1
|
Yang R, Han Z, Zhou W, Li X, Zhang X, Zhu L, Wang J, Li X, Zhang CL, Han Y, Li L, Liu S. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip. PeerJ 2024; 12:e17980. [PMID: 39308831 PMCID: PMC11416764 DOI: 10.7717/peerj.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objective By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Xuejiao Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xuechen Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lianrui Li
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| |
Collapse
|
2
|
Li Y, Li R, Luo X, Xu F, Yang M, Zheng L, Wu Q, Jiang W, Li Y. Vascular endothelial growth factor B regulates insulin secretion in β cells of type 2 diabetes mellitus mice via PLCγ and the IP3R‑evoked Ca2 +/CaMK2 signaling pathway. Mol Med Rep 2023; 28:197. [PMID: 37681454 PMCID: PMC10510031 DOI: 10.3892/mmr.2023.13084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Vascular endothelial growth factor B (VEGFB) plays a crucial role in glucolipid metabolism and is highly associated with type 2 diabetes mellitus (T2DM). The role of VEGFB in the insulin secretion of β cells remains unverified. Thus, the present study aimed to discuss the effect of VEGFB on regulating insulin secretion in T2DM development, and its underlying mechanism. A high‑fat diet and streptozocin (STZ) were used for inducing T2DM in mice model, and VEGFB gene in islet cells of T2DM mice was knocked out by CRISPR Cas9 and overexpressed by adeno‑Associated Virus (AAV) injection. The effect of VEGFB and its underlying mechanism was assessed by light microscopy, electron microscopy and fluorescence confocal microscopy, enzyme‑linked immunosorbent assay, mass spectrometer and western blot analysis. The decrement of insulin secretion in islet β cell of T2DM mice were aggravated and blood glucose remained at a high level after VEGFB knockout (KO). However, glucose tolerance and insulin sensitivity of T2DM mice were improved after the AAV‑VEGFB186 injection. VEGFB KO or overexpression can inhibit or activate PLCγ/IP3R in a VEGFR1‑dependent manner. Then, the change of PLCγ/IP3R caused by VEGFB/VEGFR1 will alter the expression of key factors on the Ca2+/CaMK2 signaling pathway such as PPP3CA. Moreover, VEGFB can cause altered insulin secretion by changing the calcium concentration in β cells of T2DM mice. These findings indicated that VEGFB activated the Ca2+/CaMK2 pathway via VEGFR1‑PLCγ and IP3R pathway to regulate insulin secretion, which provides new insight into the regulatory mechanism of abnormal insulin secretion in T2DM.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Rongrong Li
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xu Luo
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
- Department of Laboratory, Guiyang Centers for Disease Control and Prevention, Guiyang, Guizhou 550000, P.R. China
| | - Fang Xu
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Meizi Yang
- Department of Pharmacology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Lanhui Zheng
- The First School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Qihao Wu
- The First School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Wenguo Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Yana Li
- Department of Pathophysiology, School of Basic Medicine of Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
3
|
Geng Q, Kong Y, Li W, Zhang J, Ma H, Zhang Y, Da L, Zhao Y, Du H. Dynamic Phosphorylation of G9a Regulates its Repressive Activity on Chromatin Accessibility and Mitotic Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303224. [PMID: 37661576 PMCID: PMC10602519 DOI: 10.1002/advs.202303224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Indexed: 09/05/2023]
Abstract
Phosphorylation of Ser10 of histone H3 (H3S10p), together with the adjacent methylation of Lys9 (H3K9me), has been proposed to function as a 'phospho-methyl switch' to regulate mitotic chromatin architecture. Despite of immense understanding of the roles of H3S10 phosphorylation, how H3K9me2 are dynamically regulated during mitosis is poorly understood. Here, it is identified that Plk1 kinase phosphorylates the H3K9me1/2 methyltransferase G9a/EHMT2 at Thr1045 (pT1045) during early mitosis, which attenuates its catalytic activity toward H3K9me2. Cells bearing Thr1045 phosphomimic mutant of G9a (T1045E) show decreased H3K9me2 levels, increased chromatin accessibility, and delayed mitotic progression. By contrast, dephosphorylation of pT1045 during late mitosis by the protein phosphatase PPP2CB reactivates G9a activity and upregulates H3K9me2 levels, correlated with decreased levels of H3S10p. Therefore, the results provide a mechanistic explanation of the essential of a 'phospho-methyl switch' and highlight the importance of Plk1 and PPP2CB-mediated dynamic regulation of G9a activity in chromatin organization and mitotic progression.
Collapse
Affiliation(s)
- Qizhi Geng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| | - Yue‐Yu Kong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| | - Weizhe Li
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| | - Jianhao Zhang
- School of Life Sciences and BiotechnologyShanghai JiaoTong UniversityShanghai200240China
| | - Haoli Ma
- Hubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
| | - Yuhang Zhang
- School of Life Sciences and BiotechnologyShanghai JiaoTong UniversityShanghai200240China
| | - Lin‐Tai Da
- Shanghai Center for Systems BiomedicineShanghai JiaoTong UniversityShanghai200240China
| | - Yan Zhao
- Hubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityWuhan UniversityWuhan430071China
| | - Hai‐Ning Du
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesHubei Clinical Research Center of Emergency and ResuscitationEmergency Center of Zhongnan Hospital of Wuhan UniversityFrontier Science Center for Immunology and MetabolismRNA InstituteWuhan UniversityWuhan430072China
| |
Collapse
|
4
|
Sharma AK, Singh S, Singh H, Mahajan D, Kolli P, Mandadapu G, Kumar B, Kumar D, Kumar S, Jena MK. Deep Insight of the Pathophysiology of Gestational Diabetes Mellitus. Cells 2022; 11:2672. [PMID: 36078079 PMCID: PMC9455072 DOI: 10.3390/cells11172672] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a severe metabolic disorder, which consistently requires medical care and self-management to restrict complications, such as obesity, kidney damage and cardiovascular diseases. The subtype gestational diabetes mellitus (GDM) occurs during pregnancy, which severely affects both the mother and the growing foetus. Obesity, uncontrolled weight gain and advanced gestational age are the prominent risk factors for GDM, which lead to high rate of perinatal mortality and morbidity. In-depth understanding of the molecular mechanism involved in GDM will help researchers to design drugs for the optimal management of the condition without affecting the mother and foetus. This review article is focused on the molecular mechanism involved in the pathophysiology of GDM and the probable biomarkers, which can be helpful for the early diagnosis of the condition. The early diagnosis of the metabolic disorder, most preferably in first trimester of pregnancy, will lead to its effective long-term management, reducing foetal developmental complications and mortality along with safety measures for the mother.
