1
|
Cainelli S, Peralta MB, Stassi AF, Angeli E, Gareis NC, Durante L, Ortega HH, Velázquez MML. Endometrial distribution of bovine immune cells in relation to days to conception after parturition. Anim Reprod Sci 2024; 270:107603. [PMID: 39321495 DOI: 10.1016/j.anireprosci.2024.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
In dairy cows, the processes involved in the resolution of uterine inflammation during the postpartum are closely related to improved fertility during the subsequent lactation period. Little is known, however, about the role and distribution of endometrial immune cell populations during the pre-implantation period. This study was aimed to analyze the endometrial distribution of several mononuclear immune cells (T cells, γδ T cells, B cells and macrophages) in healthy dairy cows during the postpartum, beyond the transition period, looking for its possible association with the parturition-conception interval (PCI) and delayed conception. The quantification of immune cells was evaluated by immunohistochemistry (IHC), and the expression of hormone receptors in immune cells was evaluated by double IHC. Dairy cows were grouped according to their PCI: PCI shorter than or equal to 90 DIM (PCI≤90), PCI between 90 and 120 DIM (PCI90-120), and PCI greater than 150 DIM (PCI≥150). The distribution of endometrial mononuclear immune cells was analyzed by a Generalized Linear Model, and the association of the distribution of mononuclear immune cells with delayed conception was evaluated with a Kaplan-Meier test. The cows from the PCI90-120 group showed the highest number of endometrial macrophages, and a lower number of B cells than the PCI≤90 group. Results also showed an association between the lower number of B cells in the endometrium during the pre-implantation period and earlier conception. Also, the present findings indicates that ESR and PR are expressed in the endometrial MØ, T cells, γδ T cells and B cells.
Collapse
Affiliation(s)
- S Cainelli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - M B Peralta
- Instituto de Ecología Humana y Desarrollo Sustentable. Universidad Católica de Santa Fe (UCSF), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N C Gareis
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Rafaela, Santa Fe, Argentina
| | - L Durante
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M M L Velázquez
- Instituto de Ecología Humana y Desarrollo Sustentable. Universidad Católica de Santa Fe (UCSF), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
2
|
Jana B, Kaczmarek MM, Całka J, Romaniewicz M, Palus K. Profile of mRNA expression in the myometrium after intrauterine Escherichia coli injections in pigs. Theriogenology 2024; 228:93-103. [PMID: 39128182 DOI: 10.1016/j.theriogenology.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Endometritis and metritis are common reproductive diseases in domestic animals, causing a reduction in reproductive performance and economic losses. A previous study revealed the alterations in the transcriptome of the inflamed porcine endometrium. Data on molecular signatures in the myometrium under inflammatory conditions are limited. The current study analyzed the transcriptomic profile of porcine myometrium after intrauterine Escherichia coli (E.coli) administration. On day 3 of the estrous cycle (Day 0 of the study), 50 ml of either saline (group CON, n = 7) or E. coli suspension (109 colony-forming units/ml, group E. coli, n = 5) were injected into each uterine horn. After eight days, the gilts were euthanized, and the uteri were removed for further analysis. In the myometrium of the CON group versus the E. coli group, microarray analysis revealed 167 differentially expressed genes (DEGs, 78 up- and 89 down-regulated). After intrauterine E. coli administration, among the DEGs of the inflammatory response set, the highest expressed were mRNA for CXCL6, S100A8, S100A12, SLC11A1, S100A9, CCL15, CCR1, CD163, THBS1 and SOCS3, while the most suppressed was mRNA expression for FFAR4, KL, SLC7A2 and MOAB. Furthermore, a comparison of the present results on myometrial transcriptome with the authors' earlier published data on the endometrial transcriptome shows the partial differences in mRNA expression between both layers after intrauterine E.coli injections. This study, for the first time, presents changes in the transcriptome of porcine myometrium after intrauterine E.coli administration, which may be important for myometrial homeostasis and functions and, as a result, for the uterine inflammation course. Data provide a valuable resource for further studies on genes and pathways regulating uterine inflammation and functions.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Monika M Kaczmarek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| | - Marta Romaniewicz
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718, Olsztyn, Poland
| |
Collapse
|
3
|
Peralta MB, Cainelli S, Stassi AF, Angeli E, Rey F, Ortega HH, Salvetti NR, Velázquez M. Association between endometrial protein expression of IFN-γ and delayed conception after parturition in dairy cows. Vet Res Commun 2024; 48:3187-3196. [PMID: 39141287 DOI: 10.1007/s11259-024-10490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
The cytokine context present in the reproductive tract of cows is closely involved in normal uterine functions, including the estrous cycle and the establishment and maintenance of pregnancy. However, the roles of some cytokines in the uterus, and their relation with reproductive performance remain to be elucidated. Thus, this study aimed to examine the protein expression of several cytokines such as TNFα, IL-6, IL-8, IFNγ, IL-4, and TGF-β3 in endometrial biopsies previous to conception, to evaluate the possible association with delayed conception in dairy cows. Protein expression levels were evaluated by immunohistochemistry. Results showed that the protein expression levels of TNFα, IL-6, IL-4 and TGF-β3 were not associated with the parturition-conception interval, whereas the high protein expression levels of IFNγ were associated with the parturition-conception interval. Finally, the low protein expression of IL-8 showed a statistical tendency to be associated with delayed conception. This is the first report about the protein expression of IFN-γ in the endometrium of dairy cows and also, this cytokine could enhance the favorable conditions to achieve an early pregnancy.
