI: 10.1094/pd-90-1135] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora crown rot, caused by Phytophthora capsici, is potentially the most destructive disease of pepper in Spain. Phenotypic and genetic diversity of 16 P. capsici isolates collected from 11 farms in northwest Spain was characterized based on virulence, mating type, sensitivity to metalaxyl, and genetic analysis using random amplified polymorphic DNA (RAPD) methods. Low variability was observed among the isolates in their metalaxyl response, with 87.5% being highly sensitive. No isolates of the A2 mating type were detected. More variability was found in the virulence assay, and isolates were classified into two groups according to their pathogenicity on a set of four pepper cultivar differentials. Genetic variation examined with eight RAPD primers generated 92 polymorphic bands and revealed the existence of different patterns among isolates. Cluster analysis using the unweighted pair-group method with arithmetic averages (UPGMA) separated the Spanish isolates into three RAPD groups and established a relationship between the Spanish population and a representative worldwide group of isolates. No correlation was found between groups obtained by RAPD analysis and groups defined by virulence or metalaxyl response.
Collapse
Affiliation(s)
- C Silvar
- Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía. Universidade da Coruña. Campus da Zapateira S/N E-15071. A Coruña, Spain
| | - F Merino
- Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía. Universidade da Coruña. Campus da Zapateira S/N E-15071. A Coruña, Spain
| | - J Díaz
- Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía. Universidade da Coruña. Campus da Zapateira S/N E-15071. A Coruña, Spain
| |
Collapse
|
25
|
Bhat RG, Colowit PM, Tai TH, Aradhya MK, Browne GT. Genetic and Pathogenic Variation in Phytophthora cactorum Affecting Fruit and Nut Crops in California. PLANT DISEASE 2006; 90:161-169. [PMID: 30786407 DOI: 10.1094/pd-90-0161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of Phytophthora cactorum and 15 other species of Phytophthora were characterized according to their genomic DNA, pathogenicity, and sensitivity to mefenoxam. Amplified fragment length polymorphism (AFLP) analysis was completed for 132 isolates of P. cactorum (30 from almond, 86 from strawberry, 5 from walnut, and 11 from other hosts) and 22 isolates of 15 other Phytophthora spp. from various hosts. All 16 Phytophthora spp. were distinguishable by unique AFLP banding patterns. Cluster analysis of the AFLP data revealed high coefficients of genetic similarity (>0.9) among all California isolates of P. cactorum. Analysis of molecular variance indicated that, among all 132 isolates of P. cactorum, 30.8 and 24.5% of the AFLP variation was associated with hosts and geographical sources of isolates, respectively, whereas 15.0% of the variation was associated with isolate niche (i.e., an aerial plant part, portion of the root system, or soil). Among the 86 isolates of P. cactorum from strawberry, characterization by source in the production system (i.e., fruiting field or plant nursery) did not account for a significant proportion of the variation (0.6%, P = 0.204). In pathogenicity tests on strawberry plants (cv. Diamante) in a greenhouse, isolates of P. cactorum from hosts other than strawberry and an isolate from a strawberry fruit caused only negligible amounts of disease, but isolates from strawberry root systems were highly aggressive. On excised shoot segments of almond (cv. Drake), all isolates of P. cactorum originally from almond were pathogenic, and 8 of 17 isolates of the pathogen from other hosts caused significantly less disease than the almond isolates. All 132 isolates of P. cactorum were sensitive to mefenoxam at 1 ppm. Populations of P. cactorum in California apparently are mefenoxam sensitive and exhibit host specificity with relatively minor variation in genomic DNA. The genetic variation observed in P. cactorum included significant geographical and host origin components, which has implications for disease management approaches.
