1
|
Westerdahl B, Riddle L, Giraud D, Kamo K. Field test of Easter lilies transformed with a rice cystatin gene for root lesion nematode resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1134224. [PMID: 37035051 PMCID: PMC10081024 DOI: 10.3389/fpls.2023.1134224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Easter lilies, Lilium longiflorum cv. Nellie White are a staple of the floral industry. In the U.S. most of the Easter lilies are grown in Oregon and California along the coast where there is a micro climate that is favorable to growth of lilies. The main pest when growing lilies in the field is Pratylenchus penetrans, the root lesion nematode. Easter lilies are one of the most expensive crops to produce because of the cost of chemicals used to control P. penetrans and other pathogens that infect the lilies. Our previous study had shown that transgenic Easter lilies containing a rice cystatin gene (Oc-IΔD86 that has a deleted Asp86) were resistant to P. penetrans in vitro. This study examined growth characteristics of five independently transformed lines of the cystatin Easter lilies compared to non-transformed Nellie White for three seasons in the field in Brookings, Oregon. Liles grown in three soil chemical treatments 1) preplant fumigation, 2) preplant fumigation plus at plant organophosphate, and 3) at plant organophosphate were compared to those grown in nontreated soil. Growth characteristics evaluated included: time of shoot emergence, survival of plants, size of plants, visual ratings of plant health, basal roots and stem roots, weight of foliage and roots, and number and size of bulblets that developed on stems. Nematodes were counted following their extraction from the roots. While not totally resistant, when planted in the field, transformed lines demonstrated and maintained a degree of resistance to lesion nematode over two growing seasons and displayed desirable growth and quality characteristics similar to non-transformed lilies.
Collapse
Affiliation(s)
- Becky Westerdahl
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Lee Riddle
- Easter Lily Research Foundation, Brookings, OR, United States
| | - Deborah Giraud
- University of California Cooperative Extension, Eureka, CA, United States
| | - Kathryn Kamo
- Floral & Nursery Plants Research Unit, United States Department of Agriculture (USDA), Beltsville, MD, United States
| |
Collapse
|
2
|
Premachandran K, Srinivasan TS. A brief review on oryzacystatin: a potent phytocystatin for crop management. Mol Biol Rep 2023; 50:1799-1807. [PMID: 36471210 DOI: 10.1007/s11033-022-08161-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
Phytocystatins are a type of proteinase inhibitor which are extensively studied for their specific inhibitory action against cysteine protease enzymes (CP) of insects and pathogens. Oryzacystatins (OC), a phytocystatin from rice inhibits CP in a reversible manner with its conserved tripartite wedge. OCs have important role in plant innate defense mechanism through phytohormonal signalling pathways. OC are induced in response to both biotic and abiotic stress conditions and are used to develop transgenic plants exhibiting resistance against stress conditions. In this review, we focus on the structure and mechanism of action of oryzacystatins, their possible role in plant physiology, biotic and abiotic stress tolerance mechanism in plants and their potential application strategies for future crop management studies.
Collapse
Affiliation(s)
- Krishnamanikumar Premachandran
- Centre for Climate Change Studies, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Thanga Suja Srinivasan
- Centre for Climate Change Studies, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
3
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|
4
|
Smiley RW. Root-Lesion Nematodes Affecting Dryland Cereals in the Semiarid Pacific Northwest U.S.A. PLANT DISEASE 2021; 105:3324-3343. [PMID: 34236212 DOI: 10.1094/pdis-04-21-0883-fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root-lesion nematodes (Pratylenchus spp.) are parasites that invade and deteriorate roots, thereby reducing the efficiency of water and nutrient uptake. Pratylenchus neglectus and P. thornei are the two species that are most prevalent and cause reduced yields of rainfed wheat and barley in semiarid regions of the Pacific Northwest. They are particularly damaging where wheat and barley are produced without irrigation in areas receiving less than 450 mm (18 in.) of precipitation annually. This review is focused on the biology and management of P. neglectus and P. thornei in semiarid rainfed agriculture. Characteristics of climates, soils, and crop production systems are described as a preface to constraints placed upon management options. Discussions include the economic importance, host ranges, and protocols for sampling and species identification. Discussion of disease management options include crop rotation, genetic resistance and tolerance, planting date, trap and biofumigant crops, crop nutrition, chemical and biological nematicides, and tillage. Predictions for rainfed agriculture in a period of changing climate are presented, as are suggestions for important areas of research including crop genetics, nematode testing, and communication of results, Pratylenchus biology, mechanisms of resistance, the phytobiome, and closing the "yield gap" between actual and attainable yields.
