1
|
Paramasivam P, Choi SW, Poddar R, Paul S. Impairment of neuronal tyrosine phosphatase STEP worsens post-ischemic inflammation and brain injury under hypertensive condition. J Neuroinflammation 2024; 21:271. [PMID: 39438980 PMCID: PMC11515672 DOI: 10.1186/s12974-024-03227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Hypertension is associated with poor outcome and higher mortality in patients with ischemic stroke. The impairment of adaptive vascular mechanisms under hypertensive condition compromises collateral blood flow after arterial occlusion in patients with acute ischemic stroke resulting in hypoperfusion. The increased oxidative stress caused by hypoperfusion is thought to be a trigger for the rapid evolution of ischemic infarct volume under hypertensive condition. However, the cellular factors and pathways that contribute to the exacerbation of ischemic brain injury under hypertensive condition is not yet understood. The current study reveals that predisposition to hypertension leads to basal loss of function of the neuron-specific tyrosine phosphatase STEP, which plays a crucial role in neuroprotection against excitotoxic insult. The findings further show that a mild ischemic insult in hypertensive rats triggers an early onset and sustained activation of the neuronal extracellular signal regulated kinase (ERK MAPK), a member of the mitogen activated protein kinase family and a substrate of STEP. This leads to rapid increase in the activation of neuronal NF-κB, expression of neuronal cyclooxygenase-2 and subsequent biosynthesis of the pro-inflammatory mediator prostaglandin E2, resulting in rapid morphological transformation of microglia to the pro-inflammatory state and subsequent exacerbation of ischemic brain injury. Restoration of STEP signaling with intravenous administration of a STEP-derived peptide mimetic reduces the pro-inflammatory response in neurons, activation of microglia, and ischemic brain injury. The findings suggest that the basal loss of STEP function under hypertensive condition contributes to the exacerbation of ischemic brain injury by enhancing post-ischemic inflammatory response. The study not only presents a novel role of STEP in regulating neuroimmune communication but also highlights the therapeutic potential of a STEP-mimetic in mitigating ischemic brain damage under hypertensive condition.
Collapse
Affiliation(s)
- Prabu Paramasivam
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Seong Won Choi
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Almeida AF, Miranda MS, Reis RL, Gomes ME, Rodrigues MT. Using Hybrid Nanoplatforms to Combine Traditional Anti-Inflammatory Drug Delivery with RNA-Based Therapeutics for Macrophage Reprograming. Int J Mol Sci 2024; 25:10693. [PMID: 39409023 PMCID: PMC11476774 DOI: 10.3390/ijms251910693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
There is growing evidence on the significant role of prolonged inflammation in triggering and progressing of numerous diseases with substantial health and socioeconomic impacts, such as musculoskeletal, cardiovascular and autoimmune disorders, and cancer. Therefore, there is an urgent need to develop therapies that can overcome the main challenges of currently used approaches, such as non-target action, partial modulation of the complex inflammatory pathways, and short-term effects, to effectively manage and resolve chronic inflammatory states. This work investigates the therapeutic synergy of clinically relevant anti-inflammatory agents approaching naïve and classically activated macrophages owing to their central role in inflammation. Aiming at human therapies, a dual-loading nanoplatform reunites molecules with different physico-chemical properties in a single system, seeking to more effectively and comprehensively regulate macrophage functions for precision cell guidance and greater versatility in disease managing. To build this platform, palmitic acid grafted chitosan, superparamagnetic iron oxide nanoparticles, the clinically approved NSAID celecoxib (also known as Celebrex®), and RNA technologies were combined into superparamagnetic polymeric micelles (SPMs). Our findings demonstrated that traditional anti-inflammatory drugs such as celecoxib and microRNA molecules were efficiently delivered by the SPMs, altering the inflammatory profile of naïve (M0φ) and M1-primed macrophages (M1φ) assessed by gene and protein expression. The impact of the dual-loaded SPMs in naïve Mφ is an interesting finding towards the modulation of the initial immune response, reducing the potential for chronic inflammation and promoting tissue healing. Collectively, these encouraging results demonstrate the promise of multi-nanomedicine strategies to enhance the efficacy of therapeutic interventions by offering a fresh approach to more precisely and carefully regulated nanotherapeutics delivery.
Collapse
Affiliation(s)
- Ana F. Almeida
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Margarida S. Miranda
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Márcia T. Rodrigues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (A.F.A.); (M.S.M.); (R.L.R.)
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Li S, Huff RD, Rider CF, Yuen ACY, Carlsten C. Controlled human exposures to diesel exhaust or particle-depleted diesel exhaust with allergen modulates transcriptomic responses in the lung. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173688. [PMID: 38851342 DOI: 10.1016/j.scitotenv.2024.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The evidence associating traffic-related air pollution (TRAP) with allergic asthma is growing, but the underlying mechanisms for this association remain unclear. The airway epithelium is the primary tissue exposed to TRAP, hence understanding its interactions with TRAP and allergen is important. Diesel exhaust (DE), a paradigm of TRAP, consists of particulate matter (PM) and gases. Modern diesel engines often have catalytic diesel particulate filters to reduce PM output, but these may increase gaseous concentrations, and their benefits on human health cannot be assumed. We conducted a randomized, double-blinded, crossover study using our unique in vivo human exposure system to investigate the effects of DE and allergen co-exposure, with or without particle depletion as a proxy for catalytic diesel particulate filters, on the airway epithelial transcriptome. Participants were exposed for 2 h before an allergen inhalation challenge, with each receiving filtered air and saline (FA-S), filtered air and allergen (FA-A), DE and allergen (DE-A), or particle-depleted DE and allergen (PDDE-A), over four different occasions, each separated by a 4-week washout period. Endobronchial brushings were collected 48 h after each exposure, and total RNA was sequenced. Differentially expressed genes (DEGs) were identified using DESeq2, followed by GO enrichment and pathway analysis. FA-A, DE-A, and PDDE-A exposures significantly modulated genes relative to FA-S, with 462 unique DEGs identified. FA-A uniquely modulated the highest number (↑178, ↓155), followed by DE-A (↑44, ↓23), and then PDDE-A exposure (↑15, ↓2); 6 DEGs (↑4, ↓2) were modulated by all three conditions. Exposure to PDDE-A resulted in modulation of 285 DEGs compared to DE-A exposure, further revealing 26 biological process GO terms, including "cellular response to chemokine" and "inflammatory response". The transcriptional epithelial response to diesel exhaust and allergen co-exposure is enriched in inflammatory mediators, the pattern of which is altered upon particle depletion.
Collapse
Affiliation(s)
- Shijia Li
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan D Huff
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
DeVito NC, Nguyen YV, Sturdivant M, Plebanek MP, Howell K, Yarla N, Jain V, Aksu M, Beasley G, Theivanthiran B, Hanks BA. Gli2 Facilitates Tumor Immune Evasion and Immunotherapeutic Resistance by Coordinating Wnt Ligand and Prostaglandin Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587500. [PMID: 38617347 PMCID: PMC11014473 DOI: 10.1101/2024.03.31.587500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Therapeutic resistance to immune checkpoint blockade has been commonly linked to the process of mesenchymal transformation (MT) and remains a prevalent obstacle across many cancer types. An improved mechanistic understanding for MT-mediated immune evasion promises to lead to more effective combination therapeutic regimens. Herein, we identify the Hedgehog transcription factor, Gli2, as a key node of tumor-mediated immune evasion and immunotherapy resistance during MT. Mechanistic studies reveal that Gli2 generates an immunotolerant tumor microenvironment through the upregulation of Wnt ligand production and increased prostaglandin synthesis. This pathway drives the recruitment, viability, and function of granulocytic myeloid-derived suppressor cells (PMN-MDSCs) while also impairing type I conventional dendritic cell, CD8 + T cell, and NK cell functionality. Pharmacologic EP2/EP4 prostaglandin receptor inhibition and Wnt ligand inhibition each reverses a subset of these effects, while preventing primary and adaptive resistance to anti-PD-1 immunotherapy, respectively. A transcriptional Gli2 signature correlates with resistance to anti-PD-1 immunotherapy in stage IV melanoma patients, providing a translational roadmap to direct combination immunotherapeutics in the clinic. SIGNIFICANCE Gli2-induced EMT promotes immune evasion and immunotherapeutic resistance via coordinated prostaglandin and Wnt signaling.
Collapse
|
5
|
Wajda A, Bogucka D, Stypińska B, Radkowski MJ, Targowski T, Dudek E, Kmiołek T, Modzelewska E, Paradowska-Gorycka A. Expression of Prostaglandin Genes and β-Catenin in Whole Blood as Potential Markers of Muscle Degeneration. Int J Mol Sci 2023; 24:12885. [PMID: 37629065 PMCID: PMC10454559 DOI: 10.3390/ijms241612885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Prostaglandin signaling pathways are closely related to inflammation, but also muscle regeneration and processes associated with frailty and sarcopenia, whereas β-catenin (CTNNB1 gene) as a part of Wnt signaling is also involved in the differentiation of muscle cells and fibrosis. The present study analyzed the association between selected prostaglandin pathway genes and clinical parameters in patients with sarcopenia and frailty syndrome. The present study was conducted on patients with sarcopenia, frailty syndrome, and control older patients (N = 25). Additionally, two healthy controls at the age of 25-30 years (N = 51) and above 50 years old (N = 42) were included. The expression of the PTRGER4, PTGES2 (COX2), PTGS2, and CTNNB1 genes in whole blood was checked by the qPCR method. The serum cytokine levels (IL-10, TNFα, IFN-y, IL-1α, IL-1β) in patients and controls were checked by the Q-Plex Human Cytokine Panel. The results showed a significant effect of age on PTGER4 gene expression (p = 0.01). A negative trend between the appendicular skeletal muscle mass parameter (ASSM) and the expression of PTGER4 has been noted (r = -0.224, p = 0.484). PTGES2 and PTGS2 expressions negatively correlated with creatine phosphokinase (r = -0.71, p = 0.009; r = -0.58, p = 0.047) and positively with the functional mobility test timed up and go scale (TUG) (r = 0.61, p = 0.04; r = 0.63, p = 0.032). In the older control group, a negative association between iron levels and the expression of PTGS2 (r = -0.47, p = 0.017) was observed. A similar tendency was noted in patients with sarcopenia (r = -0.112, p = 0.729). A negative trend between appendicular skeletal muscle mass (ASMM) and PTGER4 seems to confirm the impairment of muscle regeneration associated with sarcopenia. The expression of the studied genes revealed a trend in associations with the clinical picture of muscular dystrophy and weakening patients. Perhaps PTGS2 and PTGES2 is in opposition to the role of the PTGER4 receptor in muscle physiology. Nevertheless, further, including functional studies is needed.