Collapse
Affiliation(s)
- R G Bhat
- Department of Plant Pathology, University of California, Davis 95616
| | - P M Colowit
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Crops Pathology and Genetics Research Unit (CPGRU), Department of Plant Sciences, University of California, Davis 95616
| | - T H Tai
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Crops Pathology and Genetics Research Unit (CPGRU), Department of Plant Sciences, University of California, Davis 95616
| | - M K Aradhya
- USDA-ARS National Clonal Germplasm Repository, University of California, Davis 95616
| | - G T Browne
- USDA-ARS, CPGRU, Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
26
|
Reis A, Ribeiro FHS, Maffia LA, Mizubuti ESG. Sensitivity of Brazilian Isolates of Phytophthora infestans to Commonly Used Fungicides in Tomato and Potato Crops. PLANT DISEASE 2005; 89:1279-1284. [PMID: 30791305 DOI: 10.1094/pd-89-1279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Isolates of the US-1 and BR-1 clonal lineages of Phytophthora infestans, collected from tomato and potato fields of two main producing regions of Brazil (south and southeast), were tested for sensitivity to the systemic fungicide metalaxyl, plus the three protectant fungicides mancozeb, chlorothalonil, and cymoxanil. For metalaxyl, one agar test and two leaf-disc tests were carried out. For all tests, metalaxyl insensitive (I), intermediately insensitive (II), and sensitive (S) isolates were detected. There was no association among metalaxyl sensitivity and region, lineage, or host. In the agar test, 35.0% of 210 isolates were classified as I, 36.0% as II, and 29.0% as S. US-1 isolates were classified as 36.1% I, 30.6% II, and 33.3% S. BR-1 isolates were 33.3% I, 23.8% II, and 42.9% S. In leaf-disc test 1 (240 isolates tested), 24.3% were classified as I, 35.0% as II, and 40.7% as S. Isolates of US-1 were 21.0% I, 39.8% II, and 39.2% S, whereas BR-1 isolates were 36.0% I, 20.0% II, and 44.0% S. In leaf-disc test 2 (96 isolates tested), which was based on an effective dose for 50% sporulation inhibition (ED50), most isolates were either I (44.8%) or II (51.0%), and only three (4.2%) were S. The US-1 isolates were 46.0% I, 51.0% II, and 3.0% S. Isolates of the BR-1 lineage were 45.0% I, 52.0% II, and 3.0% S. For mancozeb, the ED50 for 53 of 59 isolates was below 1.0 μg/ml. No isolate grew on medium amended with more than 100 μg of chlorothalonil/ml and the ED50 for 38 of 50 isolates was below 1.0 μg/ml. For cymoxanil, the ED50 for all 47 isolates tested was below 1 μg/ml. There is no evidence of resistance of resistance of P. infestans to protectant fungicides commonly used in Brazil.
Collapse
Affiliation(s)
- Ailton Reis
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000, Viçosa-MG, Brazil
| | - Fabiana H S Ribeiro
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000, Viçosa-MG, Brazil
| | - Luiz A Maffia
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000, Viçosa-MG, Brazil
| | - Eduardo S G Mizubuti
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000, Viçosa-MG, Brazil
| |
Collapse
|
27
|
Andrade-Piedra JL, Forbes GA, Shtienberg D, Grünwald NJ, Chacón MG, Taipe MV, Hijmans RJ, Fry WE. Qualification of a Plant Disease Simulation Model: Performance of the LATEBLIGHT Model Across a Broad Range of Environments. PHYTOPATHOLOGY 2005; 95:1412-1422. [PMID: 18943552 DOI: 10.1094/phyto-95-1412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT The concept of model qualification, i.e., discovering the domain over which a validated model may be properly used, was illustrated with LATEBLIGHT, a mathematical model that simulates the effect of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage. Late blight epidemics from Ecuador, Mexico, Israel, and the United States involving 13 potato cultivars (32 epidemics in total) were compared with model predictions using graphical and statistical tests. Fungicides were not applied in any of the epidemics. For the simulations, a host resistance level was assigned to each cultivar based on general categories reported by local investigators. For eight cultivars, the model predictions fit the observed data. For four cultivars, the model predictions overestimated disease, likely due to inaccurate estimates of host resistance. Model predictions were inconsistent for one cultivar and for one location. It was concluded that the domain of applicability of LATEBLIGHT can be extended from the range of conditions in Peru for which it has been previously validated to those observed in this study. A sensitivity analysis showed that, within the range of values observed empirically, LATEBLIGHT is more sensitive to changes in variables related to initial inoculum and to weather than to changes in variables relating to host resistance.
