1
|
Moralia MA, Bothorel B, Andry V, Goumon Y, Simonneaux V. Bisphenol A induces sex-dependent alterations in the neuroendocrine response of Djungarian hamsters to photoperiod. CHEMOSPHERE 2024; 370:143955. [PMID: 39701315 DOI: 10.1016/j.chemosphere.2024.143955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
In nature, species synchronize reproduction and energy metabolism with seasons to optimize survival and growth. This study investigates the effect of oral exposure to bisphenol A (BPA) on phenotypic and neuroendocrine seasonal adaptations in the Djungarian hamster, which in contrast to conventional laboratory rodents, is a well-recognized seasonal model. Adult female and male hamsters were orally exposed to BPA (5, 50, or 500 μg/kg/d) or vehicle during a 10-week transition from a long (LP) to short (SP) photoperiod (winter transition) or vice versa (summer transition). Changes in body weight, food intake, and pelage color were monitored weekly and, at the end of the exposure, expression of hypophysio-hypothalamic markers of photoperiodic (TSHβ, deiodinases), reproductive (Rfrp, kisspeptin) and metabolic (somatostatin, Pomc) integration, reproductive organ activity, and glycemia were assessed. Our results revealed sex-specific effects of BPA on acquiring SP and LP phenotypes. During LP to SP transition, females exposed to 500 μg/kg/d BPA exhibited delayed body weight loss and reduced feed efficiency associated with a lower expression of somatostatin, while males exposed to 5 μg/kg/d BPA showed an accelerated acquisition of SP-induced metabolic parameters. During SP to LP transition, females exposed to 5 μg/kg/d BPA displayed a faster LP adaptation in reproductive and metabolic parameters, along with kisspeptin downregulation occurring 5 weeks earlier and Pomc upregulation delayed for up to 10 weeks. In males, BPA exposure led to decreased expression of central photoperiodic integrators, with no effect on the acquisition of the LP phenotype. This pioneering study investigating EDCs' effects on mammalian seasonal physiology shows that BPA alters the dynamics of metabolic adaptation to both SP and LP transitions with marked sex dimorphism, causing temporal discordance in seasonal adaptation between males and females. These findings emphasize the importance of investigating EDCs' effects on non-conventional animal models, providing insights into wildlife physiology.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Béatrice Bothorel
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Virginie Andry
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France
| | - Valérie Simonneaux
- Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France.
| |
Collapse
|
2
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
3
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
4
|
Gan H, Zhu B, Zhou F, Ding Z, Liu J, Ye X. Perinatal exposure to low doses of cypermethrin induce the puberty-related hormones and decrease the time to puberty in the female offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2665-2675. [PMID: 35931855 DOI: 10.1007/s11356-022-22328-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroid insecticides are ubiquitously detected in environmental media, food, and urine samples. Our previous epidemiological study reported a correlation between increased pyrethroid exposure and delayed pubertal development in Chinese girls. In this study, we further investigated the effects of perinatal exposure to low doses of cypermethrin (CP) on pubertal onset and hypothalamic-pituitary-ovarian axis in the female mice offspring. The treatment of CP with 60 μg/kg/day from gestation day 6 (GD6) to postnatal day 21 (PND21) significantly decreased the time to puberty in the female offspring. Exposure of CP increased the serum levels of gonadotropin-releasing hormone (GnRH) and the expression of GnRH genes in a dose-dependent manner in the female offspring. CP also induced the serum levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the expression of gonadotropin subunit genes [LHβ, FSHβ, and chorionic gonadotropin α (Cgα)]. Furthermore, CP induced serum estradiol (E2) levels and the expression of steroidogenesis-related genes [steroidogenic acute regulatory (StAR) and Cytochrome p 450, family 11, subfamily A, polypeptide 1 (CYP11A1)] in the ovary. In accordance with the in vivo tests, administration of CP (6.7, 20, and 60 μg/L) stimulated a dose-dependent increase in the synthesis and secretion of the puberty-related hormones in the explants of hypothalamus, pituitary, and ovary. The interference with calcium channels in the ovary may be responsible for CP-induced pubertal onset. Our study provided evidence that perinatal exposure to low doses of CP induced puberty-related hormones and decreased the time to puberty in the female offspring.
Collapse
Affiliation(s)
- Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Rossetto Giaccherino R, Pagano L, Grottoli S, Giordano R. Endocrine disrupting chemicals: effects on pituitary, thyroid and adrenal glands. Endocrine 2022; 78:395-405. [PMID: 35604630 PMCID: PMC9637063 DOI: 10.1007/s12020-022-03076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In recent years, scientific research has increasingly focused on Endocrine Disrupting Chemicals (EDCs) and demonstrated their relevant role in the functional impairment of endocrine glands. This induced regulatory authorities to ban some of these compounds and to carefully investigate others in order to prevent EDCs-related conditions. As a result, we witnessed a growing awareness and interest on this topic. AIMS This paper aims to summarize current evidence regarding the detrimental effects of EDCs on pivotal endocrine glands like pituitary, thyroid and adrenal ones. Particularly, we directed our attention on the known and the hypothesized mechanisms of endocrine dysfunction brought by EDCs. We also gave a glimpse on recent findings from pioneering studies that could in the future shed a light on the pathophysiology of well-known, but poorly understood, endocrine diseases like hormone-producing adenomas. CONCLUSIONS Although intriguing, studies on endocrine dysfunctions brought by EDCs are challenging, in particular when investigating long-term effects of EDCs on humans. However, undoubtedly, it represents a new intriguing field of science research.
Collapse
Affiliation(s)
- Filippo Egalini
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Lorenzo Marinelli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Mattia Rossi
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giovanna Motta
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Nunzia Prencipe
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Ruth Rossetto Giaccherino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Loredana Pagano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Silvia Grottoli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Roberta Giordano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Biological and Clinical Science, University of Turin, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| |
Collapse
|
6
|
Fang B, Bravo MA, Wang H, Sheng L, Wu W, Zhou Y, Xi X, Østbye T, Liu Q. Polycyclic aromatic hydrocarbons are associated with later puberty in girls: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157497. [PMID: 35868395 DOI: 10.1016/j.scitotenv.2022.157497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study is to explore associations between PAH exposures and puberty timing in girls. Beginning in May 2014, 734 girls age 7.2-11.8 years in Chongqing, China, were enrolled in a prospective cohort study. They were followed up every 6 months from enrollment through June 2021, at which point participants were ages 13.6-18.3 years. Metabolite concentrations of four PAHs (1-hydroxypyrene [1-OHPyr], 2-hydroxynaphthalene [2-OHNap], 2-hydroxyfluorine [2-OHFlu], and 9-hydroxyphenanthrene [9-OHPhe]) were measured in urine samples at baseline. At each follow up visit, the Tanner's Sexual Maturity Rating scale was administered. Cox proportional hazards models were used to estimate associations between four urinary PAH metabolite concentrations and four markers of puberty: menarche, breast development, pubic hair development, and axillary hair development. Geometric mean concentrations of 1-OHPyr, 2-OHNap, 2-OHFlu and 9-OHPhe in urine were 0.47 μg/L, 3.31 μg/L, 1.49 μg/L, 3.75 μg/L, respectively. There were statistically significant associations between several urinary PAH metabolite concentrations and puberty outcomes. PAH metabolite concentrations were grouped as Low (<25th percentile, referent group), Moderate (25th-75th percentile) or High (>75th). Girls with moderate levels of 1-OHPyr were at higher risk of delayed pubic hair development (hazard ratio [HR]: 0.82, 95 % confidence interval [CI]: 0.68-0.99). Delayed breast development (HR: 0.77, 95 % CI: 0.60-0.99) and pubic hair development (HR: 0.76, 95 % CI: 0.60-0.95) were associated with high 2-OHNap. High c 2-OHFlu was associated with delayed pubic hair development (HR: 0.77, 95 % CI: 0.61-0.96). Delayed breast (HR: 0.79, 95 % CI: 0.64-0.97), pubic hair (HR: 0.79, 95 % CI: 0.65-0.96) and axillary hair development (HR: 0.80, 95 % CI: 0.65-0.99) was associated with moderate 9-OHPhe. In conclusion, PAH exposure may delay puberty onset in girls.