Collapse
Affiliation(s)
- Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Diana Bogucka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Barbara Stypińska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Marcin Jerzy Radkowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.J.R.); (T.T.)
| | - Tomasz Targowski
- Department of Geriatrics, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (M.J.R.); (T.T.)
| | - Ewa Dudek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Tomasz Kmiołek
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Ewa Modzelewska
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| | - Agnieszka Paradowska-Gorycka
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (D.B.); (B.S.); (E.D.); (T.K.); (E.M.); (A.P.-G.)
| |
Collapse
|
6
|
Attenuation of Inflammatory Responses in Breast and Ovarian Cancer Cells by a Novel Chalcone Derivative and Its Increased Potency by Curcumin. Mediators Inflamm 2023; 2023:5156320. [PMID: 36687217 PMCID: PMC9851785 DOI: 10.1155/2023/5156320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Background Breast and ovarian cancers are two common malignancies in women and a leading cause of death globally. The aim of the present study was to explore the effects of a novel chalcone derivative 1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)-3-(p-tolyl)propane-1-one (MPP) individually or combined with curcumin, a well-known herbal medicine with anticancer properties, as a new combination therapy on inflammatory pathways in breast and ovarian cancer cell lines. Methods LPS-induced NF-κB DNA-binding activity and the levels of proinflammatory cytokines were measured in the MPP- and MPP-curcumin combination-treated MDA-MB-231 and SKOV3 cells by ELISA-based methods. The expression of COX2, INOS, and MMP9 genes and nitrite levels was also evaluated by real-time qRT-PCR and Griess method, respectively. IκB levels were evaluated by Western blotting. Results MPP significantly inhibited the DNA-binding activity of NF-κB in each cell line and subsequently suppressed the expression of downstream genes including COX2, MMP9, and INOS. The levels of proinflammatory cytokines, as well as NO, were also decreased in response to MPP. All the effects of MPP were enhanced by the addition of curcumin. MPP, especially when combined with curcumin, caused a remarkable increase in the concentration of IκB. Conclusion MPP and its coadministration with curcumin effectively reduced the activity of the NF-κB signaling pathway, leading to a reduced inflammatory response in the environment of cancer cells. Thus, MPP, either alone or combined with curcumin, might be considered an effective remedy for the suppression of inflammatory processes in breast and ovarian cancer cells.
Collapse
|
7
|
Kreiß M, Oberlis JH, Seuter S, Bischoff-Kont I, Sürün D, Thomas D, Göbel T, Schmid T, Rådmark O, Brandes RP, Fürst R, Häfner AK, Steinhilber D. Human 5-lipoxygenase regulates transcription by association to euchromatin. Biochem Pharmacol 2022; 203:115187. [PMID: 35878796 DOI: 10.1016/j.bcp.2022.115187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/17/2022]
Abstract
Human 5-lipoxygenase (5-LO) is the key enzyme of leukotriene biosynthesis, mostly expressed in leukocytes and thus a crucial component of the innate immune system. In this study, we show that 5-LO, besides its canonical function as an arachidonic acid metabolizing enzyme, is a regulator of gene expression associated with euchromatin. By Crispr-Cas9-mediated 5-LO knockout (KO) in MonoMac6 (MM6) cells and subsequent RNA-Seq analysis, we identified 5-LO regulated genes which could be clustered to immune/defense response, cell adhesion, transcription and growth/developmental processes. Analysis of differentially expressed genes (DEG) identified cyclooxygenase-2 (COX2, PTGS2) and kynureninase (KYNU) as strongly regulated 5-LO target genes. 5-LO knockout affected MM6 cell adhesion and tryptophan metabolism via inhibition of the degradation of the immunoregulator kynurenine. By subsequent FAIRE-Seq and 5-LO ChIP-Seq analyses, we found an association of 5-LO with euchromatin, with prominent 5-LO binding to promoter regions in actively transcribed genes. By enrichment analysis of the ChIP-Seq results, we identified potential 5-LO interaction partners. Furthermore, 5-LO ChIP-Seq peaks resemble patterns of H3K27ac histone marks, suggesting that 5-LO recruitment mainly takes place at acetylated histones. In summary, we demonstrate a noncanonical function of 5-LO as transcriptional regulator in monocytic cells.
Collapse
Affiliation(s)
- Marius Kreiß
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Julia H Oberlis
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Sabine Seuter
- Institute for Cardiovascular Physiology, Goethe University, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Iris Bischoff-Kont
- Institute of Pharmaceutical Biology, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Duran Sürün
- Medical Systems Biology, UCC,TU Dresden, Medical Faculty Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - Dominique Thomas
- Institute for Clinical Pharmacology, Goethe University, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe University, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Olof Rådmark
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany.
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany.
| |
Collapse
|
8
|
Eastman AJ, Noble KN, Pensabene V, Aronoff DM. Leveraging bioengineering to assess cellular functions and communication within human fetal membranes. J Matern Fetal Neonatal Med 2022; 35:2795-2807. [PMID: 32787482 PMCID: PMC7878582 DOI: 10.1080/14767058.2020.1802716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 02/09/2023]
Abstract
The fetal membranes enclose the growing fetus and amniotic fluid. Preterm prelabor rupture of fetal membranes is a leading cause of preterm birth. Fetal membranes are composed of many different cell types, both structural and immune. These cells must coordinate functions for tensile strength and membrane integrity to contain the growing fetus and amniotic fluid. They must also balance immune responses to pathogens with maintaining maternal-fetal tolerance. Perturbation of this equilibrium can lead to preterm premature rupture of membranes without labor. In this review, we describe the formation of the fetal membranes to orient the reader, discuss some of the common forms of communication between the cell types of the fetal membranes, and delve into the methods used to tease apart this paracrine signaling within the membranes, including emerging technologies such as organ-on-chip models of membrane immunobiology.
Collapse
Affiliation(s)
- Alison J. Eastman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen N. Noble
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37202 USA
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- School of Medicine, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Xie LY, Huang HY, Fang T, Liang JY, Hao YL, Zhang XJ, Xie YX, Wang C, Tan YH, Zeng L. A Prognostic Survival Model of Pancreatic Adenocarcinoma Based on Metabolism-Related Gene Expression. Front Genet 2022; 13:804190. [PMID: 35664305 PMCID: PMC9158121 DOI: 10.3389/fgene.2022.804190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Accurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified. Furthermore, LASSO Cox regression analyses were conducted to identify six genes (XDH, MBOAT2, PTGES, AK4, PAICS, and CKB) to create a metabolic risk score. The proposed scoring framework attained the robust predictive performance, with 2-year survival areas under the curve (AUCs) of 0.61 in the training cohort and 0.66 in the validation cohort. Compared with the subjects in the low-risk cohort, subjects in the high-risk training cohort presented a worse survival outcome. The metabolic risk score increased the accuracy of survival prediction in patients suffering from PAAD.
Collapse
Affiliation(s)
- Lin-Ying Xie
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tian Fang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ying Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yu-Lei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xue-Jiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yi-Xin Xie
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ye-Hui Tan
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Upregulation of CD14 in mesenchymal stromal cells accelerates lipopolysaccharide-induced response and enhances antibacterial properties. iScience 2022; 25:103759. [PMID: 35141503 PMCID: PMC8814754 DOI: 10.1016/j.isci.2022.103759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have broad-ranging therapeutic properties, including the ability to inhibit bacterial growth and resolve infection. However, the genetic mechanisms regulating these antibacterial properties in MSCs are largely unknown. Here, we utilized a systems-based approach to compare MSCs from different genetic backgrounds that displayed differences in antibacterial activity. Although both MSCs satisfied traditional MSC-defining criteria, comparative transcriptomics and quantitative membrane proteomics revealed two unique molecular profiles. The antibacterial MSCs responded rapidly to bacterial lipopolysaccharide (LPS) and had elevated levels of the LPS co-receptor CD14. CRISPR-mediated overexpression of endogenous CD14 in MSCs resulted in faster LPS response and enhanced antibacterial activity. Single-cell RNA sequencing of CD14-upregulated MSCs revealed a shift in transcriptional ground state and a more uniform LPS-induced response. Our results highlight the impact of genetic background on MSC phenotypic diversity and demonstrate that overexpression of CD14 can prime these cells to be more responsive to bacterial challenge. MSCs from different genetic backgrounds have distinct responses to bacteria Upregulating CD14 in MSCs enhances LPS-induced response and antibacterial traits CD14 upregulation homogenizes MSC transcriptional profiles across individual cells
Collapse
|
11
|
Rajagopal S, Poddar R, Paul S. Tyrosine phosphatase STEP is a key regulator of glutamate-induced prostaglandin E 2 release from neurons. J Biol Chem 2021; 297:100944. [PMID: 34246631 PMCID: PMC8326425 DOI: 10.1016/j.jbc.2021.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
The neuron-specific tyrosine phosphatase striatal-enriched phosphatase (STEP) is emerging as a key regulator of excitotoxicity, which is involved in the pathogenesis of both acute and chronic neurological diseases. However, the intracellular mechanisms that are regulated by STEP to confer neuroprotection against excitotoxic insults are not well understood. The present study investigates the role of STEP in regulating neuronal release of the proinflammatory prostanoid prostaglandin E2 (PGE2), which is associated with a wide range of pathological conditions. The findings show that glutamate-mediated activation of the N-methyl-D-aspartic acid receptor in STEP-deficient neurons leads to rapid and sustained increase in the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), a signaling molecule involved in the production of inflammatory mediators. Such sustained p38 MAPK activation increases the activity of cytosolic phospholipase A2, which catalyzes the release of arachidonic acid, the initial substrate for PGE2 biosynthesis. Sustained p38 MAPK activation also induces nuclear factor-κB-mediated increase in expression of cyclooxygenase-2 that is involved in the conversion of arachidonic acid to prostanoids, resulting in enhanced biosynthesis and release of PGE2 from neurons. Restoration of STEP function with a STEP mimetic (TAT-STEP-myc peptide) significantly decreases the activation of p38 MAPK-mediated cytosolic phospholipase A2/cyclooxygenase-2/PGE2 signaling cascade. This study identifies an important mechanism involved in the neuronal release of the proinflammatory mediator PGE2 after excitotoxic insult and highlights for the first time the immunomodulatory ability of a neuronal tyrosine phosphatase.