Collapse
|
28
|
Andrade-Piedra JL, Hijmans RJ, Juárez HS, Forbes GA, Shtienberg D, Fry WE. Simulation of Potato Late Blight in the Andes. II: Validation of the LATEBLIGHT Model. PHYTOPATHOLOGY 2005; 95:1200-1208. [PMID: 18943473 DOI: 10.1094/phyto-95-1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT LATEBLIGHT, a mathematical model that simulates the effect of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage, was validated for the Andes of Peru. Validation was needed due to recent modifications made to the model, and because the model had not been formally tested outside of New York State. Prior to validation, procedures to estimate the starting time of the epidemic, the amount of initial inoculum, and leaf wetness duration were developed. Observed data for validation were from field trials with three potato cultivars in the Peruvian locations of Comas and Huancayo in the department of Junín, and Oxapampa in the department of Pasco in 1999 and 2000 for a total of 12 epidemics. These data had not been used previously for estimating model parameters. Observed and simulated epidemics were compared graphically using disease progress curves and numerically using the area under the disease progress curve in a confidence interval test, an equivalence test, and an envelope of acceptance test. The level of agreement between observed and simulated epidemics was high, and the model was found to be valid according to subjective and objective performance criteria. The approach of measuring fitness components of potato cultivars infected with isolates of a certain clonal lineage of P. infestans under controlled conditions and then using the experimental results as parameters of LATEBLIGHT proved to be effective. Fungicide treatments were not considered in this study.
Collapse
|
29
|
Andrade-Piedra JL, Hijmans RJ, Forbes GA, Fry WE, Nelson RJ. Simulation of Potato Late Blight in the Andes. I: Modification and Parameterization of the LATEBLIGHT Model. PHYTOPATHOLOGY 2005; 95:1191-1199. [PMID: 18943472 DOI: 10.1094/phyto-95-1191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT LATEBLIGHT, a mathematical model that simulates the effects of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage, was modified so that it can be used in the Andes and, eventually, worldwide. The modifications included (i) the incorporation of improved equations for the effect of temperature on lesion growth rate (LGR) and sporulation rate (SR); (ii) the incorporation of temperature-dependent latent period (LP); and (iii) the use of experimentally measured parameters of LGR, SR, and LP for specific potato cultivars and pathogen lineages. The model was parameterized for three Peruvian potato cultivars (Tomasa, Yungay, and Amarilis) infected with isolates of a new clonal lineage of P. infestans that is currently predominant in Ecuador and Peru (EC-1).
Collapse
|
30
|
Villamon FG, Spooner DM, Orrillo M, Mihovilovich E, Pérez W, Bonierbale M. Late blight resistance linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1201-14. [PMID: 16133311 DOI: 10.1007/s00122-005-0053-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 07/15/2005] [Indexed: 05/04/2023]
Abstract
The cultivated potato, Solanum tuberosum, is affected by a variety of diseases with late blight, caused by Phytophthora infestans, being the most severe. Wild potato species have proven to be a continuing source of resistance, sometimes of an extreme type, to this disease. The present study constructs the first late blight linkage map of a member of series Piurana, S. paucissectum, a tuber-bearing relative of potato, using probes for conserved sequences from potato and tomato. Eight probes mapped to unexpected linkage groups, but syntenic differences with prior maps of potato were not supported by any blocks of rearranged chromosome segments. All 12 linkage groups were resolved and significant associations with late blight resistance were found on chromosomes 10, 11 and 12. A major quantitative trait locus (QTL) on chromosome 11 accounts for more than 25% of the phenotypic variance measured in a field trial. Crossing of S. paucissectum with cultivated potato resulted in very few seeds indicating partial reproductive barriers. Differential reactions of accessions of this potential donor species with simple and complex isolates of P. infestans suggest that it carries major resistance genes that are not those previously described from the Mexican species, S. demissum. However, the additivity of the QTL effects argues for the quantitative nature of resistance in this cross.