Collapse
Affiliation(s)
- Bo Fang
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Mercedes A Bravo
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Hong Wang
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Lulu Sheng
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Wenyi Wu
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Yuanke Zhou
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Xuan Xi
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Truls Østbye
- Department of Family Medicine & Community Health and Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Qin Liu
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Freire C, Castiello F, Lopez-Espinosa MJ, Beneito A, Lertxundi A, Jimeno-Romero A, Vrijheid M, Casas M. Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. ENVIRONMENTAL RESEARCH 2022; 213:113606. [PMID: 35716812 DOI: 10.1016/j.envres.2022.113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalates are widespread, anti-androgenic chemicals known to alter early development, with possible impact on puberty timing. AIM To investigate the association of prenatal phthalate exposure with pubertal development in boys and girls. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and non-phthalate plasticizer DINCH® were quantified in two urine samples collected during pregnancy from mothers participating in the INMA Spanish cohort study. Pubertal assessment of their children at age 7-10 years (409 boys, 379 girls) was conducted using the parent-reported Pubertal Development Scale. Modified Poisson and Weighted Quantile Sum (WQS) regression was employed to examine associations between prenatal phthalates and risk of puberty onset, adrenarche, and gonadarche. Effect modification by child weight status was explored by stratified analysis. RESULTS Prenatal exposure to DEHP was associated with higher risk of puberty onset (relative risk [RR] = 1.32, 95% CI = 1.09-1.59 per each log-unit increase in concentrations) and gonadarche (RR = 1.23, 95% CI = 1.00-1.50) in boys and higher risk of adrenarche (RR = 1.25, 95% CI = 1.03-1.51) in girls at age 7-10 years. In boys, prenatal exposure to DEP, DnBP, and DEHP was also associated with higher risk of adrenarche or gonadarche (RRs = 1.49-1.80) in those with normal weight, and BBzP and DINCH® exposure with lower risk of adrenarche (RR = 0.49, 95% CI = 0.27-0.89 and RR = 0.47, 95% CI = 0.24-0.90, respectively) in those with overweight/obesity. In girls, DiBP, DnBP, and DINCH® were associated with slightly higher risk of gonadarche (RRs = 1.14-1.19) in those with overweight/obesity. In the WQS model, the phthalate mixture was not associated with puberty in boys or girls. CONCLUSION Prenatal exposure to certain phthalates was associated with pubertal development at age 7-10 years, especially earlier puberty in boys with normal weight and girls with overweight/obesity. However, there was no evidence of effect of the phthalate mixture on advancing or delaying puberty in boys or girls.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain.
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain.
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| |
Collapse
|
8
|
Moralia MA, Quignon C, Simonneaux M, Simonneaux V. Environmental disruption of reproductive rhythms. Front Neuroendocrinol 2022; 66:100990. [PMID: 35227765 DOI: 10.1016/j.yfrne.2022.100990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Reproduction is a key biological function requiring a precise synchronization with annual and daily cues to cope with environmental fluctuations. Therefore, humans and animals have developed well-conserved photoneuroendocrine pathways to integrate and process daily and seasonal light signals within the hypothalamic-pituitary-gonadal axis. However, in the past century, industrialization and the modern 24/7 human lifestyle have imposed detrimental changes in natural habitats and rhythms of life. Indeed, exposure to an excessive amount of artificial light at inappropriate timing because of shift work and nocturnal urban lighting, as well as the ubiquitous environmental contamination by endocrine-disrupting chemicals, threaten the integrity of the daily and seasonal timing of biological functions. Here, we review recent epidemiological, field and experimental studies to discuss how light and chemical pollution of the environment can disrupt reproductive rhythms by interfering with the photoneuroendocrine timing system.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clarisse Quignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marine Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Valérie Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
9
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
10
|
López-Rodríguez D, Aylwin CF, Delli V, Sevrin E, Campanile M, Martin M, Franssen D, Gérard A, Blacher S, Tirelli E, Noël A, Lomniczi A, Parent AS. Multi- and Transgenerational Outcomes of an Exposure to a Mixture of Endocrine-Disrupting Chemicals (EDCs) on Puberty and Maternal Behavior in the Female Rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87003. [PMID: 34383603 PMCID: PMC8360047 DOI: 10.1289/ehp8795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothalamus in puberty and ovulation disruption transmitted across generations. OBJECTIVES We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transgenerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care. METHODS Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs: di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole, dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations. RESULTS Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogenesis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of maternal behavior (F1-F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduction in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved. DISCUSSION Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.org/10.1289/EHP8795.
Collapse
Affiliation(s)
| | - Carlos Francisco Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | - Elena Sevrin
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marzia Campanile
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marion Martin
- Lille Neuroscience & Cognition (LilNCog), Institut national de la santé et de la recherche médicale (Inserm), CHU Lille, Lille, France
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Arlette Gérard
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ezio Tirelli
- Department of Psychology: Cognition and Behavior, University of Liège, Liège, Belgium
| | - Agnès Noël
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liège, Liège, Belgium
| |
Collapse
|
11
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
12
|
Effects of Endocrine-Disrupting Chemicals on Endometrial Receptivity and Embryo Implantation: A Systematic Review of 34 Mouse Model Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136840. [PMID: 34202247 PMCID: PMC8297133 DOI: 10.3390/ijerph18136840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023]
Abstract
Several available studies have already analyzed the systemic effects of endocrine-disrupting chemicals (EDCs) on fertile woman and neonatal outcomes, but little is still known in humans about the precise mechanisms of interference of these compounds with the endometrial receptivity. There is consistent evidence that continuous and prolonged exposure to EDCs is a risk factor for reduced fertility and fecundity in women. Preliminary studies on mammalian models provide robust evidence about this issue and could help gynecologists worldwide to prevent long term injury caused by EDCs on human fertility. In this systematic review, we aimed to systematically summarize all available data about EDC effects on blastocyst endometrial implantation. We performed a systematic review using PubMed®/MEDLINE® to summarize all in vivo studies, carried out on mice models, analyzing the molecular consequences of the prolonged exposure of EDC on the implantation process. 34 studies carried out on mouse models were included. Primary effects of EDC were a reduction of the number of implantation sites and pregnancy rates, particularly after BPA and phthalate exposure. Furthermore, the endometrial expression of estrogen (ER) and progesterone receptors (PR), as well as their activation pathways, is compromised after EDC exposure. Finally, the expression of the primary endometrial markers of receptivity (such as MUC1, HOXA10, Inn and E-cadherin) after EDC contact was analyzed. In conclusion EDC deeply affect blastocyst implantation in mouse model. Several players of the implantation mechanism are strongly influenced by the exposure to different categories of EDC.
Collapse
|
13
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
14
|
Meng H, Zhou Y, Jiang Y. Association of bisphenol A with puberty timing: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2020; aheadofprint:459-466. [PMID: 34651495 DOI: 10.1515/reveh-2020-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES The results of existing studies on bisphenol A (BPA) and puberty timing did not reach a consensus. Thereby we performed this meta-analytic study to explore the association between BPA exposure in urine and puberty timing. METHODS Meta-analysis of the pooled odds ratios (OR), prevalence ratios (PR) or hazards ratios (HR) with 95% confidence intervals (CI) were calculated and estimated using fixed-effects or random-effects models based on between-study heterogeneity. RESULTS A total of 10 studies involving 5621 subjects were finally included. The meta-analysis showed that BPA exposure was weakly associated with thelarche (PR: 0.96, 95% CI: 0.93-0.99), while no association was found between BPA exposure and menarche (HR: 0.99, 95% CI: 0.89-1.12; OR: 1.02, 95% CI: 0.73-1.43), and pubarche (OR: 1.00, 95% CI: 0.79-1.26; PR: 1.00, 95% CI: 0.95-1.05). CONCLUSIONS There was no strong correlation between BPA exposure and puberty timing. Further studies with large sample sizes are needed to verify the relationship between BPA and puberty timing.
Collapse
Affiliation(s)
- Hui Meng
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Yunping Zhou
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Yunxia Jiang
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Bigambo FM, Sun H, Yan W, Wu D, Xia Y, Wang X, Wang X. Association between phenols exposure and earlier puberty in children: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 190:110056. [PMID: 32805251 DOI: 10.1016/j.envres.2020.110056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 08/01/2020] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To identify the association between phenolic chemicals and the risk of earlier puberty based on the available evidence by systematic review and meta-analysis. METHODS Databases PubMed, Web of Science, and Cochrane Library were searched and retrieved appropriate journal articles on the association between phenols exposure and earlier puberty in children published before February 14, 2020. Stata software version 12.0 and Excel were used for statistical analysis. RESULTS Nine studies were included in the meta-analysis with total subjects of 4737. All the subjects included in our studies were girls. The pooled estimate has shown the association between 2, 5- dichrolophenol exposure, and earlier puberty in children with effect size (ES) 1.13 (95% CI: 1.06, 1.20). Exposed to other types of phenolic chemicals such as bisphenol A, Triclosan, Benzophenone-3 were not statistically significant associated with the risk of earlier puberty in children with the overall pooled estimates of ES of 1.09 (95%CI: 0.88, 1.35), ES 1.05(95% CI: 0.96, 1.15), and ES 0.98 (95% CI: 0.88, 1.10) respectively. CONCLUSION Our results portray that phenols particularly 2, 5- dichlorophenol exposure might be associated with the risk of earlier puberty in children. Also, caution should be taken to other type of phenolic chemicals since in subgroup analysis some individual studies have shown a positive relationship between bisphenol A, Triclosan and Benzophenone-3 exposures, and the risk of earlier puberty in children. Future cohort studies should be conducted with more sample sizes to determine the relationship between 2, 5- dichlorophenol, and the risk of earlier puberty in children of all gender.
