1
|
Mogus JP, Marin M, Arowolo O, Salemme V, Suvorov A. Developmental exposures to common environmental pollutants result in long-term Reprogramming of hypothalamic-pituitary axis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124890. [PMID: 39236844 DOI: 10.1016/j.envpol.2024.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Humans are exposed to a range of endocrine disrupting chemicals (EDCs). Many studies demonstrate that exposures to EDCs during critical windows of development can permanently affect endocrine health outcomes. Most experimental studies address changes in secretion of hormones produced by gonads, thyroid gland and adrenals, and little is known about the ability of EDCs to produce long-term changes in the hypothalamic-pituitary (HP) control axes. Here, we examined the long-term effects of three common EDCs on male mouse HP gene expression, following developmental exposures. Pregnant mice were exposed to 0.2 mg/ml solutions of bisphenol S (BPS), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or 3,3',5,5'-tetrabromobisphenol A (TBBPA) from pregnancy day 8 through lactation day 21 (weaning day). Male offspring were left untreated until postnatal day 140, where pituitaries and hypothalami were collected. Pituitaries were assed for gene expression via RNA sequencing, while specific genes were assessed for expression in hypothalami via RT-qPCR. Differential expression, as well as gene enrichment and pathway analysis, indicated that all three chemicals induced long-term changes, (mostly suppression) in pituitary genes involved in its endocrine function. BPS and BDE-47 produced effects overlapping significantly at the level of effected genes and pathways. All three chemicals altered pathways of gonad and liver HP axes, while BPS altered HP-adrenal and BDE-47 altered HP-thyroid pathways specifically. All three chemicals reduced expression of immune genes in the pituitaries. Targeted gene expression in the hypothalamus indicates down regulation of hypothalamic endocrine control genes by BPS and BDE-47 groups, concordant with changes in the pituitary, suggesting that these chemicals suppress overall HP endocrine function. Interestingly, all three chemicals altered pituitary genes of GPCR-mediated intracellular signaling molecules, key signalers common to many pituitary responses to hormones. The results of this study show that developmental exposures to common EDCs have long-term impacts on hormonal feedback control at the hypothalamic-pituitary level.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Olatunbosun Arowolo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA; Currently at Department of Pharmacology, Molecular, Cellular and Integrative Physiology Group, University of California - Davis, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
2
|
Keogh K, Kelly AK, Kenny DA. Effect of enhanced plane of nutrition in early life on the transcriptome and proteome of the anterior pituitary gland in Angus heifer calves. BMC Genomics 2024; 25:753. [PMID: 39095703 PMCID: PMC11295325 DOI: 10.1186/s12864-024-10626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Enhanced nutrition during the early calfhood period has been shown to lead to earlier pubertal development in heifer calves. This is of interest as earlier pubertal onset can subsequently facilitate earlier calving which can economically benefit production systems. Reproductive development in heifers is regulated by the hypothalamic-pituitary-ovarian signalling pathway. In particular the anterior pituitary gland is central to reproductive development, through the dynamics of gonadotropic pulsatility. However, despite clear knowledge of the influence of enhanced dietary intake on subsequent reproductive development, the molecular control governing this response in the pituitary gland within the hypothalamic-pituitary-ovarian signalling axis in heifer calves is not fully understood. The objective of this study was to examine the effect of an enhanced plane of nutrition during early life on the anterior pituitary gland of heifer calves through both transcriptomic and proteomic analyses. Between 3 and 21 weeks of age, heifer calves were offered either a high (HI, n = 14) or moderate (MOD, n = 14) plane of nutrition, designed to elicit target growth rates of 1.2 and 0.5 kg/d for HI and MOD groups, respectively. All calves were euthanised at 21 weeks of age and anterior pituitary tissue harvested for subsequent use in global transcriptomic and proteomic analyses. RESULTS Average daily gain was affected by diet (P < 0.001) and was 1.18 and 0.50 kg/day, for HI and MOD calves, respectively. RNAseq analysis resulted in the identification of 195 differentially expressed genes (Padj<0.05; fold change > 1.5), with 277 proteins identified as differentially abundant (Padj<0.05; fold change > 1.5) between contrasting dietary treatment groups. Biochemical pathway analysis of differentially affected genes and proteins revealed an enrichment for both growth hormone and GnRH signalling pathways (Padj.<0.05). Additionally, pathway analysis predicted an effect of enhanced dietary intake on endocrine function within the anterior pituitary gland as well as on reproductive system development and function (Padj.<0.05). CONCLUSIONS Results from this study show that an enhanced dietary intake during early calfhood affected the molecular control of the anterior pituitary gland in heifer calves in early life.
Collapse
Affiliation(s)
- Kate Keogh
- Teagasc Animal & Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Kenny
- Teagasc Animal & Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland.
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Li Q, Chao T, Wang Y, Xuan R, Guo Y, He P, Zhang L, Wang J. Transcriptome analysis revealed the characteristics and functions of long non-coding RNAs in the hypothalamus during sexual maturation in goats. Front Vet Sci 2024; 11:1404681. [PMID: 38938911 PMCID: PMC11210318 DOI: 10.3389/fvets.2024.1404681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
The hypothalamus is an essential neuroendocrine area in animals that regulates sexual development. Long non-coding RNAs (lncRNAs) are hypothesized to regulate physiological processes related to animal reproduction. However, the regulatory mechanism by which lncRNAs participate in sexual maturity in goats is poorly known, particularly from birth to sexual maturation. In this study, RNAseq analysis was conducted on the hypothalamus of four developmental stages (1day (D1, n = 5), 2 months (M2, n = 5), 4 months (M4, n = 5), and 6 months (M6, n = 5)) of Jining grey goats. The results showed that a total of 237 differentially expressed lncRNAs (DELs) were identified in the hypothalamus. Among these, 221 DELs exhibited cis-regulatory effects on 693 target genes, while 24 DELs demonstrated trans-regulatory effects on 63 target genes. The target genes of these DELs are mainly involved in biological processes related to energy metabolism, signal transduction and hormone secretion, such as sphingolipid signaling pathway, adipocytokine signaling pathway, neurotrophic signaling pathway, glutamatergic synapse, P53 signaling pathway and GnRH signaling pathway. In addition, XR_001918477.1, TCONS_00077463, XR_001918760.1, and TCONS_00029048 and their potential target genes may play a crucial role in the process of goat sexual maturation. This study advances our understanding of lncRNA in hypothalamic tissue during sexual maturation in goats and will give a theoretical foundation for improving goat reproductive features.
Collapse
Affiliation(s)
- Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Wang J, Liu Z, Cao D, Liu J, Li F, Han H, Han H, Lei Q, Liu W, Li D, Wang J, Zhou Y. Elucidation of the genetic determination of clutch traits in Chinese local chickens of the Laiwu Black breed. BMC Genomics 2023; 24:686. [PMID: 37968610 PMCID: PMC10652520 DOI: 10.1186/s12864-023-09798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Egg laying rate (LR) is associated with a clutch, which is defined as consecutive days of oviposition. The clutch trait can be used as a selection indicator to improve egg production in poultry breeding. However, little is known about the genetic basis of clutch traits. In this study, our aim was to estimate genetic parameters and identify quantitative trait single nucleotide polymorphisms for clutch traits in 399 purebred Laiwu Black chickens (a native Chinese breed) using a genome-wide association study (GWAS). METHODS In this work, after estimating the genetic parameters of age at first egg, body weight at first egg, LR, longest clutch until 52 week of age, first week when the longest clutch starts, last week when the longest clutch ends, number of clutches, and longest number of days without egg-laying until 52 week of age, we identified single nucleotide polymorphisms (SNPs) and potential candidate genes associated with clutch traits in Laiwu Black chickens. The restricted maximum likelihood method was used to estimate genetic parameters of clutch pattern in 399 Laiwu Black hens, using the GCTA software. RESULTS The results showed that SNP-based heritability estimates of clutch traits ranged from 0.06 to 0.59. Genotyping data were obtained from whole genome re-sequencing data. After quality control, a total of 10,810,544 SNPs remained to be analyzed. The GWAS revealed that 421 significant SNPs responsible for clutch traits were scattered on chicken chromosomes 1-14, 17-19, 21-25, 28 and Z. Among the annotated genes, NELL2, SMYD9, SPTLC2, SMYD3 and PLCL1 were the most promising candidates for clutch traits in Laiwu Black chickens. CONCLUSION The findings of this research provide critical insight into the genetic basis of clutch traits. These results contribute to the identification of candidate genes and variants. Genes and SNPs potentially provide new avenues for further research and would help to establish a framework for new methods of genomic prediction, and increase the accuracy of estimated genetic merit for egg production and clutch traits.