Collapse
Affiliation(s)
- F G Villamon
- Vegetable Crops Research Unit, USDA, Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI 53706-1590, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Picard D, Plantard O, Scurrah M, Mugniery D. Inbreeding and population structure of the potato cyst nematode (Globodera pallida) in its native area (Peru). Mol Ecol 2004; 13:2899-908. [PMID: 15367107 DOI: 10.1111/j.1365-294x.2004.02275.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dispersal abilities and the population genetic structure of nematodes living in the soil are poorly known. In the present study, we have pursued these issues in the potato cyst nematode Globodera pallida, which parasitizes potato roots and is indigenous to South America. A hierarchical sampling regime was conducted in Peru to investigate gene flow on regional, field and plant scales. Multilocus genotypes of single individuals were obtained using eight polymorphic microsatellites markers. Large heterozygote deficiencies were observed at most loci. The limited active dispersal of larvae from their cyst, which favours mating between (half) siblings, could be responsible for this pattern. Within fields, as well as among fields within regions (even 35 km apart), low F(ST) values suggest extensive gene flow. Among fields within regions, only 1.5-4.4% genetic variability was observed. Passive dispersal of cysts by natural means (wind, running water, or wild animals) or by anthropogenic means (tillage, movement of infected seed tubers) is probably responsible for the results observed. Among regions, high F(ST) values were observed. Thus long-range dispersal (more than 320 km apart) is probably limited by major biogeographical barriers such as the mountains found in the Andean Cordillera. These results provide useful information for the management of resistant varieties, to slow down the emergence and spread of resistance-breaking pathotypes.
Collapse
Affiliation(s)
- D Picard
- UMR INRA-ENSAR BiO3P, Domaine de la Motte, B.P. 35327, 35653 Le Rheu cedex, France
| | | | | | | |
Collapse
|
32
|
May KJ, Ristaino JB. Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish Potato Famine. ACTA ACUST UNITED AC 2004; 108:471-9. [PMID: 15229999 DOI: 10.1017/s0953756204009876] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mtDNA haplotypes of the plant pathogen Phytophthora infestans present in dried potato and tomato leaves from herbarium specimens collected during the Irish potato famine and later in the 19th and early 20th century were identified. A 100 bp fragment of ribosomal DNA (rDNA) specific for P. infestans was amplified from 90% of the specimens (n = 186), confirming infection by P. infestans. Primers were designed that distinguish the extant mtDNA haplotypes. 86% percent of the herbarium specimens from historic epidemics were infected with the Ia mtDNA haplotype. Two mid-20th century potato leaves from Ecuador (1967) and Bolivia (1944) were infected with the Ib mtDNA haplotype of the pathogen. Both the Ia and IIb haplotypes were found in specimens collected in Nicaragua in the 1950s. The data suggest that the Ia haplotype of P. infestans was responsible for the historic epidemics during the 19th century in the UK, Europe, and the USA. The Ib mtDNA haplotype of the pathogen was dispersed later in the early 20th century from Bolivia and Ecuador. Multiple haplotypes were present outside Mexico in the 1940s-60s, indicating that pathogen diversity was greater than previously believed.
Collapse
Affiliation(s)
- Kimberley Jane May
- Department of Plant Pathology, North Carolina State University, Box 7616, Raleigh, NC 27695-7616, USA
| | | |
Collapse
|
33
|
Adler NE, Erselius LJ, Chacón MG, Flier WG, Ordoñez ME, Kroon LPNM, Forbes GA. Genetic Diversity of Phytophthora infestans sensu lato in Ecuador Provides New Insight Into the Origin of This Important Plant Pathogen. PHYTOPATHOLOGY 2004; 94:154-162. [PMID: 18943538 DOI: 10.1094/phyto.2004.94.2.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT The metapopulation structure of Phytophthora infestans sensu lato is genetically diverse in the highlands of Ecuador. Previous reports documented the diversity associated with four putative clonal lineages of the pathogen collected from various hosts in the genus Solanum. This paper simultaneously analyzes diversity of the complete collection of isolates, including a large number that had not yet been reported. This analysis confirmed the existence of three pathogen populations, which all appear to be clonal lineages, and that correspond to those previously reported as US-1, EC-1, and EC-3. No evidence was found from the analyses of recently collected isolates that would contradict earlier reports about these three lineages. In contrast, new data from a group of isolates from several similar hosts caused us to modify the previous description of clonal lineage EC-2 and its previously proposed hosts, S. brevifolium and S. tetrapetalum. Given the uncertainty associated with the identification of these hosts, which all belong to the section Anarrhichomenum, we refer to