1
|
Lale Ataei M, Karimipour M, Shahabi P, Soltani-Zangbar H, Pashaiasl M. Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord Injury Concomitantly with Neuroblast Regeneration. Adv Pharm Bull 2023; 13:806-816. [PMID: 38022812 PMCID: PMC10676545 DOI: 10.34172/apb.2023.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 12/01/2023] Open
Abstract
Purpose Spinal cord injury (SCI) is damage to the spinal cord that resulted in irreversible neuronal loss, glial scar formation and axonal injury. Herein, we used the human amniotic fluid mesenchymal stem cells (hAF-MSCs) and their conditioned medium (CM), to investigate their ability in neuroblast and astrocyte production as well as functional recovery following SCI. Methods Fifty-four adult rats were randomly divided into nine groups (n=6), included: Control, SCI, (SCI + DMEM), (SCI + CM), (SCI + MSCs), (SCI + Astrocyte), (SCI + Astrocyte + DMEM), (SCI + Astrocyte + CM) and (SCI + Astrocyte + MSCs). Following laminectomy and SCI induction, DMEM, CM, MSCs, and astrocytes were injected. Western blot was performed to explore the levels of the Sox2 protein in the MSCs-CM. The immunofluorescence staining against doublecortin (DCX) and glial fibrillary acidic protein (GFAP) was done. Finally, Basso-Beattie-Brenham (BBB) locomotor test was conducted to assess the neurological outcomes. Results Our results showed that the MSCs increased the number of endogenous DCX-positive cells and decreased the number of GFAP-positive cells by mediating juxtacrine and paracrine mechanisms (P<0.001). Transplanted human astrocytes were converted to neuroblasts rather than astrocytes under influence of MSCs and CM in the SCI. Moreover, functional recovery indexes were promoted in those groups that received MSCs and CM. Conclusion Taken together, our data indicate the MSCs via juxtacrine and paracrine pathways could direct the spinal cord endogenous neural stem cells (NSCs) to the neuroblasts lineage which indicates the capability of the MSCs in the increasing of the number of DCX-positive cells and astrocytes decline.
Collapse
Affiliation(s)
- Maryam Lale Ataei
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani-Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Dasargyri A, González Rodríguez D, Rehrauer H, Reichmann E, Biedermann T, Moehrlen U. scRNA-Seq of Cultured Human Amniotic Fluid from Fetuses with Spina Bifida Reveals the Origin and Heterogeneity of the Cellular Content. Cells 2023; 12:1577. [PMID: 37371048 DOI: 10.3390/cells12121577] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Amniotic fluid has been proposed as an easily available source of cells for numerous applications in regenerative medicine and tissue engineering. The use of amniotic fluid cells in biomedical applications necessitates their unequivocal characterization; however, the exact cellular composition of amniotic fluid and the precise tissue origins of these cells remain largely unclear. Using cells cultured from the human amniotic fluid of fetuses with spina bifida aperta and of a healthy fetus, we performed single-cell RNA sequencing to characterize the tissue origin and marker expression of cultured amniotic fluid cells at the single-cell level. Our analysis revealed nine different cell types of stromal, epithelial and immune cell phenotypes, and from various fetal tissue origins, demonstrating the heterogeneity of the cultured amniotic fluid cell population at a single-cell resolution. It also identified cell types of neural origin in amniotic fluid from fetuses with spina bifida aperta. Our data provide a comprehensive list of markers for the characterization of the various progenitor and terminally differentiated cell types in cultured amniotic fluid. This study highlights the relevance of single-cell analysis approaches for the characterization of amniotic fluid cells in order to harness their full potential in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Daymé González Rodríguez
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Ueli Moehrlen
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Zurich Center for Fetal Diagnosis and Therapy, University of Zurich, 8006 Zurich, Switzerland
- Pediatric Surgery, University Children's Hospital Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
3
|
Rosner M, Hengstschläger M. Amniotic Fluid Stem Cells: What They Are and What They Can Become. Curr Stem Cell Res Ther 2023; 18:7-16. [PMID: 34895127 DOI: 10.2174/1574888x16666211210143640] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
In the last two decades, fetal amniotic fluid stem cells progressively attracted attention in the context of both basic research and the development of innovative therapeutic concepts. They exhibit broadly multipotent plasticity with the ability to differentiate into cells of all three embryonic germ layers and low immunogenicity. They are convenient to maintain, highly proliferative, genomically stable, non-tumorigenic, perfectly amenable to genetic modifications, and do not raise ethical concerns. However, it is important to note that among the various fetal amniotic fluid cells, only c-Kit+ amniotic fluid stem cells represent a distinct entity showing the full spectrum of these features. Since amniotic fluid additionally contains numerous terminally differentiated cells and progenitor cells with more limited differentiation potentials, it is of highest relevance to always precisely describe the isolation procedure and characteristics of the used amniotic fluid-derived cell type. It is of obvious interest for scientists, clinicians, and patients alike to be able to rely on up-todate and concisely separated pictures of the utilities as well as the limitations of terminally differentiated amniotic fluid cells, amniotic fluid-derived progenitor cells, and c-Kit+ amniotic fluid stem cells, to drive these distinct cellular models towards as many individual clinical applications as possible.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Conditioned medium from amniotic fluid mesenchymal stem cells could modulate Alzheimer's disease-like changes in human neuroblastoma cell line SY-SY5Y in a paracrine manner. Tissue Cell 2022; 76:101808. [DOI: 10.1016/j.tice.2022.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
|
5
|
Lv X, Guan C, Li Y, Su X, Zhang L, Wang X, Xia HF, Ma X. Effects of single and multiple transplantations of human umbilical cord mesenchymal stem cells on the recovery of ovarian function in the treatment of premature ovarian failure in mice. J Ovarian Res 2021; 14:119. [PMID: 34526090 PMCID: PMC8442267 DOI: 10.1186/s13048-021-00871-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, there is no effective treatment for premature ovarian failure (POF), and stem cell therapy is considered the most promising treatment. Human umbilical cord blood mesenchymal stem cells (hUC-MSCs) have shown good regenerative ability in various diseases, including POF; however, their underlying mechanism and dosage for POF treatment remain unclear. This study aimed to compare the effect of single and multiple injections of hUC-MSCs on ovarian function repair in chemotherapy-induced POF. METHODS Female mice were intraperitoneally injected with 30 mg/kg busulfan and 120 mg/kg cyclophosphamide (CTX) to induce POF. In the single hUC-MSC injection group, hUC-MSCs were transplanted into mice D7 after CTX and busulfan administration, while in the multiple injection group, hUC-MSCs were transplanted on D7, D14, and D21 after CTX and busulfan administration. We evaluated the ovarian morphology, fertility, follicle-stimulating hormone and estradiol concentrations, follicle count, POF model, and cell transplantation results. In addition, real-time polymerase chain reaction, immunohistochemistry, and miRNA and mRNA chips were used to evaluate the effect of the cell therapy. RESULTS Ovary size, number of follicle at all developmental stages, and fertility were significantly reduced in the POF group compared with the control. Under hUC-MSC treatment, the ovarian morphology and follicle count were significantly restored, and fertility was significantly increased. By comparing the single and multiple hUC-MSC injection groups, we found that the anti-Müllerian hormone and Ki-67 levels were significantly increased in the multiple hUC-MSC group on D60 after chemotherapy. The expression of stimulating hormone receptors, inhibin α, and inhibin β was significantly restored, and the therapeutic effect was superior to that of the single hUC-MSC injection group. CONCLUSION These results indicate that hUC-MSCs can restore the structure of injured ovarian tissue and its function in chemotherapy-induced POF mice and ameliorate fertility. Multiple hUC-MSC transplantations have a better effect on the recovery of ovarian function than single hUC-MSC transplantation in POF.
Collapse
Affiliation(s)
- Xiaodan Lv
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Ying Li
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Xing Su
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Lu Zhang
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Xueqin Wang
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Hong-Fei Xia
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School, Peking Union Medical College, Beijing, 100730, China.