Collapse
Affiliation(s)
- Jie Wang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Zhansheng Liu
- Shandong Animal Husbandry General Station, Jinan, 250023, China
| | - Dingguo Cao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Jie Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Fuwei Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Heguo Han
- Lijin County Center for Animal Disease Control, Lijin, 257400, China
| | - Haixia Han
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Qiuxia Lei
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Wei Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Dapeng Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China
| | - Jianxia Wang
- Administrative Examination and Approval Service Bureau of Lijin County, Lijin, 257400, China
| | - Yan Zhou
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, Shandong, China.
| |
Collapse
|
5
|
Mohammadzadeh P, Roueinfar M, Amberg GC. AXL receptor tyrosine kinase modulates gonadotropin-releasing hormone receptor signaling. Cell Commun Signal 2023; 21:284. [PMID: 37828510 PMCID: PMC10568877 DOI: 10.1186/s12964-023-01313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) receptors are essential for reproduction and are expressed in numerous urogenital, reproductive, and non-reproductive cancers. In addition to canonical G protein-coupled receptor signaling, GnRH receptors functionally interact with several receptor tyrosine kinases. AXL is a receptor tyrosine kinase expressed in numerous tissues as well as multiple tumors. Here we tested the hypothesis that AXL, along with its endogenous ligand Gas6, impacts GnRH receptor signaling. METHODS We used clonal murine pituitary αT3-1 and LβT2 gonadotrope cell lines to examine the effect of AXL activation on GnRH receptor-dependent signaling outcomes. ELISA and immunofluorescence were used to observe AXL and GnRH receptor expression in αT3-1 and LβT2 cells, as well as in murine and human pituitary sections. We also used ELISA to measure changes in ERK phosphorylation, pro-MMP9 production, and release of LHβ. Digital droplet PCR was used to measure the abundance of Egr-1 transcripts. A transwell migration assay was used to measure αT3-1 and LβT2 migration responses to GnRH and AXL. RESULTS We observed AXL, along with the GnRH receptor, expression in αT3-1 and LβT2 gonadotrope cell lines, as well as in murine and human pituitary sections. Consistent with a potentiating role of AXL, Gas6 enhanced GnRH-dependent ERK phosphorylation in αT3-1 and LβT2 cells. Further, and consistent with enhanced post-transcriptional GnRH receptor responses, we found that Gas6 increased the abundance of Egr-1 transcripts. Suggesting functional significance, in LβT2 cells, Gas6/AXL signaling stimulated LHβ production and enhanced GnRH receptor-dependent generation of pro-MMP9 protein and promoted cell migration. CONCLUSIONS Altogether, these data describe a novel role for AXL as a modulator of GnRH receptor signaling. Video Abstract.
Collapse
Affiliation(s)
- Pardis Mohammadzadeh
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Mina Roueinfar
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Gregory C Amberg
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
6
|
Wang T, Zhao G, Yu S, Zheng Y, Guo H, Wang H, Zhao P, Xie W, Ren W, Yuan B. Sequencing of the Pituitary Transcriptome after GnRH Treatment Uncovers the Involvement of lncRNA-m23b/miR-23b-3p/CAMK2D in FSH Synthesis and Secretion. Genes (Basel) 2023; 14:genes14040846. [PMID: 37107604 PMCID: PMC10137480 DOI: 10.3390/genes14040846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The pituitary gland is a key participant in the hypothalamic–pituitary–gonadal axis, as it secretes a variety of hormones and plays an important role in mammalian reproduction. Gonadotrophin-releasing hormone(GnRH) signaling molecules can bind to GnRH receptors on the surfaces of adenohypophysis gonadotropin cells and regulate the expression of follicle-stimulating hormone(FSH) and luteinizing hormone(LH) through various pathways. An increasing number of studies have shown that noncoding RNAs mediate the regulation of GnRH signaling molecules in the adenohypophysis. However, the expression changes and underlying mechanisms of genes and noncoding RNAs in the adenohypophysis under the action of GnRH remain unclear. In the present study, we performed RNA sequencing (RNA-seq) of the rat adenohypophysis before and after GnRH treatment to identify differentially expressed mRNAs, lncRNAs, and miRNAs. We found 385 mRNAs, 704 lncRNAs, and 20 miRNAs that were significantly differentially expressed in the rat adenohypophysis. Then, we used a software to predict the regulatory roles of lncRNAs as molecular sponges that compete with mRNAs to bind miRNAs, and construct a GnRH-mediated ceRNA regulatory network. Finally, we enriched the differentially expressed mRNAs, lncRNA target genes, and ceRNA regulatory networks to analyze their potential roles. Based on the sequencing results, we verified that GnRH could affect FSH synthesis and secretion by promoting the competitive binding of lncRNA-m23b to miR-23b-3p to regulate the expression of Calcium/Calmodulin Dependent Protein Kinase II Delta(CAMK2D). Our findings provide strong data to support exploration of the physiological processes in the rat adenohypophysis under the action of GnRH. Furthermore, our profile of lncRNA expression in the rat adenohypophysis provides a theoretical basis for research on the roles of lncRNAs in the adenohypophysis.
Collapse
Affiliation(s)
- Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Guokun Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Song Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Peisen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenyin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenzhi Ren
- Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
- Correspondence: (W.R.); (B.Y.); Tel.: +86-431-8783-6562 (W.R.); +86-431-8783-6536 (B.Y.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
- Correspondence: (W.R.); (B.Y.); Tel.: +86-431-8783-6562 (W.R.); +86-431-8783-6536 (B.Y.)
| |
Collapse
|
7
|
Comparative Transcriptomic Analysis of Hu Sheep Pituitary Gland Prolificacy at the Follicular and Luteal Phases. Genes (Basel) 2022; 13:genes13030440. [PMID: 35327994 PMCID: PMC8949571 DOI: 10.3390/genes13030440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
The pituitary gland directly regulates the reproduction of domestic animals. Research has increasingly focused on the potential regulatory mechanism of non-coding RNA in pituitary development. Little is known about the differential expression pattern of lncRNAs in Hu sheep, a famous sheep breed with high fecundity, and its role in the pituitary gland between the follicular phase and luteal phase. Herein, to identify the transcriptomic differences of the sheep pituitary gland during the estrus cycle, RNA sequencing (RNA-Seq) was performed. The results showed that 3529 lncRNAs and 16,651 mRNAs were identified in the pituitary gland. Among of them, 144 differentially expressed (DE) lncRNA transcripts and 557 DE mRNA transcripts were screened in the follicular and luteal phases. Moreover, GO and KEGG analyses demonstrated that 39 downregulated and 22 upregulated genes interacted with pituitary functions and reproduction. Lastly, the interaction of the candidate lncRNA XR_001039544.4 and its targeted gene LHB were validated in sheep pituitary cells in vitro. LncRNA XR_001039544.4 and LHB showed high expression levels in the luteal phase in Hu sheep. LncRNA XR_001039544.4 is mainly located in the cytoplasm, as determined by FISH analysis, indicating that XR_001039544.4 might act as competing endogenous RNAs for miRNAs to regulate LHB. LncRNA XR_001039544.4 knockdown significantly inhibited LH secretion and cell proliferation. LncRNA XR_001039544.4 may regulate the secretion of LH in the luteal-phase pituitary gland via affecting cell proliferation. Taken together, these findings provided genome-wide lncRNA- and mRNA-expression profiles for the sheep pituitary gland between the follicular and luteal phases, thereby contributing to the elucidation of the molecular mechanisms of pituitary function.