Collapse
Affiliation(s)
- M B Peralta
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - S Cainelli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Mml Velázquez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
- Instituto de Ecología Humana y Desarrollo Sustentable, Universidad Católica de Santa Fe (UCSF). Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Cngo. Echagüe 7151, Santa Fe, Argentina.
| |
Collapse
|
4
|
Chen S, Zhu L, Fang X, Appiah C, Ji Y, Chen Z, Qiao S, Gong C, Li J, Zhao Y. Alloferon Mitigates LPS-Induced Endometritis by Attenuating the NLRP3/CASP1/IL-1β/IL-18 Signaling Cascade. Inflammation 2024:10.1007/s10753-024-02083-6. [PMID: 38913143 DOI: 10.1007/s10753-024-02083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Endometritis is an inflammatory reaction of the uterine lining that can lead to infertility. Alloferon, a linear non-glycosylated oligopeptide, has been recognized for its potent anti-inflammatory and immunomodulatory effects. In light of these attributes, this study aims to explore the potential therapeutic effects of alloferon in alleviating endometrial inflammation induced by lipopolysaccharide (LPS), while elucidating the underlying protective mechanisms. Two conditions representing pre- and post-menopause states were simulated using an ovariectomized (Ovx) murine model. The findings underscore alloferon's remarkable capacity to alleviate cardinal signs of endometritis, including redness, swelling, and congestion, while concurrently restoring the structural integrity of the endometrial tissue. Moreover, alloferon effectively modulates the expression of key inflammatory mediators, such as nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), cysteine aspartate-specific protease 1 (CASP1), interleukin-1β (IL-1β), and interleukin-18 (IL-18). In vitro experiments were conducted to further corroborate and validate these findings. In conclusion, alloferon shows promising potential in mitigating LPS-induced inflammation by attenuating the NLRP3/CASP1/IL-1β/IL-18 signaling cascade.
Collapse
Affiliation(s)
- Shitian Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Xinyu Fang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yuanbo Ji
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Shuai Qiao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Chen Gong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
5
|
Riaz MA, Kary FL, Jensen A, Zeppernick F, Meinhold-Heerlein I, Konrad L. Long-Term Maintenance of Viable Human Endometrial Epithelial Cells to Analyze Estrogen and Progestin Effects. Cells 2024; 13:811. [PMID: 38786035 PMCID: PMC11120542 DOI: 10.3390/cells13100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
There are fewer investigations conducted on human primary endometrial epithelial cells (HPEECs) compared to human primary endometrial stromal cells (HPESCs). One of the main reasons is the scarcity of protocols enabling prolonged epithelial cell culture. Even though it is possible to culture HPEECs in 3D over a longer period of time, it is technically demanding. In this study, we successfully established a highly pure, stable, and long-term viable human conditionally reprogrammed endometrial epithelial cell line, designated as eCRC560. These cells stained positive for epithelial markers, estrogen and progesterone receptors, and epithelial cell-cell contacts but negative for stromal and endothelial cell markers. Estradiol (ES) reduced the abundance of ZO-1 in a time- and dose-dependent manner, in contrast to the dose-dependent increase with the progestin dienogest (DNG) when co-cultured with HPESCs. Moreover, ES significantly increased cell viability, cell migration, and invasion of the eCRC560 cells; all these effects were inhibited by pretreatment with DNG. DNG withdrawal led to a significantly disrupted monolayer of eCRC560 cells in co-culture with HPESCs, yet it markedly increased the adhesion of eCRC560 to the human mesothelial MeT-5A cells. The long-term viable eCRC560 cells are suitable for in vitro analysis of HPEECs to study the epithelial compartment of the human endometrium and endometrial pathologies.