| | - Xu Ma
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Richard SA, Sackey M. Elucidating the Pivotal Neuroimmunomodulation of Stem Cells in Spinal Cord Injury Repair. Stem Cells Int 2021; 2021:9230866. [PMID: 34341666 PMCID: PMC8325586 DOI: 10.1155/2021/9230866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a distressing incident with abrupt onset of the motor as well as sensory dysfunction, and most often, the injury occurs as result of high-energy or velocity accidents as well as contact sports and falls in the elderly. The key challenges associated with nerve repair are the lack of self-repair as well as neurotrophic factors and primary and secondary neuronal apoptosis, as well as factors that prevent the regeneration of axons locally. Neurons that survive the initial traumatic damage may be lost due to pathogenic activities like neuroinflammation and apoptosis. Implanted stem cells are capable of differentiating into neural cells that replace injured cells as well as offer local neurotrophic factors that aid neuroprotection, immunomodulation, axonal sprouting, axonal regeneration, and remyelination. At the microenvironment of SCI, stem cells are capable of producing growth factors like brain-derived neurotrophic factor and nerve growth factor which triggers neuronal survival as well as axonal regrowth. Although stem cells have proven to be of therapeutic value in SCI, the major disadvantage of some of the cell types is the risk for tumorigenicity due to the contamination of undifferentiated cells prior to transplantation. Local administration of stem cells via either direct cellular injection into the spinal cord parenchyma or intrathecal administration into the subarachnoid space is currently the best transplantation modality for stem cells during SCI.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| |
Collapse
|
7
|
Rosner M, Kolbe T, Hengstschläger M. Fetomaternal microchimerism and genetic diagnosis: On the origins of fetal cells and cell-free fetal DNA in the pregnant woman. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108399. [PMID: 34893150 DOI: 10.1016/j.mrrev.2021.108399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
During pregnancy several types of fetal cells and fetal stem cells, including pregnancy-associated progenitor cells (PAPCs), traffic into the maternal circulation. Whereas they also migrate to various maternal organs and adopt the phenotype of the target tissues to contribute to regenerative processes, fetal cells also play a role in the pathogenesis of maternal diseases. In addition, cell-free fetal DNA (cffDNA) is detectable in the plasma of pregnant women. Together they constitute the well-known phenomenon of fetomaternal microchimerism, which inspired the concept of non-invasive prenatal testing (NIPT) using maternal blood. An in-depth knowledge concerning the origins of these fetal cells and cffDNA allows a more comprehensive understanding of the biological relevance of fetomaternal microchimerism and has implications for the ongoing expansion of resultant clinical applications.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria; Department IFA Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Mesenchymal stem cells therapy for acute liver failure: Recent advances and future perspectives. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2021.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
10
|
de la Torre P, Flores AI. Current Status and Future Prospects of Perinatal Stem Cells. Genes (Basel) 2020; 12:genes12010006. [PMID: 33374593 PMCID: PMC7822425 DOI: 10.3390/genes12010006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023] Open
Abstract
The placenta is a temporary organ that is discarded after birth and is one of the most promising sources of various cells and tissues for use in regenerative medicine and tissue engineering, both in experimental and clinical settings. The placenta has unique, intrinsic features because it plays many roles during gestation: it is formed by cells from two individuals (mother and fetus), contributes to the development and growth of an allogeneic fetus, and has two independent and interacting circulatory systems. Different stem and progenitor cell types can be isolated from the different perinatal tissues making them particularly interesting candidates for use in cell therapy and regenerative medicine. The primary source of perinatal stem cells is cord blood. Cord blood has been a well-known source of hematopoietic stem/progenitor cells since 1974. Biobanked cord blood has been used to treat different hematological and immunological disorders for over 30 years. Other perinatal tissues that are routinely discarded as medical waste contain non-hematopoietic cells with potential therapeutic value. Indeed, in advanced perinatal cell therapy trials, mesenchymal stromal cells are the most commonly used. Here, we review one by one the different perinatal tissues and the different perinatal stem cells isolated with their phenotypical characteristics and the preclinical uses of these cells in numerous pathologies. An overview of clinical applications of perinatal derived cells is also described with special emphasis on the clinical trials being carried out to treat COVID19 pneumonia. Furthermore, we describe the use of new technologies in the field of perinatal stem cells and the future directions and challenges of this fascinating and rapidly progressing field of perinatal cells and regenerative medicine.
Collapse
|
11
|
Al-Dhamin Z, Liu LD, Li DD, Zhang SY, Dong SM, Nan YM. Therapeutic efficiency of bone marrow-derived mesenchymal stem cells for liver fibrosis: A systematic review of in vivo studies. World J Gastroenterol 2020; 26:7444-7469. [PMID: 33384547 PMCID: PMC7754546 DOI: 10.3748/wjg.v26.i47.7444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Although multiple drugs are accessible for recovering liver function in patients, none are considered efficient. Liver transplantation is the mainstay therapy for end-stage liver fibrosis. However, the worldwide shortage of healthy liver donors, organ rejection, complex surgery, and high costs are prompting researchers to develop novel approaches to deal with the overwhelming liver fibrosis cases. Mesenchymal stem cell (MSC) therapy is an emerging alternative method for treating patients with liver fibrosis. However, many aspects of this therapy remain unclear, such as the efficiency compared to conventional treatment, the ideal MSC sources, and the most effective way to use it. Because bone marrow (BM) is the largest source for MSCs, this paper used a systematic review approach to study the therapeutic efficiency of MSCs against liver fibrosis and related factors. We systematically searched multiple published articles to identify studies involving liver fibrosis and BM-MSC-based therapy. Analyzing the selected studies showed that compared with conventional treatment BM-MSC therapy may be more efficient for liver fibrosis in some cases. In contrast, the cotreatment presented a more efficient way. Nevertheless, BM-MSCs are lacking as a therapy for liver fibrosis; thus, this paper also reviews factors that affect BM-MSC efficiency, such as the implementation routes and strategies employed to enhance the potential in alleviating liver fibrosis. Ultimately, our review summarizes the recent advances in the BM-MSC therapy for liver fibrosis. It is grounded in recent developments underlying the efficiency of BM-MSCs as therapy, focusing on the preclinical in vivo experiments, and comparing to other treatments or sources and the strategies used to enhance its potential while mentioning the research gaps.
Collapse
Affiliation(s)
- Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Ling-Di Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Dong-Dong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Si-Yu Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Shi-Ming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
12
|
The Effect of Angiotensin II, Retinoic Acid, EGCG, and Vitamin C on the Cardiomyogenic Differentiation Induction of Human Amniotic Fluid-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21228752. [PMID: 33228183 PMCID: PMC7699548 DOI: 10.3390/ijms21228752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be potentially applied in cell therapy or regenerative medicine as a new alternative source of stem cells. They could be particularly valuable in restoring cardiac tissue after myocardial infarction or other cardiovascular diseases. We investigated the potential of biologically active compounds, namely, angiotensin II, retinoic acid (RA), epigallocatechin-3-gallate (EGCG), vitamin C alone, and the combinations of RA, EGCG, and vitamin C with angiotensin II to induce cardiomyogenic differentiation of AF-MSCs. We observed that the upregulated expression of cardiac gene markers (NKX2-5, MYH6, TNNT2, and DES) and cardiac ion channel genes (sodium, calcium, the potassium) also the increased levels of Connexin 43 and Nkx2.5 proteins. Extracellular flux analysis, applied for the first time on AF-MSCs induced with biologically active compounds, revealed the switch in AF-MSCS energetic phenotype and enhanced utilization of oxidative phosphorylation for energy production. Moreover, we demonstrated changes in epigenetic marks associated with transcriptionally active (H3K4me3, H3K9ac, and H4hyperAc) or repressed (H3K27me3) chromatin. All in all, we demonstrated that explored biomolecules were able to induce alterations in AF-MSCs at the phenotypic, genetic, protein, metabolic, and epigenetic levels, leading to the formation of cardiomyocyte progenitors that may become functional heart cells in vitro or in vivo.
Collapse
|
13
|
Yi X, Chen F, Liu F, Peng Q, Li Y, Li S, Du J, Gao Y, Wang Y. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions. Stem Cell Res Ther 2020; 11:183. [PMID: 32430063 PMCID: PMC7238656 DOI: 10.1186/s13287-020-01690-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are considered to be an effective tool for regenerative medicine with promising applications for clinical therapy. However, incongruent data has been reported partially owing to their functional heterogeneity. To provide sufficient and suitable clinical seed cells derived from the placenta for MSC therapy, we compared the various current isolation methods, as well as the biological characteristics, of different human placenta mesenchymal stem cells (hPMSCs). Methods We selected placentas from 35 informed donors and exploited three commonly used methods. MSCs were isolated from different parts of placental tissue including umbilical cord (UC), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), and deciduae (DC). The appropriate isolation methods for each type of hPMSCs were first assessed. The resulting five MSC types from the same individuals were identified based on their surface marker expression, proliferation capacity, transcriptome, differentiation, multipotency and karyotype. Results All three methods successfully isolated the five hPMSC types from placental tissues. However, the UC-MSCs were most effectively separated via the tissue explant method, while the enzymatic digestion method was found to be more suitable for separating CV-MSCs, owing to its higher output efficiency compared to the other methods. Alternatively, the perfusion method was complicated and exhibited the lowest efficiency for cell isolation and uniformity. Furthermore, we determined that UC-MSCs and CV-MSCs express a higher level of paracrine cytokines and display much stronger proliferative capacity as well as superior extraction efficiency. Finally, karyotype analysis revealed that DC-MSCs are derived from the mother, while the other cell types are derived from the fetus. Moreover, the different hPMSCs exhibited unique gene expression profiles, which may prove advantageous in treatment of a broad range of diseases. Conclusions hPMSCs from different sources are similar yet also unique. Our results describe the biological characteristics of five hPMSCs and provide insights to aide in the selection process of candidates for MSCs treatment. Overall, UC- and CV-MSCs appear to be ideal sources of primary MSCs for clinical treatment and future research.