Collapse
|
8
|
Huan Z, Wang Y, Zhang M, Zhang X, Liu Y, Kong L, Xu J. Follicle-stimulating hormone worsens osteoarthritis by causing inflammation and chondrocyte dedifferentiation. FEBS Open Bio 2021. [PMID: 34176242 PMCID: PMC8329950 DOI: 10.1002/2211-5463.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have found follicle‐stimulating hormone (FSH) receptors on chondrocytes (cartilage cells), but the mechanism of FSH action on chondrocytes is not clear. The purpose of this experiment is to study whether FSH affects chondrocytes and how it causes changes in these cells. Our results show that osteoarthritis became worse after FSH injection in the knee joint of mice. After the stimulation of chondrocytes by FSH, a total of 664 up‐regulated genes, such as Col12a1 and Col1a1, and 644 down‐regulated genes, such as MGP, were screened by transcriptomics. A subset of extracellular matrix (ECM)‐related genes and pathways underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and the downregulation of MGP, the upregulation of EGR1 and Col1a1, and the increase of IL‐6 were verified. It was also observed that FSH can inhibit the cAMP/PKA and MKK4/JNK signaling pathway. In conclusion, we demonstrated that FSH can increase cartilage inflammatory response and promote chondrocyte dedifferentiation by inhibiting the cAMP/PKA and MKK4/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yan Wang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Yaping Liu
- Department of Endocrinology, Jining No.1 People's Hospital, Jining, China
| | - Lei Kong
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China.,Department of Endocrinology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
9
|
Zhang Q, Mesner LD, Calabrese GM, Dirckx N, Li Z, Verardo A, Yang Q, Tower RJ, Faugere MC, Farber CR, Clemens TL. Genomic variants within chromosome 14q32.32 regulate bone mass through MARK3 signaling in osteoblasts. J Clin Invest 2021; 131:142580. [PMID: 33792563 DOI: 10.1172/jci142580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Bone mineral density (BMD) is a highly heritable predictor of osteoporotic fracture. GWAS have identified hundreds of loci influencing BMD, but few have been functionally analyzed. In this study, we show that SNPs within a BMD locus on chromosome 14q32.32 alter splicing and expression of PAR-1a/microtubule affinity regulating kinase 3 (MARK3), a conserved serine/threonine kinase known to regulate bioenergetics, cell division, and polarity. Mice lacking Mark3 either globally or selectively in osteoblasts have increased bone mass at maturity. RNA profiling from Mark3-deficient osteoblasts suggested changes in the expression of components of the Notch signaling pathway. Mark3-deficient osteoblasts exhibited greater matrix mineralization compared with controls that was accompanied by reduced Jag1/Hes1 expression and diminished downstream JNK signaling. Overexpression of Jag1 in Mark3-deficient osteoblasts both in vitro and in vivo normalized mineralization capacity and bone mass, respectively. Together, these findings reveal a mechanism whereby genetically regulated alterations in Mark3 expression perturb cell signaling in osteoblasts to influence bone mass.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Larry D Mesner
- Departments of Public Health Genomics and Biochemistry and Molecular Genetics, Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gina M Calabrese
- Departments of Public Health Genomics and Biochemistry and Molecular Genetics, Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Naomi Dirckx
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Angela Verardo
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Qian Yang
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert J Tower
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Charles R Farber
- Departments of Public Health Genomics and Biochemistry and Molecular Genetics, Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
11
|
Han P, Relav L, Price CA. Regulation of the early growth response-1 binding protein NAB2 in bovine granulosa cells and effect on connective tissue growth factor expression. Mol Cell Endocrinol 2020; 518:111041. [PMID: 33002529 DOI: 10.1016/j.mce.2020.111041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 11/18/2022]
Abstract
Ovarian fibrosis is associated with increased expression of the transcription factor, Early growth response-1 (EGR1) and connective tissue growth factor (CCN2) in granulosa cells. The transcriptional activity of EGR1 is under negative feedback control by NAB1 and NAB2, but little is known about NAB expression in granulosa cells. Using a well-defined bovine in-vitro granulosa cell model, we show that NAB2 but not NAB1 mRNA is upregulated by fibroblast growth factor (FGF)1 and FGF2, but not by FGF4 or FGF8b. Overexpressing NAB2 abrogated the ability of FGF8b to increase EGR1 and CCN2 mRNA, as well as mRNAs encoding other FGF-target genes. Surprisingly, overexpression of NAB2 in the absence of growth factor stimulation increased abundance of mRNA encoding CCN2 and EGR1, and decreased estradiol secretion. We conclude that NAB2 is expressed in granulosa cells and plays a role in regulating EGR1-induced CCN2 expression, although cross-talk with other signaling pathways is likely occurring.
Collapse
Affiliation(s)
- Peng Han
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200, Sicotte, St-Hyacinthe, QC, Canada
| | - Lauriane Relav
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200, Sicotte, St-Hyacinthe, QC, Canada
| | - Christopher A Price
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine vétérinaire, Université de Montréal, 3200, Sicotte, St-Hyacinthe, QC, Canada.
| |
Collapse
|
12
|
Dulka EA, Burger LL, Moenter SM. Ovarian Androgens Maintain High GnRH Neuron Firing Rate in Adult Prenatally-Androgenized Female Mice. Endocrinology 2020; 161:5686883. [PMID: 31875912 PMCID: PMC7397485 DOI: 10.1210/endocr/bqz038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
Abstract
Changes in gonadotropin-releasing hormone (GnRH) release frequency from the brain help drive reproductive cycles. In polycystic ovary syndrome (PCOS), persistent high GnRH/luteinizing hormone (LH) frequency disrupts cycles and exacerbates hyperandrogenemia. Adult prenatally-androgenized (PNA) mice exhibit increased GnRH neuron firing rate, elevated ovarian androgens, and disrupted cycles, but before puberty, GnRH neuron activity is reduced in PNA mice compared with controls. We hypothesized that ovarian feedback mediates the age-dependent change in GnRH neuron firing rate in PNA vs control mice. Extracellular recordings of green fluorescent protein (GFP)-identified GnRH neurons were made 5 to 7 days after sham-surgery, ovariectomy (OVX), or, in adults, after OVX plus replacement of sub-male androgen levels with dihydrotestosterone implants (OVX + DHT). In 3-week-old mice, OVX did not affect GnRH neuron firing rate in either group. In adult controls, OVX increased GnRH neuron firing rate, which was further enhanced by DHT. In adult PNA mice, however, OVX decreased GnRH neuron firing rate, and DHT restored firing rate to sham-operated levels. In contrast to the differential effects of ovarian feedback on GnRH neuron firing rate, serum LH increased after OVX in both control and PNA mice and was not altered by DHT. Pituitary gene expression largely reflected changes expected with OVX, although in PNA but not control mice, DHT treatment increased Lhb expression. These results suggest prenatal androgen exposure programs marked changes in GnRH neuron regulation by homeostatic steroid feedback. PNA lowers GnRH neuron activity in low-steroid states (before puberty, OVX), and renders activity in adulthood dependent upon ongoing exposure to elevated ovarian androgens.