Collapse
Affiliation(s)
- Muhammad Assad Riaz
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Franziska Louisa Kary
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Alexandra Jensen
- Institute of Radiooncology and Radiotherapy, Clinic Fulda, 36043 Fulda, Germany;
| | - Felix Zeppernick
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Ivo Meinhold-Heerlein
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| | - Lutz Konrad
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (M.A.R.); (F.L.K.); (F.Z.); (I.M.-H.)
| |
Collapse
|
6
|
Santiviparat S, Swangchan-Uthai T, Stout TAE, Buranapraditkun S, Setthawong P, Taephatthanasagon T, Rodprasert W, Sawangmake C, Tharasanit T. De novo reconstruction of a functional in vivo-like equine endometrium using collagen-based tissue engineering. Sci Rep 2024; 14:9012. [PMID: 38641671 PMCID: PMC11031578 DOI: 10.1038/s41598-024-59471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.
Collapse
Affiliation(s)
- Sawita Santiviparat
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Swangchan-Uthai
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Tom A E Stout
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Thai Red Cross Society, Bangkok, 10330, Thailand
- Faculty of Medicine, Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Chulalongkorn University, Bangkok, 10330, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Piyathip Setthawong
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Teeanutree Taephatthanasagon
- Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Systems Pharmacology Center (VSPC), Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Systems Pharmacology Center (VSPC), Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Science, Veterinary Systems Pharmacology Center (VSPC), Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, Center of Excellence in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
7
|
Kowsar R, Sadeghi K, Hashemzadeh F, Miyamoto A. Ovarian sex steroid and epithelial control of immune responses in the uterus and oviduct: human and animal models†. Biol Reprod 2024; 110:230-245. [PMID: 38038990 PMCID: PMC10873282 DOI: 10.1093/biolre/ioad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Farzad Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
8
|
Gupta VK, Mohanty TK, Bhakat M, Dewry RK, Katiyar R, Nain D, Shah N, Sethi M, Rautela R, Singh M, Deori S. Bovine reproductive immunoinfertility: pathogenesis and immunotherapy. Front Vet Sci 2023; 10:1248604. [PMID: 37869494 PMCID: PMC10585041 DOI: 10.3389/fvets.2023.1248604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Infertility is one of the primary factors for cattle reproduction in the present scenario. Reproduction-related immunoinfertility mainly involves immunization against the antigens related to reproductive hormones (LHRH, GnRH, Gonadal steroids, PGF2α and oxytocin), spermatozoa, seminal plasma and ovum. Anovulation, delayed ovulation, sperm immobilization, failure of fertilization, prolonged uterine involution, extended calving interval, prolonged post-partum estrus and reduced conception rate could be a result of immunoinfertility that occur due to the blockage of receptor site by antibodies formed against hormones, sperm and ovum. Immunoinfertility can be treated in the animal by giving sexual rest to females, by using various reproductive technologies such as in-vitro fertilization, gamete intra fallopian tube transfer, and intracytoplasmic sperm injection, sperm washing and by treating the animals with immunomodulators such as LPS, Oyster glycogen, etc. This review summarizes the different causes of bovine reproductive immunoinfertility and amelioration strategies to overcome it.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar Kumar Mohanty
- Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, India
| | - Raju Kumar Dewry
- Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, India
| | - Rahul Katiyar
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Dipti Nain
- Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, India
| | - Nadeem Shah
- Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, India
| | - Manisha Sethi
- Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, India
| | - Rupali Rautela
- CAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Mahak Singh
- CAR Research Complex for NEH Region, Nagaland Centre, Medziphema, India
| | - Sourabh Deori
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| |
Collapse
|
9
|
Ault-Seay TB, Moorey SE, Mathew DJ, Schrick FN, Pohler KG, McLean KJ, Myer PR. Importance of the female reproductive tract microbiome and its relationship with the uterine environment for health and productivity in cattle: A review. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Once thought to be sterile, the reproductive tract microbiome has been characterized due to the transition from culture-dependent identification of bacteria to culture-independent sequencing methods. The urogenital microbiome was first identified in women through the Human Microbiome Project, which led to research in other species such as the bovine. Previous research focused on uterine bacteria associated with postpartum disease, but next generation sequencing methods identified a normal, healthy bacterial community of the reproductive tract of cows and heifers. Bacterial communities are now understood to differ between the uterus and vagina, and throughout the estrous cycle with changes in hormone dominance. In a healthy state, the bacterial communities largely interact with the uterine environment by assisting in maintaining the proper pH, providing and utilizing nutrients and metabolites, and influencing the immunological responses of the reproductive tract. If the bacterial communities become unbalanced due to an increase in potentially pathogenic bacteria, the health and fertility of the host may be affected. Although the presence of a reproductive tract microbiome has become widely accepted, the existence of a placental microbiome and in utero colonization of the fetus is still a popular debate due to conflicting study results. Currently, researchers are evaluating methods to manipulate the reproductive bacterial communities, such as diet changes and utilizing probiotics, to improve reproductive outcomes. The following review discusses the current understanding of the reproductive tract microbiome, how it differs between humans and cattle, and its relationship with the uterine environment.