Collapse
Affiliation(s)
- Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hanqing Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Nanjing Children's Hospital Affiliated to Nanjing Medical University, 210008, Nanjing, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
16
|
Tang C, Zhang J, Liu P, Zhou Y, Hu Q, Zhong Y, Wang X, Chen L. Chronic exposure to low dose of bisphenol A causes follicular atresia by inhibiting kisspeptin neurons in anteroventral periventricular nucleus in female mice. Neurotoxicology 2020; 79:164-176. [PMID: 32407858 DOI: 10.1016/j.neuro.2020.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022]
Abstract
Bisphenol-A (BPA) is an estrogenic chemical extensively used in industrial and household applications. The present study was conducted to investigate the effect of chronic exposure to BPA on the adult female neuroendocrine system. Herein, we found that expose of adult female mice to BPA (50 μg/kg) by oral gavage for 60 days (BPA mice) prolonged diestrus and decreased serum 17β-estradiol (E2) concentration by reducing the number of antral follicles and corpora luteum. In comparison with controls, the levels of serum luteinizing hormone (LH), follicle stimulating hormone (FSH), hypothalamic gonadotrophin releasing hormone (GnRH) and the expression of kisspeptin in anteroventral periventricular nucleus (AVPV) decreased in BPA mice, which could be reversed by injecting kisspeptin-10 (i.c.v.). Treatment with BPA or estrogen receptor α (ERα) antagonist MPP, but not ERβ antagonist PHTPP inhibited E2-induced AVPV-kisspeptin expression in ovariectomized mice. Use of ERα agonist PPT rather than ERβ agonist DPN enhanced AVPV-kisspepetin expression, which decreased after treatment with BPA. The amplitude of the proestrus LH surge decreased in mice exposed to BPA, but was recovered by administering kisspeptin-10. The present study provides in vivo evidence that chronic exposure to a low dose of BPA suppressed ERα-induced activation of AVPV-kisspeptin neurons, leading to prolonged diestrus and reduced ovulation in adult female mice.
Collapse
Affiliation(s)
- Chuanfeng Tang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Zhang
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Peiyu Liu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Qiaoyun Hu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ying Zhong
- Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
Ruiz-Pino F, Miceli D, Franssen D, Vazquez MJ, Farinetti A, Castellano JM, Panzica G, Tena-Sempere M. Environmentally Relevant Perinatal Exposures to Bisphenol A Disrupt Postnatal Kiss1/NKB Neuronal Maturation and Puberty Onset in Female Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107011. [PMID: 31652106 PMCID: PMC6867420 DOI: 10.1289/ehp5570] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The timing of puberty is highly sensitive to environmental factors, including endocrine disruptors. Among them, bisphenol A (BPA) has been previously analyzed as potential modifier of puberty. Yet, disparate results have been reported, with BPA advancing, delaying, or being neutral in its effects on puberty onset. Likewise, mechanistic analyses addressing the central and peripheral actions/targets of BPA at puberty remain incomplete and conflictive. OBJECTIVE We aimed to provide a comprehensive characterization of the impact of early BPA exposures, especially at low, real-life doses, on the postnatal development of hypothalamic Kiss1/NKB neurons, and its functional consequences on female pubertal maturation. METHODS Pregnant CD1 female mice were orally administered BPA at 5, 10, or 40μg/kg body weight (BW)/d from gestational day 11 to postnatal day 8 (PND8). Vaginal opening, as an external marker of puberty onset, was monitored daily from PND19 to PND30 in the female offspring. Blood and brain samples were collected at PND12, 15, 18, 21, and 30 for measuring circulating levels of gonadotropins and analyzing the hypothalamic expression of Kiss1/kisspeptin and NKB. RESULTS Perinatal exposure to BPA, in a range of doses largely below the no observed adverse effect level (NOAEL; 5mg/kg BW/d, according to the FDA), was associated with pubertal differences in the female progeny compared with those exposed to vehicle alone, with an earlier age of vaginal opening but consistently lower levels of circulating luteinizing hormone. Mice treated with BPA exhibited a persistent, but divergent, impairment of Kiss1 neuronal maturation, with more kisspeptin cells in the rostral (RP3V) hypothalamus but consistently fewer kisspeptin neurons in the arcuate nucleus (ARC). Detailed quantitative analysis of the ARC population, essential for pubertal development, revealed that mice treated with BPA had persistently lower Kiss1 expression during (pre)pubertal maturation, which was associated with lower Tac2 (encoding NKB) levels, even at low doses (5μg/kg BW/d), in the range of the tolerable daily intake (TDI), recently updated by the European Food Safety Authority. CONCLUSIONS Our data attest to the consistent, but divergent, effects of gestational exposures to low concentrations of BPA, via the oral route, on phenotypic and neuroendocrine markers of puberty in female mice, with an unambiguous impact on the developmental maturation not only of Kiss1, but also of the NKB system, both essential regulators of puberty onset. https://doi.org/10.1289/EHP5570.
Collapse
Affiliation(s)
- Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Desiree Miceli
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Alice Farinetti
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Juan Manuel Castellano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - GianCarlo Panzica
- Department of Neuroscience “Rita Levi Montalcini,” University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Orbassano, Italy
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba, Avda, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
18
|
Du G, Hu J, Huang Z, Yu M, Lu C, Wang X, Wu D. Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): Advance puberty onset and kisspeptin system disturbance in female rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:412-421. [PMID: 30368134 DOI: 10.1016/j.ecoenv.2018.10.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are widespread and persistent chemicals in the environment, and limited data about their effects on puberty development are available. In order to explore the effects of neonatal and juvenile PFOA/PFOS exposure on puberty maturation, female rats were injected with PFOA or PFOS at 0.1, 1 and 10 mg/kg/day during postnatal day (PND) 1-5 or 26-30. The day of vaginal opening (VO) and first estrus were significantly advanced in 10 mg/kg PFOA, 1 and 10 mg/kg PFOS groups after neonatal and juvenile exposure. Besides, neonatal PFOA/PFOS exposure increased body weight and anogenital distance (AGD) in a non-dose-dependent manner. Estradiol and luteinizing hormone levels were also increased with more frequent occurrences of irregular estrous cycles in 0.1 and 1 mg/kg PFOA/PFOS exposure groups. Although no altered ovarian morphology was observed, follicles numbers were reduced in neonatal groups. Kiss1, Kiss1r and ERα mRNA expressions were downregulated after two periods' exposure in the hypothalamic anteroventral periventricular (AVPV) and arcuate (ARC) nuclei. PFOA/PFOS exposure also suppressed kisspeptin fiber intensities, especially at the high dose. In conclusion, neonatal and juvenile are critical exposure periods, during which puberty maturation may be vulnerable to environmental exposure of PFOA/PFOS, and kisspeptin system plays a key role during these processes.
Collapse
Affiliation(s)
- Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jialei Hu
- Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing 210009, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingming Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
19
|
Aylwin CF, Vigh-Conrad K, Lomniczi A. The Emerging Role of Chromatin Remodeling Factors in Female Pubertal Development. Neuroendocrinology 2019; 109:208-217. [PMID: 30731454 PMCID: PMC6794153 DOI: 10.1159/000497745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022]
Abstract
To attain sexual competence, all mammalian species go through puberty, a maturational period during which body growth and development of secondary sexual characteristics occur. Puberty begins when the diurnal pulsatile gonadotropin-releasing hormone (GnRH) release from the hypothalamus increases for a prolonged period of time, driving the adenohypophysis to increase the pulsatile release of luteinizing hormone with diurnal periodicity. Increased pubertal GnRH secretion does not appear to be driven by inherent changes in GnRH neuronal activity; rather, it is induced by changes in transsynaptic and glial inputs to GnRH neurons. We now know that these changes involve a reduction in inhibitory transsynaptic inputs combined with increased transsynaptic and glial excitatory inputs to the GnRH neuronal network. Although the pubertal process is known to have a strong genetic component, during the last several years, epigenetics has been implicated as a significant regulatory mechanism through which GnRH release is first repressed before puberty and is involved later on during the increase in GnRH secretion that brings about the pubertal process. According to this concept, a central target of epigenetic regulation is the transcriptional machinery of neurons implicated in stimulating GnRH release. Here, we will briefly review the hormonal changes associated with the advent of female puberty and the role that excitatory transsynaptic inputs have in this process. In addition, we will examine the 3 major groups of epigenetic modifying enzymes expressed in the neuroendocrine hypothalamus, which was recently shown to be involved in pubertal development and progression.