Collapse
Affiliation(s)
- Eden A Dulka
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Correspondence: Suzanne M. Moenter, PhD; 7725 Med Sci II; 1137 E Catherine St; Ann Arbor, Michigan 48109-5622; phone: 734-647-1755;
| |
Collapse
|
13
|
Janjic MM, Prévide RM, Fletcher PA, Sherman A, Smiljanic K, Abebe D, Bjelobaba I, Stojilkovic SS. Divergent expression patterns of pituitary gonadotropin subunit and GnRH receptor genes to continuous GnRH in vitro and in vivo. Sci Rep 2019; 9:20098. [PMID: 31882740 PMCID: PMC6934515 DOI: 10.1038/s41598-019-56480-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Continuous, as opposed to pulsatile, delivery of hypothalamic gonadotropin-releasing hormone (GnRH) leads to a marked decrease in secretion of pituitary gonadotropins LH and FSH and impairment of reproductive function. Here we studied the expression profile of gonadotropin subunit and GnRH receptor genes in rat pituitary in vitro and in vivo to clarify their expression profiles in the absence and continuous presence of GnRH. Culturing of pituitary cells in GnRH-free conditions downregulated Fshb, Cga, and Gnrhr expression, whereas continuous treatment with GnRH agonists upregulated Cga expression progressively and Gnrhr and Fshb expression transiently, accompanied by a prolonged blockade of Fshb but not Gnrhr expression. In contrast, Lhb expression was relatively insensitive to loss of endogenous GnRH and continuous treatment with GnRH, probably reflecting the status of Egr1 and Nr5a1 expression. Similar patterns of responses were observed in vivo after administration of a GnRH agonist. However, continuous treatment with GnRH stimulated LH secretion in vitro and in vivo, leading to decrease in LH cell content despite high basal Lhb expression. These data suggest that blockade of Fshb expression and depletion of the LH secretory pool are two major factors accounting for weakening of the gonadotroph secretory function during continuous GnRH treatment.
Collapse
Affiliation(s)
- Marija M Janjic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biological Research Sinisa Stankovic - National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Rafael M Prévide
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kosara Smiljanic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivana Bjelobaba
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biological Research Sinisa Stankovic - National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
15
|
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. FSH and LH control steroidogenesis and gametogenesis in the gonads so GnRH mediates control of reproduction by the central nervous system. GnRH is secreted in short pulses and the effects of GnRH on its target cells are dependent on the dynamics of these pulses. Here we provide a brief overview of the signaling network activated by GnRH with emphasis on the use of high content imaging for their examination. We also describe computational approaches that we have used to simulate GnRH signaling in order to explore dynamics, noise, and information transfer in this system.
Collapse
|
16
|
Løtvedt P, Fallahshahroudi A, Bektic L, Altimiras J, Jensen P. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiol Stress 2017; 7:113-121. [PMID: 28879214 PMCID: PMC5577413 DOI: 10.1016/j.ynstr.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 08/19/2017] [Indexed: 01/21/2023] Open
Abstract
Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens. We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds.
Collapse
Affiliation(s)
| | | | | | | | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
17
|
Pratap A, Garner KL, Voliotis M, Tsaneva-Atanasova K, McArdle CA. Mathematical modeling of gonadotropin-releasing hormone signaling. Mol Cell Endocrinol 2017; 449:42-55. [PMID: 27544781 PMCID: PMC5446263 DOI: 10.1016/j.mce.2016.08.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field.
Collapse
Affiliation(s)
- Amitesh Pratap
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Kathryn L Garner
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Margaritis Voliotis
- EPSRC Centre for Predictive Modeling in Healthcare, University of Exeter, Exeter, EX4 4QF, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK; EPSRC Centre for Predictive Modeling in Healthcare, University of Exeter, Exeter, EX4 4QF, UK
| | - Craig A McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
18
|
Terasaka T, Adakama ME, Li S, Kim T, Terasaka E, Li D, Lawson MA. Reactive Oxygen Species Link Gonadotropin-Releasing Hormone Receptor Signaling Cascades in the Gonadotrope. Front Endocrinol (Lausanne) 2017; 8:286. [PMID: 29163358 PMCID: PMC5671645 DOI: 10.3389/fendo.2017.00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/31/2022] Open
Abstract
Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive development and function relies on control through rhythmic stimulation. Central to this axis is the pulsatile stimulation of the gonadotropes by hypothalamic neurons through episodic release of the neuropeptide gonadotropin-releasing hormone. Alterations in pulsatile stimulation of the gonadotropes result in differential synthesis and secretion of the gonadotropins LH and FSH and changes in the expression of their respective hormone subunit genes. The requirement to amplify signals arising from activation of the gonadotropin-releasing hormone (GnRH) receptor and to rapidly quench the resultant signal to preserve an adaptive response suggests the need for rapid activation and feedback control operating at the level of intracellular signaling. Emerging data suggest that reactive oxygen species (ROS) can fulfill this role in the GnRH receptor signaling through activation of MAP kinase signaling cascades, control of negative feedback, and participation in the secretory process. Results obtained in gonadotrope cell lines or other cell models indicate that ROS can participate in each of these regulatory cascades. We discuss the potential advantage of reactive oxygen signaling for modulating the gonadotrope response to GnRH stimulation and the potential mechanisms for this action. These observations suggest further targets of study for regulation in the gonadotrope.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mary E. Adakama
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Song Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- Neonatal Intensive Care Unit, Dongguan Eighth People’s Hospital Dongguan City, Dongguan, China
| | - Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Eri Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Mark A. Lawson,
| |
Collapse
|
19
|
Thompson IR, Ciccone NA, Zhou Q, Xu S, Khogeer A, Carroll RS, Kaiser UB. GnRH Pulse Frequency Control of Fshb Gene Expression Is Mediated via ERK1/2 Regulation of ICER. Mol Endocrinol 2016; 30:348-60. [PMID: 26835742 DOI: 10.1210/me.2015-1222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pulsatile release of GnRH regulates the synthesis and secretion of pituitary FSH and LH. Two transcription factors, cAMP-response element-binding protein (CREB) and inducible cAMP early repressor (ICER), have been implicated in the regulation of rat Fshb gene expression. We previously showed that the protein kinase A pathway mediates GnRH-stimulated CREB activation. We hypothesized that CREB and ICER are activated by distinct signaling pathways in response to pulsatile GnRH to modulate Fshb gene expression, which is preferentially stimulated at low vs high pulse frequencies. In the LβT2 gonadotrope-derived cell line, GnRH stimulation increased ICER mRNA and protein. Blockade of ERK activation with mitogen-activated protein kinase kinase I/II (MEKI/II) inhibitors significantly attenuated GnRH induction of ICER mRNA and protein, whereas protein kinase C, calcium/calmodulin-dependent protein kinase II, and protein kinase A inhibitors had minimal effects. GnRH also stimulated ICER in primary mouse pituitary cultures, attenuated similarly by a MEKI/II inhibitor. In a perifusion paradigm, MEKI/II inhibition in LβT2 cells stimulated with pulsatile GnRH abrogated ICER induction at high GnRH pulse frequencies, with minimal effect at low frequencies. MEKI/II inhibition reduced GnRH stimulation of Fshb at high and low pulse frequencies, suggesting that the ERK pathway has additional effects on GnRH regulation of Fshb, beyond those mediated by ICER. Indeed, induction of the activating protein 1 proteins, cFos and cJun, positive modulators of Fshb transcription, by pulsatile GnRH was also abrogated by inhibition of the MEK/ERK signaling pathway. Collectively, these studies indicate that the signaling pathways mediating GnRH activation of CREB and ICER are distinct, contributing to the decoding of the pulsatile GnRH to regulate FSHβ expression.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Nick A Ciccone
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Qiongjie Zhou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Shuyun Xu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ahmad Khogeer
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
20
|
Abstract
Acquisition of a mature pattern of gonadotropin-releasing hormone (GnRH) secretion from the CNS is a hallmark of the pubertal process. Little is known about GnRH release during sexual maturation, but it is assumed to be minimal before later stages of puberty. We studied spontaneous GnRH secretion in brain slices from male mice during perinatal and postnatal development using fast-scan cyclic voltammetry (FSCV) to detect directly the oxidation of secreted GnRH. There was good correspondence between the frequency of GnRH release detected by FSCV in the median eminence of slices from adults with previous reports of in vivo luteinizing hormone (LH) pulse frequency. The frequency of GnRH release in the late embryonic stage was surprisingly high, reaching a maximum in newborns and remaining elevated in 1-week-old animals despite low LH levels. Early high-frequency GnRH release was similar in wild-type and kisspeptin knock-out mice indicating that this release is independent of kisspeptin-mediated excitation. In vivo treatment with testosterone or in vitro treatment with gonadotropin-inhibitory hormone (GnIH) reduced GnRH release frequency in slices from 1-week-old mice. RF9, a putative GnIH antagonist, restored GnRH release in slices from testosterone-treated mice, suggesting that testosterone inhibition may be GnIH-dependent. At 2-3 weeks, GnRH release is suppressed before attaining adult patterns. Reduction in early life spontaneous GnRH release frequency coincides with the onset of the ability of exogenous GnRH to induce pituitary LH secretion. These findings suggest that lack of pituitary secretory response, not lack of GnRH release, initially blocks downstream activation of the reproductive system.