Collapse
Affiliation(s)
- Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanjeev Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Himanshu Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
5
|
Extracellular Vesicles and Their miRNA Content in Amniotic and Tracheal Fluids of Fetuses with Severe Congenital Diaphragmatic Hernia Undergoing Fetal Intervention. Cells 2021; 10:cells10061493. [PMID: 34198576 PMCID: PMC8231823 DOI: 10.3390/cells10061493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) are at high risk of postnatal mortality due to lung hypoplasia and arterial pulmonary hypertension. In severe cases, prenatal intervention by fetal endoscopic tracheal occlusion (FETO) can improve survival by accelerating lung growth. However, postnatal mortality remains in the range of about 50% despite fetal treatment, and there is currently no clear explanation for this different clinical response to FETO. We evaluated the concentration of extracellular vesicles (EVs) and associated microRNA expression in amniotic and tracheal fluids of fetuses with CDH undergoing FETO, and we examined the association between molecular findings and postnatal survival. We observed a higher count of EVs in the amniotic fluid of non-survivors and in the tracheal fluid sampled in utero at the time of reversal of tracheal occlusion, suggesting a pro-inflammatory lung reactivity that is already established in utero and that could be associated with a worse postnatal clinical course. In addition, we observed differential regulation of four EV-enclosed miRNAs (miR-379-5p, miR-889-3p; miR-223-3p; miR-503-5p) in relation to postnatal survival, with target genes possibly involved in altered lung development. Future research should investigate molecular therapeutic agents targeting differentially regulated miRNAs to normalize their expression and potentially improve clinical outcomes.
Collapse
|
6
|
Leppo KA, Collins PA, Morgado KP, Silva AC, Thomas A, Rutigliano HM. Lymphocyte soluble factors from pregnant cows modulate mRNA transcript abundances encoding for proteins associated with trophoblast growth and development. Anim Reprod Sci 2021; 228:106747. [PMID: 33838589 DOI: 10.1016/j.anireprosci.2021.106747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
This study was conducted to determine whether T cell populations are responsible for modulating placental development during gestation in cattle. It was hypothesized that CD4+CD25+ and γ/δ+ T cells modulate gene expression, based on mRNA transcript abundances, and promote proliferation and survival of trophoblast cells. Peripheral blood was collected from cows at 160 to 180 days of gestation and non-pregnant cows, T cell populations CD8+, CD4+, CD4+CD25+, CD24+CD25-, and γ/δ+ T cells were isolated, cultured for 48 h, and supernatant was collected. Placental samples were digested, and trophoblast cells were cultured for 24 h. Trophoblast cells were cultured with 50 μL of T cell-conditioned media and 50 μL of fresh culture media for an additional 48 h. Samples in control wells were treated with unconditioned media. Trophoblast cell proliferation, apoptosis, and mRNA transcript assays were conducted. There was no effect of T cell population on trophoblast apoptosis rate, proliferation, and relative mRNA transcript abundances. The T cell supernatant from pregnant and non-pregnant cows induced greater apoptosis rates in trophoblast cells than unconditioned media. Trophoblast cells proliferated less when treated with T cell supernatant from pregnant compared to unconditioned medium and non-pregnant cows. Treatment with the T cell supernatant from pregnant cows resulted in larger abundances of BMP5, IGF1R, PAG10, FGF2, RSPO3 and TMED2 and also a lesser abundance of FGF2 mRNA transcript than non-pregnant group and unconditioned media treatments. Supernatant from T cell derived from pregnant cows modulates trophoblast mRNA transcript abundances differently from T cell supernatant of non-pregnant cows.
Collapse
Affiliation(s)
- Kelsy A Leppo
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Preston A Collins
- School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Kira P Morgado
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Ana C Silva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Aaron Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA; School of Veterinary Medicine, Utah State University, Logan, UT, USA.
| |
Collapse
|
7
|
Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes Genomics 2020; 42:893-899. [PMID: 32506265 DOI: 10.1007/s13258-020-00937-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Litter size is the most important reproductive trait which plays a crucial role in goat production. Therefore, improvement of litter size trait has been of increasing interest in goat industry as small improvement in litter size may lead to large profit. The recent Cashmere goat breeding program produced a high-reproductive genetic line of Arbas Cashmere goat. But the genetic mechanism of high reproduction rate remains largely unknown in this Chinese native goat breed. To address this question, we performed a genome-wide association studies (GWAS) using two groups of goats varying in fecundity. OBJECTIVES Our study was aimed to investigate the significant SNPs and genes associated with high reproduction trait in Inner Mongolia Arbas Cashmere Goat. METHODS We used logistic model association to perform GWAS using 47 goats from high fecundity group (~ 190%) and 314 goats from low fecundity group (~ 130%) of the Arbas Cashmere goat breed. RESULTS We identified 66 genomic regions associated with genome wide significant level wherein six loci were found to be associated with reproduction traits. Further analysis showed that five key candidate genes including KISS1, KHDRBS2, WNT10B, SETDB2 and PPP3CA genes are involved in goat fecundity trait. Gene ontology enrichment analysis revealed that several biological pathways could be involved in the variation of fecundity in female goats. CONCLUSIONS The identified significant SNPs or genes provide useful information about the underlying genetic control of fecundity trait which will be helpful to use them in goat breeding programs for improving the reproductive efficiency of goats.