Collapse
Affiliation(s)
- Carlos Francisco Aylwin
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Katinka Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA
| | - Alejandro Lomniczi
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University (OHSU), Beaverton, Oregon, USA,
| |
Collapse
|
20
|
Wang H, Khoradmehr A, Jalali M, Salehi MS, Tsutsui K, Jafarzadeh Shirazi MR, Tamadon A. The roles of RFamide-related peptides (RFRPs), mammalian gonadotropin-inhibitory hormone (GnIH) orthologues in female reproduction. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1210-1220. [PMID: 30627363 PMCID: PMC6312679 DOI: 10.22038/ijbms.2018.30520.7355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To benefit from reproduction and deal with challenges in the environmental conditions, animals must adapt internal physiology to maximize the reproduction rate. Maladaptive variations in the neurochemical systems and reproductive system can lead to manifestation of several significant mammalian reprocesses, including mammalian ovarian lifespan. RFamide-related peptide (RFRP, Rfrp), mammalian orthologues of gonadotropin-inhibitory hormone (GnIH), which is a regulator to prevent the gonadotropin-releasing hormone (GnRH) neural activity, is known to be related to reproductive traits. This review aimed to summarize recent five-year observations to outline historic insights and novel perspectives into the functions of RFRPs in coding the mammalian reproductive physiology, especially highlight recent advances in the impact on RFRPs in regulating mammalian ovary lifespan. MATERIALS AND METHODS We reviewed the recent five-year important findings of RFRP system involved in mammalian ovary development. Data for this review were collected from Google Scholar and PubMed using the RFRP keyword combined with the keywords related to physiological or pathological reproductive functions. RESULTS Recent discoveries are focused on three major fronts in research on RFRP role in female reproduction including reproductive functions, energy balance, and stress regulation. The roles of RFRPs in various development phases of mammal reproduction including prepuberty, puberty, estrous cycle, pregnancy, milking, menopause, and/or ovarian diseases have been shown. CONCLUSION Overall, these recent advances demonstrate that RFRPs serve as critical mediators in mammalian ovarian development.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences; Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Arezoo Khoradmehr
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Jalali
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammad Saied Salehi
- Department of Physiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
21
|
Viguié C, Mhaouty-Kodja S, Habert R, Chevrier C, Michel C, Pasquier E. Evidence-based adverse outcome pathway approach for the identification of BPA as en endocrine disruptor in relation to its effect on the estrous cycle. Mol Cell Endocrinol 2018; 475:10-28. [PMID: 29577943 DOI: 10.1016/j.mce.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 02/04/2023]
Abstract
Proper cyclicity is essential to reach successful optimal fertility. In rats and mice, BPA exposure is repeatedly and reliably reported to show an adverse effect on the estrous cycle after exposures at different life stages. In humans, a possible association between modifications of menstrual cycle characteristics (e.g. length of the cycle, duration of menstrual bleeding) and sub-fecundity or spontaneous abortion has been observed. Alterations of ovarian cyclicity can therefore be definitely considered as an adverse health outcome. As a prerequisite for the EU REACH regulation to identify a substance as an endocrine disruptor and a SVHC,1 the proof has to be established that the substance can have deleterious health effects resulting from an endocrine mode of action. This review provides an overview of the currently available data allowing to conclude that the adverse effects of BPA exposure on ovarian cyclicity is mediated by an endocrine mode of action.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - René Habert
- Genetic Stability, Stem Cells and Radiations, CEA, INSERM U 967, University Paris-Diderot, CEA Research Center, Fontenay aux Roses, France
| | - Cécile Chevrier
- INSERM, UMR1085, Researche Institute for Environmental and Occupational Health, Rennes, France
| | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | |
Collapse
|
22
|
Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci 2018; 12:747. [PMID: 30405335 PMCID: PMC6200920 DOI: 10.3389/fnins.2018.00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was found in the brain of Japanese quail when investigating the existence of RFamide peptides in birds. GnIH was named because it decreased gonadotropin release from cultured anterior pituitary, which was located in the hypothalamo-hypophysial system. GnIH and GnIH precursor gene related peptides have a characteristic C-terminal LPXRFamide (X = L or Q) motif that is conserved in jawed vertebrates. Orthologous peptides to GnIH are also named RFamide related peptide or LPXRFamide peptide from their structure. A G-protein coupled receptor GPR147 is the primary receptor for GnIH. Similarity-based clustering of neuropeptide precursors in metazoan species indicates that GnIH precursor of vertebrates is evolutionarily related to FMRFamide precursor of mollusk and nematode. FMRFamide peptide is the first RFamide peptide that was identified from the ganglia of the venus clam. In order to infer the evolutionary history of the GnIH-GnIH receptor system we investigate the structural similarities between GnIH and its receptor and well-studied nematode Caenorhabditis elegans (C. elegans) FMRFamide-like peptides (FLPs) and their receptors. We also compare the functions of FLPs of nematode with GnIH of chordates. A multiple sequence alignment and phylogenetic analyses of GnIH, neuropeptide FF (NPFF), a paralogous peptide of GnIH, and FLP precursors have shown that GnIH and NPFF precursors belong to different clades and some FLP precursors have structural similarities to either precursor. The peptide coding regions of FLP precursors in the same clade align well with those of GnIH or NPFF precursors. Alignment of GnIH (LPXRFa) peptides of chordates and FLPs of C. elegans grouped the peptides into five groups according to the last C-terminal amino acid sequences, which were MRFa, LRFa, VRFa, IRFa, and PQRFa. Phylogenetic analysis of receptors suggested that GPR147 has evolutionary relationships with FLP receptors, which regulate reproduction, aggression, locomotion, and feeding. GnIH and some FLPs mediate the effect of stress on reproduction and behavior, which may also be a conserved property of these peptide systems. Future studies are needed to investigate the mechanism of how neuropeptide precursor genes are mutated to evolve new neuropeptides and their inheritance.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| |
Collapse
|
23
|
Berger K, Eskenazi B, Kogut K, Parra K, Lustig RH, Greenspan LC, Holland N, Calafat AM, Ye X, Harley KG. Association of Prenatal Urinary Concentrations of Phthalates and Bisphenol A and Pubertal Timing in Boys and Girls. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:97004. [PMID: 30203993 PMCID: PMC6375461 DOI: 10.1289/ehp3424] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/12/2018] [Accepted: 08/02/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Animal studies suggest that phthalates and bisphenol A (BPA), endocrine-disrupting chemicals found in many consumer products, may impact the timing of puberty. OBJECTIVES We aimed to determine the association of prenatal exposure to high-molecular-weight phthalates and BPA with pubertal timing in boys and girls participating in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) longitudinal cohort study. METHODS We quantified urinary concentrations of eight phthalate metabolites and BPA at two time points during pregnancy among participating mothers ([Formula: see text]) and conducted clinical Tanner staging of puberty on their children every 9 months between 9 and 13 y of age. We conducted accelerated failure time models and examined the role of child overweight/obese status in this association. RESULTS The sum of urinary metabolites of di(2-ethylhexyl) phthalate [Formula: see text], monobenzyl phthalate (MBzP), and BPA were associated with later onset of at least one of the three outcomes assessed in girls (thelarche, pubarche, or menarche) and with earlier onset of at least one of the two outcomes assessed in boys (gondarche and pubarche). We found that monocarboxynonyl phthalate, monocarboxyoctyl phthalate, mono(3-carboxypropyl) phthalate, and BPA were associated with later pubarche and menarche mostly among normal-weight girls but not overweight/obese girls. MBzP was associated with later thelarche in all girls, and [Formula: see text] was associated with later thelarche and menarche in all girls. BPA and all phthalate biomarkers were associated with earlier gonadarche and pubarche in all boys as well as in overweight/obese boys when stratified by weight. Among normal-weight boys, associations with BPA were also inverse, whereas associations with phthalate metabolites were close to the null or positive. CONCLUSIONS Several high-molecular-weight phthalates and BPA were associated with later puberty in girls and earlier puberty in boys included in the CHAMACOS cohort study. Childhood overweight/obesity may modify these associations. https://doi.org/10.1289/EHP3424.
Collapse
Affiliation(s)
- Kimberly Berger
- 1 Center for Environmental Research and Children's Health (CERCH) , School of Public Health, University of California, Berkeley , Berkeley, California, USA
| | - Brenda Eskenazi
- 1 Center for Environmental Research and Children's Health (CERCH) , School of Public Health, University of California, Berkeley , Berkeley, California, USA
| | - Katherine Kogut
- 1 Center for Environmental Research and Children's Health (CERCH) , School of Public Health, University of California, Berkeley , Berkeley, California, USA
| | - Kimberly Parra
- 1 Center for Environmental Research and Children's Health (CERCH) , School of Public Health, University of California, Berkeley , Berkeley, California, USA
| | - Robert H Lustig
- 2 Department of Pediatrics, University of California, San Francisco , San Francisco, California, USA
| | - Louise C Greenspan
- 3 Department of Pediatrics, Kaiser Permanente , San Francisco, California, USA
| | - Nina Holland
- 1 Center for Environmental Research and Children's Health (CERCH) , School of Public Health, University of California, Berkeley , Berkeley, California, USA
| | - Antonia M Calafat
- 4 Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia, USA
| | - Xiaoyun Ye
- 4 Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia, USA
| | - Kim G Harley
- 1 Center for Environmental Research and Children's Health (CERCH) , School of Public Health, University of California, Berkeley , Berkeley, California, USA
| |
Collapse
|
24
|
Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2018; 23:737-763. [PMID: 28961976 DOI: 10.1093/humupd/dmx025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. OBJECTIVE AND RATIONALE By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. SEARCH METHODS A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. OUTCOMES Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly modulation of repressors that target kisspeptins and NKB pathways, as well as microRNAs and the related binding protein, Lin28B, in the central control of puberty. These novel pathways provide the molecular and neuroendocrine basis for the modulation of puberty by different endogenous and environmental cues, including nutritional and metabolic factors, such as leptin, ghrelin and insulin, which are known to play an important role in pubertal timing. WIDER IMPLICATIONS Despite recent advancements, our understanding of the basis of mammalian puberty remains incomplete. Complete elucidation of the novel neuropeptidergic and molecular mechanisms summarized in this review will not only expand our knowledge of the intimate mechanisms responsible for puberty onset in humans, but might also provide new tools and targets for better prevention and management of pubertal deviations in the clinical setting.