Collapse
Affiliation(s)
- Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Feng Chen
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Fenghua Liu
- Department of Reproductive Medicine Center, Provincial Maternal and Child Health Hospital, Guangzhou, Guangdong Province, China
| | - Qing Peng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shao Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiang Du
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi Gao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China. .,Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| |
Collapse
|
14
|
Zagoura D, Trohatou O, Makridakis M, Kollia A, Kokla N, Mokou M, Psaraki A, Eliopoulos AG, Vlahou A, Roubelakis MG. Functional secretome analysis reveals Annexin-A1 as important paracrine factor derived from fetal mesenchymal stem cells in hepatic regeneration. EBioMedicine 2019; 45:542-552. [PMID: 31303498 PMCID: PMC6642415 DOI: 10.1016/j.ebiom.2019.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (MSCs) and their secreted molecules exert beneficial effects in injured tissues by promoting tissue regeneration and angiogenesis and by inhibiting inflammation and fibrosis. We have previously demonstrated that the therapeutic activity of fetal MSCs derived from amniotic fluid (AF-MSCs) and their hepatic progenitor-like cells (HPL) is mediated by paracrine effects in a mouse model of acute hepatic failure (AHF). METHODS Herein, we have combined proteomic profiling of the AF-MSCs and HPL cell secretome with ex vivo and in vivo functional studies to identify specific soluble factors, which underpin tissue regeneration in AHF. FINDINGS The anti-inflammatory molecule Annexin-A1 (ANXA1) was detected at high levels in both AF-MSC and HPL cell secretome. Further functional analyses revealed that the shRNA-mediated knock-down of ANXA1 in MSCs (shANXA1-MSCs) decreased their proliferative, clonogenic and migratory potential, as well as their ability to differentiate into HPL cells. Liver progenitors (oval cells) from AHF mice displayed reduced proliferation when cultured ex vivo in the presence of conditioned media from shANXA1-MSCs compared to control MSCs secretome. Intra-hepatic delivery of conditioned media from control MSCs but not shANXA1-MSCs reduced liver damage and circulating levels of pro-inflammatory cytokines in AHF. INTERPRETATION Collectively, our study uncovers secreted Annexin-A1 as a novel effector of MSCs in liver regeneration and further underscores the potential of cell-free therapeutic strategies for liver diseases. FUND: Fondation Santé, GILEAD Asklipeios Grant, Fellowships of Excellence - Siemens, IKY, Reinforcement of Postdoctoral Researchers, IKY.
Collapse
Affiliation(s)
- Dimitra Zagoura
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania Trohatou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Kollia
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolitsa Kokla
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marika Mokou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Adriana Psaraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Greece
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Greece.
| |
Collapse
|
15
|
Amniotic Fluid Cells, Stem Cells, and p53: Can We Stereotype p53 Functions? Int J Mol Sci 2019; 20:ijms20092236. [PMID: 31067653 PMCID: PMC6539965 DOI: 10.3390/ijms20092236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
In recent years, great interest has been devoted to finding alternative sources for human stem cells which can be easily isolated, ideally without raising ethical objections. These stem cells should furthermore have a high proliferation rate and the ability to differentiate into all three germ layers. Amniotic fluid, ordinarily discarded as medical waste, is potentially such a novel source of stem cells, and these amniotic fluid derived stem cells are currently gaining a lot of attention. However, further information will be required about the properties of these cells before they can be used for therapeutic purposes. For example, the risk of tumor formation after cell transplantation needs to be explored. The tumor suppressor protein p53, well known for its activity in controlling Cell Prolif.eration and cell death in differentiated cells, has more recently been found to be also active in amniotic fluid stem cells. In this review, we summarize the major findings about human amniotic fluid stem cells since their discovery, followed by a brief overview of the important role played by p53 in embryonic and adult stem cells. In addition, we explore what is known about p53 in amniotic fluid stem cells to date, and emphasize the need to investigate its role, particularly in the context of cell tumorigenicity.
Collapse
|
16
|
Pan S, Chen YC, Zhao N, Feng X, Yang DD, Wang Y, Jin ZB. A new subset of small stem cells in bovine bone marrow stromal cell populations. J Cell Biochem 2019; 120:13881-13892. [PMID: 30983000 DOI: 10.1002/jcb.28661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
Bone marrow stromal cells (BMSCs) are a unique population of multipotent cells that exhibit pluripotent properties to a certain extent and are significantly heterogeneous in terms of the cell population. We isolate a small cell subpopulation from bovine BMSCs, bovine small stem cells (bSSCs), and herein characterize their properties. The bSSCs are smaller in size and express nuclear Oct-4 and other pluripotency markers. In addition, when cultured in suspension conditions, bSSCs form three-dimensional spheres and display a strong capability for self-renewal and differentiation into cells from three germ layers. Notably, bSSCs display neural features with Sox1 and Pax6 expression. Using bSSCs as donor nuclear cells for somatic cell nuclear transfer, we further demonstrate that the developmental potential of cloned embryos in vitro is significantly increased. Our study identifies a new bovine bone marrow stromal cell-derived stem cell subtype that could have broad importance for developmental biology as well as great potential for regenerative medicine.
Collapse
Affiliation(s)
- Shaohui Pan
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Yu-Chen Chen
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Ning Zhao
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Xiang Feng
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Dan-Dan Yang
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| | - Yongshen Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zi-Bing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Sciences, Wenzhou, China
| |
Collapse
|
17
|
Park J, Lee JH, Yoon BS, Jun EK, Lee G, Kim IY, You S. Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:293. [PMID: 30409167 PMCID: PMC6225588 DOI: 10.1186/s13287-018-1058-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/07/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Background Mesenchymal stem cell-derived conditioned medium (MSC-CM) has emerged as a promising cell-free tool for restoring degenerative diseases and treating traumatic injuries. The present study describes the effect of selenium as a reactive oxygen species (ROS) scavenger and its additive effect with basic fibroblast growth factor (bFGF) on in vitro expansion of amniotic fluid (AF)-MSCs and the paracrine actions of AF-MSC-CM as well as the associated cellular and molecular mechanisms. Methods In this study, we obtained CM from human AF-MSCs cultured with selenium. The stemness of selenium-treated AF-MSCs was evaluated by cell growth and differentiation potential. Human fibroblasts were treated with AF-MSC-CM and analyzed for cell signaling changes. For in vivo wound healing assay, ICR mice with a full-thickness skin wound were used. Results Selenium played a critical role in in vitro expansion of AF-MSCs through activation of the AKT-ERK1/2, Smad2, and Stat3 signaling pathways along with inactivation of GSK3β. When administered together with bFGF, it showed remarkable effect in inhibiting ROS accumulation and preserving their multipotency. Proliferation and migration of human dermal fibroblasts and in vivo wound healing were improved in the CMs derived from AF-MSCs exposed to selenium and bFGF, which was caused by the Smad2, AKT-MEK1/2-ERK, and NFκB signaling triggered by the paracrine factors of AF-MSCs, such as TGF-β, VEGF, and IL-6. Our results suggest the following: (a) supplementation of selenium in AF-MSC culture contributes to in vitro expansion and preservation of multipotency, (b) ROS accumulation causes progressive losses in proliferative and differentiation potential, (c) the separate activities of bFGF and selenium in MSCs exert an additive effect when used together, and (d) the additive combination improves the therapeutic effects of AF-MSC-derived CMs on tissue repair and regeneration. Conclusion Antioxidants, such as selenium, should be considered as an essential supplement for eliciting the paracrine effects of MSC-CMs. Electronic supplementary material The online version of this article (10.1186/s13287-018-1058-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junghyun Park
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Republic of Korea
| | - Jung Han Lee
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Republic of Korea
| | - Byung Sun Yoon
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Republic of Korea.,StemLab, Venture Incubation Center Korea University, Seoul, 136-701, Republic of Korea
| | - Eun Kyoung Jun
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Republic of Korea.,StemLab, Venture Incubation Center Korea University, Seoul, 136-701, Republic of Korea
| | - Gilju Lee
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Republic of Korea
| | - In Yong Kim
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Republic of Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| | - Seungkwon You
- Laboratory of Cell Function Regulation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-go, Seoul, 02841, Republic of Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
18
|
Macrin D, Joseph JP, Pillai AA, Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep 2018; 13:741-756. [PMID: 28812219 DOI: 10.1007/s12015-017-9759-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the recent times, stem cell biology has garnered the attention of the scientific fraternity and the general public alike due to the immense therapeutic potential that it holds in the field of regenerative medicine. A breakthrough in this direction came with the isolation of stem cells from human embryo and their differentiation into cell types of all three germ layers. However, the isolation of mesenchymal stem cells from adult tissues proved to be advantageous over embryonic stem cells due to the ethical and immunological naivety. Mesenchymal Stem Cells (MSCs) isolated from the bone marrow were found to differentiate into multiple cell lineages with the help of appropriate differentiation factors. Furthermore, other sources of stem cells including adipose tissue, dental pulp, and breast milk have been identified. Newer sources of stem cells have been emerging recently and their clinical applications are also being studied. In this review, we examine the eminent sources of Mesenchymal Stem Cells (MSCs), their immunophenotypes, and therapeutic imminence.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
19
|
Loukogeorgakis SP, De Coppi P. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 2018; 35:1663-1673. [PMID: 28009066 DOI: 10.1002/stem.2553] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 09/07/2016] [Accepted: 10/01/2016] [Indexed: 12/19/2022]
Abstract
The amniotic fluid has been identified as an untapped source of cells with broad potential, which possess immunomodulatory properties and do not have the ethical and legal limitations of embryonic stem cells. CD117(c-Kit)+ cells selected from amniotic fluid have been shown to differentiate into cell lineages representing all three embryonic germ layers without generating tumors, making them ideal candidates for regenerative medicine applications. Moreover, their ability to engraft in injured organs and modulate immune and repair responses of host tissues, suggest that transplantation of such cells may be useful for the treatment of various degenerative and inflammatory diseases. Although significant questions remain regarding the origin, heterogeneous phenotype, and expansion potential of amniotic fluid stem cells, evidence to date supports their potential role as a valuable stem cell source for the field of regenerative medicine. Stem Cells 2017;35:1663-1673.