Collapse
Affiliation(s)
- Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
12
|
Suh HN, Kim YK, Lee JY, Kang GH, Hwang JH. Dissect the immunity using cytokine profiling and NF-kB target gene analysis in systemic inflammatory minipig model. PLoS One 2021; 16:e0252947. [PMID: 34086835 PMCID: PMC8177627 DOI: 10.1371/journal.pone.0252947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Minipigs have remarkably similar physiology to humans, therefore, they it can be a good animal model for inflammation study. Thus, the conventional (serum chemistry, histopathology) and novel analytic tools [immune cell identification in tissue, cytokine level in peripheral blood mononuclear cells (PBMC) and serum, NF-kB target gene analysis in tissue] were applied to determine inflammation in Chicago Miniature Swine (CMS) minipig. Lipopolysaccharide (LPS)-induced acute systemic inflammation caused liver and kidney damage in serum chemistry and histopathology. Immunohistochemistry (IHC) also showed an increase of immune cell distribution in spleen and lung during inflammation. Moreover, NF-kB-target gene expression was upregulated in lung and kidney in acute inflammation and in heart, liver, and intestine in chronic inflammation. Cytokine mRNA was elevated in PBMC under acute inflammation along with elevated absolute cytokine levels in serum. Overall, LPS-mediated systemic inflammation affects the various organs, and can be detected by IHC of immune cells, gene analysis in PBMC, and measuring the absolute cytokine in serum along with conventional inflammation analytic tools.
Collapse
Affiliation(s)
- Han Na Suh
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
- * E-mail: (HNS); (JHH)
| | - Young Kyu Kim
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
| | - Ju Young Lee
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
| | - Goo-Hwa Kang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea
- * E-mail: (HNS); (JHH)
| |
Collapse
|
13
|
Anti-Inflammatory Activity of AF-13, an Antioxidant Compound Isolated from the Polar Fraction of Allomyrina dichotoma Larva, in Palmitate-Induced INS-1 Cells. Life (Basel) 2021; 11:life11060470. [PMID: 34073736 PMCID: PMC8225099 DOI: 10.3390/life11060470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to evaluate the fractions isolated from Allomyrina dichotoma larva extract (ADLE) that exhibited anti-apoptotic and anti-inflammatory effects. A total of 13 fractions were eluted from ADLE by centrifugal chromatography (CPC), and the polar AF-13 fraction was selected, which exerted a relatively protective effect against fat-induced toxicity in INS-1 cells. AF-13 treatment of palmitate-treated INS-1 cells decreased the expression level of apoptosis-related proteins and DNA fragmentation. AF-13 also significantly inhibited the production of nitric oxide and reactive oxygen species and the triglyceride content induced by palmitate, and the effect was found to be similar to that with ADLE treatment. Palmitate upregulated the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) through the activation of NF-κB p65; however, this effect was significantly attenuated by AF-13 treatment. In conclusion, AF-13 is one of the major components of ADLE responsible for anti-apoptotic and anti-inflammatory activities.
Collapse
|
14
|
Weitzner O, Seraya-Bareket C, Biron-Shental T, Fishamn A, Yagur Y, Tzadikevitch-Geffen K, Farladansky-Gershnabel S, Kidron D, Ellis M, Ashur-Fabian O. Enhanced expression of αVβ3 integrin in villus and extravillous trophoblasts of placenta accreta. Arch Gynecol Obstet 2020; 303:1175-1183. [PMID: 33112993 DOI: 10.1007/s00404-020-05844-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Placenta accreta is one of the most serious complications in obstetrics and gynecology. Villous trophoblasts (VT) and extravillous trophoblasts (EVT) play a central role in normal placentation. Placenta accreta is characterized by abnormal invasion of EVT cells through the uterine layers, due to changes in several parameters, including adhesion proteins. Although αvβ3 integrin is a central adhesion molecule, participating in multiple invasive pathological conditions including cancer, data on placenta accreta are lacking. OBJECTIVE To study the expression pattern of αvβ3 integrin in placenta accreta in comparison with normal placentas. STUDY DESIGN We collected tissue samples from placentas defined as percreta, the most severe presentation of placenta accreta and from normal control placentas (n = 10 each). The samples underwent protein extractions for analyses of αvβ3 expression by Western blots (WB) and a parallel tissue assessment by immunohistochemistry (IHC). RESULTS WB results indicated significantly elevated αvβ3 integrin expression in the percreta samples compared to normal placentas. These elevated levels were mainly contributed by EVT cells, as demonstrated by IHC. αvβ3 integrin demonstrated a classical membranal expression in the VT cells, whereas a uniformly distributed expression was documented in the EVT cells. These patterns of the αvβ3 integrin localization were similar in both accreta and normal placental samples. CONCLUSIONS Enhanced αvβ3 integrin expression, mainly in extra villous trophoblasts of placenta percreta, implies for a role of this adhesion molecule in pathological placentation.
Collapse
Affiliation(s)
- Omer Weitzner
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel. .,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. .,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.
| | - Chen Seraya-Bareket
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Biron-Shental
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishamn
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Gynecological Oncology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Yael Yagur
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Keren Tzadikevitch-Geffen
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Sivan Farladansky-Gershnabel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Debora Kidron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Sackler Faculty of Medicine, Meir Hospital, Kfar Saba, Israel
| | - Martin Ellis
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
D'Adamo S, Cetrullo S, Guidotti S, Silvestri Y, Minguzzi M, Santi S, Cattini L, Filardo G, Flamigni F, Borzì RM. Spermidine rescues the deregulated autophagic response to oxidative stress of osteoarthritic chondrocytes. Free Radic Biol Med 2020; 153:159-172. [PMID: 32305648 DOI: 10.1016/j.freeradbiomed.2020.03.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) contributes to Osteoarthritis (OA) pathogenesis and its effects are worsened by the impairment of homeostatic mechanisms such as autophagy in OA chondrocytes. Rescue of an efficient autophagic flux could therefore reduce the bulk of damaged molecules, and at the same time improve cell function and viability. As a promising dietary or intra-articular supplement to rescue autophagy in OA chondrocytes, we tested spermidine (SPD), known to induce autophagy and to reduce OS in several other cellular models. Chondrocytes were obtained from OA cartilage and seeded at high-density to keep their differentiated phenotype. The damaging effects of OS and the chondroprotective activity of SPD were assessed by evaluating the extent of cell death, oxidative DNA damage and caspase 3 activation. The autophagy promoting activity of SPD was evaluated by assessing pivotal autophagic effectors, i.e. Beclin-1 (BECN-1), microtubule-associated protein 1 light chain 3 II (LC3-II) and p62. BECN-1 protein expression was significantly increased by SPD and reduced by H2O2 treatment. SPD also rescued the impaired autophagic flux consequent to H2O2 exposure by increasing mRNA and protein expression of LC3-II and p62. SPD induction of mitophagy was revealed by immunofluorescent co-localization of LC3-II and TOM20. The key protective role of autophagy was confirmed by the loss of SPD chondroprotection upon autophagy-related gene 5 (ATG5) silencing. Significant SPD tuning of the H2O2-dependent induction of degradative (MMP-13), inflammatory (iNOS, COX-2) and hypertrophy markers (RUNX2 and VEGF) was revealed by Real Time PCR and pointed at the SPD ability of reducing NF-κB activation through autophagy induction. Conversely, blockage of autophagy led to parallel increases of oxidative markers and p65 nuclear translocation. SPD also increased the proliferation of slow-proliferating primary cultures. Taken together, our findings highlight the chondroprotective, anti-oxidant and anti-inflammatory activity of SPD and suggest that the protection afforded by SPD against OS is exerted through the rescue of the autophagic flux.
Collapse
Affiliation(s)
- Stefania D'Adamo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Silvia Cetrullo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Serena Guidotti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Ylenia Silvestri
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Manuela Minguzzi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy.
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Luca Cattini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Flavio Flamigni
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
16
|
Chuang SM, Lu JH, Lin KL, Long CY, Lee YC, Hsiao HP, Tsai CC, Wu WJ, Yang HJ, Juan YS. Epigenetic regulation of COX‑2 expression by DNA hypomethylation via NF‑κB activation in ketamine‑induced ulcerative cystitis. Int J Mol Med 2019; 44:797-812. [PMID: 31257475 PMCID: PMC6657979 DOI: 10.3892/ijmm.2019.4252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/05/2019] [Indexed: 01/03/2023] Open
Abstract
The present study investigated the methylation of CpG sites in the cyclooxygenase (COX)-2 promoter via nuclear factor (NF)-κB transcriptional regulation and elucidated its effect on the COX-2 transcriptional expression in a ketamine-induced ulcerative cystitis (KIC) animal model. The results of the present study revealed that ketamine treatment induced NF-κB p65 translocation to nuclei and activated COX-2 expression and prostaglandin (PGE)2 production in bladder tissue, whereas COX-2 inhibitor suppressed the inflammatory effect. Moreover, DNA hypomethylation of the COX-2 promoter region located from -1,522 to -829 bp might contribute to transcriptional regulation of COX-2 expression and induce a pro-inflammatory response in KIC. Ketamine treatment increased the binding of NF-κB and permissive histone H3 lysine-4 (H3K4)m3, but caused a decrease in the repressive histone H3K27m3 and H3K36m3 on the COX-2 promoter ranging from -1,522 to -1,331 bp as determined by a chromatin immunoprecipitation assay. Moreover, in the ketamine group, the level of Ten-Eleven-Translocation methylcytosine dioxygenase for demethylation as determined by reverse transcription-quantitative PCR assay was increased in comparison with the control group, but that was not the case for the level of DNA methyltransferases for methylation. The present findings revealed that there was a hypomethylation pattern of the COX-2 promoter in association with the level of COX-2 transcription in KIC.