Collapse
|
21
|
Gajewska A, Herman AP, Wolińska-Witort E, Kochman K, Zwierzchowski L. In vivo oestrogenic modulation of Egr1 and Pitx1 gene expression in female rat pituitary gland. J Mol Endocrinol 2014; 53:355-66. [PMID: 25258388 DOI: 10.1530/jme-14-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EGR1 and PITX1 are transcription factors required for gonadotroph cell Lhb promoter activation. To determine changes in Egr1 and Pitx1 mRNA levels in central and peripheral pituitary stimulations, an in vivo model based on i.c.v. pulsatile (1 pulse/0.5 h over 2 h) GnRH agonist (1.5 nM buserelin) or antagonist (2 nM antide) microinjections was used. The microinjections were given to ovariectomised and 17β-oestradiol (E2) (3×20 μg), ERA (ESR1) agonist propyl pyrazole triol (PPT) (3×0.5 mg), ERB (ESR2) agonist diarylpropionitrile (DPN) (3×0.5 mg) s.c. pre-treated rats 30 min after last pulse anterior pituitaries were excised. Relative mRNA expression was determined by quantitative RT-PCR (qRT-PCR). Results revealed a gene-specific response for GnRH and/or oestrogenic stimulations in vivo. Buserelin pulses enhanced Egr1 expression by 66% in ovariectomised rats, whereas the oestradiol-supplemented+i.c.v. NaCl-microinjected group showed a 50% increase in Egr1 mRNA expression. The oestrogenic signal was transmitted via ERA (ESR1) and ERB (ESR2) activation as administration of PPT and DPN resulted in 97 and 62%, respectively, elevation in Egr1 mRNA expression. A synergistic action of GnRH agonist and 17β-oestradiol (E2) stimulation of the Egr1 gene transcription in vivo were found. GnRHR activity did not affect Pitx1 mRNA expression; regardless of NaCl, buserelin or antide i.c.v. pulses, s.c. oestrogenic supplementation (with E2, PPT or DPN) consistently decreased (by -46, -48 and -41% respectively) the Pitx1 mRNA in the anterior pituitary gland. Orchestrated Egr1 and Pitx1 activities depending on specific central and peripheral regulatory inputs could be responsible for physiologically variable Lhb gene promoter activation in vivo.
Collapse
Affiliation(s)
- Alina Gajewska
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Andrzej P Herman
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Wolińska-Witort
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Kazimierz Kochman
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Lech Zwierzchowski
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| |
Collapse
|
22
|
Clarke IJ. Interface between metabolic balance and reproduction in ruminants: focus on the hypothalamus and pituitary. Horm Behav 2014; 66:15-40. [PMID: 24568750 DOI: 10.1016/j.yhbeh.2014.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 01/24/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The interface between metabolic regulators and the reproductive system is reviewed with special reference to the sheep. Even though sheep are ruminants with particular metabolic characteristics, there is a broad consensus across species in the way that the reproductive system is influenced by metabolic state. An update on the neuroendocrinology of reproduction indicates the need to account for the way that kisspeptin provides major drive to gonadotropin releasing hormone (GnRH) neurons and also mediates the feedback effects of gonadal steroids. The way that kisspeptin function is influenced by appetite regulating peptides (ARP) is considered. Another newly recognised factor is gonadotropin inhibitory hormone (GnIH), which has a dual function in that it suppresses reproductive function whilst also acting as an orexigen. Our understanding of the regulation of food intake and energy expenditure has expanded exponentially in the last 3 decades and historical perspective is provided. The function of the regulatory factors and the hypothalamic cellular systems involved is reviewed with special reference to the sheep. Less is known of these systems in the cow, especially the dairy cow, in which a major fertility issue has emerged in parallel with selection for increased milk production. Other endocrine systems--the hypothalamo-pituitary-adrenal axis, the growth hormone (GH) axis and the thyroid hormones--are influenced by metabolic state and are relevant to the interface between metabolic function and reproduction. Special consideration is given to issues such as season and lactation, where the relationship between metabolic hormones and reproductive function is altered.
Collapse
Affiliation(s)
- Iain J Clarke
- Monash University, Department of Physiology, Wellington Road, Clayton 3168, Australia.