Collapse
Affiliation(s)
- Stavros P Loukogeorgakis
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
20
|
Su CF, Chang LH, Kao CY, Lee DC, Cho KH, Kuo LW, Chang H, Wang YH, Chiu IM. Application of amniotic fluid stem cells in repairing sciatic nerve injury in minipigs. Brain Res 2018; 1678:397-406. [DOI: 10.1016/j.brainres.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/23/2017] [Accepted: 11/12/2017] [Indexed: 01/10/2023]
|
21
|
Rajan TS, Scionti D, Diomede F, Piattelli A, Bramanti P, Mazzon E, Trubiani O. Prolonged Expansion Induces Spontaneous Neural Progenitor Differentiation from Human Gingiva-Derived Mesenchymal Stem Cells. Cell Reprogram 2017; 19:389-401. [PMID: 29058474 DOI: 10.1089/cell.2017.0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neural crest-derived mesenchymal stem cells (MSCs) obtained from dental tissues received considerable interest in regenerative medicine, particularly in nerve regeneration owing to their embryonic origin and ease of harvest. Proliferation efficacy and differentiation capacity into diverse cell lineages propose dental MSCs as an in vitro tool for disease modeling. In this study, we investigated the spontaneous differentiation efficiency of dental MSCs obtained from human gingiva tissue (hGMSCs) into neural progenitor cells after extended passaging. At passage 41, the morphology of hGMSCs changed from typical fibroblast-like shape into sphere-shaped cells with extending processes. Next-generation transcriptomics sequencing showed increased expression of neural progenitor markers such as NES, MEIS2, and MEST. In addition, de novo expression of neural precursor genes, such as NRN1, PHOX2B, VANGL2, and NTRK3, was noticed in passage 41. Immunocytochemistry results showed suppression of neurogenesis repressors TP53 and p21, whereas Western blot results revealed the expression of neurotrophic factors BDNF and NT3 at passage 41. Our results showed the spontaneous efficacy of hGMSCs to differentiate into neural precursor cells over prolonged passages and that these cells may assist in producing novel in vitro disease models that are associated with neural development.
Collapse
Affiliation(s)
| | - Domenico Scionti
- 1 Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina , Italy
| | - Francesca Diomede
- 2 Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Chieti, Italy
| | - Adriano Piattelli
- 2 Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Chieti, Italy
| | - Placido Bramanti
- 1 Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina , Italy
| | - Emanuela Mazzon
- 1 Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo," Messina , Italy
| | - Oriana Trubiani
- 2 Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio," Chieti-Pescara, Chieti, Italy
| |
Collapse
|
22
|
Markmee R, Aungsuchawan S, Narakornsak S, Tancharoen W, Bumrungkit K, Pangchaidee N, Pothacharoen P, Puaninta C. Differentiation of mesenchymal stem cells from human amniotic fluid to cardiomyocyte‑like cells. Mol Med Rep 2017; 16:6068-6076. [PMID: 28849052 PMCID: PMC5865810 DOI: 10.3892/mmr.2017.7333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 12/28/2022] Open
Abstract
Ischemic heart disease (IHD) is a major factor influencing worldwide mortality rates. Furthermore, IHD has become a significant health problem among the Thai population. Stem cell therapy using mesenchymal stem cells (MSCs) is an alternative therapeutic method that has been applied to improve the quality of life of patients. Amniotic fluid (AF) contains a heterogeneous cell population, including MSCs, which are multipotent stem cells that have the capability to differentiate into mesenchymal lineages. The purpose of the present study was to evaluate the MSC characteristics of human (h)AF and determine its potency regarding cardiogenic differentiation. MSC characterization following flow cytometric analysis revealed that the cells expressed MSC markers, cluster of differentiation (CD)44, CD90, human leukocyte antigen-ABC and CD73. The results of the alamar blue assay demonstrated that cell proliferation rate continuously increased from the early cultivation phase up to 5-fold during days 1 to 5 of cell culturing. The highest rate of cell proliferation was observed on day 17 with a 30-fold increase compared with that on day 1. During the cardiogenic induction stage, morphological changes were observed between day 0 and day 21, and it was revealed that the hAF derived-MSCs in the cardiogenic-induced group exhibited myotube-like morphology after 7 days of cell culturing. Following cardiogenic induction, immunohistochemistry staining was performed on day 21, and reverse transcription-quantitative polymerase chain reaction on day 7 and 21. These steps were performed to detect the protein and gene expression levels of cardiac specific proteins (GATA4, cardiac troponin T, Nkx2.5 and Connexin43). The results of the present study indicated that hAF-MSCs possess the potential to differentiate into cardiomyocyte-like cells. Thus, it was concluded that hAF may be a suitable source of MSCs for stem cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Runchana Markmee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Sirinda Aungsuchawan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Suteera Narakornsak
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Waleephan Tancharoen
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Kanokkarn Bumrungkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Nataporn Pangchaidee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Peraphan Pothacharoen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| | - Chaniporn Puaninta
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Maharaj Nakorn Chiang Mai Hospital, Chiang Mai 50200, Thailand
| |
Collapse
|
23
|
Borlongan CV. Amniotic fluid as a source of engraftable stem cells. Brain Circ 2017; 3:175-179. [PMID: 30276321 PMCID: PMC6057696 DOI: 10.4103/bc.bc_24_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023] Open
Abstract
The ability of stem cells to differentiate into various lineages has made them powerful tools of regenerative medicine and applicable to multiple human diseases. Of particular interest, amniotic fluid-derived stem cells (AFSC) have been characterized to express both adult and embryonic cell markers, indicating them as cells within an intermediate stage between embryonic and adult phenotype. AFSC can differentiate into cells of all three germ layers, including hepatic, myogenic, osteogenic, and neurogenic cell types. Furthermore, AFSC have minimal replicative senescence, retaining the ability to divide effectively for over 250 doublings. These facts indicate that amniotic fluid may exist as a promising donor source of stem cells for the treatment of multiple clinically relevant conditions. Of particular interest is the convenience of harvesting stem cells from the amniotic fluid stem for the treatment of newborns, as well as for banking or cryopreserving purposes to be used at a later date. Importantly, the promise of amniotic fluid as a source of stem cells merits ongoing research into their potential therapeutic applications. This paper is a review article. Referred literature in this paper has been listed in the references section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.