Collapse
|
8
|
E GX, Zhao YJ, Huang YF. Selection signatures of litter size in Dazu black goats based on a whole genome sequencing mixed pools strategy. Mol Biol Rep 2019; 46:5517-5523. [DOI: 10.1007/s11033-019-04904-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
|
9
|
Bian Y, Li Y, Shrestha G, Wen X, Cai B, Wang K, Wan X. ITE, an endogenous aryl hydrocarbon receptor ligand, suppresses endometrial cancer cell proliferation and migration. Toxicology 2019; 421:1-8. [PMID: 30953668 DOI: 10.1016/j.tox.2019.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/16/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Identification of new molecular targets for the treatment of endometrial cancer (EC) is an important clinical goal, especially for the patients which were resistant to conventional therapies. The aryl hydrocarbon receptor (AhR) is a ligand- activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, thus may be a potential anticancer target. In this study, we investigated if the endogenous AhR ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) regulated proliferation and migration of EC cells via AhR. METHODS We used quantitative real-time PCR and western blot to assess the expression of AhR in EC tissues and paired adjacent normal tissues. In addition, we conducted transwell assay to test whether the treatment of ITE altered the locomotive potential and proliferation of EC cells. Next, we conducted mouse xenograft models to further explore the in vivo effect of ITE. RESULTS We found that the AhR protein and RNA levels were increased mildly in EC tissues relative to the para-tumor normal endometrial tissues. Besides, ITE suppressed EC cells proliferation and migration in vitro, and also suppressed EC cells xenograft growth in mice. CONCLUSIONS Our results strongly supported the possibility of using the ITE as a small molecular compound for the treatment of EC.
Collapse
Affiliation(s)
- Yiding Bian
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Garima Shrestha
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaoli Wen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Bailian Cai
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, PR China.
| |
Collapse
|
10
|
Zou QY, Zhao YJ, Zhou C, Liu AX, Zhong XQ, Yan Q, Li Y, Yi FX, Bird IM, Zheng J. G Protein α Subunit 14 Mediates Fibroblast Growth Factor 2-Induced Cellular Responses in Human Endothelial Cells. J Cell Physiol 2018; 234:10184-10195. [PMID: 30387149 DOI: 10.1002/jcp.27688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
During pregnancy, a tremendous increase in fetoplacental angiogenesis is associated with elevated blood flow. Aberrant fetoplacental vascular function may lead to pregnancy complications including pre-eclampsia. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental endothelial function. G protein α subunit 14 (GNA14), a member of Gαq/11 subfamily is involved in mediating hypertensive diseases and tumor vascularization. However, little is known about roles of GNA14 in mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using human umbilical vein endothelial cells (HUVECs) cultured under physiological chronic low oxygen (3% O2 ) as a cell model, we show that transfecting cells with adenovirus carrying GNA14 complementary DNA (cDNA; Ad-GNA14) increases (p < 0.05) protein expression of GNA14. GNA14 overexpression blocks (p < 0.05) FGF2-stimulated endothelial migration, whereas it enhances (p < 0.05) endothelial monolayer integrity (maximum increase of ~35% over the control at 24 hr) in response to FGF2. In contrast, GNA14 overexpression does not significantly alter VEGFA-stimulated cell migration, VEGFA-weakened cell monolayer integrity, and intracellular Ca++ mobilization in response to adenosine triphosphate (ATP), FGF2, and VEGFA. GNA14 overexpression does not alter either FGF2- or VEGFA-induced phosphorylation of ERK1/2. However, GNA14 overexpression time-dependently elevates (p < 0.05) phosphorylation of phospholipase C-β3 (PLCβ3) at S1105 in response to FGF2, but not VEGFA. These data suggest that GNA14 distinctively mediates fetoplacental endothelial cell migration and permeability in response to FGF2 and VEGFA, possibly in part by altering activation of PLCβ3 under physiological chronic low oxygen.
Collapse
Affiliation(s)
- Qing-Yun Zou
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ying-Jie Zhao
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ai-Xia Liu
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Reproductive Endocrinology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Qi Zhong
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qin Yan
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fu-Xian Yi
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian M Bird
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Zou Q, Zhao Y, Li H, Wang X, Liu A, Zhong X, Yan Q, Li Y, Zhou C, Zheng J. GNA11 differentially mediates fibroblast growth factor 2- and vascular endothelial growth factor A-induced cellular responses in human fetoplacental endothelial cells. J Physiol 2018; 596:2333-2344. [PMID: 29659033 PMCID: PMC6002203 DOI: 10.1113/jp275677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Fetoplacental vascular growth is critical to fetal growth. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are two major regulators of fetoplacental vascular growth. G protein α subunit 11 (GNA11) transmits signals from many external stimuli to the cellular interior and may mediate endothelial function. It is not known whether GNA11 mediates FGF2- and VEGFA-induced endothelial cell responses under physiological chronic low O2 . In the present study, we show that knockdown of GNA11 significantly decreases FGF2- and VEGFA-induced fetoplacental endothelial cell migration but not proliferation and permeability. Such decreases in endothelial migration are associated with increased phosphorylation of phospholipase C-β3. The results of the present study suggest differential roles of GNA11 with respect to mediating FGF2- and VEGFA-induced fetoplacental endothelial function. ABSTRACT During pregnancy, fetoplacental angiogenesis is dramatically increased in association with rapidly elevated blood flow. Any disruption of fetoplacental angiogenesis may lead to pregnancy complications such as intrauterine growth restriction. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental angiogenesis. G protein α subunits q (GNAq) and 11 (GNA11) are two members of the Gαq/11 subfamily involved in mediating vascular growth and basal blood pressure. However, little is known about the roles of GNA11 alone with respect to mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using a cell model of human umbilical cord vein endothelial cells cultured under physiological chronic low O2 (3% O2 ), we showed that GNA11 small interfering RNA (siRNA) dramatically inhibited (P < 0.05) FGF2- and VEGFA-stimulated fetoplacental endothelial migration (by ∼36% and ∼50%, respectively) but not proliferation and permeability. GNA11 siRNA also elevated (P < 0.05) FGF2- and VEGFA-induced phosphorylation of phospholipase C-β3 (PLCβ3) at S537 in a time-dependent fashion but not mitogen-activated protein kinase 3/1 (ERK1/2) and v-akt murine thymoma viral oncogene homologue 1 (AKT1). These data suggest that GNA11 mediates FGF2- and VEGFA-stimulated fetoplacental endothelial cell migration partially via altering the activation of PLCβ3.