Collapse
Affiliation(s)
- Richard W Smiley
- Emeritus Professor of Plant Pathology, Oregon State University, Columbia Basin Agricultural Research Center, Pendleton, OR, U.S.A
| |
Collapse
|
5
|
Hrbáčková M, Dvořák P, Takáč T, Tichá M, Luptovčiak I, Šamajová O, Ovečka M, Šamaj J. Biotechnological Perspectives of Omics and Genetic Engineering Methods in Alfalfa. FRONTIERS IN PLANT SCIENCE 2020; 11:592. [PMID: 32508859 PMCID: PMC7253590 DOI: 10.3389/fpls.2020.00592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
For several decades, researchers are working to develop improved major crops with better adaptability and tolerance to environmental stresses. Forage legumes have been widely spread in the world due to their great ecological and economic values. Abiotic and biotic stresses are main factors limiting legume production, however, alfalfa (Medicago sativa L.) shows relatively high level of tolerance to drought and salt stress. Efforts focused on alfalfa improvements have led to the release of cultivars with new traits of agronomic importance such as high yield, better stress tolerance or forage quality. Alfalfa has very high nutritional value due to its efficient symbiotic association with nitrogen-fixing bacteria, while deep root system can help to prevent soil water loss in dry lands. The use of modern biotechnology tools is challenging in alfalfa since full genome, unlike to its close relative barrel medic (Medicago truncatula Gaertn.), was not released yet. Identification, isolation, and improvement of genes involved in abiotic or biotic stress response significantly contributed to the progress of our understanding how crop plants cope with these environmental challenges. In this review, we provide an overview of the progress that has been made in high-throughput sequencing, characterization of genes for abiotic or biotic stress tolerance, gene editing, as well as proteomic and metabolomics techniques bearing biotechnological potential for alfalfa improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
6
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
7
|
Smiley RW, Dababat AA, Iqbal S, Jones MGK, Maafi ZT, Peng D, Subbotin SA, Waeyenberge L. Cereal Cyst Nematodes: A Complex and Destructive Group of Heterodera Species. PLANT DISEASE 2017; 101:1692-1720. [PMID: 30676930 DOI: 10.1094/pdis-03-17-0355-fe] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small grain cereals have served as the basis for staple foods, beverages, and animal feed for thousands of years. Wheat, barley, oats, rye, triticale, rice, and others are rich in calories, proteins, carbohydrates, vitamins, and minerals. These cereals supply 20% of the calories consumed by people worldwide and are therefore a primary source of energy for humans and play a vital role in global food and nutrition security. Global production of small grains increased linearly from 1960 to 2005, and then began to decline. Further decline in production is projected to continue through 2050 while global demand for these grains is projected to increase by 1% per annum. Currently, wheat, barley, and oat production exceeds consumption in developed countries, while in developing countries the consumption rate is higher than production. An increasing demand for meat and livestock products is likely to compound the demand for cereals in developing countries. Current production levels and trends will not be sufficient to fulfill the projected global demand generated by increased populations. For wheat, global production will need to be increased by 60% to fulfill the estimated demand in 2050. Until recently, global wheat production increased mostly in response to development of improved cultivars and farming practices and technologies. Production is now limited by biotic and abiotic constraints, including diseases, nematodes, insect pests, weeds, and climate. Among these constraints, plant-parasitic nematodes alone are estimated to reduce production of all world crops by 10%. Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals. Heavily invaded young plants are stunted and their lower leaves are often chlorotic, forming pale green patches in the field. Mature plants are also stunted, have a reduced number of tillers, and the roots are shallow and have a "bushy-knotted" appearance. CCNs comprise a number of closely-related species and are found in most regions where cereals are produced.
Collapse
Affiliation(s)
- Richard W Smiley
- Columbia Basin Agricultural Research Center, Oregon State University, Pendleton
| | - Abdelfattah A Dababat
- Soil Borne Pathogens Program, International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - Sadia Iqbal
- School of Veterinary and Life Sciences,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth
| | - Michael G K Jones
- School of Veterinary and Life Sciences,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth
| | - Zahra Tanha Maafi
- Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran
| | - Deliang Peng
- Nematology Department, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing
| | - Sergei A Subbotin
- Plant Pest Diagnostics Center, California Department of Food and Agriculture, Sacramento; and Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow
| | - Lieven Waeyenberge
- Crop Protection Research Area, Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
8
|
Cingel A, Savić J, Lazarević J, Ćosić T, Raspor M, Smigocki A, Ninković S. Co-expression of the proteinase inhibitors oryzacystatin I and oryzacystatin II in transgenic potato alters Colorado potato beetle larval development. INSECT SCIENCE 2017; 24:768-780. [PMID: 27265305 DOI: 10.1111/1744-7917.12364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Colorado potato beetle (CPB; Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae) has shown a remarkable adaptability to a variety of control measures. Although oryzacystatin I and II (OCI and OCII) have potential in controlling pests that use cysteine proteinases for food digestion, expression of a single OC gene in potato exhibited a minimal or no effect on CPB fitness traits. The aim of this study was to examine the effect of coexpressed OCI and OCII in potato (Solanum tuberosum L.) cultivars Desiree, Dragačevka and Jelica on CPB larvae. Growth parameters, consumption rates and food utilization, as well as activity of proteases of CPB larvae were assayed. Second and third instar larvae fed on transformed leaves molted earlier and had higher relative growth and consumption rates than larvae fed on nontransformed leaves, while efficiency of food utilization was unaffected. In contrast, fourth instar maximum weight gain and amount of leaves consumed were about 20% lower for the larvae fed on transgenic potato. Analysis of total protease activity of third instar larvae revealed reduction in overall proteolytic activity measured by azocasein hydrolysis, accompanied with inhibition of cysteine proteinase activity 24 h after ingestion of potato leaves expressing OCI and OCII. However, after long-term feeding on transformed leaves proteolytic activities of larvae became similar to the controls. Although feeding on OCI/OCII leaves did not affect larval survival, coexpression of OC genes reduced the development time and thus significantly decreased plant damage caused by CPB larvae.