Collapse
Affiliation(s)
- M S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
25
|
Eckstrum KS, Edwards W, Banerjee A, Wang W, Flaws JA, Katzenellenbogen JA, Kim SH, Raetzman LT. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology 2018; 159:119-131. [PMID: 29092056 PMCID: PMC5761589 DOI: 10.1210/en.2017-00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/03/2017] [Indexed: 11/19/2022]
Abstract
Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males. However, the effects of exposure during the neonatal period have not been examined. Therefore, we dosed pups from postnatal day (PND)0 to PND7 with 0.05, 0.5, and 50 μg/kg/d BPA, environmentally relevant doses, or 50 μg/kg/d estradiol (E2). Mice were collected after dosing at PND7 and at 5 weeks. Dosing mice neonatally with BPA caused sex-specific gene expression changes distinct from those observed with embryonic exposure. At PND7, pituitary Pit1 messenger RNA (mRNA) expression was decreased with BPA 0.05 and 0.5 μg/kg/d in males only. Expression of Pomc mRNA was decreased at 0.5 μg/kg/d BPA in males and at 0.5 and 50 μg/kg/d BPA in females. Similarly, E2 decreased Pomc mRNA in both males and females. However, no noticeable corresponding changes were found in protein expression. Both E2 and BPA suppressed Pomc mRNA in pituitary organ cultures; this repression appeared to be mediated by estrogen receptor-α and estrogen receptor-β in females and G protein-coupled estrogen receptor in males, as determined by estrogen receptor subtype-selective agonists. These data demonstrated that BPA exposure during neonatal pituitary development has unique sex-specific effects on gene expression and that Pomc repression in males and females can occur through different mechanisms.
Collapse
Affiliation(s)
- Kirsten S. Eckstrum
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Annesha Banerjee
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Wei Wang
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A. Flaws
- Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Lori T. Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
26
|
Ubuka T, Moriya S, Soga T, Parhar I. Identification of Transmembrane Protease Serine 2 and Forkhead Box A1 As the Potential Bisphenol A Responsive Genes in the Neonatal Male Rat Brain. Front Endocrinol (Lausanne) 2018; 9:139. [PMID: 29643838 PMCID: PMC5882795 DOI: 10.3389/fendo.2018.00139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/15/2018] [Indexed: 11/13/2022] Open
Abstract
Perinatal exposure of Bisphenol A (BPA) to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH) promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2), an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1), an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir) cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by modifying Tmprss2 and Foxa1 expressions in the brain.
Collapse
|
27
|
Igarashi K, Ideta-Otsuka M, Narita M. The Current State and Future Development of Epigenetic Toxicology. YAKUGAKU ZASSHI 2017; 137:265-271. [PMID: 28250319 DOI: 10.1248/yakushi.16-00230-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epigenetics has drawn much attention as a mechanism of transcriptional regulation involving modifications to genomic DNA and histone, without changes to nucleotide sequences. Epigenetics is related to various biological phenomena. We defined one of these phenomena as "epigenetic toxicity", in which chemicals affect epigenetic regulation and result in undesirable effects on living organisms. We then detailed the importance of epigenetics and the need for intensive research. Epigenetics is a mechanism that might explain the long-lasting effects of chemicals in an organism, and the formation of a predisposition to various diseases. Recent significant technological advancement in the study of epigenetics could break through the barrier of the mysterious black box of epigenetic toxicity. However, at present it is difficult to say whether the epigenetic point of view is being fully utilized in the evaluation of chemical safety. In this review, we will first summarize the epigenetic toxicity research field, with examples of epigenetic toxicities and technologies for epigenetic analysis. Following that, we will point out some challenges in which an epigenetic viewpoint may be essential for the evaluation of chemical safety, and we will show some current approaches. We hope this review will trigger a discussion about epigenetic toxicity that will lead to encouraging research advancements.
Collapse
Affiliation(s)
- Katsuhide Igarashi
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | | | | |
Collapse
|
28
|
Han X, He Y, Zeng G, Wang Y, Sun W, Liu J, Sun Y, Yu J. Intracerebroventricular injection of RFRP-3 delays puberty onset and stimulates growth hormone secretion in female rats. Reprod Biol Endocrinol 2017; 15:35. [PMID: 28464910 PMCID: PMC5414188 DOI: 10.1186/s12958-017-0254-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/27/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Puberty onset is a complex, organized biological process with multilevel regulation, and its physiopathological mechanisms are yet to be elucidated. RFRP-3, the mammalian ortholog to gonadotropin-inhibitory hormone, is implicated in inhibiting the synthesis and release of gonadotropin in mammals. However, it is unclear whether RFRP-3 participates in regulating pubertal development. METHODS This study investigated the functional significance and regulatory mechanism of hypothalamic RFRP-3 neuropeptide in the onset of puberty in young female rats. On postnatal day 22, we implanted cannulas into the lateral ventricles of female rat pups. From postnatal day 28 to postnatal day 36, the intracerebroventricular injection of RFRP-3, or vehicle, was conducted twice a day. To investigate whether puberty onset was affected, we examined the body weight, age of vaginal opening, serum hormone levels, uterus and ovary development, and hypothalamic Kiss-1 mRNA expression. RESULTS Intracerebroventricular injection of RFRP-3 significantly decreased the serum concentrations of luteinizing hormone and estradiol, delayed uterine maturation, and postponed the time of vaginal opening. This study suggests that RFRP-3 can delay the onset of puberty in young female rats; the expression of Kiss-1 mRNA is potently inhibited in the RFRP-3 group. Moreover, our data show that RFRP-3 elevates serum growth hormone levels. CONCLUSIONS These data suggest that intracerebroventricular injection of RFRP-3 significantly delays the onset of puberty in female rats. Additionally, RFRP-3 may be associated with prepubertal rise in the secretion of growth hormone.
Collapse
Affiliation(s)
- Xinghui Han
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Yuanyuan He
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Gulan Zeng
- Department of Pediatrics, Xiamen Hospital of T.C.M, Xiamen, People’s Republic of China
| | - Yonghong Wang
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Wen Sun
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Junchao Liu
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Yanyan Sun
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Jian Yu
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| |
Collapse
|
29
|
Effects of Di-(2-ethylhexyl) Phthalate on the Hypothalamus-Uterus in Pubertal Female Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111130. [PMID: 27845755 PMCID: PMC5129340 DOI: 10.3390/ijerph13111130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
The pollution of endocrine disruptors and its impact on human reproductive system have attracted much attention. Di-(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, is widely used in food packages, containers, medical supplies and children's toys. It can cause diseases such as infertility, sexual precocity and uterine bleeding and thus arouse concerns from the society and scholars. The effect of DEHP on pubertal female reproductive system is still not well-studied. This study was to investigate the effects of DEHP on the hypothalamus-uterus in pubertal female rats, reveal the reproductive toxicity of DEHP on pubertal female rats and its mechanism, and provide scientific evidence for the evaluation of toxicity and toxic mechanism of DEHP on reproductive system. Forty-eight pubertal female rats were randomly divided into four groups and respectively administered via oral gavage 0, 250, 500, or 1000 mg/kg/d DEHP in 0.1 mL corn oil/20 g body weight for up to four weeks. Compared with control rats, the DEHP-treated rats showed: (1) higher gonadotropin-releasing hormone (GnRH) level in the hypothalamus; (2) higher protein levels of GnRH in the hypothalamus; and (3) higher mRNA and protein levels of GnRH receptor (GnRHR) in the uterus. Our data reveal that DEHP exposure may lead to a disruption in pubertal female rats and an imbalance of hypothalamus-uterus. Meanwhile, DEHP may, through the GnRH in the hypothalamus and its receptor on the uterus, lead to diseases of the uterus. DEHP may impose a negative influence on the development and functioning of the reproductive system in pubertal female rats.
Collapse
|
30
|
Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer. Reprod Biol 2016; 16:243-254. [PMID: 27692877 DOI: 10.1016/j.repbio.2016.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 01/09/2023]
Abstract
A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes).
Collapse
|
31
|
Mallozzi M, Bordi G, Garo C, Caserta D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: A review on the major concerns. ACTA ACUST UNITED AC 2016; 108:224-242. [PMID: 27653964 DOI: 10.1002/bdrc.21137] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
There is a widespread exposure of general population, including pregnant women and developing fetuses, to the endocrine disrupting chemicals (EDCs). These chemicals have been reported to be present in urine, blood serum, breast milk, and amniotic fluid. Endocrine disruptions induced by environmental toxicants have placed a heavy burden on society, since environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life-a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical, and cellular events. Humans may encounter EDCs daily and during all stages of life, from conception and fetal development through adulthood and senescence. Nevertheless, prenatal and early postnatal windows are the most critical for proper development, due to rapid changes in system growth. Although there are still gaps in our knowledge, currently available data support the urgent need for health and environmental policies aimed at protecting the public and, in particular, the developing fetus and women of reproductive age. Birth Defects Research (Part C) 108:224-242, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddalena Mallozzi
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Giulia Bordi
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Chiara Garo
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza
| | - Donatella Caserta
- Department of Surgical and Medical Sciences and Translational Medicine, Sant'Andrea Hospital, University of Rome Sapienza.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The mechanism of puberty initiation remains an enigma, despite extensive research in the field. Pulsatile pituitary gonadotropin secretion under the guidance of hypothalamic gonadotropin-releasing hormone (GnRH) constitutes a sine qua non for pubertal onset. In turn, the secretion of GnRH in the human hypothalamus is regulated by kisspeptin and its receptor as well as by permissive or opposing signals mediated by neurokinin B and dynorphin acting on their respective receptors. These three supra-GnRH regulators compose the Kisspeptin, Neurokinin B and Dynorhin neurons (KNDy) system, a key player in pubertal onset and progression. RECENT FINDINGS The recent discovery that makorin ring finger protein 3 is also involved in puberty initiation provided further insights into the regulation of the KNDy pathway. In fact, the inhibitory (γ-amino butyric acid, neuropeptide Y, and RFamide-related peptide-3) and stimulatory signals (glutamate) acting upstream of KNDy called into question the role of makorin ring finger protein 3 as the gatekeeper of puberty. Meanwhile, the findings that 'neuroestradiol' produced locally and endocrine disruptors from the environment may influence GnRH secretion is intriguing. Finally, epigenetic mechanisms have been implicated in pubertal onset through recently discovered mechanisms. SUMMARY The exact molecular machinery underlying puberty initiation in humans is under intensive investigation. In this review, we summarize research evidence in the field, while emphasizing the areas of uncertainty and underlining the impact of current information on the evolving theory regarding this fascinating phenomenon.