Collapse
Affiliation(s)
- Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| |
Collapse
|
24
|
Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci 2017; 18:ijms18010094. [PMID: 28067783 PMCID: PMC5297728 DOI: 10.3390/ijms18010094] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve regeneration is a complicated process highlighted by Wallerian degeneration, axonal sprouting, and remyelination. Schwann cells play an integral role in multiple facets of nerve regeneration but obtaining Schwann cells for cell-based therapy is limited by the invasive nature of harvesting and donor site morbidity. Stem cell transplantation for peripheral nerve regeneration offers an alternative cell-based therapy with several regenerative benefits. Stem cells have the potential to differentiate into Schwann-like cells that recruit macrophages for removal of cellular debris. They also can secrete neurotrophic factors to promote axonal growth, and remyelination. Currently, various types of stem cell sources are being investigated for their application to peripheral nerve regeneration. This review highlights studies involving the stem cell types, the mechanisms of their action, methods of delivery to the injury site, and relevant pre-clinical or clinical data. The purpose of this article is to review the current point of view on the application of stem cell based strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Liangfu Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Salazar Jones
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaofeng Jia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Mu X, Ren L, Yan H, Zhang X, Xu T, Wei A, Jiang J. Enhanced differentiation of human amniotic fluid-derived stem cells into insulin-producing cells in vitro. J Diabetes Investig 2017; 8:34-43. [PMID: 27240324 PMCID: PMC5217909 DOI: 10.1111/jdi.12544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 01/14/2023] Open
Abstract
AIMS/INTRODUCTION To investigate the ability of human amniotic fluid stem cells (hAFSCs) to differentiate into insulin-producing cells. MATERIALS AND METHODS hAFSCs were induced to differentiate into pancreatic cells by a multistep protocol. The expressions of pancreas-related genes and proteins, including pancreatic and duodenal homeobox-1, insulin, and glucose transporter 2, were detected by polymerase chain reaction and immunofluorescence. Insulin secreted from differentiated cells was tested by enzyme-linked immunosorbent assay. RESULTS hAFSCs were successfully isolated from amniotic fluid that expressed the pluripotent markers of embryonic stem cells, such as Oct3/4, and mesenchymal stem cells, such as integrin β-1 and ecto-5'-nucleotidase. Here, we first obtained the hAFSCs that expressed pluripotent marker stage-specific embryonic antigen 1. Real-time polymerase chain reaction analysis showed that pancreatic and duodenal homeobox-1, paired box gene 4 and paired box gene 6 were expressed in the early phase of induction, and then stably expressed in the differentiated cells. The pancreas-related genes, such as insulin, glucokinase, glucose transporter 2 and Nkx6.1, were expressed in the differentiated cells. Immunofluorescence showed that these differentiated cells co-expressed insulin, C-peptide, and pancreatic and duodenal homeobox-1. Insulin was released in response to glucose stimulation in a manner similar to that of adult human islets. CONCLUSIONS The present study showed that hAFSCs, under selective culture conditions, could differentiate into islet-like insulin-producing cells, which might be used as a potential source for transplantation in patients with type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Xu‐Peng Mu
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Li‐Qun Ren
- College of PharmacyJilin UniversityChangchunChina
| | - Hao‐Wei Yan
- College of PharmacyJilin UniversityChangchunChina
| | | | - Tian‐Min Xu
- The Second Affiliated Hospital of Jilin UniversityChangchunChina
| | - An‐Hui Wei
- College of PharmacyJilin UniversityChangchunChina
| | - Jin‐Lan Jiang
- Department of Central LaboratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
26
|
Sokol J, Lippert T, Borlongan CV, Stuppia L. Translating amniotic fluid-derived stem cells for transplantation in stroke. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0055-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Iordache F, Constantinescu A, Andrei E, Amuzescu B, Halitzchi F, Savu L, Maniu H. Electrophysiology, immunophenotype, and gene expression characterization of senescent and cryopreserved human amniotic fluid stem cells. J Physiol Sci 2016; 66:463-476. [PMID: 27053101 PMCID: PMC10717473 DOI: 10.1007/s12576-016-0441-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/12/2016] [Indexed: 01/16/2023]
Abstract
We characterized human amniotic fluid stem cells (AFSC) in senescent cultures (6 weeks) versus cryopreserved cells using whole-cell patch-clamp, immunophenotyping, and differential gene expression profiling for senescence genes. We evidenced five ion current components (outward rectifier, A-type, inward rectifier, and big conductance Ca2+-dependent K+ currents, fast voltage-dependent Na+ currents). Senescent AFSC showed reduced expression of CD90, CD44, CD133, over 500-fold increase of interferon gamma and telomerase reverse transcriptase genes, increased cycle-dependent kinase 4 inhibitors, p53-binding protein 1, and decreased calreticulin and CD44. HLA-ABC immune expression was similar, and HLA-DR expression very low in both cell types. A subset of cryopreserved AFSC featured large inward rectifier K+ currents, voltage-dependent Na+ currents, and neural progenitor markers evidenced by immunophenotyping and RT-PCR. In all AFSC, in both culture conditions, at patch rupture the outward currents were very low, and they increased progressively over several minutes upon cytoplasm dialysis with pipette solution.
Collapse
Affiliation(s)
- Florin Iordache
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| | - Andrei Constantinescu
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| | - Eugen Andrei
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| | - Bogdan Amuzescu
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania.
| | - Ferdinand Halitzchi
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| | - Lorand Savu
- Genetic Lab SRL, Cpt. Av. N. Drossu Str. 9, 012071, Bucharest, Romania
| | - Horia Maniu
- Flow Cytometry and Cell Therapy Laboratory, "N. Simionescu" Institute of Cellular Biology and Pathology, B.P. Hasdeu Str. 8, 050568, Bucharest, Romania
| |
Collapse
|
28
|
Abstract
The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.
Collapse
Affiliation(s)
- Caroline E Gargett
- Centre for Women's Health Research, Monash Institute of Medical Research, and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
29
|
Chiang CY, Liu SA, Sheu ML, Chen FC, Chen CJ, Su HL, Pan HC. Feasibility of Human Amniotic Fluid Derived Stem Cells in Alleviation of Neuropathic Pain in Chronic Constrictive Injury Nerve Model. PLoS One 2016; 11:e0159482. [PMID: 27441756 PMCID: PMC4956194 DOI: 10.1371/journal.pone.0159482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 07/05/2016] [Indexed: 01/01/2023] Open
Abstract
Purpose The neurobehavior of neuropathic pain by chronic constriction injury (CCI) of sciatic nerve is very similar to that in humans, and it is accompanied by a profound local inflammation response. In this study, we assess the potentiality of human amniotic fluid derived mesenchymal stem cells (hAFMSCs) for alleviating the neuropathic pain in a chronic constriction nerve injury model. Methods and Methods This neuropathic pain animal model was conducted by four 3–0 chromic gut ligatures loosely ligated around the left sciatic nerve in Sprague—Dawley rats. The intravenous administration of hAFMSCs with 5x105 cells was conducted for three consecutive days. Results The expression IL-1β, TNF-α and synaptophysin in dorsal root ganglion cell culture was remarkably attenuated when co-cultured with hAFMSCs. The significant decrease of PGP 9.5 in the skin after CCI was restored by administration of hAFMSCs. Remarkably increased expression of CD 68 and TNF-α and decreased S-100 and neurofilament expression in injured nerve were rescued by hAFMSCs administration. Increases in synaptophysin and TNF-α over the dorsal root ganglion were attenuated by hAFMSCs. Significant expression of TNF-α and OX-42 over the dorsal spinal cord was substantially attenuated by hAFMSCs. The increased amplitude of sensory evoked potential as well as expression of synaptophysin and TNF-α expression was alleviated by hAFMSCs. Human AFMSCs significantly improved the threshold of mechanical allodynia and thermal hyperalgesia as well as various parameters of CatWalk XT gait analysis. Conclusion Human AFMSCs administration could alleviate the neuropathic pain demonstrated in histomorphological alteration and neurobehavior possibly through the modulation of the inflammatory response.
Collapse
Affiliation(s)
- Chien-Yi Chiang
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Shih-An Liu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Fu-Chou Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Lin Su
- Institute of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Liu QZ, Chen XD, Liu G, Guan GJ. Identification and isolation of kidney-derived stem cells from transgenic rats with diphtheria toxin-induced kidney damage. Exp Ther Med 2016; 12:1651-1656. [PMID: 27588086 PMCID: PMC4998113 DOI: 10.3892/etm.2016.3516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/21/2015] [Indexed: 12/17/2022] Open
Abstract
Adult stem cells have been well characterized in numerous organs, with the exception of the kidneys. Therefore, the present study aimed to identify and isolate kidney-derived stem cells. A total of 12 Fischer 344 transgenic rats expressing the human diphtheria toxin receptor in podocyte cells of the kidney, were used in the present study. The rats were administered 5-bromo-2′-deoxyuridine (BrdU) in order to detect cellular proliferation. After 60 days, the rats were treated with the diphtheria toxin (DT), in order to induce kidney injury. Immunohistochemical analysis indicated that the number of BrdU-positive cells were increased following DT treatment. In addition, the expression of octamer-binding transcription factor 4 (Oct-4), a stem cell marker, was detected and suggested that kidney-specific stem cells were present in the DT-treated tissue samples. Furthermore, tissue samples exhibited repair of the DT-induced injury. Further cellular culturing was conducted in order to isolate the kidney-specific stem cells. After 5 weeks of culture, the majority of the cells were non-viable, with the exception of certain specialized, unique cell types, which were monomorphic and spindle-shaped in appearance. The unique cells were isolated and subjected to immunostaining and reverse transcription-polymerase chain reaction analyses in order to reconfirm the expression of Oct-4 and to detect the expression of Paired box 2 (Pax-2), which is necessary for the formation of kidney structures. The unique cells were positive for Oct-4 and Pax-2; thus suggesting that the identified cells were kidney-derived stem cells. The results of the present study suggested that the unique cell type identified in the kidneys of the DT-treated rats were kidney-specific stem cells that may have been involved in the repair of DT-induced tissue injury. In addition, these cells may provide a useful cell line for studying the fundamental characteristics of kidney stem cells, as well as identifying kidney-specific stem cell markers.
Collapse
Affiliation(s)
- Qing-Zhen Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xu-Dong Chen
- Department of Respiratory Medicine, Shandong Jiaotong Hospital, Jinan, Shandong 250031, P.R. China
| | - Gang Liu
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Guang-Ju Guan
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
31
|
Hsu YH, Chiu YS, Chen WY, Huang KY, Jou IM, Wu PT, Wu CH, Chang MS. Anti-IL-20 monoclonal antibody promotes bone fracture healing through regulating IL-20-mediated osteoblastogenesis. Sci Rep 2016; 6:24339. [PMID: 27075747 PMCID: PMC4830982 DOI: 10.1038/srep24339] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022] Open
Abstract
Bone loss and skeletal fragility in bone fracture are caused by an imbalance in bone remodeling. The current challenge in bone fracture healing is to promote osteoblastogenesis and bone formation. We aimed to explore the role of IL-20 in osteoblastogenesis, osteoblast differentiation and bone fracture. Serum IL-20 was significantly correlated with serum sclerostin in patients with bone fracture. In a mouse model, anti-IL-20 monoclonal antibody (mAb) 7E increased bone formation during fracture healing. In vitro, IL-20 inhibited osteoblastogenesis by upregulating sclerostin, and downregulating osterix (OSX), RUNX2, and osteoprotegerin (OPG). IL-20R1 deficiency attenuated IL-20-mediated inhibition of osteoblast differentiation and maturation and reduced the healing time after a bone fracture. We conclude that IL-20 affects bone formation and downregulates osteoblastogenesis by modulating sclerostin, OSX, RUNX2, and OPG on osteoblasts. Our results demonstrated that IL-20 is involved in osteoregulation and anti-IL-20 mAb is a potential therapeutic for treating bone fracture or metabolic bone diseases.