Collapse
Affiliation(s)
- Aleksandar Cingel
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Jelena Savić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Jelica Lazarević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Tatjana Ćosić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Martin Raspor
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Ann Smigocki
- USDA-ARS, Molecular Plant Pathology Laboratory, 10300 Baltimore Avenue, Beltsville, Maryland, USA
| | - Slavica Ninković
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| |
Collapse
|
9
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
10
|
Papolu PK, Dutta TK, Tyagi N, Urwin PE, Lilley CJ, Rao U. Expression of a Cystatin Transgene in Eggplant Provides Resistance to Root-knot Nematode, Meloidogyne incognita. FRONTIERS IN PLANT SCIENCE 2016; 7:1122. [PMID: 27516765 PMCID: PMC4963396 DOI: 10.3389/fpls.2016.01122] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/14/2016] [Indexed: 05/29/2023]
Abstract
Root-knot nematodes (RKN) cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant-nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86) gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event) showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- Division of Nematology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
- SRM UniversityChennai, India
| | - Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Nidhi Tyagi
- Division of Nematology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | | | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| |
Collapse
|
11
|
Islam A, Mercer CF, Leung S, Dijkwel PP, McManus MT. Transcription of Biotic Stress Associated Genes in White Clover (Trifolium repens L.) Differs in Response to Cyst and Root-Knot Nematode Infection. PLoS One 2015; 10:e0137981. [PMID: 26393362 PMCID: PMC4578895 DOI: 10.1371/journal.pone.0137981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
The transcription of four members of the Kunitz proteinase inhibitor (KPI) gene family of white clover (Trifolium repens L.), designated as Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5, was investigated at both local infection (roots) and systemic (leaf tissue) sites in white clover in response to infection with the clover root knot nematode (CRKN) Meloidogyne trifoliophila and the clover cyst nematode (CCN) Heterodera trifolii. Invasion by the CRKN resulted in a significant decrease in transcript abundance of Tr-KPI4 locally at both 4 days post-infection (dpi) and at 8 dpi, and an increase in transcription of Tr-KPI1 systemically at 8 dpi. In contrast, an increase in transcript abundance of all four Tr-KPI genes locally at 4 and 8 dpi, and an increase of Tr-KPI1, Tr-KPI2, and Tr-KPI5 at 8 dpi systemically was observed in response to infection with the CCN. Challenge of a resistant (R) genotype and a susceptible (S) genotype of white clover with the CCN revealed a significant increase in transcript abundance of all four Tr-KPI genes locally in the R genotype, while an increase in abundance of only Tr-KPI1, Tr-KPI2, and Tr-KPI5 was observed in the S genotype, and only at 4 dpi. The transcript abundance of a member of the1-AMINOCYCLOPROPANE-1-CARBOXYLATE (ACC) SYNTHASE gene family from white clover (Tr-ACS1) was significantly down-regulated locally in response to CRKN infection at 4 and 8 dpi and at 4 dpi, systemically, while abundance increased locally and systemically at 8 dpi in response to CCN challenge. Conversely, the abundance of the jasmonic acid (JA) signalling gene, CORONATINE-INSENSITIVE PROTEIN 1 from white clover (Tr-COI1) increased significantly at 8 dpi locally in response to CRKN infection, but decreased at 8 dpi in response to CCN infection. The significance of this differential regulation of transcription is discussed with respect to differences in infection strategy of the two nematode species.
Collapse
Affiliation(s)
- Afsana Islam
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- * E-mail: (AI); (PPD)
| | | | - Susanna Leung
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Paul P. Dijkwel
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- * E-mail: (AI); (PPD)
| | - Michael T. McManus
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
12
|
Yu Y, Zeng L, Yan Z, Liu T, Sun K, Zhu T, Zhu A. Identification of Ramie Genes in Response to Pratylenchus coffeae Infection Challenge by Digital Gene Expression Analysis. Int J Mol Sci 2015; 16:21989-2007. [PMID: 26378527 PMCID: PMC4613293 DOI: 10.3390/ijms160921989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/08/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
Abstract
Root lesion disease, caused by Pratylenchus coffeae, seriously impairs the growth and yield of ramie, an important natural fiber crop. The ramie defense mechanism against P. coffeae infection is poorly understood, which hinders efforts to improve resistance via breeding programs. In this study, the transcriptome of the resistant ramie cultivar Qingdaye was characterized using Illumina sequence technology. About 46.3 million clean pair end (PE) reads were generated and assembled into 40,826 unigenes with a mean length of 830 bp. Digital gene expression (DGE) analysis was performed on both the control roots (CK) and P. coffeae-challenged roots (CH), and the differentially expressed genes (DEGs) were identified. Approximately 10.16 and 8.07 million cDNA reads in the CK and CH cDNA libraries were sequenced, respectively. A total of 137 genes exhibited different transcript abundances between the two libraries. Among them, the expressions of 117 and 20 DEGs were up- and down-regulated in P. coffeae-challenged ramie, respectively. The expression patterns of 15 candidate genes determined by qRT-PCR confirmed the results of DGE analysis. Time-course expression profiles of eight defense-related genes in susceptible and resistant ramie cultivars were different after P. coffeae inoculation. The differential expression of protease inhibitors, pathogenesis-related proteins (PRs), and transcription factors in resistant and susceptible ramie during P. coffeae infection indicated that cystatin likely plays an important role in nematode resistance.