Collapse
|
33
|
Li Q, Davila J, Bagchi MK, Bagchi IC. Chronic exposure to bisphenol a impairs progesterone receptor-mediated signaling in the uterus during early pregnancy. ACTA ACUST UNITED AC 2016; 3. [PMID: 28239613 PMCID: PMC5321573 DOI: 10.14800/rci.1369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In a recent publication in Endocrinology, we demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo implantation and decidua morphogenesis, two critical events for establishment and maintenance of early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised in response to BPA. This research highlight will provide an overview of our findings and discuss the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy.
Collapse
Affiliation(s)
- Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Juanmahel Davila
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Milan K Bagchi
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| |
Collapse
|
34
|
Ambrosetti V, Guerra M, Ramírez LA, Reyes A, Álvarez D, Olguín S, González-Mañan D, Fernandois D, Sotomayor-Zárate R, Cruz G. Increase in endogenous estradiol in the progeny of obese rats is associated with precocious puberty and altered follicular development in adulthood. Endocrine 2016; 53:258-70. [PMID: 26767652 DOI: 10.1007/s12020-016-0858-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023]
Abstract
Maternal obesity during pregnancy has been related with several pathological states in offspring. However, the impact of maternal obesity on reproductive system on the progeny is beginning to be elucidated. In this work, we characterize the effect of maternal obesity on puberty onset and follicular development in adult offspring in rats. We also propose that alterations in ovarian physiology observed in offspring of obese mothers are due to increased levels of estradiol during early development. Offspring of control dams and offspring of dams exposed to a high-fat diet (HF) were studied at postnatal days (PND) 1, 7, 14, 30, 60, and 120. Body weight and onset of puberty were measured. Counting of ovarian follicles was performed at PND 60 and 120. Serum estradiol, estriol, androstenedione, FSH, LH, and insulin levels were measured by ELISA. Hepatic CYP3A2 expression was determined by Western blot. HF rats had a higher weight than controls at all ages and they also had a precocious puberty. Estradiol levels were increased while CYP3A2 expression was reduced from PND 1 until PND 60 in HF rats compared to controls. Estriol was decreased at PND60 in HF rats. Ovaries from HF rats had a decrease in antral follicles at PND60 and PND120 and an increase in follicular cysts at PND60 and PND120. In this work, we demonstrated that maternal obesity in rats alters follicular development and induces follicular cysts generation in the adult offspring. We observed that maternal obesity produces an endocrine disruption through increasing endogenous estradiol in early life. A programmed failure in hepatic metabolism of estradiol is probably the cause of its increase.
Collapse
Affiliation(s)
- Valery Ambrosetti
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Marcelo Guerra
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Luisa A Ramírez
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Aldo Reyes
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Daniela Álvarez
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Sofía Olguín
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile
| | - Daniel González-Mañan
- Molecular and Clinical Pharmacology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, 8380492, Santiago, Chile
| | - Daniela Fernandois
- Programa de Doctorado en Farmacología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380492, Santiago, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso, 2360102, Valparaiso, Chile
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Facultad de Ciencias, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, 2360102, Valparaiso, Chile.
| |
Collapse
|
35
|
Franssen D, Gérard A, Hennuy B, Donneau AF, Bourguignon JP, Parent AS. Delayed Neuroendocrine Sexual Maturation in Female Rats After a Very Low Dose of Bisphenol A Through Altered GABAergic Neurotransmission and Opposing Effects of a High Dose. Endocrinology 2016; 157:1740-50. [PMID: 26950200 DOI: 10.1210/en.2015-1937] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rat sexual maturation is preceded by a reduction of the interpulse interval (IPI) of GnRH neurosecretion. This work aims at studying disruption of that neuroendocrine event in females after early exposure to a very low dose of bisphenol A (BPA), a ubiquitous endocrine disrupting chemical. Female rats were exposed to vehicle or BPA 25 ng/kg·d, 25 μg/kg·d, or 5 mg/kg·d from postnatal day (PND)1 to PND5 or PND15. Exposure to 25 ng/kg·d of BPA for 5 or 15 days was followed by a delay in developmental reduction of GnRH IPI studied ex vivo on PND20. After 15 days of exposure to that low dose of BPA, vaginal opening tended to be delayed. In contrast, exposure to BPA 5 mg/kg·d for 15 days resulted in a premature reduction in GnRH IPI and a trend toward early vaginal opening. RNA sequencing analysis on PND20 indicated that exposure to BPA resulted in opposing dose effects on the mRNA expression of hypothalamic genes involved in gamma aminobutyric acid A (GABAA) neurotransmission. The study of GnRH secretion in vitro in the presence of GABAA receptor agonist/antagonist confirmed an increased or a reduced GABAergic tone after in vivo exposure to the very low or the high dose of BPA, respectively. Overall, we show for the first time that neonatal exposure to BPA leads to opposing dose-dependent effects on the neuroendocrine control of puberty in the female rat. A very low and environmentally relevant dose of BPA delays neuroendocrine maturation related to puberty through increased inhibitory GABAergic neurotransmission.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit (D.F., A.G., J.-P.B., A.-S.P.), Interdisciplinary Cluster for Applied Genoproteomics Neurosciences; Interdisciplinary Cluster for Applied Genoproteomics Transcriptomic Platform (B.H.); and Department of Public Health (A.-F.D.), Biostatistics Unit, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; and Department of Pediatrics (A.G., J.-P.B., A.-S.P.), Centre Hospitalier Universitaire de Liège, B-4032 Chênée, Belgium
| | - Arlette Gérard
- Neuroendocrinology Unit (D.F., A.G., J.-P.B., A.-S.P.), Interdisciplinary Cluster for Applied Genoproteomics Neurosciences; Interdisciplinary Cluster for Applied Genoproteomics Transcriptomic Platform (B.H.); and Department of Public Health (A.-F.D.), Biostatistics Unit, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; and Department of Pediatrics (A.G., J.-P.B., A.-S.P.), Centre Hospitalier Universitaire de Liège, B-4032 Chênée, Belgium
| | - Benoit Hennuy
- Neuroendocrinology Unit (D.F., A.G., J.-P.B., A.-S.P.), Interdisciplinary Cluster for Applied Genoproteomics Neurosciences; Interdisciplinary Cluster for Applied Genoproteomics Transcriptomic Platform (B.H.); and Department of Public Health (A.-F.D.), Biostatistics Unit, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; and Department of Pediatrics (A.G., J.-P.B., A.-S.P.), Centre Hospitalier Universitaire de Liège, B-4032 Chênée, Belgium
| | - Anne-Françoise Donneau
- Neuroendocrinology Unit (D.F., A.G., J.-P.B., A.-S.P.), Interdisciplinary Cluster for Applied Genoproteomics Neurosciences; Interdisciplinary Cluster for Applied Genoproteomics Transcriptomic Platform (B.H.); and Department of Public Health (A.-F.D.), Biostatistics Unit, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; and Department of Pediatrics (A.G., J.-P.B., A.-S.P.), Centre Hospitalier Universitaire de Liège, B-4032 Chênée, Belgium
| | - Jean-Pierre Bourguignon
- Neuroendocrinology Unit (D.F., A.G., J.-P.B., A.-S.P.), Interdisciplinary Cluster for Applied Genoproteomics Neurosciences; Interdisciplinary Cluster for Applied Genoproteomics Transcriptomic Platform (B.H.); and Department of Public Health (A.-F.D.), Biostatistics Unit, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; and Department of Pediatrics (A.G., J.-P.B., A.-S.P.), Centre Hospitalier Universitaire de Liège, B-4032 Chênée, Belgium
| | - Anne-Simone Parent
- Neuroendocrinology Unit (D.F., A.G., J.-P.B., A.-S.P.), Interdisciplinary Cluster for Applied Genoproteomics Neurosciences; Interdisciplinary Cluster for Applied Genoproteomics Transcriptomic Platform (B.H.); and Department of Public Health (A.-F.D.), Biostatistics Unit, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; and Department of Pediatrics (A.G., J.-P.B., A.-S.P.), Centre Hospitalier Universitaire de Liège, B-4032 Chênée, Belgium
| |
Collapse
|
36
|
Li Q, Davila J, Kannan A, Flaws JA, Bagchi MK, Bagchi IC. Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice. Endocrinology 2016; 157:1764-74. [PMID: 27022677 PMCID: PMC4870880 DOI: 10.1210/en.2015-2031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Environmental and occupational exposure to bisphenol A (BPA), a chemical widely used in polycarbonate plastics and epoxy resins, has received much attention in female reproductive health due to its widespread toxic effects. Although BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In this study, we addressed the effect of prolonged exposure to an environmental relevant dose of BPA on embryo implantation and establishment of pregnancy. Our studies revealed that treatment of mice with BPA led to improper endometrial epithelial and stromal functions thus affecting embryo implantation and establishment of pregnancy. Upon further analyses, we found that the expression of progesterone receptor (PGR) and its downstream target gene, HAND2 (heart and neural crest derivatives expressed 2), was markedly suppressed in BPA-exposed uterine tissues. Previous studies have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor and the MAPK signaling pathways and inhibiting epithelial proliferation. Interestingly, we observed that down-regulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with enhanced activation of fibroblast growth factor and MAPK signaling in the epithelium, thus contributing to aberrant proliferation and lack of uterine receptivity. Further, the differentiation of endometrial stromal cells to decidual cells, an event critical for the establishment and maintenance of pregnancy, was severely compromised in response to BPA. In summary, our studies revealed that chronic exposure to BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy.