Collapse
Affiliation(s)
- Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Shu Chiu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Yuan Huang
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Ming Jou
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Tin Wu
- Department of Orthopedics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Hsing Wu
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Li M, Luan F, Zhao Y, Hao H, Liu J, Dong L, Fu X, Han W. Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J 2015; 14:64-73. [PMID: 26635066 DOI: 10.1111/iwj.12551] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from umbilical cords (UC-MSCs) have been shown to enhance cutaneous wound healing by means of the paracrine activity. Fibroblasts are the primary cells involved in wound repair. The paracrine effects of UC-MSCs on dermal fibroblasts have not been fully explored in vitro or in vivo. Dermal fibroblasts were treated with conditioned media from UC-MSCs (UC-MSC-CM). In this model, UC-MSC-CM increased the proliferation and migration of dermal fibroblasts. Moreover, adult dermal fibroblasts transitioned into a phenotype with a low myofibroblast formation capacity, a decreased ratio of transforming growth factor-β1,3 (TGF-β1/3) and an increased ratio of matrix metalloproteinase/tissue inhibitor of metalloproteinases (MMP/TIMP). Additionally, UC-MSC-CM-treated wounds showed accelerated healing with fewer scars compared with control groups. These observations suggest that UC-MSC-CM may be a feasible strategy to promote cutaneous repair and a potential means to realise scarless healing.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, P. R. China.,Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, P. R. China
| | - Fuxin Luan
- Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, P. R. China
| | - Yali Zhao
- Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, P. R. China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, P. R. China
| | - Jiejie Liu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, P. R. China
| | - Liang Dong
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, P. R. China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
33
|
Di Trapani M, Bassi G, Fontana E, Giacomello L, Pozzobon M, Guillot PV, De Coppi P, Krampera M. Immune regulatory properties of CD117(pos) amniotic fluid stem cells vary according to gestational age. Stem Cells Dev 2015; 24:132-43. [PMID: 25072397 DOI: 10.1089/scd.2014.0234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Amniotic Fluid Stem (AFS) cells are broadly multipotent fetal stem cells derived from the positive selection and ex vivo expansion of amniotic fluid CD117/c-kit(pos) cells. Considering the differentiation potential in vitro toward cell lineages belonging to the three germ layers, AFS cells have raised great interest as a new therapeutic tool, but their immune properties still need to be assessed. We analyzed the in vitro immunological properties of AFS cells from different gestational age in coculture with T, B, and natural killer (NK) cells. Nonactivated (resting) first trimester-AFS cells showed lower expression of HLA class-I molecules and NK-activating ligands than second and third trimester-AFS cells, whose features were associated with lower sensitivity to NK cell-mediated lysis. Nevertheless, inflammatory priming with interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) enhanced resistance of all AFS cell types to NK cytotoxicity. AFS cells modulated lymphocyte proliferation in a different manner according to gestational age: first trimester-AFS cells significantly inhibited T and NK cell proliferation, while second and third trimester-AFS cells were less efficient. In addition, only inflammatory-primed second trimester-AFS cells could suppress B cell proliferation, which was not affected by the first and third trimester-AFS cells. Indolamine 2,3 dioxygenase pathway was significantly involved only in T cell suppression mediated by second and third trimester-AFS cells. Overall, this study shows a number of significant quantitative differences among AFS cells of different gestational age that have to be considered in view of their clinical application.
Collapse
Affiliation(s)
- Mariano Di Trapani
- 1 Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona , Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Human Amniotic Fluid Mesenchymal Stem Cells from Second- and Third-Trimester Amniocentesis: Differentiation Potential, Molecular Signature, and Proteome Analysis. Stem Cells Int 2015; 2015:319238. [PMID: 26351462 PMCID: PMC4553339 DOI: 10.1155/2015/319238] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022] Open
Abstract
Human amniotic fluid stem cells have become an attractive stem cell source for potential applications in regenerative medicine and tissue engineering. The aim of this study was to characterize amniotic fluid-derived mesenchymal stem cells (AF-MSCs) from second- and third-trimester of gestation. Using two-stage protocol, MSCs were successfully cultured and exhibited typical stem cell morphological, specific cell surface, and pluripotency markers characteristics. AF-MSCs differentiated into adipocytes, osteocytes, chondrocytes, myocytes, and neuronal cells, as determined by morphological changes, cell staining, and RT-qPCR showing the tissue-specific gene presence for differentiated cell lineages. Using SYNAPT G2 High Definition Mass Spectrometry technique approach, we performed for the first time the comparative proteomic analysis between undifferentiated AF-MSCs from late trimester of gestation and differentiated into myogenic, adipogenic, osteogenic, and neurogenic lineages. The analysis of the functional and expression patterns of 250 high abundance proteins selected from more than 1400 demonstrated the similar proteome of cultured and differentiated AF-MSCs but the unique changes in their expression profile during cell differentiation that may help the identification of key markers in differentiated cells. Our results provide evidence that human amniotic fluid of second- and third-trimester contains stem cells with multilineage potential and may be attractive source for clinical applications.
Collapse
|
35
|
Elias M, Hoover J, Nguyen H, Reyes S, Lawton C, Borlongan CV. Stroke therapy: the potential of amniotic fluid-derived stem cells. FUTURE NEUROLOGY 2015; 10:321-326. [PMID: 26401122 DOI: 10.2217/fnl.15.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maya Elias
- Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, FL 33612, USA
| | - Jaclyn Hoover
- Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, FL 33612, USA
| | - Hung Nguyen
- Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, FL 33612, USA
| | - Stephanny Reyes
- Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, FL 33612, USA
| | - Christopher Lawton
- Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, FL 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, FL 33612, USA ; Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
36
|
Rat full term amniotic fluid harbors highly potent stem cells. Res Vet Sci 2015; 102:89-99. [PMID: 26412526 DOI: 10.1016/j.rvsc.2015.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 06/30/2015] [Accepted: 07/13/2015] [Indexed: 01/08/2023]
Abstract
Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.
Collapse
|
37
|
Sun Q, Li F, Li H, Chen RH, Gu YZ, Chen Y, Liang HS, You XR, Ding SS, Gao L, Wang YL, Qin MD, Zhang XG. Amniotic fluid stem cells provide considerable advantages in epidermal regeneration: B7H4 creates a moderate inflammation microenvironment to promote wound repair. Sci Rep 2015; 5:11560. [PMID: 26101181 PMCID: PMC4477371 DOI: 10.1038/srep11560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/18/2015] [Indexed: 11/09/2022] Open
Abstract
The current treatments for severe skin injury all involve skin grafting. However, there is a worldwide shortage of donor skin tissue. In this study, we examined the advantages of using human amniotic fluid stem (hAFS) cells in skin wound healing. In vitro, hAFS cells differentiate into keratinocytes (termed hAFS-K). Like keratinocytes, hAFS-K cells express the markers K5, K14, K10 and involucrin; display typical cellular structure, including a tonofibril-rich cytoplasm; and construct a completely pluristratified epithelium in 3D culture. In vivo, in a mouse excisional wound model, GFP-positive hAFS cells participate in wound repair. Co-localization of GFP/K14 and GFP/K10 in the repaired epidermis demonstrated that hAFS cells can differentiate into keratinocytes. Real-time PCR results confirmed that hAFS cells can initiate and promote early-stage repair of skin damage. During wound repair, hAFS cells did not directly secrete repair-related factors, such as bFGF, VEGF, CXCL12, TGF-β1 and KGF, and provided a moderate inflammation reaction with lower expression of IL-1β, IL-6, TNF-α, Cox2 and Mac3. In hAFS cells, the negative co-stimulatory molecule B7H4 regulates low immunogenicity, which can provide a modest inflammatory reaction microenvironment for wound repair. Furthermore, with their uniquely high proliferation rate, hAFS cells offer a promising alternative for epidermal regeneration.