Collapse
Affiliation(s)
- Shu-Mien Chuang
- Translational Research Center, Cancer Center, Department of Medical Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jian-He Lu
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Kun-Ling Lin
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Yung-Chin Lee
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hui-Pin Hsiao
- Division of Genetics, Endocrinology and Metabolism, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Chia-Chun Tsai
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wen-Jeng Wu
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hui-Jun Yang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
17
|
Zhou JX, Wink M. Evidence for Anti-Inflammatory Activity of Isoliquiritigenin, 18β Glycyrrhetinic Acid, Ursolic Acid, and the Traditional Chinese Medicine Plants Glycyrrhiza glabra and Eriobotrya japonica, at the Molecular Level. MEDICINES 2019; 6:medicines6020055. [PMID: 31083310 PMCID: PMC6630209 DOI: 10.3390/medicines6020055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Background: We investigated the effect of root extracts from the traditional Chinese medicine (TCM) plants Glycyrrhiza glabra L., Paeonia lactiflora Pall., and the leaf extract of Eriobotrya japonica (Thunb.) Lindl., and their six major secondary metabolites, glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, and ursolic acid, on lipopolysaccharide (LPS)-induced NF-κB expression and NF-κB-regulated pro-inflammatory factors in murine macrophage RAW 264.7 cells. Methods: The cytotoxicity of the substances was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. RAW 264.7 cells were treated with LPS (1 μg/mL) or LPS plus single substances; the gene expression levels of NF-κB subunits (RelA, RelB, c-Rel, NF-κB1, and NF-κB2), and of ICAM-1, TNF-α, iNOS, and COX-2 were measured employing real-time PCR; nitric oxide (NO) production by the cells was quantified with the Griess assay; nuclear translocation of NF-κB was visualized by immunofluorescence microscopy with NF-κB (p65) staining. Results: All the substances showed moderate cytotoxicity against RAW 264.7 cells except paeoniflorin with an IC50 above 1000 μM. Glycyrrhiza glabra extract and Eriobotrya japonica extract, as well as 18β glycyrrhetinic acid and isoliquiritigenin at low concentrations, inhibited NO production in a dose-dependent manner. LPS upregulated gene expressions of NF-κB subunits and of ICAM-1, TNF-α, iNOS, and COX-2 within 8 h, which could be decreased by 18β glycyrrhetinic acid, isoliquiritigenin and ursolic acid similarly to the anti-inflammatory drug dexamethasone. NF-κB translocation from cytoplasm to nucleus was observed after LPS stimulation for 2 h and was attenuated by extracts of Glycyrrhiza glabra and Eriobotrya japonica, as well as by 18β glycyrrhetinic acid, isoliquiritigenin, and ursolic acid. Conclusions: 18β glycyrrhetinic acid, isoliquiritigenin, and ursolic acid inhibited the gene expressions of ICAM-1, TNF-α, COX-2, and iNOS, partly through inhibiting NF-κB expression and attenuating NF-κB nuclear translocation. These substances showed anti-inflammatory activity. Further studies are needed to elucidate the exact mechanisms and to assess their usefulness in therapy.
Collapse
Affiliation(s)
- Jun-Xian Zhou
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| |
Collapse
|
18
|
Carter BZ, Mak PY, Wang X, Tao W, Ruvolo V, Mak D, Mu H, Burks JK, Andreeff M. An ARC-Regulated IL1β/Cox-2/PGE2/β-Catenin/ARC Circuit Controls Leukemia-Microenvironment Interactions and Confers Drug Resistance in AML. Cancer Res 2019; 79:1165-1177. [PMID: 30674535 DOI: 10.1158/0008-5472.can-18-0921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/17/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022]
Abstract
The apoptosis repressor with caspase recruitment domain (ARC) protein is a strong independent adverse prognostic marker in acute myeloid leukemia (AML). We previously reported that ARC regulates leukemia-microenvironment interactions through the NFκB/IL1β signaling network. Malignant cells have been reported to release IL1β, which induces PGE2 synthesis in mesenchymal stromal cells (MSC), in turn activating β-catenin signaling and inducing the cancer stem cell phenotype. Although Cox-2 and its enzymatic product PGE2 play major roles in inflammation and cancer, the regulation and role of PGE2 in AML are largely unknown. Here, we report that AML-MSC cocultures greatly increase Cox-2 expression in MSC and PGE2 production in an ARC/IL1β-dependent manner. PGE2 induced the expression of β-catenin, which regulated ARC and augmented chemoresistance in AML cells; inhibition of β-catenin decreased ARC and sensitized AML cells to chemotherapy. NOD/SCIDIL2RγNull-3/GM/SF mice transplanted with ARC-knockdown AML cells had significantly lower leukemia burden, lower serum levels of IL1β/PGE2, and lower tissue human ARC and β-catenin levels, prolonged survival, and increased sensitivity to chemotherapy than controls. Collectively, we present a new mechanism of action of antiapoptotic ARC by which ARC regulates PGE2 production in the tumor microenvironment and microenvironment-mediated chemoresistance in AML.Significance: The antiapoptotic protein ARC promotes AML aggressiveness by enabling detrimental cross-talk with bone marrow mesenchymal stromal cells.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangmeng Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
19
|
Eicosanoid pathway expression in bovine endometrial epithelial and stromal cells in response to lipopolysaccharide, interleukin 1 beta, and tumor necrosis factor alpha. Reprod Biol 2018; 18:390-396. [PMID: 30344089 DOI: 10.1016/j.repbio.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
During endometrial inflammation, bovine endometrium responds by increasing the production of pro-inflammatory mediators, such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and eicosanoids. The purpose of this study was to establish and characterize an in vitro model of endometrial inflammation using bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. We evaluated the effects of the infectious agent (bacterial lipopolysaccharide; LPS) and pro-inflammatory mediators (IL-1β and TNFα) on eicosanoid biosynthesis pathway gene expression and production by bEEL and bCSC cells. Based on concentration-response experiments, the optimal concentrations for responses were 1 μg/mL LPS, 10 ng/mL IL-1β and 50 ng/mL TNFα. Real-time PCR results show that there was an upregulation of relative mRNA expression of PTGS2 when bEEL and bCSC were treated with LPS, IL-1β and TNFα. An increase in PTGES3 expression was observed when bEEL cells were treated with LPS and IL-1β and PTGES2 when treated with IL-1β. In bCSC cells, FAAH relative mRNA was decreased upon treatments. Rate of production of PGE2, PGF2α, PGE2-EA and PGF2α-EA were also determined using liquid chromatography tandem mass spectrometry. Our results show that eicosanoid production was increased in both cell lines in response to LPS, IL-1β, and TNFα. We suggest that the characteristics of bEEL and bCSC cell lines mimic the physiological responses found in mammals with endometrial infection, making them excellent in vitro models for intrauterine environment studies.
Collapse
|
20
|
Sakowicz A. The role of NFκB in the three stages of pregnancy - implantation, maintenance, and labour: a review article. BJOG 2018; 125:1379-1387. [PMID: 29460466 DOI: 10.1111/1471-0528.15172] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor kappa B (NFκB) controls the expression of over 400 genes, some of which are associated with reproductive events. During implantation, immune cells accumulate in the maternal-fetal interface; they secrete inflammatory mediators under the control of NFĸB, the level of which also rises. NFĸB is then downregulated to maintain gestation, but its level rises again before birth to manage prostaglandin, cytokine, and chemokine synthesis, and to stimulate uterine contraction. This review summarises the current state of knowledge about NFκB and its role in the molecular regulation of processes related to pregnancy development. TWEETABLE ABSTRACT This review examines the current state of knowledge about role of NFκB in the development of pregnancy.
Collapse
Affiliation(s)
- A Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
21
|
Zhang AL, Sun XY, Yin Q, Zeng JH, Zhang Z, Li JQ, Zhang H. Functional characterization of the promoter of carbonyl reductase 1 gene in porcine endometrial cells. J Zhejiang Univ Sci B 2017; 18:626-634. [PMID: 28681587 DOI: 10.1631/jzus.b1600225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostaglandins (PGs) play a critical role in porcine reproduction, of which prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) exert antiluteolytic and luteolysis actions, respectively. As a rate-limiting enzyme, carbonyl reductase 1 (CBR1) catalyzes the conversion of PGE2 to PGF2α. A high ratio of PGE2:PGF2α is beneficial to the establishment and maintenance of porcine pregnancy. PG is essential for the establishment of pregnancy which resembles the proinflammatory response and nuclear factor κB (NF-κB) is involved in the process. Bioinformatic analysis has shown that NF-κB is a possible factor bound to two cis-regulatory elements in CBR1 promoter. In this study, we cloned the 2997 bp (-2875/+122) of the promoter, and constructed six 5'-deleted dual-luciferase reporter recombinant vectors. In endometrial cells, the region of P2 (-1640/+7) exhibited the greatest transcriptional activity at driving luciferase expression, but not significantly different from that of P1 (-2089/+7). The activity of P1, P2, and P3 (-1019/+7) was highly significantly higher than that of others (P<0.01), suggesting that two positive regulatory elements were likely present in the regions of -1640/-1019 and -1019/-647. The results also showed that the -1640/-647 region was indispensable for the promoter. The results of chromatin immunoprecipitation (ChIP) demonstrated that the NF-κB subunit p65 binds to one site around -1545/-1531. Using four reference genes, we found that the over-expression of p65 enhanced the expression of CBR1 (P<0.05) in porcine endometrial epithelial cells, while knockdown of the p65 did not down-regulate the CBR1 expression. These results indicated that NF-κB (p65) could bind to the special element of CBR1 gene promoter in porcine endometrial epithelial cells in vitro. The binding site of NF-κB was a positive regulator for the CBR1 gene promoter, but was not necessary for the basic expression.
Collapse
Affiliation(s)
- Ai-Ling Zhang
- Guangdong Development Center of Applied Ecology and Ecological Engineering in Universities, Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou 510310, China
| | - Xian-Yue Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qi Yin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Hua Zeng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Qi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, National & Local Joint Engineering Research Center for Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Lerrer S, Liubomirski Y, Bott A, Abnaof K, Oren N, Yousaf A, Körner C, Meshel T, Wiemann S, Ben-Baruch A. Co-Inflammatory Roles of TGFβ1 in the Presence of TNFα Drive a Pro-inflammatory Fate in Mesenchymal Stem Cells. Front Immunol 2017; 8:479. [PMID: 28553282 PMCID: PMC5425596 DOI: 10.3389/fimmu.2017.00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/05/2017] [Indexed: 12/19/2022] Open
Abstract
High plasticity is a hallmark of mesenchymal stem cells (MSCs), and as such, their differentiation and activities may be shaped by factors of their microenvironment. Bones, tumors, and cardiomyopathy are examples of niches and conditions that contain MSCs and are enriched with tumor necrosis factor α (TNFα) and transforming growth factor β1 (TGFβ1). These two cytokines are generally considered as having opposing roles in regulating immunity and inflammation (pro- and anti-inflammatory, respectively). Here, we performed global gene expression analysis of human bone marrow-derived MSCs and identified overlap in half of the transcriptional programs that were modified by TNFα and TGFβ1. The two cytokines elevated the mRNA expression of soluble factors, including mRNAs of pro-inflammatory mediators. Accordingly, the typical pro-inflammatory factor TNFα prominently induced the protein expression levels of the pro-inflammatory mediators CCL2, CXCL8 (IL-8), and cyclooxygenase-2 (Cox-2) in MSCs, through the NF-κB/p65 pathway. In parallel, TGFβ1 did not elevate CXCL8 protein levels and induced the protein expression of CCL2 at much lower levels than TNFα; yet, TGFβ1 readily induced Cox-2 and acted predominantly via the Smad3 pathway. Interestingly, combined stimulation of MSCs by TNFα + TGFβ1 led to a cooperative induction of all three inflammatory mediators, indicating that TGFβ1 functioned as a co-inflammatory cytokine in the presence of TNFα. The cooperative activities of TNFα + TGFβ1 that have led to CCL2 and CXCL8 induction were almost exclusively dependent on p65 activation and were not regulated by Smad3 or by the upstream regulator TGFβ-activated kinase 1 (TAK1). In contrast, the TNFα + TGFβ1-induced cooperative elevation in Cox-2 was mostly dependent on Smad3 (demonstrating cooperativity with activated NF-κB) and was partly regulated by TAK1. Studies with MSCs activated by TNFα + TGFβ1 revealed that they release factors that can affect other cells in their microenvironment and induce breast tumor cell elongation, migration, and scattering out of spheroid tumor masses. Thus, our findings demonstrate a TNFα + TGFβ1-driven pro-inflammatory fate in MSCs, identify specific molecular mechanisms involved, and propose that TNFα + TGFβ1-stimulated MSCs influence the tumor niche. These observations suggest key roles for the microenvironment in regulating MSC functions, which in turn may affect different health-related conditions.