Collapse
|
10
|
Chotimanukul S, Suwimonteerabutr J, Techakumphu M, Swangchan-Uthai T. In Vitro Effects of Short-Term and Long-Term Heat Exposures on the Immune Response and Prostaglandin Biosynthesis in Bovine Endometrial Cells. Animals (Basel) 2022; 12:ani12182359. [PMID: 36139219 PMCID: PMC9495028 DOI: 10.3390/ani12182359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Worldwide heat stress (HS) conditions have a negative impact on dairy cow fertility. However, understanding of the effect of heat stress on endometrial functions is still unclear. The present study aimed to investigate the effects of differential heat exposure conditions on the immune response and prostaglandin biosynthesis of bovine endometrium challenged with bacterial lipopolysaccharide (LPS). Cultures of endometrial cells were grown to confluence at 37 °C (control) and 40.4 °C for 24 h after confluence (short-term heat exposure) and 40.4 °C for 8 days from the beginning of the culture (long-term heat exposure), prior to a challenge by 100 ng/mL LPS for 12 h. LPS altered ALOX12, IL8, IL1B, S100A8, PTGES and AKR1B1 expressions, as well as secretory IL8 and PGF2α. Short-term heat exposure decreased S100A8, IL8 and PGF2α compared with the control temperature, while long-term heat exposure decreased S100A8 and PGF2α. In contrast, HSPA5 expression was not altered by heat exposure or LPS. Indeed, the short-term heat treatment was insufficient for accomplishing the responses of the endometrium to LPS treatment for IL8, S100A8 and PTGES expressions when compared with other temperature conditions. Our findings showed that heat exposure could compromise endometrium immune response and prostaglandin biosynthesis in different ways based on elevated temperature duration, which could reduce subsequent fertility.
Collapse
Affiliation(s)
- Sroisuda Chotimanukul
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Theerawat Swangchan-Uthai
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- CU-Animal Fertility Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-(0)819794552
| |
Collapse
|
11
|
Fang L, Cui L, Liu K, Shao X, Sun W, Li J, Wang H, Qian C, Li J, Dong J. Cortisol inhibits lipopolysaccharide-induced inflammatory response in bovine endometrial stromal cells via NF-κB and MAPK signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104426. [PMID: 35452691 DOI: 10.1016/j.dci.2022.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/17/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Bovine uterine infection is commonly caused by Escherichia coli (E. coli). Elevated concentrations of plasma cortisol have been reported in postpartum cows. However, the direct role of cortisol in the inflammatory response of bovine endometrial stromal cells (BESCs) remains unclear. Therefore, the aim of the study was to explore the regulatory effect of cortisol on lipopolysaccharide (LPS)-induced inflammatory response in BESCs. Both the primary and immortalized BESCs were used in this study. BESCs were treated with cortisol (5, 15, and 30 ng/mL) in the presence of LPS. The mRNA expression of inflammatory cytokines and chemokines was detected using RT-qPCR. Western blot and immunofluorescence were used to analyze the activation of the NF-κB and MAPK signaling pathways. The results revealed that cortisol downregulated the LPS-induced overexpression of interleukin(IL)-1β, IL-6, IL-8, TNF-α, COX-2, iNOS in BESCs. Moreover, cortisol inhibited LPS-induced phosphorylation levels of IκB, p65, ERK1/2, JNK and p38, and p65 nuclear translocation in BESCs. These results indicated that cortisol inhibited LPS-induced inflammatory response in BESCs, which may be mediated by suppressing the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Li Fang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Xinyu Shao
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Wenye Sun
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Chen Qian
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China.
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
12
|
Ault-Seay TB, Payton RR, Moorey SE, Pohler KG, Schrick FN, Shepherd EA, Voy BH, Lamour KH, Mathew DJ, Myer PR, McLean KJ. Endometrial gene expression in response to lipopolysaccharide between estrous cycle phases and uterine horns in cattle. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.939876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uterine bacterial community abundances shift throughout the estrous cycle, potentially altering the immunological environment of the uterus and impacting subsequent fertility. The objective of the current study was to evaluate the immunological impact of lipopolysaccharide (LPS), as a model for potentially pathogenic bacteria, throughout the uterine endometrium between the luteal and follicular phase of the estrous cycle. Bovine uterine tracts were harvested in mid-luteal (n = 7) or follicular (n = 7) phase. Explants were collected from the contralateral and ipsilateral horn relative to the dominant follicle or corpus luteum, then subjected to one of three treatments: uncultured control, cultured control, or cultured with LPS (1 µg/mL). Explants underwent RNA extraction and targeted RNA sequencing for expression analyses of 40 immune response related genes. Sequencing reads were mapped to Bos taurus genome in CLC Genomics Workbench. Resulting total read counts were normalized by housekeeping gene GAPDH and analyzed for overall expression profile by Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and Variable Importance in Projection (VIP) analyses in Metaboanalyst. Individual gene expression differences were determined by GLIMMIX procedure in SAS with fixed effects of treatment, estrous phase, uterine horn, and their interaction, with random effect of individual uterus. Expression of 29 genes were affected among treatment groups, with seven genes increased in LPS treatment compared to other groups (P < 0.05). Multiple genes were affected by estrous phase and uterine horn, independent of treatment (P < 0.05). The OPLS-DA analyses indicated overall gene expression differences due to clustering by estrous cycle and treatment (P < 0.001), with no effect of uterine horn (P > 0.10). Similar clustering was observed between luteal and follicular phase explants of controls, but distinct separate clustering between phases with LPS treatment (P = 0.001). According to VIP analyses, mucins were identified as contributing the most to differences observed between phase and treatment. In conclusion, estrous cycle phase resulted in differing overall endometrial gene expression profiles of immune response to LPS treatment. Therefore, altered immunological environment of the uterus in response to bacteria at different estrous cycle stages may lead to differences in reproductive success.