Collapse
Affiliation(s)
- Yongting Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zhun Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Kai Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Taotao Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
13
|
Vieira P, Wantoch S, Lilley CJ, Chitwood DJ, Atkinson HJ, Kamo K. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. 'Nellie White'. Transgenic Res 2015; 24:421-32. [PMID: 25398618 DOI: 10.1007/s11248-014-9848-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Lilium longiflorum cv. 'Nellie White' assumes a great economic importance as cut flowers, being one of the most valuable species (annual pot plants value above $20,000,000) in terms of wholesales in the US. The root lesion nematode Pratylenchus penetrans (RLN) constitutes one of the main pests for lily producers due to the significant root damage it causes. Our efforts have focused on the generation of soybean hairy roots (as a transient test model) and stable transgenic lilies overexpressing a modified rice cystatin (Oc-IΔD86) transgene and challenged with root lesion nematodes. Lily transformation was achieved by gene gun co-bombardment using both a pBluescript-based vector containing the cystatin gene and pDM307 that contains a bar gene for phosphinothricin selection. Both soybean hairy roots and lilies overexpressing the OcIΔD86 transgene exhibited enhanced resistance to RLN infection by means of nematode reduction up to 75 ± 5% on the total number of nematodes. In addition, lily plants overexpressing OcIΔD86 displayed an increase of plant mass and better growth performance in comparison to wild-type plants, thereby demonstrating an alternative strategy for increasing the yield and reducing nematode damage to this important floral crop.
Collapse
Affiliation(s)
- Paulo Vieira
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of Agriculture (USDA) ARS, BARC West, 10300 Baltimore Avenue, Building 010A Room 126, Beltsville, MD, 20705-2350, USA,
| | | | | | | | | | | |
Collapse
|
14
|
Cingel A, Savić J, Vinterhalter B, Vinterhalter D, Kostić M, Šešlija Jovanović D, Smigocki A, Ninković S. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor. Transgenic Res 2015; 24:729-40. [DOI: 10.1007/s11248-015-9873-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/23/2015] [Indexed: 01/02/2023]
|
15
|
Ahmad R, Zuily-Fodil Y, Passaquet C, Ali Khan S, Repellin A. Molecular cloning, characterization and differential expression of novel phytocystatin gene during tropospheric ozone stress in maize (Zea mays) leaves. C R Biol 2015; 338:141-8. [DOI: 10.1016/j.crvi.2014.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/18/2014] [Accepted: 12/29/2014] [Indexed: 02/03/2023]
|
16
|
Dutt M, Dhekney SA, Soriano L, Kandel R, Grosser JW. Temporal and spatial control of gene expression in horticultural crops. HORTICULTURE RESEARCH 2014; 1:14047. [PMID: 26504550 PMCID: PMC4596326 DOI: 10.1038/hortres.2014.47] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 05/05/2023]
Abstract
Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Sadanand A Dhekney
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Leonardo Soriano
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba, Brazil
| | - Raju Kandel
- Department of Plant Sciences, Sheridan Research and Extension Center, University of Wyoming, Sheridan, WY 82801, USA
| | - Jude W Grosser
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
17
|
Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WML, Perry RN. Top 10 plant-parasitic nematodes in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2013; 14:946-61. [PMID: 23809086 PMCID: PMC6638764 DOI: 10.1111/mpp.12057] [Citation(s) in RCA: 805] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly.
Collapse
Affiliation(s)
- John T Jones
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Popovic M, Andjelkovic U, Burazer L, Lindner B, Petersen A, Gavrovic-Jankulovic M. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa). PHYTOCHEMISTRY 2013; 94:53-9. [PMID: 23830694 DOI: 10.1016/j.phytochem.2013.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/29/2013] [Accepted: 06/10/2013] [Indexed: 05/08/2023]
Abstract
Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality.