Collapse
Affiliation(s)
- Shalom Lerrer
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Liubomirski
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Khalid Abnaof
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nino Oren
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Afsheen Yousaf
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tsipi Meshel
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adit Ben-Baruch
- Faculty of Life Sciences, Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Das A, Arifuzzaman S, Kim SH, Lee YS, Jung KH, Chai YG. FTY720 (fingolimod) regulates key target genes essential for inflammation in microglial cells as defined by high-resolution mRNA sequencing. Neuropharmacology 2017; 119:1-14. [PMID: 28373076 DOI: 10.1016/j.neuropharm.2017.03.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/23/2022]
Abstract
Although microglial cells have an essential role in the host defense of the brain, the abnormal activation of microglia can lead to devastating outcomes, such as neuroinflammation and neurodegeneration. Emerging evidence indicates that FTY720 (fingolimod), an FDA-approved drug, has beneficial effects on brain cells in the central nervous system (CNS) and, more recently, immunosuppressive activities in microglia via modulation of the sphingosine 1 phosphate (S1P) 1 receptor. However, the exact molecular aspects of FTY720 contribution in microglia remain largely unaddressed. To understand the molecular mechanisms underlying the roles of FTY720 in microglia, we performed gene expression profiling in resting, FTY720, LPS and LPS + FTY720 challenged primary microglial (PM) cells isolated from 3-day-old ICR mice, and we identified FTY720 target genes and co-regulated modules that were critical in inflammation. By examining RNA sequencing and binding motif datasets from FTY720 suppressed LPS-induced inflammatory mediators, we also identified unexpected relationships between the inducible transcription factors (TFs), motif strength, and the transcription of key inflammatory mediators. Furthermore, we showed that FTY720 controls important inflammatory genes targets by modulating STAT1 and IRF8 levels at their promoter site. Our unprecedented findings demonstrate that FTY720 could be a useful therapeutic application for neuroinflammatory diseases associated with microglia activation, as well as provide a rich resource and framework for future analyses of FTY720 effects on microglia interaction.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
| | - Sun Hwa Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea; Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
24
|
El-Azzamy H, Balogh A, Romero R, Xu Y, LaJeunesse C, Plazyo O, Xu Z, Price TG, Dong Z, Tarca AL, Papp Z, Hassan SS, Chaiworapongsa T, Kim CJ, Gomez-Lopez N, Than NG. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition. J Pathol Transl Med 2017; 51:264-283. [PMID: 28226203 PMCID: PMC5445200 DOI: 10.4132/jptm.2016.12.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022] Open
Abstract
Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14) or without labor (TNL, n = 15). Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR). Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1), galectin-1 (LGALS1), and progestogen-associated endometrial protein (PAEP); the expression of estrogen receptor 1 (ESR1), homeobox A11 (HOXA11), interleukin 1β (IL1B), IL8, progesterone receptor membrane component 2 (PGRMC2), and prostaglandin E synthase (PTGES) was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2), CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and IL-8 were found. Conclusions Our data suggests that with the initiation of parturition, the decidual expression of anti-inflammatory mediators decreases, while the expression of pro-inflammatory mediators and steroid receptors increases. This shift may affect downstream signaling pathways that can lead to parturition.
Collapse
Affiliation(s)
- Haidy El-Azzamy
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | | | - Olesya Plazyo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Theodore G Price
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA.,Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Gartung A, Zhao J, Chen S, Mottillo E, VanHecke GC, Ahn YH, Maddipati KR, Sorokin A, Granneman J, Lee MJ. Characterization of Eicosanoids Produced by Adipocyte Lipolysis: IMPLICATION OF CYCLOOXYGENASE-2 IN ADIPOSE INFLAMMATION. J Biol Chem 2016; 291:16001-10. [PMID: 27246851 PMCID: PMC4965551 DOI: 10.1074/jbc.m116.725937] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/13/2016] [Indexed: 12/29/2022] Open
Abstract
Excessive adipocyte lipolysis generates lipid mediators and triggers inflammation in adipose tissue. However, the specific roles of lipolysis-generated mediators in adipose inflammation remain to be elucidated. In the present study, cultured 3T3-L1 adipocytes were treated with isoproterenol to activate lipolysis and the fatty acyl lipidome of released lipids was determined by using LC-MS/MS. We observed that β-adrenergic activation elevated levels of approximately fifty lipid species, including metabolites of cyclooxygenases, lipoxygenases, epoxygenases, and other sources. Moreover, we found that β-adrenergic activation induced cyclooxygenase 2 (COX-2), not COX-1, expression in a manner that depended on activation of hormone-sensitive lipase (HSL) in cultured adipocytes and in the epididymal white adipose tissue (EWAT) of C57BL/6 mice. We found that lipolysis activates the JNK/NFκB signaling pathway and inhibition of the JNK/NFκB axis abrogated the lipolysis-stimulated COX-2 expression. In addition, pharmacological inhibition of COX-2 activity diminished levels of COX-2 metabolites during lipolytic activation. Inhibition of COX-2 abrogated the induction of CCL2/MCP-1 expression by β-adrenergic activation and prevented recruitment of macrophage/monocyte to adipose tissue. Collectively, our data indicate that excessive adipocyte lipolysis activates the JNK/NFκB pathway leading to the up-regulation of COX-2 expression and recruitment of inflammatory macrophages.
Collapse
Affiliation(s)
- Allison Gartung
- From the Bioactive Lipid Research Program, Department of Pathology
| | - Jiawei Zhao
- From the Bioactive Lipid Research Program, Department of Pathology
| | - Simon Chen
- From the Bioactive Lipid Research Program, Department of Pathology
| | | | | | | | | | - Andrey Sorokin
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - James Granneman
- Center for Integrative Metabolic and Endocrine Research, Center for Molecular Medicine and Genetics
| | - Menq-Jer Lee
- From the Bioactive Lipid Research Program, Department of Pathology, Cardiovascular Research Institute, and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48202 and
| |
Collapse
|
26
|
Zhang JL, Xu B, Huang XD, Gao YH, Chen Y, Shan AS. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks. Biol Trace Elem Res 2016; 171:201-7. [PMID: 26400650 DOI: 10.1007/s12011-015-0512-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.
Collapse
Affiliation(s)
- Jiu-Li Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Polytechnic, Harbin, 150080, People's Republic of China
| | - Bo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao-Dan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yu-Hong Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Polytechnic, Harbin, 150080, People's Republic of China
| | - Yu Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - An-Shan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
27
|
Qiu J, Yuan H, Chen S, Zhou Y, Song D, Chen R. TNFα up-regulates COX-2 in chronic progressive nephropathy through nuclear accumulation of RelB and NF-κB2. Arch Physiol Biochem 2016; 122:88-93. [PMID: 26824492 DOI: 10.3109/13813455.2016.1141961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The pathogenesis of progressive nephropathies involves inflammatory factors. The inhibition of cyclooxygenase-2 (COX-2) can limit renal damage and inflammation. However, the mechanism of up-regulation of COX-2 in nephropathy is poorly defined. MATERIALS AND METHODS Here we found that tumor necrosis factor alpha (TNFα) was involved in expression of COX-2 in normal rat kidney (NRK) cell line. RESULTS TNFα stimulated COX-2 production in a time-dependent manner in NRK cells by inducing nuclear accumulation of RelB and nuclear factor kappa B2 (NF-κB2) and their association with COX-2 gene promoter. Depletion of IκB-inducing kinase alpha, a positive regulator of activation of p100 processing to active p52, attenuated TNFα-induced COX-2 production. Furthermore, TNFα induced COX-2 production and nuclear import in anti-thymocyte serum (ATS) nephropathy. DISCUSSION AND CONCLUSION These data suggest that TNFα-RelB/p52 pathway may be involved in the early stages of renal damage, in part by stimulating COX-2 and inflammatory responses.
Collapse
Affiliation(s)
- Junsi Qiu
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Hongying Yuan
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Shujue Chen
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Ying Zhou
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Dan Song
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| | - Rongquan Chen
- a Department of Nephrology , Nanjing Medical University Affiliated Wuxi Second Hospital , Wuxi , Jiangsu , China
| |
Collapse
|
28
|
Arif M, Thakur SC, Datta K. Implication of thymoquinone as a remedy for polycystic ovary in rat. PHARMACEUTICAL BIOLOGY 2015; 54:674-85. [PMID: 26510692 DOI: 10.3109/13880209.2015.1072565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
CONTEXT Thymoquinone (TQ), an active component of Nigella sativa L. (Ranunculaceae), possesses anti-inflammatory and anti-oxidative properties. Polycystic ovary syndrome exhibits chronic inflammatory behavior, thus might involve nuclear factor kappa B (NF-κB) signaling and related molecular factors. OBJECTIVE The objective of the present study is to investigate and validate the effect of TQ in polycystic ovary (PCO) rat. MATERIALS AND METHODS To validate the effect of TQ (1 µM/ml), NF-κB activation, COX2 (cyclooxygenase-2) expression and reactive oxygen species (ROS) induction were studied in the KK1 cell line. To evaluate the effect of TQ (2 mg/200 µl olive oil/rat; sc) with an in vivo system, ovulation rate, levels of key ovulation mediators, and ovarian gelatinases activity were compared in superovulated, PCO, and RU486 + TQ-treated Wistar rats. RESULTS In vitro studies showed that NF-κB nuclear translocation, COX2, and ROS expression were repressed via TQ supplementation in RU486-treated KK1 cells. Pretreatment of TQ in the PCO rat model induced significant restoration of normal physio-molecular behavior of ovary, such as reduced cysts formation, increased ovulation rate, and normalization of key ovarian factors [like TNF-α-stimulated gene/protein 6, hyaluronan, hyaluronan-binding protein 1, COX2, matrix metalloproteinases (membrane type 1-matrix metalloproteinase, MMP9 and MMP2)], tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2), and gelatinases (like MMP9 and -2) activity during follicular maturation. DISCUSSION AND CONCLUSION Overall, most of the above molecular changes are regulated via NF-κB pathway, thus TQ, due to its modulatory effect on the NF-κB signaling, could elevate normal ovarian phenotype and physiological function in the PCO model, indicating its remarkable potential as a remedy for rat PCO.