Collapse
|
13
|
IFN-τ mediated miR-26a targeting PTEN to activate PI3K/AKT signalling to alleviate the inflammatory damage of bEECs. Sci Rep 2022; 12:9410. [PMID: 35672341 PMCID: PMC9174273 DOI: 10.1038/s41598-022-12681-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Endometritis is the failure of embryo implantation and an important cause of infertility in dairy cows. IFN-τ is a type I interferon unique to ruminants. In regulating the process of inflammatory response, IFN-τ can be expressed through MicroRNAs (miRNAs) to regulate the process of inflammation. However, IFN-τ regulates lipopolysaccharide (LPS)-induced inflammatory injury of bEECs through the highly conserved miR-26a in mammals, and the mechanism remains unclear. Bovine endometrial epithelial cells (bEECs)were isolated and cultured to establish an inflammatory injury model. RT–qPCR and ELISA were used to detect the secretion of inflammatory factors. Dual-luciferase assays and target gene silencing assays determine the regulatory role of miRNAs. The target protein was detected by immunofluorescence and western blotting. This study showed that the expression of miR-26a was significantly down-regulated in mouse endometrium inflammatory injury tissue and LPS stimulated bEECs; and IFN-τ reversed the expression of miR-26a. The study also showed that the overexpression of miR-26a significantly inhibited the secretion of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. In addition, studies have shown that miR-26a inhibits its translation by targeting PTEN 3′-UTR, which in turn activates the Phosphatidylinositide 3-kinases/protein kinase B (PI3K/AKT) pathway, so that nuclear factor kappa-B (NF-κB) signaling is inhibited. In summary, the results of this study further confirm that IFN-τ as an anti-inflammatory agent can up-regulate the expression of miR-26a and target the PTEN gene to inhibit the inflammatory damage of bEECs.
Collapse
|
14
|
PPAR gamma ligands regulate the expression of inflammatory mediators in porcine endometrium during LPS-induced inflammation. Theriogenology 2022; 187:195-204. [DOI: 10.1016/j.theriogenology.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
15
|
PPARγ regulates the expression of genes involved in the DNA damage response in an inflamed endometrium. Sci Rep 2022; 12:4026. [PMID: 35256739 PMCID: PMC8901773 DOI: 10.1038/s41598-022-07986-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
AbstractInflammation is a biological response of the immune system, which can be triggered by many factors, including pathogens. These factors may induce acute or chronic inflammation in various organs, including the reproductive system, leading to tissue damage or disease. In this study, the RNA-Seq technique was used to determine the in vitro effects of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the expression of genes and long non-coding RNA, and alternative splicing events (ASEs) in LPS-induced inflammation of the porcine endometrium during the follicular phase of the estrous cycle. Endometrial slices were incubated in the presence of LPS and PPARγ agonists (PGJ2 or pioglitazone) and a PPARγ antagonist (T0070907). We identified 169, 200, 599 and 557 differentially expressed genes after LPS, PGJ2, pioglitazone or T0070907 treatment, respectively. Moreover, changes in differentially expressed long non-coding RNA and differential alternative splicing events were described after the treatments. The study revealed that PPARγ ligands influence the LPS-triggered expression of genes controlling the DNA damage response (GADD45β, CDK1, CCNA1, CCNG1, ATM). Pioglitazone treatment exerted a considerable effect on the expression of genes regulating the DNA damage response.