Collapse
Affiliation(s)
- Qing Sun
- 1] The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (the State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, P.R. China [2] Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Fang Li
- 1] The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (the State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, P.R. China [2] Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Hong Li
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu Province,P.R. China
| | - Rui-Hua Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Yan-Zheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Ying Chen
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu Province,P.R. China
| | - Han-Si Liang
- 1] The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (the State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, P.R. China [2] Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Xin-Ran You
- 1] The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (the State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, P.R. China [2] Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Si-Si Ding
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Ling Gao
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Yun-Liang Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Ming-De Qin
- 1] The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (the State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, P.R. China [2] Department of Immunology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province, P.R. China
| | - Xue-Guang Zhang
- 1] The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (the State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu Province, P.R. China [2] Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, P.R. China
| |
Collapse
|
38
|
Parvari S, Abbasi M, Abbasi N, Malek VG, Amidi F, Aval FS, Roudkenar MH, Izadyar F. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary. Arch Med Sci 2015; 11:670-8. [PMID: 26170863 PMCID: PMC4495162 DOI: 10.5114/aoms.2015.52374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/23/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. MATERIAL AND METHODS A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. RESULTS Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. CONCLUSIONS The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies.
Collapse
Affiliation(s)
- Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Abbasi
- Faculty of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Fardin Amidi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
39
|
Chang YJ, Su HL, Hsu LF, Huang PJ, Wang TH, Cheng FC, Hsu LW, Tsai MS, Chen CP, Chang YL, Chao AS, Hwang SM. Isolation of Human Neural Stem Cells from the Amniotic Fluid with Diagnosed Neural Tube Defects. Stem Cells Dev 2015; 24:1740-50. [PMID: 25923707 DOI: 10.1089/scd.2014.0516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human neural stem cells (NSCs) are particularly valuable for the study of neurogenesis process and have a therapeutic potential in treating neurodegenerative disorders. However, current progress in the use of human NSCs is limited due to the available NSC sources and the complicated isolation and culture techniques. In this study, we describe an efficient method to isolate and propagate human NSCs from the amniotic fluid with diagnosed neural tube defects (NTDs), specifically, anencephaly. These amniotic fluid-derived NSCs (AF-NSCs) formed neurospheres and underwent long-term expansion in vitro. In addition, these cells showed normal karyotypes and telomerase activity and expressed NSC-specific markers, including Nestin, Sox2, Musashi-1, and the ATP-binding cassette G2 (ABCG2). AF-NSCs displayed typical morphological patterns and expressed specific markers that were consistent with neurons, astrocytes, oligodendrocytes, and dopaminergic neurons after proper induction conditions. Furthermore, grafted AF-NSCs improved the physiological functions in a rat stroke model. The ability to isolate and bank human NSCs from this novel source provides a unique opportunity for translational studies of neurological disorders.
Collapse
Affiliation(s)
- Yu-Jen Chang
- 1 Bioresource Collection and Research Center, Food Industry Research and Development Institute , Hsinchu, Taiwan
| | - Hong-Lin Su
- 2 Department of Life Sciences, National Chung-Hsing University , Taichung, Taiwan
| | - Lee-Feng Hsu
- 1 Bioresource Collection and Research Center, Food Industry Research and Development Institute , Hsinchu, Taiwan
| | - Po-Jui Huang
- 2 Department of Life Sciences, National Chung-Hsing University , Taichung, Taiwan
| | - Tzu-Hao Wang
- 3 Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital and Chang Gung University , Taoyuan, Taiwan
| | - Fu-Chou Cheng
- 4 Stem Cell Center and Department of Education and Medical Research, Taichung Veterans General Hospital , Taichung, Taiwan
| | - Li-Wen Hsu
- 1 Bioresource Collection and Research Center, Food Industry Research and Development Institute , Hsinchu, Taiwan
| | - Ming-Song Tsai
- 5 Prenatal Diagnosis Center, Cathay General Hospital , Taipei, Taiwan .,6 School of Medicine, Fu Jen Catholic University , New Taipei City, Taiwan
| | - Chih-Ping Chen
- 7 Department of Obstetrics and Gynecology, Mackay Memorial Hospital , Taipei, Taiwan
| | - Yao-Lung Chang
- 3 Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital and Chang Gung University , Taoyuan, Taiwan
| | - An-Shine Chao
- 3 Department of Obstetrics and Gynecology, Lin-Kou Medical Center, Chang Gung Memorial Hospital and Chang Gung University , Taoyuan, Taiwan
| | - Shiaw-Min Hwang
- 1 Bioresource Collection and Research Center, Food Industry Research and Development Institute , Hsinchu, Taiwan
| |
Collapse
|
40
|
Chen CJ, Cheng FC, Su HL, Sheu ML, Lu ZH, Chiang CY, Yang DY, Sheehan J, Pan HC. Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model. PLoS One 2015; 10:e0124624. [PMID: 25945496 PMCID: PMC4422615 DOI: 10.1371/journal.pone.0124624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Purpose The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS) have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model. Materials and Methods Seventy two Sprague-Dawley rats weighing 200–250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups. Results NT-3 (Neurotrophin 3), BDNF (Brain derived neurotrophic factor), CNTF (Ciliary neurotrophic factor), and GDNF (Glia cell line derived neurotrophic factor) were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index) and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology. Conclusion Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection furthermore improves the nerve regeneration in a long term nerve anastomosis model.
Collapse
Affiliation(s)
- Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Fu-Chou Cheng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hong-Lin Su
- Institute of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Zong-Han Lu
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Chien-Yi Chiang
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Dar-Yu Yang
- Department of Neurosurgery, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States of America
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Romani R, Fallarino F, Pirisinu I, Calvitti M, Caselli A, Fiaschi T, Gamberi T, Matino D, Talesa VN, Donti E, Puccetti P, Modesti A, Magherini F. Comparative proteomic analysis of two distinct stem-cell populations from human amniotic fluid. MOLECULAR BIOSYSTEMS 2015; 11:1622-32. [PMID: 25811139 DOI: 10.1039/c5mb00018a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human amniotic fluid (AF) contains a variety of stem cells of embryonic and extra-embryonic origins. We characterized two distinct types of stem cells isolated from residual AF material derived from prenatal diagnostic amniocentesis. The two types of cells differed in their morphology and growth kinetics, showing fast (fast human amniotic stem cells; fHASCs) or slow (slow human amniotic stem cells; sHASCs) population-doubling times. Both fHASCs and sHASCs expressed pluripotent stem-cell markers, yet unlike sHASCs, clonogenic fHASCs would generate embryoid bodies and maintain their original phenotype during prolonged in vitro passaging. fHASCs - but not sHASCs - expressed the KLF4, SSEA-4 and CD117 markers. Differential proteomic analysis allowed us to identify the protein patterns specific for either cell type as potentially contributing to their distinct phenotypes. We found thirty-six proteins that were differentially expressed by the two cell types, and those proteins were classified according to their biological and molecular functions. Bioinformatic cluster analysis revealed differential occurrence of cytoskeletal proteins, such as vimentin, F-actin-binding protein, and chloride intracellular channel protein 1. Selected proteins differentially expressed by fHASCs and sHASCs were further characterized by Western blot analysis and confocal microscopy.
Collapse
Affiliation(s)
- Rita Romani
- Department of Experimental Medicine, University of Perugia, Polo Didattico Sant'Andrea delle Fratte, Piazzale Gambuli, 06132 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Amniotic Fluid-Derived Stem Cells (AFSC) and Their Application in Cell Therapy and Tissue Engineering. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2015. [DOI: 10.5812/rijm.20135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
43
|
Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J Stem Cells 2015; 7:11-26. [PMID: 25621102 PMCID: PMC4300921 DOI: 10.4252/wjsc.v7.i1.11] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell (SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.
Collapse
|
44
|
Habibollah S, Forraz N, McGuckin CP. Application of Umbilical Cord and Cord Blood as Alternative Modes for Liver Therapy. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
45
|
Rosner M, Hengstschläger M. Intercellular protein expression variability as a feature of stem cell pluripotency. Amino Acids 2014; 45:1315-7. [PMID: 24077670 DOI: 10.1007/s00726-013-1599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/18/2013] [Indexed: 11/28/2022]
Abstract
The expression of pluripotent stem cell protein markers, self-renewal, the potential to differentiate in cell types of all three germlines and teratoma formation in nude mice form the spectrum of the stringent pluripotency criteria for human stem cells. Currently, intercellular variability is discussed as an additional putative defining property of pluripotent stem cells. In future, it will be of relevance to clarify the genesis of intercellular variability for each stem cell line/population before its application in basic science or therapy. Furthermore, for a better understanding of stemness it will be indispensable to separately investigate the issue of intercellular variability for each feature of pluripotency.