them as the Anarrhichomenum complex, pending further taxonomic clarification. New pathogen genotypes associated with the Anarrhichomenum complex were isolated recently that are A1 mating type and Ia mitochondrial DNA (mtDNA) haplotype, and therefore differ from the previously described EC-2 lineage, which is A2 and Ic, respectively. Because of uncertainty on host identification, we do not know if the new genotypes are limited to one host species and therefore represent yet another host-adapted clonal lineage. For now, we refer to the new genotypes and previously described EC-2 genotypes, together, as the pathogen group attacking the Anarrhichomenum complex. Two A2 isolates identical to the previously described EC-2 archetype were collected from severely infected plants of pear melon (S. muricatum). Pear melon is generally attacked by US-1, and this is the first clear case we have documented in which two distinct pathogen genotypes have caused severe epidemics on the same host. Based on presence of unique marker alleles (restriction fragment length polymorphism [RFLP] and mtDNA) and genetic similarity analysis using RFLP and amplified fragment length polymorphism data, EC-3 and isolates from the Anarrhichomenum complex are genetically distinct from all genotypes of P. infestans that have been reported previously. No current theory of historical migrations for this pathogen can adequately support a Mexican origin for EC-3 and genotypes of the Anarrhichomenum complex and they may, therefore, be palaeoendemic to the Andean highlands. To date, we have identified 15 hosts in the genus Solanum, in addition to the Anarrhichomenum complex, and some unidentified species of P. infestans sensu lato in Ecuador. Five of the Solanum hosts are cultivated. One isolate was collected from Brugmansia sanguinea, which represents the first report from Ecuador of a host of this pathogen that is not in the genus Solanum. However, P. infestans sensu lato was only found on flower petals of B. sanguinea. This study provides new insights into the population structure of highly specialized genotypes of P. infestans sensu lato in the Andean highlands. The results are discussed in light of previous hypotheses regarding the geographic origin of the pathogen.
Collapse
|
34
|
Ghimire SR, Hyde KD, Hodgkiss IJ, Shaw DS, Liew ECY. Variations in the Phytophthora infestans Population in Nepal as Revealed by Nuclear and Mitochondrial DNA Polymorphisms. PHYTOPATHOLOGY 2003; 93:236-243. [PMID: 18943139 DOI: 10.1094/phyto.2003.93.2.236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Phytophthora infestans isolates collected from potato and tomato crops from various parts of Nepal during the 1999 and 2000 crop seasons were characterized for nuclear and mitochondrial DNA polymorphisms using restriction fragment length polymorphism markers. The nuclear DNA probe RG57 detected 11 multilocus genotypes among 280 isolates. Three genotypes were detected 21 times or more, constituting 94% of the total population, whereas frequencies of other genotypes ranged from 0.004 to 0.014. The overall genotypic diversity as estimated by the Gleason index was 1.78. Most of the overall diversity was present at the highest level (i.e., interregional, 46%), indicating limited gene flow among regions. Cluster analysis of multilocus genotypes derived from RG57 and mating type data for Nepalese isolates and representative isolates worldwide showed Nepalese isolates grouping into four clusters. Characterization of 67 isolates for mitochondrial DNA polymorphisms revealed the presence of two mt-haplotypes, Ia and Ib with the proportions of 0.88 and 0.12, respectively. Polymorphisms in nuclear and mitochondrial DNA revealed a moderate level of diversity in this population. Genotype NP3 had an identical RG57 fingerprint to US1 and had mt-haplotype Ib, confirming the presence of an old population in Nepal. Most of the genotypes had a different RG57 fingerprint than that of US1 and mt-haplotype Ia, the common characteristics of new populations. The presence of a new population at high proportions in Nepal was consistent with the global trend of mt-haplotype distribution, and suggests the displacement of old populations. This study indicates at least three possible introductions of P. infestans to Nepal.
Collapse
|
35
|
Ristaino JB. Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect 2002; 4:1369-77. [PMID: 12443902 DOI: 10.1016/s1286-4579(02)00010-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plant pathogen Phytophthora infestans causes late blight, a devastating disease on potato that led to the Irish potato famine during 1845-1847. The disease is considered a reemerging problem and still causes major epidemics on both potato and tomato crops worldwide. Theories on the origin of the disease based on an examination of the genetic diversity and structure of P. infestans populations and use of historic specimens to understand modern day epidemics are discussed.
Collapse
Affiliation(s)
- Jean Beagle Ristaino
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695-7616, USA.
| |
Collapse
|