Collapse
Affiliation(s)
- Qing‐yun Zou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Ying‐jie Zhao
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology, Qilu HospitalShandong UniversityJinanShandongChina
| | - Hua Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology and ImmunologyAffiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Xiang‐zhen Wang
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Obstetrics and GynecologyNanshan District Maternal and Child Healthcare HospitalShenzhenGuangdongChina
| | - Ai‐xia Liu
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Reproductive EndocrinologyZhejiang UniversityHangzhouZhejiangChina
| | - Xin‐qi Zhong
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Pediatrics3rd Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Qin Yan
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Yan Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chi Zhou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jing Zheng
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Cardiovascular Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
12
|
Tian FY, Wang XM, Xie C, Zhao B, Niu Z, Fan L, Hivert MF, Chen WQ. Placental surface area mediates the association between FGFR2 methylation in placenta and full-term low birth weight in girls. Clin Epigenetics 2018; 10:39. [PMID: 29588807 PMCID: PMC5863829 DOI: 10.1186/s13148-018-0472-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Background Fibroblast growth factor receptor 2 (FGFR2) gene encodes a protein of the fibroblast growth factor receptor family. FGFR2 gene expression is associated with the regulation of implantation process of placenta which plays a vital role in fetal growth. DNA methylation is widely known as a mechanism of fetal growth. However, it is unclear whether and how DNA methylation of FGFR2 gene in the placenta is associated with full-term low birth weight. This case-control study aims to explore the links between FGFR2 methylation in placenta and full-term low birth weight and to further examine the mediation effect of placental surface area on this association. Results We conducted analyses for each of the five valid CpG sites at FGFR2 in 165 mother-baby pairs (86 FT-LBW vs. 79 FT-NBW) and found that per one standard deviation increase in the DNA methylation of CpG 11 at FGFR2 was associated with 1.64-fold higher risk of full-term low birth weight (OR = 1.64, 95% CI = [1.07, 2.52]) and 0.18 standard deviation decrease in placental surface area (β = - 0.18; standard error = 0.08, p = 0.02). The mediation effect of placental surface area on the association between DNA methylation and full-term low birth weight was significant in girls (OR = 1.38, 95% CI = [1.05, 1.80]) but not in boys. The estimated mediation proportion was 48.38%. Conclusion Our findings suggested that placental surface area mediated the association between DNA methylation of FGFR2 in placenta and full-term low birth weight in a sex-specific manner. Our study supported the importance of placental epigenetic changes in placental development and fetal growth.
Collapse
Affiliation(s)
- Fu-Ying Tian
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China
| | - Xi-Meng Wang
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China
| | - Chuanbo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Zhao
- 3Children's Hospital Boston and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Zhongzheng Niu
- 4Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 265 Farber Hall, Buffalo, NY 14214 USA
| | - Lijun Fan
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China
| | - Marie-France Hivert
- 5Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, 401 Park Drive, Suite 401, Boston, MA USA.,6Diabetes Center, Massachusetts General Hospital, 50 Staniford Street, Boston, MA USA.,7Department of Medicine, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, Québec Canada.,8Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, 3001 12th Avenue North, wing 9, door 6, Sherbrooke, Québec Canada
| | - Wei-Qing Chen
- 1Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Room 715, 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong China.,9Department of Information Management, Xinhua College, Sun Yat-sen University, Guangzhou, Guangdong China
| |
Collapse
|
13
|
Li H, Yao J, Chang X, Wu J, Duan T, Wang K. LIFR increases the release of soluble endoglin via the upregulation of MMP14 expression in preeclampsia. Reproduction 2018; 155:297-306. [PMID: 29363569 DOI: 10.1530/rep-17-0732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific disorder that is the main cause of maternal and perinatal morbidity and mortality worldwide. Inadequate trophoblastic invasion and endothelial dysfunction in the placenta are considered the foundation of the pathogenesis of preeclampsia in which soluble endoglin (sENG) plays an antiangiogenic role in the development of PE. The leukemia inhibitory factor receptor (LIFR) has been widely studied and is highly involved in arterial injury in vivo and in the migration of cancer cells in vitro Here, we tested the hypothesis that LIFR may be correlated with preeclampsia through its regulation of the release of sENG. Our data showed that LIFR protein, the expression of which significantly decreased with the progression of pregnancy, was located in the syncytiotrophoblast and cytotrophoblast. The LIFR protein level was increased in pregnancies with preeclampsia compared with normotensive full-term pregnancies. After the overexpression of LIFR in HTR8/SVneo cells, the release of sENG as well as the migration and invasion were significantly enhanced. Moreover, we also observed that LIFR induced the expression of matrix metalloproteinase14 (MMP14) and that the knockdown or inhibition of MMP14 decreased the release of sENG, as well as increased the LIFR-induced migration and invasion of HTR8/SVneo cells. These studies demonstrated that LIFR promoted the release of sENG through MMP14 in vitro, which indicates that LIFR may be involved in the development of preeclampsia.