Collapse
Affiliation(s)
- Mohammed Arif
- a Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University , New Delhi , India and
- b Reproductive Toxicology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , New Delhi , India
| | - Sonu Chand Thakur
- b Reproductive Toxicology Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , New Delhi , India
| | - Kasturi Datta
- a Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University , New Delhi , India and
| |
Collapse
|
29
|
Okabe H, Makino S, Kato K, Matsuoka K, Seki H, Takeda S. The effect of progesterone on genes involved in preterm labor. J Reprod Immunol 2014; 104-105:80-91. [DOI: 10.1016/j.jri.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 01/13/2023]
|
30
|
Wakabayashi A, Sawada K, Nakayama M, Toda A, Kimoto A, Mabuchi S, Kinose Y, Nakamura K, Takahashi K, Kurachi H, Kimura T. Targeting interleukin-6 receptor inhibits preterm delivery induced by inflammation. Mol Hum Reprod 2013; 19:718-26. [PMID: 23969038 DOI: 10.1093/molehr/gat057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intrauterine infection is still a common trigger of preterm delivery (PTD) and also a determinant risk factor for the subsequent development of neurodevelopmental abnormalities in neonates. In this study, we examined the expressional pattern of various inflammatory cytokines such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in placentae complicated with severe chorioamnionitis (CAM) and found that IL-6 is mainly expressed in macrophages in villous mesenchyme by immunohistochemical analysis with anti-CD-68 antibody. Using an experimental lipopolysaccharide (LPS)-induced PTD model, the therapeutic potential of targeting this cytokine was investigated. Anti-IL-6 receptor antibody (MR16-1) was delivered 6 h before LPS treatment. Mice in the MR16-1 group had a significantly lower rate of PTD (17%) than in the controls (53%, P = 0.026). As a result, MR16-1 treatment significantly prolonged the gestational period (control; 18.4 ± 1.7d, MR16-1; 19.8 ± 1.5d, P = 0.007) without any apparent adverse events on the mice and their pups. In primary human amniotic epithelial cells, pretreatment with a humanized anti-human IL-6 receptor antibody, tocilizumab, significantly inhibited the production of prostaglandin E2 induced by IL-6. In conclusion, IL-6 was strongly expressed mainly in macrophages in villous mesenchyme in placentae complicated with CAM. Anti-IL-6R antibody significantly decreased the rate of PTD in LPS-induced inflammatory model in mice, and inhibited PGE2 production from human primary amniotic epithelial cells. Targeting IL-6 signaling could be a promising option for the prevention of PTD and needs to be further explored for future clinical application.
Collapse
Affiliation(s)
- Atsuko Wakabayashi
- Departments of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Straccia M, Dentesano G, Valente T, Pulido-Salgado M, Solà C, Saura J. CCAAT/enhancer binding protein β regulates prostaglandin E synthase expression and prostaglandin E2 production in activated microglial cells. Glia 2013; 61:1607-19. [PMID: 23893854 DOI: 10.1002/glia.22542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 11/11/2022]
Abstract
The eicosanoid prostaglandin E2 (PGE2 ) plays important roles in neuroinflammation and it is produced by the sequential action of the enzymes cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGES). The expression of both enzymes and the production of PGE2 are increased in neuroinflammation. The objective of this study was to elucidate whether the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) regulates the expression of prostaglandin synthesis enzymes in neuroinflammation. To this aim, the expression of these enzymes in wild-type and C/EBPβ-null mice was analyzed in vitro and in vivo. In mixed glial cultures, lipopolysaccharide (LPS) ± interferon γ (IFN-γ) induced C/EBPβ binding to COX-2 and PTGES promoters. LPS ± IFN-γ-induced increases in PTGES expression and in PGE2 production in mixed glial and microglial cultures were abrogated in the absence of C/EBPβ. Also, increased brain PTGES expression induced by systemic LPS administration was markedly reduced in C/EBPβ-null mice. In contrast to PTGES, the induction of COX-2 expression in vitro or in vivo was not markedly affected by the absence of C/EBPβ. These results demonstrate that C/EBPβ regulates PTGES expression and PGE2 production by activated microglial cells in vitro and point to C/EBPβ as a regulator of PTGES expression in vivo in the inflamed central nervous system. Altogether, these findings strengthen the proposed role of C/EBPβ as a key player in the orchestration of neuroinflammatory gene response.
Collapse
Affiliation(s)
- Marco Straccia
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Li B, Chen M, Liu X, Guo SW. Constitutive and tumor necrosis factor-α-induced activation of nuclear factor-κB in adenomyosis and its inhibition by andrographolide. Fertil Steril 2013; 100:568-77. [PMID: 23706331 DOI: 10.1016/j.fertnstert.2013.04.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/03/2013] [Accepted: 04/15/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate the action of nuclear factor (NF)-κB in adenomyosis and evaluate the potential therapeutic effect of andrographolide on tumor necrosis factor (TNF)-α-induced expression of NF-κB-mediated genes cyclooxygease-2 (COX-2), vascular endothelial growth factor (VEGF), and tissue factor (TF) in adenomyotic stromal cells. DESIGN Laboratory study using human tissues. SETTING Academic hospital. PATIENT(S) Twenty-nine patients (cases) with histologically confirmed adenomyosis and 14 (controls) without adenomyosis or endometriosis. INTERVENTION(S) Endometrial stromal cells derived from tissue samples harvested from both cases and controls were subjected to electrophoretic mobility shift assay, and gene and protein expression analyses. MAIN OUTCOME MEASURE(S) The NF-κB DNA-binding activity and protein levels of NF-κB subunits p50 and p65 and the messenger RNA (mRNA) and protein levels of NF-κB-mediated genes COX-2, VEGF, and TF in cases and controls, and their changes after stimulation with TNF-α and treatment with andrographolide. RESULT(S) The constitutive NF-κB DNA-binding activity and protein expression levels of p50 and p65, and mRNA and protein levels of COX-2, VEGF, and TF in cases were significantly higher than that of controls. The binding activity level correlated positively with dysmenorrhea severity in cases. The TNF-α stimulation further increased the binding activity, and the mRNA and protein levels of COX-2, VEGF, and TF, but treatment with andrographolide significantly reduced them. CONCLUSION(S) NF-κB may be a pivotal transcription factor involved in the development of adenomyosis. Targeting NF-κB with inhibitors, like andrographolide, may hold promises of treating adenomyosis.
Collapse
Affiliation(s)
- Bin Li
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Voltolini C, Torricelli M, Conti N, Vellucci FL, Severi FM, Petraglia F. Understanding Spontaneous Preterm Birth. Reprod Sci 2013; 20:1274-92. [DOI: 10.1177/1933719113477496] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Chiara Voltolini
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Michela Torricelli
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Nathalie Conti
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Francesca L. Vellucci
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Filiberto M. Severi
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
34
|
Genome-wide analysis of DNA methylation in human amnion. ScientificWorldJournal 2013; 2013:678156. [PMID: 23533356 PMCID: PMC3590748 DOI: 10.1155/2013/678156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022] Open
Abstract
The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies.
Collapse
|
35
|
Signal transduction pathways (MAPKs, NF-κB, and C/EBP) regulating COX-2 expression in nasal fibroblasts from asthma patients with aspirin intolerance. PLoS One 2012; 7:e51281. [PMID: 23240010 PMCID: PMC3519844 DOI: 10.1371/journal.pone.0051281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/31/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent studies have revealed that cyclooxygenase-2 (COX-2) expression is down-regulated in aspirin-induced asthma (AIA). Various signal pathways (MAPKs, NF-κB and C/EBP) are involved in COX-2 regulation. OBJECTIVE To investigate the regulation of COX-2 expression through MAP-kinase pathway activation and nuclear factor translocation in aspirin-induced asthma (AIA). METHODS Fibroblasts were isolated from specimens of nasal mucosa (NM, N = 5) and nasal polyps (NP, N = 5). After IL-1β (1 ng/ml) incubation, COX-2 and phosphorylated forms of ERK, JNK and p38 MAPK were measured by Western blot. MAPK's role in IL-1β-induced COX-2 expression was assessed by treating cells with ERK (PD98059), JNK (SP600125) and p38 MAPK (SB203580) inhibitors (0.1-10 µM) prior to IL-1β exposure. NF-κB and C/EBP nuclear translocation was measured by Western blot and TransAM® after IL-1β (10 ng/ml) exposure. RESULTS No differences were observed in the MAPK phosphorylation time-course between NM and NP-AIA fibroblasts. The p38 MAPK inhibitor at 10 µM significantly reduced IL-1β-induced COX-2 expression in NM fibroblasts (85%). In NP-AIA fibroblasts the COX-2 inhibition (65%) at 1 and 10 µM was not statistically significant compared to non-treated cells. ERK and JNK inhibitors had no significant effect in either the NM or NP-AIA cultures. The effect of IL-1β on NF-κB and C/EBP subunits' nuclear translocation was similar between NM and NP-AIA fibroblasts. CONCLUSIONS These results suggest that p38 MAPK is the only MAPK involved in IL-1β-induced COX-2 expression. NM and NP-AIA fibroblasts have similar MAPK phosphorylation dynamics and nuclear factor translocation (NF-κB and C/EBP). COX-2 downregulation observed in AIA patients appears not to be caused by differences in MAPK dynamics or transcription factor translocation.