Collapse
|
46
|
Ramachandra DL, Shaw SSW, Shangaris P, Loukogeorgakis S, Guillot PV, Coppi PD, David AL. In utero therapy for congenital disorders using amniotic fluid stem cells. Front Pharmacol 2014; 5:270. [PMID: 25566071 PMCID: PMC4271591 DOI: 10.3389/fphar.2014.00270] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022] Open
Abstract
Congenital diseases are responsible for over a third of all pediatric hospital admissions. Advances in prenatal screening and molecular diagnosis have allowed the detection of many life-threatening genetic diseases early in gestation. In utero transplantation (IUT) with stem cells could cure affected fetuses but so far in humans, successful IUT using allogeneic hematopoietic stem cells (HSCs), has been limited to fetuses with severe immunologic defects and more recently IUT with allogeneic mesenchymal stem cell transplantation, has improved phenotype in osteogenesis imperfecta. The options of preemptive treatment of congenital diseases in utero by stem cell or gene therapy changes the perspective of congenital diseases since it may avoid the need for postnatal treatment and reduce future costs. Amniotic fluid stem (AFS) cells have been isolated and characterized in human, mice, rodents, rabbit, and sheep and are a potential source of cells for therapeutic applications in disorders for treatment prenatally or postnatally. Gene transfer to the cells with long-term transgenic protein expression is feasible. Recently, pre-clinical autologous transplantation of transduced cells has been achieved in fetal sheep using minimally invasive ultrasound guided injection techniques. Clinically relevant levels of transgenic protein were expressed in the blood of transplanted lambs for at least 6 months. The cells have also demonstrated the potential of repair in a range of pre-clinical disease models such as neurological disorders, tracheal repair, bladder injury, and diaphragmatic hernia repair in neonates or adults. These results have been encouraging, and bring personalized tissue engineering for prenatal treatment of genetic disorders closer to the clinic.
Collapse
Affiliation(s)
- Durrgah L. Ramachandra
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, UK
| | - Steven S. W. Shaw
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Obstetrics and Gynaecology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Prenatal Therapy, Institute for Women’s Health, University College London, London, UK
| | - Panicos Shangaris
- Prenatal Therapy, Institute for Women’s Health, University College London, London, UK
| | - Stavros Loukogeorgakis
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, UK
| | - Pascale V. Guillot
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, UK
- Cellular Reprogramming and Perinatal Therapy, Institute for Women’s Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Institute of Child Health, University College London, London, UK
| | - Anna L. David
- Prenatal Therapy, Institute for Women’s Health, University College London, London, UK
| |
Collapse
|
47
|
Roubelakis MG, Trohatou O, Roubelakis A, Mili E, Kalaitzopoulos I, Papazoglou G, Pappa KI, Anagnou NP. Platelet-rich plasma (PRP) promotes fetal mesenchymal stem/stromal cell migration and wound healing process. Stem Cell Rev Rep 2014; 10:417-28. [PMID: 24500853 DOI: 10.1007/s12015-013-9494-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Numerous studies have shown the presence of high levels of growth factors during the process of healing. Growth factors act by binding to the cell surface receptors and contribute to the subsequent activation of signal transduction mechanisms. Wound healing requires a complex of biological and molecular events that includes attraction and proliferation of different type of cells to the wound site, differentiation and angiogenesis. More specifically, migration of various cell types, such as endothelial cells and their precursors, mesenchymal stem/stromal cells (MSCs) or skin fibroblasts (DFs) plays an important role in the healing process. In recent years, the application of platelet rich plasma (PRP) to surgical wounds and skin ulcerations is becoming more frequent, as it is believed to accelerate the healing process. The local enrichment of growth factors at the wound after PRP application causes a stimulation of tissue regeneration. Herein, we studied: (i) the effect of autologous PRP in skin ulcers of patients of different aetiology, (ii) the proteomic profile of PRP, (iii) the migration potential of amniotic fluid MSCs and DFs in the presence of PRP extract in vitro, (iv) the use of the PRP extract as a substitute for serum in cultivating AF-MSCs. Considering its easy access, PRP may provide a valuable tool in multiple therapeutic approaches.
Collapse
Affiliation(s)
- Maria G Roubelakis
- Laboratory of Biology, University of Athens, School of Medicine, Michalakopoulou 176, Athens, 115 27, Greece,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wei PC, Chao A, Peng HH, Chao AS, Chang YL, Chang SD, Wang HS, Chang YJ, Tsai MS, Sieber M, Chen HC, Chen SJ, Lee YS, Hwang SM, Wang TH. SOX9 as a Predictor for Neurogenesis Potentiality of Amniotic Fluid Stem Cells. Stem Cells Transl Med 2014; 3:1138-47. [PMID: 25154783 DOI: 10.5966/sctm.2014-0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical studies of amniotic fluid-derived cell therapy have been successful in the research of neurodegenerative diseases, peripheral nerve injury, spinal cord injury, and brain ischemia. Transplantation of human amniotic fluid stem cells (AFSCs) into rat brain ventricles has shown improvement in symptoms of Parkinson's disease and also highlighted the minimal immune rejection risk of AFSCs, even between species. Although AFSCs appeared to be a promising resource for cell-based regenerative therapy, AFSCs contain a heterogeneous pool of distinct cell types, rendering each preparation of AFSCs unique. Identification of predictive markers for neuron-prone AFSCs is necessary before such stem cell-based therapeutics can become a reality. In an attempt to identify markers of AFSCs to predict their ability for neurogenesis, we performed a two-phase study. In the discovery phase of 23 AFSCs, we tested ZNF521/Zfp521, OCT6, SOX1, SOX2, SOX3, and SOX9 as predictive markers of AFSCs for neural differentiation. In the validation phase, the efficacy of these predictive markers was tested in independent sets of 18 AFSCs and 14 dental pulp stem cells (DPSCs). We found that high expression of SOX9 in AFSCs is associated with good neurogenetic ability, and these positive correlations were confirmed in independent sets of AFSCs and DPSCs. Furthermore, knockdown of SOX9 in AFSCs inhibited their neuronal differentiation. In conclusion, the discovery of SOX9 as a predictive marker for neuron-prone AFSCs could expedite the selection of useful clones for regenerative medicine, in particular, in neurological diseases and injuries.
Collapse
Affiliation(s)
- Pei-Cih Wei
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Angel Chao
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Hsiu-Huei Peng
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - An-Shine Chao
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Yao-Lung Chang
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Shuenn-Dyh Chang
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Hsin-Shih Wang
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Yu-Jen Chang
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Ming-Song Tsai
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Martin Sieber
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Hua-Chien Chen
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Shu-Jen Chen
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Yun-Shien Lee
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Shiaw-Min Hwang
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| | - Tzu-Hao Wang
- Graduate Institute of Biomedical Sciences, Department of Biomedical Sciences, and School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, Republic of China; Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, Republic of China; Prenatal Diagnosis Center, Cathay General Hospital, Taipei, Taiwan, Republic of China; Bionet Corp., Taipei, Taiwan, Republic of China; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Republic of China; Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan, Republic of China
| |
Collapse
|
49
|
Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, Pabon M, Dela Peña I, Ji X, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci 2014; 8:227. [PMID: 25165432 PMCID: PMC4131212 DOI: 10.3389/fncel.2014.00227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/23/2014] [Indexed: 01/29/2023] Open
Abstract
Accumulating preclinical evidence suggests the use of amnion as a source of stem cells for investigations of basic science concepts related to developmental cell biology, but also for stem cells’ therapeutic applications in treating human disorders. We previously reported isolation of viable rat amniotic fluid-derived stem (AFS) cells. Subsequently, we recently reported the therapeutic benefits of intravenous transplantation of AFS cells in a rodent model of ischemic stroke. Parallel lines of investigations have provided safety and efficacy of stem cell therapy for treating stroke and other neurological disorders. This review article highlights the need for investigations of mechanisms underlying AFS cells’ therapeutic benefits and discusses lab-to-clinic translational gating items in an effort to optimize the clinical application of the cell transplantation for stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Sandra Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Gabriel S Portillo-Gonzales
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Daniela Aguirre
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Stephanny Reyes
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Diego Lozano
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ike Dela Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University Beijing, China
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama, Japan
| | - Marianna A Solomita
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, DISPUTer, School of Medicine and Health Sciences, "G. d 'Annunzio" University Chieti-Pescara, Italy
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine Tampa, FL, USA
| |
Collapse
|
50
|
Inner ear stem cells derived feeder layer promote directional differentiation of amniotic fluid stem cells into functional neurons. Hear Res 2014; 316:57-64. [PMID: 25124154 DOI: 10.1016/j.heares.2014.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 01/15/2023]
Abstract
Intact spiral ganglion neurons are required for cochlear implantation or conventional hearing amplification as an intervention for sensorineural hearing loss. Treatment strategies to replace the loss of spiral ganglion neurons are needed. Recent reports have suggested that amniotic fluid-derived stem cells are capable of differentiating into neuron-like cells in response to cytokines and are not tumorigenic. Amniotic fluid stem cells represent a potential resource for cellular therapy of neural deafness due to spiral ganglion pathology. However, the directional differentiation of amniotic fluid stem cells is undetermined in the absence of cytokines and the consequence of inner ear supporting cells from the mouse cochlea organ of Corti on the differentiation of amniotic fluid stem cells remains to be defined. In an effort to circumvent these limitations, we investigated the effect of inner ear stem cells derived feeder layer on amniotic fluid stem cells differentiation in vitro. An inner ear stem cells derived feeder layer direct contact system was established to induce differentiation of amniotic fluid stem cells. Our results showed that inner ear stem cells derived feeder layer successfully promoted directional differentiation of amniotic fluid stem cells into neurons with characteristics of functionality. Furthermore, we showed that Wnt signaling may play an essential role in triggering neurogenesis. These findings indicate the potential use of inner ear stem cells derived feeder layer as a nerve-regenerative scaffold. A reliable and effective amniotic fluid stem cell differentiation support structure provided by inner ear stem cells derived feeder layer should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
|