Collapse
Affiliation(s)
- Quanxi Li
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Juanmahel Davila
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Athilakshmi Kannan
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Milan K Bagchi
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Indrani C Bagchi
- Department of Comparative Biosciences (Q.L., J.D., A.K., J.A.F., I.C.B.) and Molecular and Integrative Physiology (M.K.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| |
Collapse
|
37
|
Parandin R, Behnam-Rassouli M, Mahdavi-Shahri N. Oestrogenic action of neonatal tamoxifen on the hypothalamus and reproductive system in female mice. Reprod Fertil Dev 2016; 29:RD15361. [PMID: 27064117 DOI: 10.1071/rd15361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/29/2016] [Indexed: 02/28/2024] Open
Abstract
Tamoxifen, a selective oestrogen receptor modulator, is widely used for both the treatment and prevention of breast cancer in women; however, it is known to have adverse effects in the female reproductive system. Growing evidence suggests that oestrogen-sensitive neuron populations of the anteroventral periventricular (AVPV) nucleus and arcuate (ARC) nucleus, especially kisspeptin neurons, play a pivotal role in the timing of puberty onset and reproductive function. The aim of the present study was to evaluate whether neonatal exposure to tamoxifen affects oestrogenic actions in the brain and reproductive function in mice. On 1 to 5 postnatal days, female pups were injected subcutaneously with sesame oil (sham), oestradiol benzoate (EB; 20 µg kg-1), tamoxifen (0.4 mg kg-1) or EB+tamoxifen. Control mice received no treatment. Mice in the EB, tamoxifen and tamoxifen+EB groups exhibited advanced vaginal opening, disrupted oestrous cycles and a decreased follicular pool. Conversely, in these groups, there was a reduction in kisspeptin (Kiss1) mRNA expression, the neuronal density of AVPV and ARC nuclei and LH and oestradiol concentrations in the serum. The results of the present study confirm oestrogenic actions of tamoxifen in the brain and reproductive system. In addition, we show, for the first time, that tamoxifen has oestrogenic effects on the oestrogen-sensitive hypothalamic AVPV and ARC nuclei controlling the reproductive axis in female mice.
Collapse
|
38
|
Eckstrum KS, Weis KE, Baur NG, Yoshihara Y, Raetzman LT. Icam5 Expression Exhibits Sex Differences in the Neonatal Pituitary and Is Regulated by Estradiol and Bisphenol A. Endocrinology 2016; 157:1408-20. [PMID: 26789235 PMCID: PMC4816737 DOI: 10.1210/en.2015-1521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endocrine-disrupting chemicals are prevalent in the environment and can impair reproductive success by affecting the hypothalamic-pituitary-gonadal axis. The developing pituitary gland is sensitive to exposure to endocrine-disrupting chemicals, such as bisphenol A (BPA), and sex-specific effects can occur. However, effects on the critical window of neonatal pituitary gland development in mice have not been explored. Therefore, this study determined baseline gene expression in male and female pituitaries and consequences of environmental exposure to 17β-estradiol (E2) and BPA on transcription of genes exhibiting sex differences during the neonatal period. Through microarray and quantitative RT-PCR analysis of pituitaries at postnatal day (PND)1, 3 genes were differentially expressed between males and females: Lhb, Fshb, and intracellular adhesion molecule-5 (Icam5). To see whether E2 and BPA exposure regulates these genes, pituitaries were cultured at PND1 with 10(-8) M E2 or 4.4 × 10(-6) M BPA. E2 decreased expression of Lhb, Fshb, and Icam5 mRNA in females but only significantly decreased expression of Icam5 in males. BPA decreased expression of Icam5 similarly to E2, but it did not affect Lhb or Fshb. Importantly, in vivo exposure to 50-μg/kg · d E2 from PND0 to PND7 decreased expression of Lhb, Fshb, and Icam5 mRNA in both males and females, whereas 50-mg/kg · d BPA exposure during the same time frame decreased expression of Icam5 in females only. Overall, we have uncovered that genes differentially expressed between the sexes can be regulated in part by hormonal and chemical signals in vivo and directly at the pituitary and can be regulated in a sex-specific manner.
Collapse
Affiliation(s)
- Kirsten S Eckstrum
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Karen E Weis
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Nicholas G Baur
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Yoshihiro Yoshihara
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology (K.S.E., K.E.W., N.G.B., L.T.R.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and RIKEN Brain Science Institute (Y.Y.), Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol 2016; 227:27-50. [PMID: 26409890 DOI: 10.1016/j.ygcen.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; Brain Research Institute Monash Sunway (BRIMS) of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia.
| | - You Lee Son
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
40
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1338] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
41
|
Cao J, Echelberger R, Liu M, Sluzas E, McCaffrey K, Buckley B, Patisaul HB. Soy but not bisphenol A (BPA) or the phytoestrogen genistin alters developmental weight gain and food intake in pregnant rats and their offspring. Reprod Toxicol 2015. [PMID: 26216788 DOI: 10.1016/j.reprotox.2015.07.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endocrine disrupting compounds (EDCs) are hypothesized to promote obesity and early puberty but their interactive effects with hormonally active diets are poorly understood. Here we assessed individual and combinatorial effects of soy diet or the isoflavone genistein (GEN; administered as the aglycone genistin GIN) with bisphenol A (BPA) on body weight, ingestive behavior and female puberal onset in Wistar rats. Soy-fed dams gained less weight during pregnancy and, although they consumed more than dams on a soy-free diet during lactation, did not become heavier. Their offspring (both sexes), however, became significantly heavier (more pronounced in males) pre-weaning. Soy also enhanced food intake and accelerated female pubertal onset in the offspring. Notably, pubertal onset was also advanced in females placed on soy diet at weaning. Males exposed to BPA plus soy diet, but not BPA alone, had lighter testes. BPA had no independent effects.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Roger Echelberger
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Min Liu
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Emily Sluzas
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Katherine McCaffrey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
42
|
Parent AS, Franssen D, Fudvoye J, Gérard A, Bourguignon JP. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol 2015; 38:12-36. [PMID: 25592640 DOI: 10.1016/j.yfrne.2014.12.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/13/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Puberty presents remarkable individual differences in timing reaching over 5 years in humans. We put emphasis on the two edges of the age distribution of pubertal signs in humans and point to an extended distribution towards earliness for initial pubertal stages and towards lateness for final pubertal stages. Such distortion of distribution is a recent phenomenon. This suggests changing environmental influences including the possible role of nutrition, stress and endocrine disruptors. Our ability to assess neuroendocrine effects and mechanisms is very limited in humans. Using the rodent as a model, we examine the impact of environmental factors on the individual variations in pubertal timing and the possible underlying mechanisms. The capacity of environmental factors to shape functioning of the neuroendocrine system is thought to be maximal during fetal and early postnatal life and possibly less important when approaching the time of onset of puberty.
Collapse
Affiliation(s)
- Anne-Simone Parent
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Delphine Franssen
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium
| | - Julie Fudvoye
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Arlette Gérard
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium
| | - Jean-Pierre Bourguignon
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, B-4000 Liège, Belgium; Department of Pediatrics, CHU de Liège, Rue de Gaillarmont 600, B-4032 Chênée, Belgium.
| |
Collapse
|
43
|
Serum bisphenol A concentration and premature thelarche in female infants aged 4-month to 2-year. Indian J Pediatr 2015; 82:221-4. [PMID: 25120062 DOI: 10.1007/s12098-014-1548-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/18/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To estimate the association between serum bisphenol A and premature thelarche in female infants aged 4-mo to 2-y. METHODS A total of 251 female infants (aged 4 mo to 2 y) with premature thelarche and 33 healthy age-matched control subjects were analyzed. All participants underwent physical examination and serum bisphenol A was measured by ultra-performance liquid chromatography tandem mass spectrometry. RESULTS Serum bisphenol A concentration in the premature thelarche group (3.48 ng/ml, 95%CI: 0.09-140.26) was significantly higher than that in the control group (1.70 ng/ml, 95%CI: 0.06-51.78) (p = 0.039). There was no correlation between age and serum bisphenol A (BPA) level. Univariate logistic regression analysis showed that serum BPA concentration positively associated with premature thelarche, and the effect of BPA fell down as the age grew. CONCLUSIONS This hospital-based study implied that there is an association between serum BPA concentrations and premature thelarche. Additionally, serum BPA levels were markedly higher in infants aged 4-mo to 2-y-old, raising a concern for public health authorities.