Collapse
Affiliation(s)
- Hua Li
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Julei Yao
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xinwen Chang
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinting Wu
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Duan
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China .,Department of ObstetricsShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kai Wang
- Clinical and Translational Research CenterShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Mohindra V, Tripathi RK, Singh A, Patangia R, Singh RK, Lal KK, Jena JK. Hypoxic stress -responsive genes in air breathing catfish, Clarias magur (Hamilton 1822) and their possible physiological adaptive function. FISH & SHELLFISH IMMUNOLOGY 2016; 59:46-56. [PMID: 27742587 DOI: 10.1016/j.fsi.2016.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
The Indian catfish, Clarias magur (previous name C. batrachus) is an air breathing fish, inhabitant of aquatic bodies characterized by low dissolved oxygen levels. It is exposed to hypoxic conditions in its natural habitat. Thus, it can be useful model to study the mechanism of hypoxia stress tolerance. In C. magur, molecular processes facilitating its adaptation to hypoxia stress remain largely unexplored, in part due to unavailability of genomic resources. The suppression subtractive hybridization technique (SSH) was employed to compare the differential expression of transcripts under experimental hypoxic conditions, to that of normoxic conditions. Twelve subtracted cDNA libraries (six each forward and reverse) were constructed from brain, heart, liver, muscle, spleen and head kidney tissues. A total of 2020 clones were screened and sequenced, resulting into 1805 high quality expressed sequence tags (ESTs). Annotation of these differentially expressed ESTs resulted into the identification of genes involved in vast majority of pathways/processes affecting metabolism, cellular processes, signal transduction and/or immune functions. Additionally, 18 potential novel genes expressed in hypoxia stress exposed fish were also identified. The study had catalogued the differentially expressed genes from hypoxia stress induced C. magur, where most of them are reported for the first time in a hypoxia-tolerant fish species. The results not only provided insights for the hypoxia stress altered cellular functions in C. magur, but also generated a valuable functional genomics resource to assist targeted studies on functional genomics and future genome projects.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India.
| | - Ratnesh Kumar Tripathi
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| | - Akanksha Singh
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| | - Ruchi Patangia
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| | - Rajeev Kumar Singh
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| | - Kuldeep Kumar Lal
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| | - Joy Krushna Jena
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
15
|
Lv L, Huang W, Zhang J, Shi Y, Zhang L. Altered microRNA expression in stenoses of native arteriovenous fistulas in hemodialysis patients. J Vasc Surg 2014; 63:1034-43.e3. [PMID: 25498192 DOI: 10.1016/j.jvs.2014.10.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/11/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Arteriovenous fistula (AVF) disfunction is largely due to venous stenosis characterized by a marked amount of intima-media hyperplasia. However, the molecular mechanisms are currently poorly understood. MicroRNAs (miRNAs), small noncoding RNAs that are post-transcriptional regulators of gene expression, could provide insights into a mechanism for the differential expression of genes in stenotic AVFs. METHODS A microarray study was done to detect differences in miRNA levels between stenotic AVF (n = 8) and controls (n = 4). Real-time quantitative reverse-transcription polymerase chain reaction assays with 12 stenotic AVF veins and eight control veins from predialytic patients were used for verification. Putative gene targets were retrieved from miRNA target prediction databases. Networks from the target gene set were created and examined. Western blotting and immunohistochemical staining were performed to confirm the bioinformatic findings. RESULTS A microarray study identified 33 miRNAs with markedly different expression levels between stenotic AVFs and control veins. Among them, nine miRNAs were upregulated and 24 miRNAs were downregulated in the stenotic AVFs. Real-time reverse-transcription polymerase chain reaction confirmed statistically consistent expression of six selected miRNAs with microarray analysis. The predicted miRNA target genes differentially expressed in stenotic AVF based on databases were identified. The mitogen-activated protein kinase signaling pathway might be regulated by miRNAs according to bioinformatic analyses and further confirmed by Western blotting and immunohistochemical staining. CONCLUSIONS Our genome-wide approach identified several differentially expressed miRNAs in stenotic AVFs. This study also suggested that the mitogen-activated protein kinase signaling pathway might play a role in the pathogenesis of stenotic AVF.
Collapse
Affiliation(s)
- Lei Lv
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weibin Huang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Vascular Surgery, The First People's Hospital of Changzhou, Changzhou, China
| | - Jiwei Zhang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxue Shi
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Zhang
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Jiang YZ, Li Y, Wang K, Dai CF, Huang SA, Chen DB, Zheng J. Distinct roles of HIF1A in endothelial adaptations to physiological and ambient oxygen. Mol Cell Endocrinol 2014; 391:60-7. [PMID: 24796659 PMCID: PMC4079002 DOI: 10.1016/j.mce.2014.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 04/15/2014] [Indexed: 01/01/2023]
Abstract
Fetoplacental endothelial cells reside under physiological normoxic conditions (∼2-8% O2) in vivo. Under such conditions, cells are believed to sense O2 changes primarily via hypoxia inducible factor 1 α (HIF1A). However, little is known regarding the role of HIF1A in fetoplacental endothelial function under physiological normoxia. We recently reported that physiological chronic normoxia (PCN; 20-25 day, 3% O2) enhanced FGF2- and VEGFA-stimulated proliferation and migration of human umbilical vein endothelial cells (HUVECs) via the MEK/ERK1/2 and PI3K/AKT1 pathways compared to standard cell culture normoxia (SCN; ambient O2: ∼21% O2). Here, we investigated the action of HIF1A in regulating these cellular responses in HUVECs. HIF1A adenovirus infection in SCN-cells increased HIF1A protein expression, enhanced FGF2- and VEGFA-stimulated cell proliferation by 2.4 and 2.0-fold respectively, and promoted VEGFA-stimulated cell migration by 1.4-fold. HIF1A adenovirus infection in SCN-cells did not affect either basal or FGF2- and VEGFA-induced ERK1/2 activation, but it decreased basal AKT1 phosphorylation. Interestingly, HIF1A knockdown in PCN-cells via specific HIF1A siRNA transfection did not alter FGF2- and VEGFA-stimulated cell proliferation and migration, or ERK1/2 activation; however, it inhibited FGF2-induced AKT1 activation by ∼50%. These data indicate that HIF1A differentially regulates cell proliferation and migration, and ERK1/2 and AKT1 activation in PCN- and SCN-HUVECs. These data also suggest that HIF1A critically regulates cell proliferation and migration in SCN-, but not in PCN-HUVECs.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China
| | - Cai-Feng Dai
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Shi-An Huang
- Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China
| | - Dong-Bao Chen
- Department of Obstetrics and Gynecology, University of California, Irvine, CA 92697, United States; Department of Pathology, University of California, Irvine, CA 92697, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States; Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China.