Collapse
Affiliation(s)
- Milica Popovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
19
|
Guo CT, McClean S, Shaw C, Rao PF, Ye MY, Bjourson AJ. Trypsin and chymotrypsin inhibitor peptides from the venom of Chinese Daboia russellii siamensis. Toxicon 2013; 63:154-64. [PMID: 23287726 DOI: 10.1016/j.toxicon.2012.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022]
Abstract
Two trypsin inhibitors and one chymotrypsin inhibitor from Chinese Daboia russellii siamensis venom, denoted as CBPTI-1, CBPTI-2 and CBPTI-3 were purified, characterized and cloned from lyophilized venom-derived cDNA libraries. The N-terminus of CBPTI-1 was modified and not amenable to Edman degradation sequencing, however an internal partial sequence was found to be SGRCRGHLRRIYYNPDSNKCE. The N-termini of CBPTI-2 and CBPTI-3 were unmodified and their partial sequences were established as HDRPTFCNLAPESGRCRAH and HDRPKFCYLPADPGECMAYIRSFYYDS respectively. From cloning studies CBPTI-1 was found to consist of 66 amino acid residues, while CBPTI-2 and CBPTI-3 precursors consist of 60 amino acid residues, including 6 cysteine residues. Another cDNA sequence (CBPTI-4) was also obtained. Alignment of cDNA sequences showed that CBPTI-3 exhibited similar sequence homology to CBPTI-4 cDNA except for an 8 nucleotide deletion in the open-reading frame. CBPTI-1 and CBPTI-2 were demonstrated to be potent trypsin inhibitors, but were also shown to be effectively potent in chymotrypsin inhibition. The K(i) values of CBPTI-1 and CBPTI-2 for trypsin inhibition were 4.07 × 10(-7) M and 6.66 × 10(-7) M, respectively, and they were non-competitive in their activity. CBPTI-3 showed chymotrypsin inhibition activity with a K(i) value of 2.55 × 10(-9) M, but did not show trypsin inhibitor activity.
Collapse
Affiliation(s)
- Chun-teng Guo
- Biomedical Sciences Research Institute, University of Ulster, Cromore Road, Coleraine BT52 1SA, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
20
|
Smigocki AC, Ivic-Haymes S, Li H, Savić J. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene. PLoS One 2013; 8:e57303. [PMID: 23468963 PMCID: PMC3582505 DOI: 10.1371/journal.pone.0057303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/20/2013] [Indexed: 11/18/2022] Open
Abstract
Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI) was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.
Collapse
Affiliation(s)
- Ann C Smigocki
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA.
| | | | | | | |
Collapse
|
21
|
Valadares NF, Oliveira‐Silva R, Cavini IA, Almeida Marques I, D'Muniz Pereira H, Soares‐Costa A, Henrique‐Silva F, Kalbitzer HR, Munte CE, Garratt RC. X
‐ray crystallography and
NMR
studies of domain‐swapped canecystatin‐1. FEBS J 2013; 280:1028-38. [DOI: 10.1111/febs.12095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Napoleão F. Valadares
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Rodrigo Oliveira‐Silva
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Italo A. Cavini
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | | | - Humberto D'Muniz Pereira
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Andrea Soares‐Costa
- Laboratory of Molecular Biology Department of Genetic and Evolution Federal University of São Carlos Brazil
| | - Flavio Henrique‐Silva
- Laboratory of Molecular Biology Department of Genetic and Evolution Federal University of São Carlos Brazil
| | - Hans R. Kalbitzer
- Institute of Biophysics and Physical Biochemistry University of Regensburg Germany
| | - Claudia E. Munte
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| | - Richard C. Garratt
- Center for Structural Molecular Biotechnology Department of Physics and Informatics Physics Institute of São Carlos University of São Paulo São Carlos‐SP Brazil
| |
Collapse
|
22
|
Popovic MM, Bulajic A, Ristic D, Krstic B, Jankov RM, Gavrovic-Jankulovic M. In vitro and in vivo antifungal properties of cysteine proteinase inhibitor from green kiwifruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:3072-3078. [PMID: 22653546 DOI: 10.1002/jsfa.5728] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Higher plants possess several mechanisms of defense against plant pathogens. Proteins actively synthesized in response to those stresses are called defense-related proteins which, among others, include certain protease inhibitors. It is of particular relevance to investigate plant natural defense mechanisms for pathogen control which include cystatins-specific inhibitors of cysteine proteases. RESULTS In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. Immuno-tissue print results indicated that CPI is most abundant in the outer layer of pericarp, near the peel, and the inner most part of the pulp-sites where it could act as a natural barrier against pathogens entering the fruit. The purified protein (15 µmol L(-1)) showed antifungal activity against two phytopathogenic fungi (Alternaria radicina and Botrytis cinerea) by inhibiting fungal spore germination. In vivo, CPI (10 µmol L(-1)) was able to prevent artificial infection of apple and carrot with spore suspension of B. cinerea and A. radicina, respectively. It also exerted activity on both intracellular and fermentation fluid proteinases. CONCLUSION Identification and characterization of plant defense molecules is the first step towards creation of improved methods for pathogen control based on naturally occurring molecules.