| |
Collapse
|
23
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
24
|
Chung-Davidson YW, Wang H, Bryan MB, Wu H, Johnson NS, Li W. An anti-steroidogenic inhibitory primer pheromone in male sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2013; 189:24-31. [PMID: 23644156 DOI: 10.1016/j.ygcen.2013.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 11/27/2022]
Abstract
Reproductive functions can be modulated by both stimulatory and inhibitory primer pheromones released by conspecifics. Many stimulatory primer pheromones have been documented, but relatively few inhibitory primer pheromones have been reported in vertebrates. The sea lamprey male sex pheromone system presents an advantageous model to explore the stimulatory and inhibitory primer pheromone functions in vertebrates since several pheromone components have been identified. We hypothesized that a candidate sex pheromone component, 7α, 12α-dihydroxy-5α-cholan-3-one-24-oic acid (3 keto-allocholic acid or 3kACA), exerts priming effects through the hypothalamic-pituitary-gonadal (HPG) axis. To test this hypothesis, we measured the peptide concentrations and gene expressions of lamprey gonadotropin releasing hormones (lGnRH) and the HPG output in immature male sea lamprey exposed to waterborne 3kACA. Exposure to waterborne 3kACA altered neuronal activation markers such as jun and jun N-terminal kinase (JNK), and lGnRH mRNA levels in the brain. Waterborne 3kACA also increased lGnRH-III, but not lGnRH-I or -II, in the forebrain. In the plasma, 3kACA exposure decreased all three lGnRH peptide concentrations after 1h exposure. After 2h exposure, 3kACA increased lGnRH-I and -III, but decreased lGnRH-II peptide concentrations in the plasma. Plasma lGnRH peptide concentrations showed differential phasic patterns. Group housing condition appeared to increase the averaged plasma lGnRH levels in male sea lamprey compared to isolated males. Interestingly, 15α-hydroxyprogesterone (15α-P) concentrations decreased after prolonged 3kACA exposure (at least 24h). To our knowledge, this is the only known synthetic vertebrate pheromone component that inhibits steroidogenesis in males.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
25
|
Andrade J, Quinn J, Becker RZ, Shupnik MA. AMP-activated protein kinase is a key intermediary in GnRH-stimulated LHβ gene transcription. Mol Endocrinol 2013; 27:828-39. [PMID: 23518923 DOI: 10.1210/me.2012-1323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH regulation of pituitary gonadotropin gene transcription is critical for fertility, and metabolic dysregulation is associated with reproductive disorders and altered hypothalamic-pituitary responses. Here, we examined signaling pathways in gonadotropes through which GnRH modulates gonadotropin levels, and potential common signaling pathways with insulin. Using LβT2 cells, we show that GnRH rapidly (5 minutes) triggers activating phosphorylation of AMP-activated protein kinase (AMPK) up to 5-fold; this stimulation is enhanced by insulin through increased total AMPKα levels and activity. GnRH also stimulated c-Jun N-terminal kinase (JNK) and ERK activation, whereas insulin alone stimulated Akt. Inhibition of AMPK activity by compound C, or diminishing AMPK levels by small interfering RNA against AMPKα, prevented GnRH-stimulated transcription of the endogenous LHβ gene and transfected LHβ promoter. Egr-1 (early growth response-1), a transcription factor required for LHβ expression, is synthesized in response to GnRH, and compound C prevents this induction. However, overexpression of Egr-1 in the presence of compound C did not restore GnRH stimulation of LHβ, suggesting that AMPK stimulation of transcription also occurs through additional mechanisms or signaling pathways. One such pathway may be JNK activation, because GnRH stimulation of JNK activity and LHβ transcription occurs more slowly than stimulation of AMPK activity, and AMPK inhibition by compound C or small interfering RNA also prevented GnRH-stimulated JNK phosphorylation. Finally, in primary mouse pituitary cells, GnRH also stimulates AMPK, and AMPK inhibition suppresses GnRH-stimulated LHβ transcription. These studies indicate a novel role for AMPK in GnRH-stimulated transcription in pituitary gonadotropes and a potential common mechanism for GnRH and metabolic modulation of fertility.
Collapse
Affiliation(s)
- Josefa Andrade
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | |
Collapse
|
26
|
Thompson IR, Ciccone NA, Xu S, Zaytseva S, Carroll RS, Kaiser UB. GnRH pulse frequency-dependent stimulation of FSHβ transcription is mediated via activation of PKA and CREB. Mol Endocrinol 2013; 27:606-18. [PMID: 23393127 DOI: 10.1210/me.2012-1281] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression of pituitary FSH and LH, under the control of pulsatile GnRH, is essential for fertility. cAMP response element-binding protein (CREB) has been implicated in the regulation of FSHβ gene expression, but the molecular mechanisms by which pulsatile GnRH regulates CREB activation remain poorly understood. We hypothesized that CREB is activated by a distinct signaling pathway in response to pulsatile GnRH in a frequency-dependent manner to dictate the FSHβ transcriptional response. GnRH stimulation of CREB phosphorylation (pCREB) in the gonadotrope-derived LβT2 cell line was attenuated by a protein kinase A (PKA) inhibitor, H89. A dominant negative PKA (DNPKA) reduced GnRH-stimulated pCREB and markedly decreased GnRH stimulation of FSHβ mRNA and FSHβLUC activity, but had little effect on LHβLUC activity, indicating relative specificity of this pathway. In perifusion studies, FSHβ mRNA levels and FSHβLUC activities were increased by pulsatile GnRH, with significantly greater increases at low compared with high pulse frequencies. DNPKA markedly reduced these GnRH-stimulated FSHβ responses at both low and high pulse frequencies. Correlating with FSHβ activation, both PKA activity and levels of pCREB were increased to a greater extent by low compared with high GnRH pulse frequencies, and the induction of pCREB was also attenuated by overexpression of DNPKA at both low and high pulse frequencies. Taken together, these data indicate that a PKA-mediated signaling pathway mediates GnRH activation of CREB at low-pulse frequencies, playing a significant role in the decoding of the hypothalamic GnRH signal to result in frequency-dependent FSHβ activation.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chung-Davidson YW, Wang H, Siefkes MJ, Bryan MB, Wu H, Johnson NS, Li W. Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey. BMC Neurosci 2013; 14:11. [PMID: 23331321 PMCID: PMC3599739 DOI: 10.1186/1471-2202-14-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrate pheromones are known to prime the endocrine system, especially the hypothalamic-pituitary-gonadal (HPG) axis. However, no known pheromone molecule has been shown to modulate directly the synthesis or release of gonadotropin releasing hormone (GnRH), the main regulator of the HPG axis. We selected sea lamprey (Petromyzon marinus) as a model system to determine whether a single pheromone component alters the output of GnRH.Sea lamprey male sex pheromones contain a main component, 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3 keto-petromyzonol sulfate or 3kPZS), which has been shown to modulate behaviors of mature females. Through a series of experiments, we tested the hypothesis that 3kPZS modulates both synthesis and release of GnRH, and subsequently, HPG output in immature sea lamprey. RESULTS The results showed that natural male pheromone mixtures induced differential steroid responses but facilitated sexual maturation in both sexes of immature animals (χ(2) = 5.042, dF = 1, p < 0.05). Exposure to 3kPZS increased plasma 15α-hydroxyprogesterone (15α-P) concentrations (one-way ANOVA, p < 0.05) and brain gene expressions (genes examined: three lamprey (l) GnRH-I transcripts, lGnRH-III, Jun and Jun N-terminal kinase (JNK); one-way ANOVA, p < 0.05), but did not alter the number of GnRH neurons in the hypothalamus in immature animals. In addition, 3kPZS treatments increased lGnRH peptide concentrations in the forebrain and modulated their levels in plasma. Overall, 3kPZS modulation of HPG axis is more pronounced in immature males than in females. CONCLUSIONS We conclude that a single male pheromone component primes the HPG axis in immature sea lamprey in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
| | - Huiyong Wang
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
| | - Michael J Siefkes
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI, 48105, USA
| | - Mara B Bryan
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: Energy Biosciences Institute, University of California, 130 Calvin Laboratory, MC 5230, Berkeley, CA, 94720, USA
| | - Hong Wu
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: Department of Microbiology & Immunology, School of Medicine, Emory University, Rollins Research Center G214, 201 Dowman Drive, Atlanta, Georgia, 30322, USA
| | - Nicholas S Johnson
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
- Present address: USGS, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
Abstract
GnRH (gonadotropin-releasing hormone) mediates control of reproduction. It is secreted in pulses and acts via intracellular effectors to activate gene expression. Submaximal GnRH pulse frequency can elicit maximal responses, yielding bell-shaped frequency-response curves characteristic of genuine frequency decoders. GnRH frequency decoding is therapeutically important (pulsatile GnRH can drive ovulation in assisted reproduction, whereas sustained activation can treat breast and prostate cancers), but the mechanisms are unknown. In the present paper, we review recent work in this area, placing emphasis on the regulation of transcription, and showing how mathematical modelling of GnRH effects on two effectors [ERK (extracellular-signal-regulated kinase) and NFAT (nuclear factor of activated T-cells)] reveals the potential for genuine frequency decoding as an emergent feature of the GnRH signalling network, rather than an intrinsic feature of a given protein or pathway within it.