| |
Collapse
|
17
|
Wang K, Li Y, Jiang YZ, Dai CF, Patankar MS, Song JS, Zheng J. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer Lett 2013; 340:63-71. [PMID: 23851185 DOI: 10.1016/j.canlet.2013.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China.,Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yi-Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Cai-Feng Dai
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Jia-Sheng Song
- AhR Pharmaceuticals, Inc., Madison, WI 53719, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China
| |
Collapse
|
18
|
Zekri ARN, Hassan ZK, Bahnassy AA, Sherif GM, ELdahshan D, Abouelhoda M, Ali A, Hafez MM. Molecular prognostic profile of Egyptian HCC cases infected with hepatitis C virus. Asian Pac J Cancer Prev 2013; 13:5433-8. [PMID: 23317196 DOI: 10.7314/apjcp.2012.13.11.5433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common and aggressive malignancy. Despite of the improvements in its treatment, HCC prognosis remains poor due to its recurrence after resection. This study provides complete genetic profile for Egyptian HCC. Genome-wide analyses were performed to identify the predictive signatures. PATIENTS AND METHODS Liver tissue was collected from 31 patients with diagnosis of HCC and gene expression levels in the tumours and their adjacent non-neoplastic tissues samples were studied by analyzing changes by microarray then correlate these with the clinico-pathological parameters. Genes were validated in an independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progression to mitosis; unregulated DNA damage check-points, and apoptosis. RESULT Nine hundred fifty eight transcripts out of the 25,000 studied cDNAs were differentially expressed; 503 were up-regulated and 455 were down-regulated. A total of 19 pathways were up-regulated through 27 genes and 13 pathways were down-regulated through 19 genes. Thirty-seven genes showed significant differences in their expression between HCC cases with high and low Alpha Feto Protein (AFP≥600 IU/ml). The validation for the microarray was done by real time PCR assay in which PPP3CA, ATG-5, BACE genes showed down-regulation and ABCG2, RXRA, ELOVL2, CXR3 genes showed up-regulation. cDNA microarrays showed that among the major upregulated genes in HCC are sets. CONCLUSION The identified genes could provide a panel of new diagnostic and prognostic aids for HCC.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang YZ, Wang K, Li Y, Dai CF, Wang P, Kendziorski C, Chen DB, Zheng J. Transcriptional and functional adaptations of human endothelial cells to physiological chronic low oxygen. Biol Reprod 2013; 88:114. [PMID: 23536375 DOI: 10.1095/biolreprod.113.108225] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Endothelial cells chronically reside in low-O2 environments in vivo (2%-13% O2), which are believed to be critical for cell homeostasis. To elucidate the roles of this physiological chronic normoxia in human endothelial cells, we examined transcriptomes of human umbilical vein endothelial cells (HUVECs), proliferation and migration of HUVECs in response to fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA), and underlying signaling mechanisms under physiological chronic normoxia. Immediately after isolation, HUVECs were cultured steadily under standard cell culture normoxia (SCN; 21% O2) or physiological chronic normoxia (PCN; 3% O2) up to 25 days. We found that PCN up-regulated 41 genes and down-regulated 21 genes, 90% of which differed from those previously reported from HUVECs cultured under SCN and exposed to acute low O2. Gene ontology analysis indicated that PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from benchtop assays that showed that PCN significantly enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. Interestingly, preexposing the PCN cells to 21% O2 up to 5 days did not completely diminish PCN-enhanced cell proliferation and migration. These PCN-enhanced cell proliferations and migrations were mediated via augmented activation of MEK1/MEK2/ERK1/ERK2 and/or PI3K/AKT1. Importantly, these PCN-enhanced cellular responses were associated with an increase in activation of VEGFR2 but not FGFR1, without altering their expression. Thus, PCN programs endothelial cells to undergo dramatic changes in transcriptomes and sensitizes cellular proliferative and migratory responses to FGF2 and VEGFA. These PCN cells may offer a unique endothelial model, more closely mimicking the in vivo states.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tripathi LP, Kambara H, Moriishi K, Morita E, Abe T, Mori Y, Chen YA, Matsuura Y, Mizuguchi K. Proteomic analysis of hepatitis C virus (HCV) core protein transfection and host regulator PA28γ knockout in HCV pathogenesis: a network-based study. J Proteome Res 2012; 11:3664-79. [PMID: 22646850 DOI: 10.1021/pr300121a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) causes chronic liver disease worldwide. HCV Core protein (Core) forms the viral capsid and is crucial for HCV pathogenesis and HCV-induced hepatocellular carcinoma, through its interaction with the host factor proteasome activator PA28γ. Here, using BD-PowerBlot high-throughput Western array, we attempt to further investigate HCV pathogenesis by comparing the protein levels in liver samples from Core-transgenic mice with or without the knockout of PA28γ expression (abbreviated PA28γ(-/-)CoreTG and CoreTG, respectively) against the wild-type (WT). The differentially expressed proteins integrated into the human interactome were shown to participate in compact and well-connected cellular networks. Functional analysis of the interaction networks using a newly developed data warehouse system highlighted cellular pathways associated with vesicular transport, immune system, cellular adhesion, and cell growth and death among others that were prominently influenced by Core and PA28γ in HCV infection. Follow-up assays with in vitro HCV cell culture systems validated VTI1A, a vesicular transport associated factor, which was upregulated in CoreTG but not in PA28γ(-/-)CoreTG, as a novel regulator of HCV release but not replication. Our analysis provided novel insights into the Core-PA28γ interplay in HCV pathogenesis and identified potential targets for better anti-HCV therapy and potentially novel biomarkers of HCV infection.