Collapse
|
44
|
Patisaul HB, Mabrey N, Adewale HB, Sullivan AW. Soy but not bisphenol A (BPA) induces hallmarks of polycystic ovary syndrome (PCOS) and related metabolic co-morbidities in rats. Reprod Toxicol 2014; 49:209-18. [PMID: 25242113 DOI: 10.1016/j.reprotox.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/31/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is the most common female endocrine disorder with a prevalence as high as 8-15% depending on ethnicity and the diagnostic criteria employed. The basic pathophysiology and mode of inheritance remain unclear, but environmental factors such as diet, stress and chemical exposures are thought to be contributory. Developmental exposure to endocrine disrupting compounds (EDCs) have been hypothesized to exacerbate risk, in part because PCOS hallmarks and associated metabolic co-morbidities can be reliably induced in animal models by perinatal androgen exposure. Here we show that lifetime exposure to a soy diet, containing endocrine active phytoestrogens, but not developmental exposure (gestational day 6-lactational day 40) to the endocrine disrupting monomer bisphenol A (BPA), can induce key features of PCOS in the rat; results which support the hypothesis that hormonally active diets may contribute to risk when consumed throughout gestation and post-natal life.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| | - Natalie Mabrey
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Heather B Adewale
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Alana W Sullivan
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
45
|
Cruz G, Foster W, Paredes A, Yi KD, Uzumcu M. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics. J Neuroendocrinol 2014; 26:613-24. [PMID: 25040227 PMCID: PMC4297924 DOI: 10.1111/jne.12181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology.
Collapse
Affiliation(s)
- Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Correspondence to: Gonzalo Cruz, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. 2360102, Tel. 56 32 2508015,
| | - Warren Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alfonso Paredes
- Laboratorio de Neurobioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Kun Don Yi
- Syngenta Crop Protection, LLC. Greensboro, NC
| | - Mehmet Uzumcu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
46
|
Cao J, Joyner L, Mickens JA, Leyrer SM, Patisaul HB. Sex-specific Esr2 mRNA expression in the rat hypothalamus and amygdala is altered by neonatal bisphenol A exposure. Reproduction 2014; 147:537-54. [PMID: 24352099 PMCID: PMC3947720 DOI: 10.1530/rep-13-0501] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Perinatal life is a critical window for sexually dimorphic brain organization, and profoundly influenced by steroid hormones. Exposure to endocrine-disrupting compounds may disrupt this process, resulting in compromised reproductive physiology and behavior. To test the hypothesis that neonatal bisphenol A (BPA) exposure can alter sex-specific postnatal Esr2 (Erβ) expression in brain regions fundamental to sociosexual behavior, we mapped Esr2 mRNA levels in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), paraventricular nucleus (PVN), anterior portion of the medial amygdaloid nucleus (MeA), super optic nucleus, suprachiasmatic nucleus, and lateral habenula across postnatal days (PNDs) 0-19. Next, rat pups of both sexes were subcutaneously injected with 10 μg estradiol benzoate (EB), 50 μg/kg BPA (LBPA), or 50 mg/kg BPA (HBPA) over the first 3 days of life and Esr2 levels were quantified in each region of interest (ROI) on PNDs 4 and 10. EB exposure decreased Esr2 signal in most female ROIs and in the male PVN. In the BNSTp, Esr2 expression decreased in LBPA males and HBPA females on PND 10, thereby reversing the sex difference in expression. In the PVN, Esr2 mRNA levels were elevated in LBPA females, also resulting in a reversal of sexually dimorphic expression. In the MeA, BPA decreased Esr2 expression on PND 4. Collectively, these data demonstrate that region- and sex-specific Esr2 expression is vulnerable to neonatal BPA exposure in regions of the developing brain critical to sociosexual behavior in rat.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biology, NCSU, Raleigh NC, 27695
| | | | | | | | - Heather B Patisaul
- Department of Biology, NCSU, Raleigh NC, 27695
- Keck Center for Behavioral Biology, NCSU, Raleigh NC, 27695
| |
Collapse
|
47
|
Naulé L, Picot M, Martini M, Parmentier C, Hardin-Pouzet H, Keller M, Franceschini I, Mhaouty-Kodja S. Neuroendocrine and behavioral effects of maternal exposure to oral bisphenol A in female mice. J Endocrinol 2014; 220:375-88. [PMID: 24403293 DOI: 10.1530/joe-13-0607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bisphenol A (BPA) is a widespread estrogenic compound. We investigated the effects of maternal exposure to BPA at reference doses on sexual behavior and neuroendocrine functions of female offspring in C57BL/6J mice. The dams were orally exposed to vehicle alone or vehicle-containing BPA at doses equivalent to the no observed adverse effect level (5 mg/kg body weight per day) and tolerable daily intake (TDI, 0.05 mg/kg body weight per day) level from gestational day 15 until weaning. Developmental exposure to BPA increased the lordosis quotient in naive females exposed to BPA at the TDI dose only. BPA exposure had no effect on olfactory preference, ability to express masculine behaviors or number of calbindin-positive cells, a sexually dimorphic population of the preoptic area. BPA at both doses selectively increased kisspeptin cell number in the preoptic periventricular nucleus of the rostral periventricular area of the third ventricle in adult females. It did not affect the number of GNRH-positive cells or percentage of kisspeptin appositions on GNRH neurons in the preoptic area. These changes were associated with higher levels of estradiol (E2) at the TDI dose while levels of LH, estrus cyclicity, ovarian and uterine weights, and fertility remained unaffected. Delay in the time of vaginal opening was observed during the postnatal period at TDI dose, without any alteration in body growth. This shows that developmental exposure to BPA at reference doses did not masculinize and defeminize the neural circuitry underlying sexual behavior in female mice. The TDI dose specifically exacerbated responses normally induced by ovarian E2, through estrogen receptor α, during the postnatal/prepubertal period.
Collapse
Affiliation(s)
- Lydie Naulé
- Sorbonne Universités, UPMC University Paris 06, UMR 7224Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 952 and Centre National de la Recherche Scientifique (CNRS) UMR 7224, Physiopathologie des Maladies du Système Nerveux Central (PMSNC), Université Pierre et Marie Curie,
9 Quai St Bernard Bât B 2ème Étage, F75005 Paris, France Institut National de la Recherche Agronomique (INRA) UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37000 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hu J, Du G, Zhang W, Huang H, Chen D, Wu D, Wang X. Short-term neonatal/prepubertal exposure of dibutyl phthalate (DBP) advanced pubertal timing and affected hypothalamic kisspeptin/GPR54 expression differently in female rats. Toxicology 2013; 314:65-75. [DOI: 10.1016/j.tox.2013.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
|
49
|
Abstract
QRFP, a member of the RFamide-related peptide family, is a strongly conserved hypothalamic neuropeptide that has been characterized in various species. Prepro-QRFP mRNA expression is localized to select regions of the hypothalamus, which are involved in the regulation of feeding behavior. The localization of the peptide precursor has led to the assessment of QRFP on feeding behaviors and the orexigenic effects of QRFP have been detected in mice, rats, and birds. QRFP acts in a macronutrient specific manner in satiated rats to increase the intake of a high fat diet, but not the intake of a low fat diet, and increases the intake of chow in food-restricted rats. Studies suggest that QRFP's effects on food intake are mediated by the adiposity signal, leptin, and hypothalamic neuropeptides. Additionally, QRFP regulates the expression and release of hypothalamic Neuropeptide Y and proopiomelanocortin/α-Melanocyte-Stimulating Hormone. QRFP binds to receptors throughout the brain, including regions associated with food intake and reward. Taken together, these data suggest that QRFP is a mediator of motivated behaviors, particularly the drive to ingest high fat food. The present review discusses the role of QRFP in the regulation of feeding behavior, with emphasis on the intake of dietary fat.
Collapse
Affiliation(s)
- S. D. Primeaux
- Joint Diabetes, Endocrinology & Metabolism Program, Louisiana State University System, Louisiana State University Health Science Center-New Orleans, New Orleans, USA
| | - M. J. Barnes
- Pennington Biomedical Research Center, Baton Rouge, USA
| | - H. D. Braymer
- Pennington Biomedical Research Center, Baton Rouge, USA
| |
Collapse
|
50
|
Overgaard A, Holst K, Mandrup KR, Boberg J, Christiansen S, Jacobsen PR, Hass U, Mikkelsen JD. The effect of perinatal exposure to ethinyl oestradiol or a mixture of endocrine disrupting pesticides on kisspeptin neurons in the rat hypothalamus. Neurotoxicology 2013; 37:154-62. [DOI: 10.1016/j.neuro.2013.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/01/2013] [Accepted: 04/24/2013] [Indexed: 01/21/2023]
|