Collapse
|
29
|
Binder AK, Grammer JC, Herndon MK, Stanton JD, Nilson JH. GnRH regulation of Jun and Atf3 requires calcium, calcineurin, and NFAT. Mol Endocrinol 2012; 26:873-86. [PMID: 22446101 DOI: 10.1210/me.2012-1045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GnRH binds to its receptor on gonadotropes and activates multiple members of the MAPK signaling family that in turn regulates the expression of several immediate early genes (IEGs) including Jun, Fos, Atf3, and Egr1. These IEGs confer hormonal responsiveness to gonadotrope-specific genes including Gnrhr, Cga, Fshb, and Lhb. In this study we tested the hypothesis that GnRH specifically regulates the accumulation of Jun and Atf3 mRNA through a pathway that includes intracellular Ca²⁺, calcineurin, and nuclear factor of activated T cells (NFAT). Our results indicate that pretreatment of murine LβT2 cells with 1, 2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)-ester, a Ca²⁺ chelator, reduced the expression of all the IEGs to varying degrees, whereas treatment with thapsigargin, an intracellular Ca²⁺ protein pump inhibitor, increased the expression of the IEG. Furthermore, cyclosporin A, a calcineurin-specific inhibitor, reduced the ability of GnRH to regulate accumulation of Jun and Atf3 mRNA and to a lesser extent Fos. In contrast, Egr1 mRNA was unaffected. NFATs are transcription factors regulated by calcineurin and were detected in LβT2 cells. GnRH increased luciferase activity of an NFAT-dependent promoter reporter that was dependent on intracellular Ca²⁺ and calcineurin activity. Additionally, although small interfering RNA specific for Nfat4 only marginally reduced GnRH regulation of Jun, Fos, and Atf3 mRNA accumulation, activity of an activator protein-1-responsive reporter construct was reduced by 48%. Together these data suggest that calcineurin and NFAT are new members of the gonadotrope transcriptional network that confer hormonal responsiveness to several key genes required for gonadotropin synthesis and secretion.
Collapse
Affiliation(s)
- April K Binder
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | | | | | |
Collapse
|
30
|
Chauvin TR, Herndon MK, Nilson JH. Cold-shock-domain protein A (CSDA) contributes posttranscriptionally to gonadotropin-releasing hormone-regulated expression of Egr1 and indirectly to Lhb. Biol Reprod 2012; 86:53. [PMID: 22053098 DOI: 10.1095/biolreprod.111.093658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH), a hypothalamic neurohormone, regulates transcription of Lhb in gonadotrophs indirectly through transient induction and accumulation of EGR1, a zinc finger transcription factor. AlphaT3 and LbetaT2 cell lines model gonadotrophs at two distinct stages of development, prenatal and postnatal expression of Lhb. Although GnRH induces EGR1 in both cell lines, the levels of the DNA-binding protein are lower and disappear more quickly in alphaT3 than in LbetaT2 cells. Herein we show that overexpression of Egr1 in alphaT3 cells rescues activity of a transfected LHB promoter-reporter, suggesting that its transcription is dependent on EGR1 crossing a critical concentration threshold. We also show that Csda, a gene that encodes an RNA-binding protein and is a member of the cold-shock-domain (CSD) family, is expressed at higher levels in LbetaT2 compared to alphaT3 cells. Transient expression studies indicate that at least one Csd element, residing in the 3' untranslated region of Egr1 mRNA, increases activity of a chimeric pGL3 luciferase reporter vector in LbetaT2 cells. Additional experiments indicate that CSDA physically interacts with Egr1 mRNA. Furthermore, siRNA-mediated reduction of endogenous Csda mRNA attenuates GnRH regulation of a transiently transfected LHB reporter vector. Taken together, these studies suggest that CSDA contributes posttranscriptionally to GnRH-regulated expression of Egr1, thereby enabling the transcription factor to cross a critical concentration threshold necessary for maximal accumulation of Lhb mRNA in response to the neurohormone.
Collapse
Affiliation(s)
- Theodore R Chauvin
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | |
Collapse
|
31
|
Abstract
The synthesis and secretion of the gonadotropic hormones involves coordination of signal transduction, gene expression, protein translation, post-translational folding and modification and finally secretion. The production of biologically active gonadotropin thus requires appropriately folded and glycosylated subunits that assemble to form the heterodimeric hormone. Here we overview recent literature on regulation of gonadotropin subunit gene expression and current understanding of the assembly and secretion of biologically active gonadotropic hormones. Finally, we discuss the therapeutic potential of understanding glycosylation function towards designing new forms of gonadotropins based on observations of physiologically relevant parameters such as age related glycosylation changes.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA.
| | | |
Collapse
|
32
|
Maruska KP, Fernald RD. Social Regulation of Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Physiology (Bethesda) 2011; 26:412-23. [DOI: 10.1152/physiol.00032.2011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Reproduction is a critically important event in every animals' life and in all vertebrates is controlled by the brain via the hypothalamic-pituitary-gonadal (HPG) axis. In many species, this axis, and hence reproductive fitness, can be profoundly influenced by the social environment. Here, we review how the reception of information in a social context causes genomic changes at each level of the HPG axis.
Collapse
Affiliation(s)
- Karen P. Maruska
- Department of Biology, Stanford University, Stanford, California
| | | |
Collapse
|
33
|
Tsaneva-Atanasova K, Mina P, Caunt CJ, Armstrong SP, McArdle CA. Decoding GnRH neurohormone pulse frequency by convergent signalling modules. J R Soc Interface 2011; 9:170-82. [PMID: 21676968 DOI: 10.1098/rsif.2011.0215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) mediates control of reproduction. It is secreted in pulses and acts via intracellular effectors to activate gonadotrophin secretion and gene expression. Sub-maximal GnRH pulse frequency can elicit maximal responses, yielding bell-shaped frequency-response curves characteristic of genuine frequency decoders. GnRH frequency decoding is therapeutically important (pulsatile GnRH can drive ovulation in assisted reproduction whereas sustained activation can treat breast and prostate cancers), but the mechanisms are unknown. Here, we consider the possibility that it is due to convergence of distinct pulsatile signals at the transcriptome. We develop a model that mirrors wet-laboratory data for activation and nuclear translocation of GnRH effectors (extracellular signal regulated kinase and nuclear factors of activated T-cells) and incorporates transcription. The model predicts genuine frequency decoding when two transcription factors (TFs) converge at a cooperative gate, and shows how optimal pulse frequency could reflect TF activation kinetics and affinities. Importantly, this behaviour is revealed as an emergent feature of the network, rather than an intrinsic feature of a given protein or pathway, and since such network topology is extremely common, may well be widespread in biological systems.