Collapse
Affiliation(s)
- Lokesh P Tripathi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki, Osaka, 567-0085, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
During normal pregnancy, dramatically increased placental blood flow is critical for fetal growth and survival as well as neonatal birth weights and survivability. This increased blood flow results from angiogenesis, vasodilatation, and vascular remodeling. Locally produced growth factors including fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are key regulators of placental endothelial functions including cell proliferation, migration, and vasodilatation. However, the precise signaling mechanisms underlying such regulation in fetoplacental endothelium are less well defined, specifically with regard to the interactions amongst protein kinases (PKs), protein phosphatase, and nitric oxide (NO). Recently, we and other researchers have obtained solid evidence showing that different signaling mechanisms participate in FGF2- and VEGFA-regulated fetoplacental endothelial cell proliferation and migration as well as NO production. This review will briefly summarize currently available data on signaling mediating fetoplacental angiogenesis with a specific emphasis on PKs, ERK1/2, AKT1, and p38 MAPK and protein phosphatases, PPP2 and PPP3.
Collapse
Affiliation(s)
- Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715
- Address correspondence and reprint requests to: Jing Zheng, Ph.D., Departments of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, PAB1 Meriter Hospital, 202 S Park St., Madison, WI 53715. Phone: (608) 417-6314 Fax: (608) 257-1304.
| |
Collapse
|
22
|
Dai CF, Jiang YZ, Li Y, Wang K, Liu PS, Patankar MS, Zheng J. Expression and roles of Slit/Robo in human ovarian cancer. Histochem Cell Biol 2011; 135:475-85. [PMID: 21465248 PMCID: PMC3280508 DOI: 10.1007/s00418-011-0806-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2011] [Indexed: 02/07/2023]
Abstract
The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Cai Feng Dai
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People’s Republic of China
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Yi Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Kai Wang
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Pei Shu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| |
Collapse
|
23
|
Xiao R, Power RF, Mallonee D, Crowdus C, Brennan KM, Ao T, Pierce JL, Dawson KA. A comparative transcriptomic study of vitamin E and an algae-based antioxidant as antioxidative agents: investigation of replacing vitamin E with the algae-based antioxidant in broiler diets. Poult Sci 2011; 90:136-46. [PMID: 21177453 DOI: 10.3382/ps.2010-01018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous study indicated that inclusion of an algae-based antioxidant as an antioxidative agent [EconomasE, Alltech, Nicholasville, KY; EcoE] significantly reduced the amount of vitamin E (VE) required in broiler diets without compromising performance and meat quality. To assess the mechanisms related to the VE-saving activity of EcoE, as well as other potential functions related to EcoE and VE supplementation, we analyzed gene expression profiles of breast muscle from broilers fed a control diet, the control diet + 50 IU of VE/kg, the control diet + 100 IU of VE/kg, or the control diet + 200 g of EcoE/ton. Evaluation of the serum antioxidant capacity indicated that dietary supplementation of either a high level of VE (50 or 100 IU of VE/kg) or EcoE significantly improved bird antioxidant status. Analysis of gene expression profiles indicated that expression of 542 genes of the breast muscle were altered (P < 0.05, fold change >1.2) by dietary treatments, of which a significant part were commonly regulated by EcoE and VE (especially the control diet + 50 IU of VE/kg). In addition to the process of cellular oxidation, gene ontology analysis indicated the involvement of EcoE and VE on cell morphology, skeletal and muscular system development and function, immune response, and multiple metabolic processes, including lipid, carbohydrate, and drug metabolism. Results of this experiment indicate that the biological roles of high VE, including its activity as an antioxidant, can be greatly mimicked at the transcriptional level by EcoE, and they suggest a relationship of functional redundancy between VE and EcoE in the broiler diets.
Collapse
Affiliation(s)
- R Xiao
- Center for Animal Nutrigenomics and Applied Animal Nutrition, Alltech, Nicholasville, KY 40356, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li SM, Zeng LW, Feng L, Chen DB. Rac1-dependent intracellular superoxide formation mediates vascular endothelial growth factor-induced placental angiogenesis in vitro. Endocrinology 2010; 151:5315-25. [PMID: 20844008 PMCID: PMC2954717 DOI: 10.1210/en.2010-0178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vascular endothelial growth factor (VEGF) is one of the best characterized angiogenic factors controlling placental angiogenesis; however, how VEGF regulates placental angiogenesis has not yet completely understood. In this study, we found that all the components of assembling a functional NADPH oxidase (NOX2, p22(phox), p47(phox), p67(phox), and Rac1) are expressed in ovine fetoplacental artery endothelial cells (oFPAECs) in vitro and ex vivo. Treatment with VEGF (10 ng/ml) rapidly and transiently activated Rac1 in oFPAECs in vitro and increased Rac1 association with p67(phox) in 5 min. Intracellular superoxide formation began to significantly increase after 25-30 min of VEGF stimulation, which was mediated by both VEGFR1 and VEGFR2. VEGF also stimulated oFPAE cell proliferation and migration and enhanced the formation of tube-like structures on Matrigel matrix. In oFAPEC transfected with specific Rac1 small interfering RNA (siRNA, 40 nm), VEGF-induced intracellular superoxide formation was completely abrogated in association with a 78% reduction of endogenous Rac1. In oFPAE cells transfected with the specific Rac1 siRNA, but not with transfection reagent alone or scrambled control siRNA, VEGF-induced cell proliferation, migration, and tube-like structure formation were dramatically inhibited. Pretreatment of an NADPH oxidase inhibitor apocynin also abrogates the VEGF-stimulated intracellular superoxide production and DNA synthesis in oFPAECs. Taken together, our results demonstrated that a Rac1/Nox2-based NADPH oxidase system is present in placental endothelial cells. This NADPH oxidase system appears to generate the second messenger superoxide that plays a critical role in the signaling control of the VEGF-induced placental angiogenesis.