Collapse
|
16
|
Adeniran SO, Zheng P, Feng R, Adegoke EO, Huang F, Ma M, Wang Z, Ifarajimi OO, Li X, Zhang G. The Antioxidant Role of Selenium via GPx1 and GPx4 in LPS-Induced Oxidative Stress in Bovine Endometrial Cells. Biol Trace Elem Res 2022; 200:1140-1155. [PMID: 33895964 DOI: 10.1007/s12011-021-02731-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/18/2021] [Indexed: 01/15/2023]
Abstract
This study investigated the antioxidant role of selenium (Se) in the form of selenomethionine (SLM) in LPS-induced oxidative stress via the glutathione peroxidase (GPx) enzymes and the Nrf2/HO-1 transcription factor. The impact of serum supplementation in culture media on GPxs was also studied. The bovine uterus is constantly exposed to exogenous pathogens postpartum, and the endometrium is the first contact against bacteria invasion. Endometritis is an inflammation of the endometrium and is brought about by bacterial lipopolysaccharide capable of inducing oxidative stress. The BEND cells were supplemented at the point of seeding with the following SLM concentrations 0, 100, 500, and 1000 nM for 48 h. BEND cells, cultured with or without SLM (100 nM), were initially incubated for 48 h, and then, we serum starved the SLM group for 24, 48, and 72 h. Similarly, an assay involving serum volume (0, 2, 5, and 10%) supplementation in culture media (v/v) with or without SLM (100 nM) was performed for 48 h. The BEND cells were also seeded into four experimental groups and cultured for an initial 48 h as follows: control, LPS (20 μg/mL), SLM (100 nM), and SLM + LPS groups followed by 6-h LPS treatment. The role of SLM in modulating the expressions of GPx1 and GPx4 and the Nrf2 transcription factor-related genes was assessed using qRT-PCR and Western blot techniques. The results showed serum starvation in the presence of SLM supplementation decreased the expression of GPx1 enzyme but increased GPx4 compared to the control. The addition of SLM to cell culture media in an FBS limiting condition improved the expressions of both GPx1 and GPx4. SLM supplementation promoted GPx enzymes' expressions in a serum-free media (0%) and at 2% FBS in media. However, it did not improve their expressions at 10% FBS in media than the untreated groups. Together, our data show the protective role of Se by regulating the expressions of GPx1 and GPx4 enzymes in BEND cells. It also shows that SLM promoted the expression of Nrf2 transcription factor-related genes at both the mRNA and protein levels in BEND cells during LPS stimulation.
Collapse
Affiliation(s)
- Samson O Adeniran
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Rui Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Elikanah O Adegoke
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| | - Fushuo Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Mingjun Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ziming Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Olamigoke O Ifarajimi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiaoyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Guixue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
17
|
H LD, D. SN, Pandey S, T Y, Chandra V, G TS. Impact of uterine epithelial cells and its conditioned medium on the in vitro embryo production in buffalo (Bubalus bubalis). Theriogenology 2022; 183:61-68. [DOI: 10.1016/j.theriogenology.2022.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/20/2022]
|
18
|
Expression of genes associated with fertility in the uterus and oviduct of heifers challenged with lipopolysaccharide. ZYGOTE 2022; 30:584-587. [PMID: 35016736 DOI: 10.1017/s0967199421000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lipopolysaccharide (LPS) endotoxemia has been negatively associated with fertility. This study aimed to investigate the effect of LPS-induced inflammation on gene expression associated with bovine fertility in the uterus and oviduct. Sixteen healthy heifers were divided into two groups. The LPS group (n = 8) received two intravenous (i.v.) injections of 0.5 µg/kg of body weight of LPS with a 24-h interval, and the control group (n = 8) received two i.v. injections of saline solution with the same interval of time. All the animals had the follicular wave synchronized. Three days after the second injection of LPS, all animals were slaughtered and uterine and oviduct samples were collected. Gene expression associated with inflammatory response, thermal and oxidative stresses, oviduct environment quality, and uterine environment quality was evaluated. Body temperature and leucogram demonstrated that LPS induced an acute systemic inflammatory response. In the uterus, the expression of PTGS2 and NANOG genes was downregulated by the LPS challenge. However, no change in expression was observed in the other evaluated genes in the uterus, nor those evaluated in the oviduct. In conclusion, the inflammatory process triggered by LPS did not persist in the uterus and oviduct 3 days after challenge with LPS. Nonetheless, reduction in PTGS2 and NANOG expression in the uterus suggested that, indirectly, LPS may have a prolonged effect, which may affect corpus luteum and endometrial functions.