Collapse
|
36
|
Characterization of the conditioned medium from amniotic membrane cells: prostaglandins as key effectors of its immunomodulatory activity. PLoS One 2012; 7:e46956. [PMID: 23071674 PMCID: PMC3468614 DOI: 10.1371/journal.pone.0046956] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022] Open
Abstract
We previously demonstrated that cells isolated from the mesenchymal region of the human amniotic membrane (human amniotic mesenchymal tissue cells, hAMTC) possess immunoregulatory roles, such as inhibition of lymphocyte proliferation and cytokine production, and suppression of generation and maturation of monocyte-derived dendritic cells, as reported for MSC from other sources. The precise factors and mechanisms responsible for the immunoregulatory roles of hAMTC remain unknown. In this study, we aimed to identify the soluble factors released by hAMTC and responsible for the anti-proliferative effect on lymphocytes, and the mechanisms underlying their actions, in vitro. Conditioned medium (CM) was prepared under routine culture conditions from hAMTC (CM-hAMTC) and also from fragments of the whole human amniotic membrane (CM-hAM). We analyzed the thermostability, chemical nature, and the molecular weight of the factors likely responsible for the anti-proliferative effects. We also evaluated the participation of cytokines known to be involved in the immunomodulatory actions of MSC from other sources, and attempted to block different synthetic pathways. We demonstrate that the inhibitory factors are temperature-stable, have a small molecular weight, and are likely of a non-proteinaceous nature. Only inhibition of cyclooxygenase pathway partially reverted the anti-proliferative effect, suggesting prostaglandins as key effector molecules. Factors previously documented to take part in the inhibitory effects of MSCs from other sources (HGF, TGF-β, NO and IDO) were not involved. Furthermore, we prove for the first time that the anti-proliferative effect is intrinsic to the amniotic membrane and cells derived thereof, since it is manifested in the absence of stimulating culture conditions, as opposed to MSC derived from the bone marrow, which possess an anti-proliferative ability only when cultured in the presence of activating stimuli. Finally, we show that the amniotic membrane could be an interesting source of soluble factors, without referring to extensive cell preparation.
Collapse
|
37
|
Saklani A, Hegde B, Mishra P, Singh R, Mendon M, Chakrabarty D, Kamath DV, Lobo A, Mishra PD, Dagia NM, Padigaru M, Kulkarni-Almeida AA. NF-κB dependent anti-inflammatory activity of chlorojanerin isolated from Saussurea heteromalla. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:988-997. [PMID: 22762939 DOI: 10.1016/j.phymed.2012.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 04/25/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Medicinal plants have shown great promise as a source of novel drug compounds for the treatment of inflammatory disorders. In our search for new entities with anti-inflammatory potential, the extracts of the whole plant of Saussurea heteromalla (family-Asteraceae), collected from Himalayas, were evaluated in the high throughput screen for TNF-α and IL-6 inhibitors. The extract blocked TNF-α and IL-6 production in LPS stimulated THP-1 cells (human acute monocyte leukemia cell line) completely at 10 and 30 μg/ml. The plant has been found as a new source of chlorojanerin, a guaianolide type of sesquiterpene lactone. Chlorojanerin was shown to be significantly effective in inhibiting TNF-α and IL-6 production in LPS-stimulated THP-1 cells (IC(50)=2.3±0.2 μM and 1.8±0.7 μM respectively). The compound also blocked TNF-α and IL-6 production from LPS-stimulated human monocytes (IC(50)=1.5±0.4 and 0.7±0.2 μM respectively) and synovial cells from a patient with rheumatoid arthritis (IC(50)<0.03 and 0.5 μM respectively). Transcriptional profiling of the LPS stimulated THP-1 cells revealed that chlorojanerin exerted its anti-inflammatory effect by inhibiting the expression of 8 genes involved in activating the transcription factor - NF-κB. Real time analysis of these genes validated the effect of chlorojanerin on the classical downstream targets of NF-κB. Thus, this study clearly delineated 8 genes which were specifically mitigated due to the effect of chlorojanerin on NF-κB induced signaling at the mRNA level. Further, chlorojanerin at 5 μM also inhibited the binding of NF-κB in a GFP reporter assay system by 55.5% thus validating the microarray gene expression data. This work is a step towards the isolation and characterization of lead anti-inflammatory agents from the extract of Saussurea heteromalla, which can be developed into better therapeutic molecules targeted towards some specific inflammatory diseases.
Collapse
Affiliation(s)
- Arvind Saklani
- Department of Natural Products-Botany, Piramal Healthcare Limited, 1 Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Involvement of PGE2 and the cAMP signalling pathway in the up-regulation of COX-2 and mPGES-1 expression in LPS-activated macrophages. Biochem J 2012; 443:451-61. [PMID: 22268508 DOI: 10.1042/bj20111052] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PG (prostaglandin) E2 plays an important role in the modulation of the immune response and the inflammatory process. In the present study, we describe a PGE2 positive feedback for COX (cyclo-oxygenase)-2 and mPGES-1 [microsomal PGES (PGE synthase)-1] expression in the macrophage cell line RAW 264.7. Our results show that PGE2 induces COX-2 and mPGES-1 expression, an effect mimicked by dbcAMP (dibutyryl-cAMP) or forskolin. Furthermore, the cAMP signalling pathway co-operates with LPS (lipopolysaccharide) in the induction of COX-2 and mPGES-1 transcriptional activation. Analysis of the involvement of PGE receptors [EPs (E-prostanoids)] showed that incubation with EP2 agonists up-regulated both COX2 and mPGES-1 mRNA levels. Moreover, EP2 receptor overexpression enhanced the transcriptional activation of COX2 and mPGES-1 promoters. This induction was repressed by the PKA (protein kinase A) inhibitor H89. Activation of the PGE2/EP2/PKA signalling pathway induced the phosphorylation of CREB [CRE (cAMP-response element)-binding protein] in macrophages and stimulated the specific binding of this transcription factor to COX2 and mPGES-1 promoters. Deletion or mutation of potential CRE sites in both promoters diminished their transcriptional activity. In summary, the results of the present study demonstrate that activation of PKA/CREB signalling through the EP2 receptor by PGE2 plays a key role in the expression of COX-2 and mPGES-1 in activated macrophages.
Collapse
|
39
|
Pavlová S, Klucska K, Vašíček D, Kotwica J, Sirotkin AV. Transcription factor NF-κB (p50/p50, p65/p65) controls porcine ovarian cells functions. Anim Reprod Sci 2011; 128:73-84. [DOI: 10.1016/j.anireprosci.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 08/18/2011] [Accepted: 09/15/2011] [Indexed: 01/15/2023]
|
40
|
Kim SY, Romero R, Tarca AL, Bhatti G, Lee J, Chaiworapongsa T, Hassan SS, Kim CJ. miR-143 regulation of prostaglandin-endoperoxidase synthase 2 in the amnion: implications for human parturition at term. PLoS One 2011; 6:e24131. [PMID: 21915288 PMCID: PMC3168490 DOI: 10.1371/journal.pone.0024131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/01/2011] [Indexed: 12/20/2022] Open
Abstract
Background The human amnion plays a pivotal role in parturition. Two of its compartments, the placental amnion and the reflected amnion, have distinct transcriptome and are functionally coordinated for parturition. This study was conducted to determine the microRNA (miRNA) expression pattern and its significance in the placental amnion and the reflected amnion in association with labor at term. Methodology/Principal Findings MicroRNA microarray, real-time quantitative RT-PCR (qRT-PCR), and miRNA in situ hybridization analyses of the placental amnion and the reflected amnion (n = 20) obtained at term were conducted. Luciferase assay, transfection, and qRT-PCR analyses of primary amnion epithelial cells (AECs) and amnion mesenchymal cells (AMCs) were performed. MicroRNA microarray analysis demonstrated differential expression of 32 miRNAs between the placental amnion and the reflected amnion after labor. Thirty-one (97%) miRNAs, which included miR-143 and miR-145, a cardiovascular-specific miRNA cluster, were down-regulated in the reflected amnion. Analyses of miR-143 and miR-145 by qRT-PCR confirmed microarray results, and further demonstrated their decreased expression in the reflected amnion with labor. Interestingly, expression of miR-143 and miR-145 was higher in AMCs than in AECs (p<0.05). Luciferase assay and transfection confirmed miR-143 binding to 3′ UTR of prostaglandin-endoperoxidase synthase 2 (PTGS2) mRNA and miR-143 regulation of PTGS2 in AMCs. Conclusions We report region-specific amniotic microRNAome and miR-143 regulation of PTGS2 in the context of human labor at term for the first time. The findings indicate that miRNA-mediated post-transcriptional regulation of gene expression machinery in the amnion plays an important role in the compartments (placental amnion vs reflected amnion) and in a cell type-specific manner (AECs vs AMCs) for parturition.
Collapse
Affiliation(s)
- Sun Young Kim
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
| | - Adi L. Tarca
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University, Detroit, Michigan, United States of America
| | - Gaurav Bhatti
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
| | - JoonHo Lee
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Chong Jai Kim
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland, United States of America
- Perinatology Research Branch, National Institute of Child Health and Human Development/National Institutes of Health/Department of Health and Human Services, Detroit, Michigan, United States of America
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011; 43:92-137. [PMID: 21495793 DOI: 10.3109/03602532.2011.567391] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|
42
|
Li R, Ackerman WE, Summerfield TL, Yu L, Gulati P, Zhang J, Huang K, Romero R, Kniss DA. Inflammatory gene regulatory networks in amnion cells following cytokine stimulation: translational systems approach to modeling human parturition. PLoS One 2011; 6:e20560. [PMID: 21655103 PMCID: PMC3107214 DOI: 10.1371/journal.pone.0020560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-κB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals.
Collapse
Affiliation(s)
- Ruth Li
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - William E. Ackerman
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - Taryn L. Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio,
United States of America
| | - Parul Gulati
- Center for Biostatistics, The Ohio State University, Columbus, Ohio,
United States of America
| | - Jie Zhang
- Department of Biomedical Informatics, The Ohio State University,
Columbus, Ohio, United States of America
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University,
Columbus, Ohio, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health, Department of Health and Human Services, Bethesda, Maryland, United
States of America
- Hutzel Women's Hospital, Detroit, Michigan, United States of
America
| | - Douglas A. Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
- Department of Biomedical Engineering, The Ohio State University,
Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Shuang-zhi H, Ping S, Xi-ning P. Culture and identification of human amniotic mesenchymal stem cells. ACTA ACUST UNITED AC 2011; 25:211-4. [PMID: 21232180 DOI: 10.1016/s1001-9294(11)60004-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To establish the method of isolation, purification, and identification of human amniotic mesenchymal stem cells (hAMSCs). METHODS hAMSCs were isolated from human amniotic membrane by trypsin-collagenase digestion, and cultured in Dulbecco's modified Eagle's medium/F12 medium supplemented with 10% fetal bovine serum. Phenotypic characteristics of these cells were analyzed by means of immunocytochemistry and flow cytometry. RESULTS The cells successfully isolated from human amniotic membrane expressed representative mesenchymal cell surface markers CD44, CD90, and vimentin, but not CD45. CONCLUSIONS This study establishes a potential method for isolation of hAMSCs from human amnion,in vitro culture, and identification. The isolated cells show phenotypic characteristics of mesenchymal stem cells.