Collapse
Affiliation(s)
- Milica M Popovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
23
|
Ma C, Wang Y, Wang Y, Wang L, Chen S, Li H. Identification of a sugar beet BvM14-MADS box gene through differential gene expression analysis of monosomic addition line M14. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1980-6. [PMID: 21807438 DOI: 10.1016/j.jplph.2011.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 05/10/2023]
Abstract
Monosomic addition line M14 carrying an additional chromosome 9 from Beta corolliflora Zosimovic ex Buttler was obtained through hybridization between the wild species B. corolliflora and a cultivated species Beta vulgaris L. var Saccharifera Alef. The M14 line showed diplosporic reproduction and stress tolerance. To identify differentially expressed genes in M14, a subtractive cDNA library was prepared by suppression subtractive hybridization (SSH) between M14 (2n=18+1) and B. vulgaris (2n=18). A total of 190 unique sequences were identified in the library and their putative functions were analyzed using Gene Ontology (GO). One of the genes, designated as BvM14-MADS box, encodes a MADS box transcription factor. It was cloned from M14 and over-expressed in transgenic tobacco plants. Interestingly, this gene was located on chromosome 2 of B. vulgaris, not on the additional chromosome 9. Overexpression of BvM14-MADS box led to significant phenotypic changes in tobacco. The differential expression of BvM14-MADS box gene in M14 may be caused by the interaction between the additional chromosome 9 from B. corolliflora and the B. vulgaris chromosomes in M14.
Collapse
Affiliation(s)
- Chunquan Ma
- College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | | | | | | | | | | |
Collapse
|
24
|
Fujimoto T, Tomitaka Y, Abe H, Tsuda S, Futai K, Mizukubo T. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1084-97. [PMID: 21216026 DOI: 10.1016/j.jplph.2010.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 12/04/2010] [Accepted: 12/05/2010] [Indexed: 05/18/2023]
Abstract
We investigated what gene(s) in the plant roots have the positive role against repressing root-knot nematode (RKN) infection. We investigated the interaction between RKN infection and gene expression in the plant roots induced by methyl jasmonate (MeJA). We focused on the induced resistance response and the duration after foliar treatment with MeJA of 0.1, 0.5, 1.0, and 5.0mM at 1, 24, 48, and 72h prior to the inoculation of RKN. As a result, the foliar treatment with MeJA at 0.5mM or higher concentrations significantly reduced the infection of RKN in plants and the effect lasted for about 1 week. The repressing effect on RKN population declined to the lowest level in two weeks after MeJA treatment. The expression of proteinase inhibitors (PIs) and multicystatin (MC) were induced while the repressing effect on RKN was valid and a negative correlation was found between the expression of PIs or MC and RKN infection. In addition, when tomato plants no longer expressing MC and PIs were treated again with MeJA, the repressing effect revived. These phenomena appeared to be regardless of the existence of Mi-genes or isolate of RKN. Our results indicate that the expression level of MC and PIs may be effective as marker genes for estimating the induced resistance response against RKN infection.
Collapse
Affiliation(s)
- Taketo Fujimoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N. Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. PHYTOCHEMISTRY 2011; 72:1293-307. [PMID: 21353267 DOI: 10.1016/j.phytochem.2011.01.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/08/2011] [Accepted: 01/17/2011] [Indexed: 05/18/2023]
Abstract
Abiotic stress causes diverse biochemical and physiological changes in plants and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. To understand the molecular basis of stress tolerance in plants, we have developed differential proteomes in a hardy legume, grasspea (Lathyrus sativus L.). Five-week-old grasspea seedlings were subjected independently to high salinity, low temperature and abscisic acid treatment for duration of 36h. The physiological changes of stressed seedlings were monitored, and correlated with the temporal changes of proteome using two-dimensional gel electrophoresis. Approximately, 400 protein spots were detected in each of the stress proteome with one-fourth showing more than 2-fold differences in expression values. Eighty such proteins were subjected to LC-tandem MS/MS analyses that led to the identification of 48 stress-responsive proteins (SRPs) presumably involved in a variety of functions, including metabolism, signal transduction, protein biogenesis and degradation, and cell defense and rescue. While 33 proteins were responsive to all three treatments, 15 proteins were expressed in stress-specific manner. Further, we explored the possible role of ROS in triggering the stress-induced degradation of large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase (Rubisco). These results might help in understanding the spectrum of stress-regulated proteins and the biological processes they control as well as having implications for strategies to improve stress adaptation in plants.
Collapse
Affiliation(s)
- Arnab Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gatehouse AMR, Ferry N, Edwards MG, Bell HA. Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R Soc Lond B Biol Sci 2011; 366:1438-52. [PMID: 21444317 PMCID: PMC3081576 DOI: 10.1098/rstb.2010.0330] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With a projected population of 10 billion by 2050, an immediate priority for agriculture is to achieve increased crop yields in a sustainable and cost-effective way. The concept of using a transgenic approach was realized in the mid-1990s with the commercial introduction of genetically modified (GM) crops. By 2010, the global value of the seed alone was US $11.2 billion, with commercial biotech maize, soya bean grain and cotton valued at approximately US $150 billion. In recent years, it has become evident that insect-resistant crops expressing δ-endotoxin genes from Bacillus thuringiensis have made a significant beneficial impact on global agriculture, not least in terms of pest reduction and improved quality. However, because of the potential for pest populations to evolve resistance, and owing to lack of effective control of homopteran pests, alternative strategies are being developed. Some of these are based on Bacillus spp. or other insect pathogens, while others are based on the use of plant- and animal-derived genes. However, if such approaches are to play a useful role in crop protection, it is desirable that they do not have a negative impact on beneficial organisms at higher trophic levels thus affecting the functioning of the agro-ecosystem. This widely held concern over the ecological impacts of GM crops has led to the extensive examination of the potential effects of a range of transgene proteins on non-target and beneficial insects. The findings to date with respect to both commercial and experimental GM crops expressing anti-insect genes are discussed here, with particular emphasis on insect predators and parasitoids.