Collapse
|
19
|
Zhang S, Wang D, Yan Z. Increasing of matrix metalloproteinase 3 in bovine endometritis. Theriogenology 2021; 175:83-88. [PMID: 34547631 DOI: 10.1016/j.theriogenology.2021.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase 3 (MMP3), a key member of the MMPs family, is involved in the modulation of endometrial inflammation and innate immunity. However, the role of MMP3 in bovine endometritis remains unknown. To investigate the role of MMP3 in bovine endometritis, endometrial MMP3 expression were determined in uterine biopsies from twenty 40-60 days postpartum dairy cows, which six were healthy cows and fourteen were endometritic cows. Moreover, MMP3 expression were also detected at different intensity of inflammatory response, which was induced by graded concentrations (0, 1, 5, 10 μg/ml) of LPS in bovine endometrial epithelial cells (BEECs) in vitro. RT-qPCR was used to test the mRNA levels of MMP3 in tissues or cells. Western blot was conducted to measure protein levels, and enzyme-linked immunosorbent assay (ELISA) was used for TNF-α and IL-1β in cell supernatant. Results showed that MMP3 mRNA and protein levels significantly increased and positive correlative with severity of endometritis in vivo. Likewise, MMP3 expression also positive correlative with intensity of LPS inflammatory response in BEECs in vitro. These results indicate that increasing of MMP3 directly correlates with bovine endometritis, and its increasing may contribute to progression of bovine endometritis.
Collapse
Affiliation(s)
- Shidong Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China.
| | - Dongsheng Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China
| | - Zuoting Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, 730050, PR China; Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou, 730050, PR China
| |
Collapse
|
20
|
Jana B, Kaczmarek MM, Romaniewicz M, Brzozowska M. Profile for mRNA transcript abundances in the pig endometrium where inflammation was induced by Escherichia coli. Anim Reprod Sci 2021; 232:106824. [PMID: 34403834 DOI: 10.1016/j.anireprosci.2021.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Uterine inflammation is a common reproductive disorder in domestic animals, leading to disturbances in many reproductive processes and economic losses. More information on inflammatory pathways, however, is needed to understand mechanisms of uterine inflammation. The aim of the study was to investigate transcriptomic profiles of the pig endometrium affected by inflammation. On day 3 of the estrous cycle (day 0 = initial day of study), saline or Escherichia coli suspension were injected into uterine horns. In endometrial tissues collected 8 days later, microarray analysis results indicated there were 189 differentially abundant mRNA transcripts (DEGs, 95 in relatively greater and 94 in lesser abundance) after saline injections compared with samples where there was severe acute inflammation. Relative abundance of mRNA transcripts for proteins assigned to inflammatory response, movement of phagocytes, quantity of phagocytes, leukocyte migration and adhesion of immune cells and many other functions related to inflammation were different in the Escherichia coli-treated endometrium than in samples from gilts treated with saline. Among others, S100A9, SLC11A1, CCL15, CCL3L3, CCR1, CD48, CD163, THBS1, KIT, ITGB3, JAK3 and NFKB2 mRNA transcripts were in relatively greater abundance and there were those in relatively lesser abundance including IL24, FGG, SST, CXCL16 and CREB. In this study, for the first time, there was detection of alterations in the transcriptome of the inflamed pig endometrium which may be an important finding for maintaining uterine homeostasis and functions. Results form the basis for future studies focusing on regulation of uterine inflammation in animals and women.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Monika M Kaczmarek
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marta Romaniewicz
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
21
|
Liu J, Wu Z, Guo S, Zhang T, Ma X, Jiang K, Guo X, Deng G. IFN-τ Attenuates LPS-Induced Endometritis by Restraining HMGB1/NF-κB Activation in bEECs. Inflammation 2021; 44:1478-1489. [PMID: 33604776 DOI: 10.1007/s10753-021-01433-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Endometritis is a common inflammatory disease in uterine tissues that leads to animal infertility. Among the causes, Escherichia coli infection is one of the main reasons. Interferon-tau (IFN-τ) is the initial pregnancy signal for ruminant embryos and can induce immune tolerance in humans and other species. However, there are scarce reports on whether IFN-τ has a regulatory effect on endometrial inflammatory damage through HMGB1-NF-κB signalling. The purpose of this study was to investigate the regulatory mechanism of IFN-τ in HMGB1-NF-κB signalling in LPS-induced endometritis. ELISA and qPCR were used to detect the expression of LPS-induced pro-inflammatory cytokines in bovine endometrial epithelial cells (bEECs or BEND) under IFN-τ intervention, and the levels of HMGB1, p-IKK and p-p65 were detected by Western blotting. The nuclear translocation of NF-κB p65 was determined through immunofluorescence. In addition, bEECs were transfected with si-HMGB1 to elucidate the key role of HMGB1 and IFN-τ in the endometrial inflammatory cascade. The results indicated that IFN-τ inhibits the expression of related pro-inflammatory cytokines in an inflammatory injury model of bovine endometrial epithelial cells induced by LPS. Furthermore, experiments have proven that IFN-τ has protective effects on E. coli endotoxin-induced endometritis in mice in vivo. IFN-τ inhibited the HMGB1-NF-κB axis and significantly reduced the secretion of pro-inflammatory cytokines, the expression of HMGB1 protein and the levels of IKK and NF-κB p65 phosphorylation. In summary, our results showed that IFN-τ resists E. coli endotoxin-induced endometritis by attenuating HMGB1/NF-κB signalling.