Collapse
|
34
|
Burger LL, Haisenleder DJ, Marshall JC. GnRH pulse frequency differentially regulates steroidogenic factor 1 (SF1), dosage-sensitive sex reversal-AHC critical region on the X chromosome gene 1 (DAX1), and serum response factor (SRF): potential mechanism for GnRH pulse frequency regulation of LH beta transcription in the rat. Endocrine 2011; 39:212-9. [PMID: 21409515 DOI: 10.1007/s12020-011-9440-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
Abstract
The issue of how rapid frequency GnRH pulses selectively stimulate LH transcription is not fully understood. The rat LHβ promoter contains two GnRH-responsive regions: the proximal region has binding elements for SF1, and the distal site contains a CArG box, which binds SRF. This study determined whether GnRH stimulates pituitary SF1, DAX1 (an endogenous SF1 inhibitor), and SRF transcription in vivo, and whether regulation is frequency dependent. Male rats were pulsed with 25 ng GnRH i.v. every 30 min or every 240 min for 1-24 h, and primary transcripts (PTs) and mRNAs were measured by real time PCR. Fast frequency GnRH pulses (every 30 min) increased SF1 PT (threefold) within 1 h, and then declined after 6 h. SF1 mRNA also increased within 1 h and remained elevated through 24 h. Fast frequency GnRH also stimulated a transient increase in DAX1 PT (twofold after 1 h) and mRNA (1.7-fold after 6 h), while SRF mRNA rose briefly at 1 h. Slow frequency pulses did not affect gene expression of SF1, DAX1, or SRF. These findings support a mechanistic link between SF1 in the frequency regulation of LHβ transcription by pulsatile GnRH.
Collapse
Affiliation(s)
- Laura L Burger
- University of Michigan, Medical Sciences Building II, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
35
|
Yao B, Liu HY, Gu YC, Shi SS, Tao XQ, Li XJ, Ge YF, Cui YX, Yang GB. Gonadotropin-releasing hormone positively regulates steroidogenesis via extracellular signal-regulated kinase in rat Leydig cells. Asian J Androl 2011; 13:438-45. [PMID: 21441942 DOI: 10.1038/aja.2010.158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted from neurons within the hypothalamus and is necessary for reproductive function in all vertebrates. GnRH is also found in organs outside of the brain and plays an important role in Leydig cell steroidogenesis in the testis. However, the signalling pathways mediating this function remain largely unknown. In this study, we investigated whether components of the mitogen-activated protein kinase (MAPK) pathways are involved in GnRH agonist (GnRHa)-induced testis steroidogenesis in rat Leydig cells. Primary cultures of rat Leydig cells were established. The expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and the production of testosterone in response to GnRHa were examined at different doses and for different durations by RT-PCR, Western blot analysis and radioimmunoassay (RIA). The effects of GnRHa on ERK1/2, JNK and p38 kinase activation were also investigated in the presence or absence of the MAPK inhibitor PD-98059 by Western blot analysis. GnRHa induced testosterone production and upregulated 3β-HSD expression at both the mRNA and protein levels; it also activated ERK1/2, but not JNK and p38 kinase. Although the maximum effects of GnRHa were observed at a concentration of 100 nmnol L⁻¹ after 24 h, activation of ERK1/2 by GnRHa reached peak at 5 min and it returned to the basal level within 60 min. PD-98059 completely blocked the activation of ERK1/2, the upregulation of 3β-HSD and testosterone production. Our data show that GnRH positively regulates steroidogenesis via ERK signalling in rat Leydig cells. ERK1/2 activation by GnRH may be responsible for the induction of 3β-HSD gene expression and enzyme production, which may ultimately modulate steroidogenesis in rat Leydig cells.
Collapse
Affiliation(s)
- Bing Yao
- Department of Reproduction and Genetics, Nanjing Jingling Hospital, Nanjing 210002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 2010; 31:322-40. [PMID: 20451543 PMCID: PMC2923852 DOI: 10.1016/j.yfrne.2010.04.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022]
Abstract
Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
37
|
Armstrong SP, Caunt CJ, Fowkes RC, Tsaneva-Atanasova K, McArdle CA. Pulsatile and sustained gonadotropin-releasing hormone (GnRH) receptor signaling: does the ERK signaling pathway decode GnRH pulse frequency? J Biol Chem 2010; 285:24360-71. [PMID: 20507982 PMCID: PMC2915671 DOI: 10.1074/jbc.m110.115964] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein-coupled receptors on gonadotrophs to stimulate synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used an extracellular signal regulated kinase-green fluorescent protein (ERK2-GFP) reporter to monitor GnRH signaling. GnRH caused dose-dependent ERK2-GFP translocation to the nucleus, providing a live-cell readout for activation. Pulsatile GnRH caused dose- and frequency-dependent ERK2-GFP translocation. These responses were rapid and transient, showed only digital tracking, and did not desensitize under any condition tested (dose, frequency, and receptor number varied). We also tested for the effects of cycloheximide (to prevent induction of nuclear-inducible MAPK phosphatases) and used GFP fusions containing ERK mutations (D319N, which prevents docking domain-dependent binding to MAPK phosphatases, and K52R, which prevents catalytic activity). These manipulations had little or no effect on the translocation responses, arguing against a role for MAPK phosphatases or ERK-mediated feedback in shaping ERK activation during pulsatile stimulation. GnRH also caused dose- and frequency-dependent activation of the alpha-gonadotropin subunit-, luteinizing hormone beta-, and follicle-stimulating hormone beta- luciferase reporters, and the latter response was inhibited by ERK1/2 knockdown. Moreover, GnRH caused frequency-dependent activation of an Egr1-luciferase reporter, but the response was proportional to cumulative pulse duration. Our data suggest that frequency decoding is not due to negative feedback shaping ERK signaling in this model.
Collapse
Affiliation(s)
- Stephen P Armstrong
- Laboratories for Integrative Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Armstrong SP, Caunt CJ, Fowkes RC, Tsaneva-Atanasova K, McArdle CA. Pulsatile and sustained gonadotropin-releasing hormone (GnRH) receptor signaling: does the Ca2+/NFAT signaling pathway decode GnRH pulse frequency? J Biol Chem 2010; 284:35746-57. [PMID: 19858197 PMCID: PMC2791005 DOI: 10.1074/jbc.m109.063917] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) acts via 7 transmembrane region receptors on gonadotrophs to stimulate synthesis and secretion of the luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used (nuclear factor of activated T-cells 2 (NFAT2)-emerald fluorescent protein) to monitor GnRH signaling. Increasing [Ca2+]i causes calmodulin/calcineurin-dependent nuclear NFAT translocation, a response involving proteins (calmodulins and NFATs) that decode frequency in other systems. Using live cell imaging, pulsatile GnRH caused dose- and frequency-dependent increases in nuclear NFAT2-emerald fluorescent protein, and at low frequency, translocation simply tracked GnRH exposure (albeit with slower kinetics). At high frequency (30-min intervals), failure to return to basal conditions before repeat stimulation caused integrative tracking, illustrating how the relative dynamics of up- and downstream signals can increase efficiency of GnRH action. Mathematical modeling predicted desensitization of GnRH effects on [Ca2+]i and that desensitization would increase with dose, frequency, and receptor number, but no such desensitization was seen in HeLa and/or LβT2 cells possibly because pulsatile GnRH did not reduce receptor expression (measured by immunofluorescence). GnRH also caused dose- and frequency-dependent activation of αGSU, luteinizing hormone β, and follicle-stimulating hormone β luciferase reporters, effects that were blocked by calcineurin inhibition. Pulsatile GnRH also activated an NFAT-responsive luciferase reporter, but this response was directly related to cumulative pulse duration. This together with the lack of desensitization of translocation responses suggests that NFAT may mediate GnRH action but is not a genuine decoder of GnRH pulse frequency.
Collapse
Affiliation(s)
- Stephen P Armstrong
- Laboratories for Integrative Neuroscience and Endocrinology, Department of Clinical Science at South Bristol, University of Bristol, Whitson Street, Bristol BS1 3NY
| | | | | | | | | |
Collapse
|