Collapse
Affiliation(s)
- A M R Gatehouse
- School of Biology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| | | | | | | |
Collapse
|
27
|
Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N. Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 2010; 9:3443-64. [PMID: 20433195 DOI: 10.1021/pr901098p] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Water-deficit or dehydration impairs almost all physiological processes and greatly influences the geographical distribution of many crop species. It has been postulated that higher plants rely mostly on induction mechanisms to maintain cellular integrity during stress conditions. Plant cell wall or extracellular matrix (ECM) forms an important conduit for signal transduction between the apoplast and symplast and acts as front-line defense, thereby playing a key role in cell fate decision under various stress conditions. To better understand the molecular mechanism of dehydration response in plants, four-week-old rice seedlings were subjected to progressive dehydration by withdrawing water and the changes in the ECM proteome were examined using two-dimensional gel electrophoresis. Dehydration-responsive temporal changes revealed 192 proteins that change their intensities by more than 2.5-fold, at one or more time points during dehydration. The proteomic analysis led to the identification of about 100 differentially regulated proteins presumably involved in a variety of functions, including carbohydrate metabolism, cell defense and rescue, cell wall modification, cell signaling and molecular chaperones, among others. The differential rice proteome was compared with the dehydration-responsive proteome data of chickpea and maize. The results revealed an evolutionary divergence in the dehydration response as well as organ specificity, with few conserved proteins. The differential expression of the candidate proteins, in conjunction with previously reported results, may provide new insight into the underlying mechanisms of the dehydration response in plants. This may also facilitate the targeted alteration of metabolic routes in the cell wall for agricultural and industrial exploitation.
Collapse
Affiliation(s)
- Aarti Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Schlüter U, Benchabane M, Munger A, Kiggundu A, Vorster J, Goulet MC, Cloutier C, Michaud D. Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:4169-83. [PMID: 20581122 DOI: 10.1093/jxb/erq166] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.
Collapse
Affiliation(s)
- Urte Schlüter
- Plant Science Department, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Benchabane M, Schlüter U, Vorster J, Goulet MC, Michaud D. Plant cystatins. Biochimie 2010; 92:1657-66. [PMID: 20558232 DOI: 10.1016/j.biochi.2010.06.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/08/2010] [Indexed: 01/07/2023]
Abstract
Plant cystatins have been the object of intense research since the publication of a first paper reporting their existence more than 20 years ago. These ubiquitous inhibitors of Cys proteases play several important roles in plants, from the control of various physiological and cellular processes in planta to the inhibition of exogenous Cys proteases secreted by herbivorous arthropods and pathogens to digest or colonize plant tissues. After an overview of current knowledge about the evolution, structure and inhibitory mechanism of plant cystatins, we review the different roles attributed to these proteins in plants. The potential of recombinant plant cystatins as effective pesticidal proteins in crop protection is also considered, as well as protein engineering approaches adopted over the years to improve their inhibitory potency and specificity towards Cys proteases of biotechnological interest.
Collapse
Affiliation(s)
- Meriem Benchabane
- Département de phytologie, CRH/INAF, Université Laval, Québec (QC), Canada G1V 0A6
| | | | | | | | | |
Collapse
|
30
|
Platisa J, Veljović-Jovanović S, Kukavica B, Vinterhalter B, Smigocki A, Ninković S. Induction of peroxidases and superoxide dismutases in transformed embryogenic calli of alfalfa (Medicago sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:895-900. [PMID: 17997193 DOI: 10.1016/j.jplph.2007.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 05/25/2023]
Abstract
Peroxidase (POD) and superoxide dismutase (SOD) enzyme activities were analyzed in non-regenerative transformed embryogenic lines of alfalfa (Medicago sativa L.) carrying wound-inducible oryzacystatin I (OC-I), wound-inducible oryzacystatin I antisense (OC-Ias), or hygromycin phosphotransferase (hpt) genes. All of the transformed lines analyzed had elevated levels of all POD isoforms. Three POD isoforms with pI values of approximately 4.5, 4.8, and 8.4, and one additional pair of isoforms with a pI value of approximately 8.8 were separated from tissue extracts of all transgenic lines. Isoelectrofocusing patterns revealed the induction of one isoform of SOD with a pI of about 5.6 in all transgenic lines compared with non-transformed embryogenic tissue. These results indicate that the process of transformation may disrupt redox homeostasis in alfalfa tissues.