Collapse
Affiliation(s)
- Huo Shuang-zhi
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110001, China
| | | | | |
Collapse
|
44
|
Slovak ML, Bedell V, Hsu YH, Estrine DB, Nowak NJ, Delioukina ML, Weiss LM, Smith DD, Forman SJ. Molecular karyotypes of Hodgkin and Reed-Sternberg cells at disease onset reveal distinct copy number alterations in chemosensitive versus refractory Hodgkin lymphoma. Clin Cancer Res 2011; 17:3443-54. [PMID: 21385932 DOI: 10.1158/1078-0432.ccr-10-1071] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the recurring DNA copy number alterations (CNA) in classical Hodgkin lymphoma (HL) by microarray-based comparative genomic hybridization (aCGH) using laser capture microdissected CD30(+) Hodgkin and Reed-Sternberg (HRS) cells. EXPERIMENTAL DESIGN Archived tissues from 27 CD30(+) HL plus control samples were analyzed by DNA microarrays. The HL molecular karyotypes were compared with the genomic profiles of germinal center B cells and treatment outcome (chemotherapy responsive vs. primary refractory disease). RESULTS Gains and losses observed in more than 35% of HL samples were localized to 22 and 12 chromosomal regions, respectively. Frequent gains (>65%) were associated with growth and proliferation, NF-κB activation, cell-cycle control, apoptosis, and immune and lymphoid development. Frequent losses (>40%) observed encompassed tumor suppressor genes (SPRY1, NELL1, and ID4, inhibitor of DNA binding 4), transcriptional repressors (TXNIP, thioredoxin interacting protein), SKP2 (S-phase kinase-associated protein 2; ubiquitin ligase component), and an antagonist of NF-κB activation (PPARGC1A). In comparison to the germinal center profiles, the most frequent imbalances in HL were losses in 5p13 (AMACR, GDNF, and SKP2), and gains in 7q36 (SHH, sonic hedgehog homolog) and 9q34 (ABL1, CDK9, LCN2, and PTGES). Gains (>35%) in the HL chemoresponsive patients housed genes known to regulate T-cell trafficking or NF-κB activation (CCL22, CX3CL1, CCL17, DOK4, and IL10), whereas the refractory samples showed frequent loss of 4q27 (interleukin; IL21/IL2) and 17p12, and gain of 19q13.3 (BCL3/RELB). CONCLUSION We identified nonrandom CNAs in the molecular karyotypes of classical HL. Several recurring genetic lesions correlated with disease outcome. These findings may be useful prognostic markers in the counseling and management of patients and for the development of novel therapeutic approaches in primary refractory HL.
Collapse
Affiliation(s)
- Marilyn L Slovak
- Cytogenetics Laboratory, Department of Hematology/Stem Cell Transplantation, City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mathew DJ, Sellner EM, Green JC, Okamura CS, Anderson LL, Lucy MC, Geisert RD. Uterine Progesterone Receptor Expression, Conceptus Development, and Ovarian Function in Pigs Treated with RU 486 During Early Pregnancy1. Biol Reprod 2011; 84:130-9. [DOI: 10.1095/biolreprod.110.086843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
46
|
Lee H, Trott JS, Haque S, McCormick S, Chiorazzi N, Mongini PKA. A Cyclooxygenase-2/Prostaglandin E2Pathway Augments Activation-Induced Cytosine Deaminase Expression within Replicating Human B Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:5300-14. [DOI: 10.4049/jimmunol.1000574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Díaz-Muñoz MD, Osma-García IC, Cacheiro-Llaguno C, Fresno M, Íñiguez MA. Coordinated up-regulation of cyclooxygenase-2 and microsomal prostaglandin E synthase 1 transcription by nuclear factor kappa B and early growth response-1 in macrophages. Cell Signal 2010; 22:1427-36. [DOI: 10.1016/j.cellsig.2010.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/15/2010] [Accepted: 05/15/2010] [Indexed: 01/19/2023]
|
48
|
Nhan-Chang CL, Romero R, Tarca AL, Mittal P, Kusanovic JP, Erez O, Mazaki-Tovi S, Chaiworapongsa T, Hotra J, Than NG, Kim JS, Hassan SS, Kim CJ. Characterization of the transcriptome of chorioamniotic membranes at the site of rupture in spontaneous labor at term. Am J Obstet Gynecol 2010; 202:462.e1-41. [PMID: 20452490 PMCID: PMC3604885 DOI: 10.1016/j.ajog.2010.02.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 01/05/2010] [Accepted: 02/17/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The purpose of this study was to compare the transcriptome between the site of membrane rupture and the chorioamniotic membranes away from the site of rupture. STUDY DESIGN The transcriptome of amnion and chorion (n=20 each) from and distal to the site of rupture from women with spontaneous labor and vaginal delivery at term after spontaneous rupture of membranes was profiled with Illumina HumanHT-12 microarrays. Selected genes were validated with the use of quantitative reverse transcription-polymerase chain reaction. RESULTS Six hundred seventy-seven genes were differentially expressed in the chorion between the rupture and nonrupture sites (false discovery rate<0.1; fold change>1.5). Quantitative reverse transcription-polymerase chain reaction confirmed the differential expression in 10 of 14 genes. Enriched biological processes included anatomic structure development, cell adhesion and signal transduction. Extracellular matrix-receptor interaction was the most impacted signaling pathway. CONCLUSION The transcriptome of fetal membranes after spontaneous rupture of membranes in term labor is characterized by region- and tissue-specific differential expression of genes that are involved in signature pathways, which include extracellular matrix-receptor interactions.
Collapse
Affiliation(s)
- Chia-Ling Nhan-Chang
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen SH, Fahmi H, Shi Q, Benderdour M. Regulation of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase-activating protein/5-lipoxygenase by 4-hydroxynonenal in human osteoarthritic chondrocytes. Arthritis Res Ther 2010; 12:R21. [PMID: 20144213 PMCID: PMC2875653 DOI: 10.1186/ar2926] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/25/2010] [Accepted: 02/09/2010] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION This study aimed to investigate whether hydroxynonenal (HNE) depletion is responsible for the switch from cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) to 5-lipoxygenase-activating protein (FLAP) and 5-lipoxygenase (5-LOX). METHODS For COX-2 and mPGES-1 studies, human osteoarthritic chondrocytes were stimulated at different incubation times (up to 24 hours) with a single or repetitive addition of 10 muM HNE to the cultures at 2-hour intervals, up to 14 hours. For 5-LOX and FLAP studies, cells were treated with a single addition of 10 muM HNE for 24 hours, 48 hours, and 72 hours in the presence or absence of naproxen (a nonspecific COX-2 inhibitor) or antibody anti-transforming growth factor-beta 1 (TGF-beta1). The protein levels of COX-2, mPGES-1 and early growth response factor-1 (Egr-1) transcription factor were evaluated by western blot, and those of prostaglandin E2 (PGE2), leukotriene B4 (LTB4) and TGF-beta1 were determined with commercial kits. The levels of mPGES-1, FLAP and 5-LOX mRNA were measured by real-time RT-PCR. Transient transfection was performed to determine promoter activities of mPGES-1 and 5-LOX. RESULTS Single addition of 10 muM HNE to cultured chondrocytes induced PGE2 release as well as COX-2 and mPGES-1 expression at the protein and mRNA levels, with a plateau reached respectively at 8 and 16 hours of incubation, followed by a subsequent decline. However, repeated treatments with HNE prevented the decline of COX-2 and mPGES-1 expression that occurred with a single aldehyde addition. HNE induced mPGES-1 promoter activity, possibly through transcription factor Egr-1 activation. After 48 hours, when COX-2 expression decreased, the LTB4 level rose through 5-LOX and FLAP upregulation. The addition of naproxen to cultured chondrocytes revealed that FLAP and 5-LOX regulation by HNE required PGE2 production. Furthermore, our data showed that HNE significantly induced TGF-beta1 production. The addition of anti-TGF-beta1 antibody reduced HNE-induced 5-LOX and FLAP expression by 40%, indicating the partial involvement of a TGF-beta1-dependent mechanism. CONCLUSIONS Our data demonstrate that the shunt to the FLAP and 5-LOX pathway in HNE-induced human osteoarthritic chondrocytes is attributed to COX-2 and mPGES-1 inhibition, probably due to HNE depletion. PGE2 and TGF-beta1 are suggested to be involved in this regulation.
Collapse
Affiliation(s)
- Shu-Huang Chen
- Orthopaedic Research Laboratory, Hôpital du Sacré-Caeur de Montréal, Department of Surgery, University of Montreal, 5400 Gouin Blvd West, Montreal, QC H4J 1C5, Canada.
| | | | | | | |
Collapse
|
50
|
King A, Collins F, Klonisch T, Sallenave JM, Critchley H, Saunders P. An additive interaction between the NFkappaB and estrogen receptor signalling pathways in human endometrial epithelial cells. Hum Reprod 2010; 25:510-8. [PMID: 19955102 PMCID: PMC2806182 DOI: 10.1093/humrep/dep421] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human embryo implantation is regulated by estradiol (E2), progesterone and locally produced mediators including interleukin-1beta (IL-1beta). Interactions between the estrogen receptor (ER) and NF kappa B (NFkappaB) signalling pathways have been reported in other systems but have not been detailed in human endometrium. METHODS AND RESULTS Real-time PCR showed that mRNA for the p65 and p105 NFkappaB subunits is maximally expressed in endometrium from the putative implantation window. Both subunits are localized in the endometrial epithelium throughout the menstrual cycle. Reporter assays for estrogen response element (ERE) activity were used to examine functional interactions between ER and NFkappaB in telomerase immortalized endometrial epithelial cells (TERT-EEC). E2 and IL-1beta treatment of TERT-EECs enhances ERE activity by a NFkappaB and ER dependent mechanism; this effect could be mediated by ERalpha or ERbeta. E2 and IL-1beta also positively interact to increase endogenous gene expression of prostaglandin E synthase and c-myc. This is a gene-dependent action as there is no additive effect on cyclin D1 or progesterone receptor expression. CONCLUSION In summary, we have established that NFkappaB signalling proteins are expressed in normal endometrium and report that IL-1beta can enhance the actions of E2 in a cell line derived from healthy endometrium. This mechanism may allow IL-1beta, possibly from the developing embryo, to modulate the function of the endometrial epithelium to promote successful implantation, for example by regulating prostaglandin production. Aberrations in the interaction between the ER and NFkappaB signalling pathways may have a negative impact on implantation contributing to pathologies such as early pregnancy loss and infertility.
Collapse
Affiliation(s)
- A.E. King
- Reproductive & Developmental Sciences, University of Edinburgh, Edinburgh, UK
| | - F. Collins
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - T. Klonisch
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, Canada
| | - J.-M. Sallenave
- Universite Denis Diderot, Paris 7, France
- Unite de Defense Innee et Inflammation, INSERM U874, Batiment Metchnikoff, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex, France
| | - H.O.D. Critchley
- Reproductive & Developmental Sciences, University of Edinburgh, Edinburgh, UK
| | - P.T.K. Saunders
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|