Collapse
Affiliation(s)
- Su-min Li
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
25
|
Wang K, Jiang YZ, Chen DB, Zheng J. Hypoxia enhances FGF2- and VEGF-stimulated human placental artery endothelial cell proliferation: roles of MEK1/2/ERK1/2 and PI3K/AKT1 pathways. Placenta 2009; 30:1045-51. [PMID: 19892399 DOI: 10.1016/j.placenta.2009.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 12/22/2022]
Abstract
Placental development occurs under a low oxygen (2-8% O(2)) environment, which is critical for placental development and angiogenesis. In this study, we examined if hypoxia affected fibroblast growth factor-2 (FGF2)- and vascular endothelial growth factor (VEGF)-stimulated cell proliferation via the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinases 1/2 (ERK1/2) and phosphatidylinositol-3 kinase (PI3K)/v-akt murine thymomaviral oncogene homologue (AKT1) pathways in human placental artery endothelial (HPAE) cells. We observed that under normoxia (approximately 20% O(2)), FGF2 and VEGF dose-dependently stimulated cell proliferation. Hypoxia (3% O(2)) significantly promoted FGF2- and VEGF-stimulated cell proliferation as compared to normoxia. Under both normoxia and hypoxia, FGF2 rapidly induced ERK1/2 and AKT1 phosphorylation, while VEGF-induced ERK1/2, but not AKT1 phosphorylation. However, hypoxia did not significantly alter FGF2- and VEGF-induced ERK1/2 and AKT1 phosphorylation as compared to normoxia. PD98059 (a MEK1/2 inhibitor) at 20microM and LY294002 (a PI3K inhibitor) at 5microM attenuated FGF2- and VEGF-induced phosphorylation of ERK1/2 and AKT1, respectively. PD98059, even at doses that drastically inhibited FGF2-induced ERK1/2 phosphorylation (20microM) and caused cell loss (40microM), did not affect FGF2-stimulated cell proliferation, which was confirmed by U0126 (another potent MEK1/2 inhibitor). PD98059, however, dose-dependently inhibited VEGF-stimulated cell proliferation. Conversely, LY294002 dose-dependently inhibited FGF2-, but not VEGF-stimulated cell proliferation. These data suggest that in the MEK1/2/ERK1/2 and PI3K/AKT1 pathways differentially mediate FGF2- and VEGF-stimulated HPAE cell proliferation. These results also indicate that hypoxia promotes FGF2- and VEGF-stimulated cell proliferation without further activation of the PI3K/AKT1 and MEK1/2/ERK1/2, respectively.
Collapse
Affiliation(s)
- K Wang
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, USA
| | | | | | | |
Collapse
|
26
|
Song Y, Wang K, Chen DB, Magness RR, Zheng J. Suppression of protein phosphatase 2 differentially modulates VEGF- and FGF2-induced signaling in ovine fetoplacental artery endothelial cells. Placenta 2009; 30:907-13. [PMID: 19692121 DOI: 10.1016/j.placenta.2009.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) elicit cellular responses via activation of protein kinases and phosphatases. We have reported that the MEK1/2/ERK1/2 and PI3K/AKT1 pathways are critical for VEGF- and FGF2-stimulated ovine fetoplacental artery endothelial (OFPAE) cell proliferation. We have also shown that protein phosphatase 3 (PPP3) differentially modulates VEGF- and FGF2-stimulated cell proliferation and activation of ERK1/2 and AKT1 in OFPAE cells. Herein, we investigated if protein phosphatase 2 (PPP2) modulated VEGF- and FGF2-induced ERK1/2, AKT1, and p38 MAPK activation and VEGF- and FGF2-stimulated cell proliferation in OFPAE cells. Small interfering RNA (siRNA) specifically targeting human PPP2CA catalytic subunit alpha (PPP2CA) was used to suppress PPP2CA expression in OFPAE cells. When compared with scrambled siRNA, PPP2CA siRNA decreased (p<0.05) PPP2CA protein levels (approximately 70%) and activity (approximately 50%) without altering protein levels of PPP3 catalytic subunit alpha (PPP3CA), nitric oxide synthase 3 (NOS3), ERK1/2, AKT1, and p38 MAPK. FGF2, but not VEGF rapidly (< or =5 min) induced p38 MAPK phosphorylation. Suppression of PPP2CA enhanced (p<0.05) VEGF-induced AKT1, but not ERK1/2 phosphorylation, whereas inhibited (p<0.05) FGF2-induced ERK1/2 and p38 MAPK and slightly attenuated FGF2-induced AKT1 phosphorylation. Suppression of PPP2CA did not significantly affect VEGF- and FGF2-stimulated OFPAE cell proliferation. Thus, suppression of PPP2CA alone differentially modulated VEGF- and FGF2-induced ERK1/2, AKT1, and p38 MAPK activation, without altering VEGF- and FGF2-stimulated cell proliferation in OFPAE cells. These data also suggest that signaling molecules other than ERK1/2, AKT1, and p38 MAPK are important mediators for VEGF- and FGF2-stimulated OFPAE cell proliferation after PPP2CA suppression.
Collapse
Affiliation(s)
- Y Song
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, USA
| | | | | | | | | |
Collapse
|