Collapse
Affiliation(s)
- Jelena Platisa
- Center for Multidisciplinary Studies, University of Belgrade, Kneza Viseslava 1a, 11030 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Plant-parasitic nematodes are major pests of both temperate and tropical agriculture. Many of the most damaging species employ an advanced parasitic strategy in which they induce redifferentiation of root cells to form specialized feeding structures able to support nematode growth and reproduction over several weeks. Current control measures, particularly in intensive agriculture systems, rely heavily on nematicides but alternative strategies are required as effective chemicals are withdrawn from use. Here, we review the different approaches that are being developed to provide resistance to a range of nematode species. Natural, R gene-based resistance is currently exploited in traditional breeding programmes and research is ongoing to characterize the molecular basis for the observed resistant phenotypes. A number of transgenic approaches hold promise, the best described being the expression of proteinase inhibitors to disrupt nematode digestion. The application of plant-delivered RNA interference (RNAi) to silence essential nematode genes has recently emerged as a potentially valuable resistance strategy.
Collapse
Affiliation(s)
- Victoria L Fuller
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Catherine J Lilley
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
32
|
In vitro multiplication of oryzacystatin II transformed Alfalfa on GA3-containing medium. ARCH BIOL SCI 2008. [DOI: 10.2298/abs0801171n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Valdés-Rodríguez S, Guerrero-Rangel A, Melgoza-Villagómez C, Chagolla-López A, Delgado-Vargas F, Martínez-Gallardo N, Sánchez-Hernández C, Délano-Frier J. Cloning of a cDNA encoding a cystatin from grain amaranth (Amaranthus hypochondriacus) showing a tissue-specific expression that is modified by germination and abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:790-8. [PMID: 17870587 DOI: 10.1016/j.plaphy.2007.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 07/17/2007] [Indexed: 05/01/2023]
Abstract
A cDNA, encoding a cysteine protease inhibitor (AhCPI), was isolated from an immature seed cDNA library of grain amaranth (Amaranthus hypochondriacus L.) and characterized. It encoded a polypeptide of 247 amino acids (aa), including a putative N-terminal signal peptide. Other relevant regions found in its sequence included the G and PW conserved aa motifs, the consensus LARFAV sequence for phytocystatins and the reactive site QVVAG. The predicted aa sequence for AhCPI showed a significant homology to other plant cystatins. Gene expression analyses indicated that AhCPI was constitutively expressed in mature seeds, and gradually decreased during germination. In vegetative tissues, AhCPI was expressed in the radicle and hypocotyls of seedlings and in the stems and roots of young plantlets. Its expression in roots and stems increased substantially in response to water deficit, salinity-, cold- and heat-stress, whereas heat-stress induced a rapid and transient accumulation of AhCPI transcripts in leaves. The results obtained were suggestive of multiple roles for AhCPI in grain amaranth, acting as a regulator of seed germination and as a protective agent against diverse types of abiotic stress, which induced this gene in a tissue- and stress-specific manner. The work herewith described reports a novel, and apparently, single cystatin protein in which, in agreement with other plant model systems, could have a regulatory role in germination, and further expands previous findings linking the accumulation of protease inhibitors, mostly of the serine proteinase type, with protection against (a)biotic stress in A. hypochondriacus.
Collapse
MESH Headings
- Amaranthus/drug effects
- Amaranthus/genetics
- Amaranthus/growth & development
- Amino Acid Sequence
- Base Sequence
- Blotting, Southern
- Cloning, Molecular
- Cystatins/genetics
- Cysteine Proteinase Inhibitors/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Germination/genetics
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Roots/drug effects
- Plant Roots/genetics
- Plant Stems/drug effects
- Plant Stems/genetics
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Seedlings/drug effects
- Seedlings/genetics
- Seeds/genetics
- Seeds/growth & development
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Chloride/pharmacology
- Temperature
Collapse
Affiliation(s)
- Silvia Valdés-Rodríguez
- Departamento de Biotecnología y Bioquímica, Cinvestav, Km. 9.6, Libramiento Norte, 36500, A.P. 629 Irapuato, Gto. Mexico, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Haq SK, Atif SM, Khan RH. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 2004; 431:145-59. [PMID: 15464737 DOI: 10.1016/j.abb.2004.07.022] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/20/2004] [Indexed: 11/24/2022]
Abstract
The continual need to increase food production necessitates the development and application of novel biotechnologies to enable the provision of improved crop varieties in a timely and cost-effective way. A milestone in this field was the introduction of Bacillus thuringiensis (Bt) entomotoxic proteins into plants. Despite the success of this technology, there is need for development of alternative strategies of phytoprotection. Biotechnology offers sustainable solutions to the problem of pests, pathogens, and plant parasitic nematodes in the form of other insecticidal protein genes. A variety of genes, besides (Bt) toxins that are now available for genetic engineering for pest resistance are genes for vegetative insecticidal proteins, proteinase inhibitors, alpha-amylase inhibitors, and plant lectins. This review presents a comprehensive summary of research efforts that focus on the potential use and advantages of using proteinase inhibitor genes to engineer insect- and pest-resistance. Crop protection by means of PI genes is an important component of Integrated Pest Management programmes.
Collapse
Affiliation(s)
- Soghra Khatun Haq
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
| | | | | |
Collapse
|