Collapse
Affiliation(s)
- Junfeng Liu
- College of Animal Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - KangFeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xuefeng Guo
- College of Animal Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China.
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
22
|
Peralta MB, Cainelli S, Stassi AF, Angeli E, Renna MS, Signorini ML, Gareis NC, Durante L, Rey F, Ortega HH, Salvetti NR, Velázquez MML. Association between phagocytic activity of monocytes and days to conception after parturition in dairy cows when considering the hormonal and metabolic milieu. Anim Reprod Sci 2021; 232:106818. [PMID: 34343817 DOI: 10.1016/j.anireprosci.2021.106818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 02/04/2023]
Abstract
The nutritional conditions and immune status of dairy cows affect reproductive performance. This study was conducted with the aim to analyze the phagocytic activity (PA) and phagocytic capacity (PC) of circulating monocytes after the period of transition from pregnancy to lactation, to evaluate possible associations with duration of time period to conception following parturition. Results indicated PA was not associated with duration of time period to conception following parturition. In contrast, cows with a lesser PC conceived earlier (98 ± 9 days in milk, DIM) than those with a greater PC (168 ± 15 DIM). Based on these results, to analyze the association of the hormonal and metabolic milieu with the PA and PC, the animals were grouped considering the days to conception following parturition. In the group with the greater number of days to conception (>168 DIM), the PA was associated with concentrations of progesterone and beta-hydroxybutyrate (BHB) at 90 DIM and glucose at 120 DIM, whereas PC was associated with the concentrations of progesterone, cortisol and glucose at 90 DIM, non-esterified fatty acids (NEFA) at 120 DIM, 17β-estradiol at 150 DIM, and 17β-estradiol and BHB at 180 DIM. Overall, these results represent a new perspective related to the reproductive performance of dairy cows. The modifications of cellular functions may be useful for predicting the onset of health complications in dairy cows and to manage cows in ways that result in an enhanced fertility during the subsequent lactational period.
Collapse
Affiliation(s)
- M B Peralta
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - S Cainelli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - E Angeli
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M S Renna
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M L Signorini
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria EEA Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - N C Gareis
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - L Durante
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - M M L Velázquez
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Esperanza, Santa Fe, Argentina; Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina.
| |
Collapse
|
23
|
Jiang K, Yang J, Xue G, Dai A, Wu H. Fisetin Ameliorates the Inflammation and Oxidative Stress in Lipopolysaccharide-Induced Endometritis. J Inflamm Res 2021; 14:2963-2978. [PMID: 34262322 PMCID: PMC8275103 DOI: 10.2147/jir.s314130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Fisetin is a natural flavone of polyphenol, which widely exists in many fruits and vegetables and has many pharmacological activities. However, the mechanism involved remains largely unknown. Here, we investigate the mechanisms of fisetin on the inflammatory response and oxidative stress in LPS-induced endometritis model and bovine endometrial epithelial cell line (BEND). Methods The function of fisetin was analyzed by network pharmacology. Effects of increasing doses of fisetin on inflammation and oxidative stress are studied in BALB/c mice with LPS-induced endometritis. The underlying mechanisms of antioxidant activity of fisetin were further explored in LPS-stimulated BEND cells. Results The results showed that fisetin significantly alleviated LPS-induced inflammatory injury and oxidative stress both in vivo and in vitro. Further studies found that fisetin greatly inhibited the LPS stimulated TLR4 expression and nuclear translocation of nuclear factor-κB (NF-κB), thus reducing the pro-inflammatory mediators secretion. Silencing TLR4 reduced LPS-induced inflammatory responses. Moreover, we observed that fisetin evidently decreased ROS production but activated Nrf2/HO-1 pathway in LPS-stimulated BEND cells. To further explore the role of Nrf2 in fisetin-induced HO-1 protein expression, the specific siRNA was used to silence Nrf2 expression. Silencing Nrf2 abrogated the inhibitory effects of fisetin on LPS-induced pro-inflammatory cytokines TNF-α, IL-1β secretion, NADPH oxidase-4 (Nox4) and ROS production. Conclusion In conclusion, fisetin effectively protected against LPS-induced oxidative stress and inflammatory responses which may be closely correlated to inhibition of TLR4-mediated ROS/NF-κB and activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Kangfeng Jiang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Guanhong Xue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Ailing Dai
- College of Life Sciences of Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| |
Collapse
|
24
|
Modulation of Bovine Endometrial Cell Receptors and Signaling Pathways as a Nanotherapeutic Exploration against Dairy Cow Postpartum Endometritis. Animals (Basel) 2021; 11:ani11061516. [PMID: 34071093 PMCID: PMC8224678 DOI: 10.3390/ani11061516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The provision of updated information on the molecular pathogenesis of bovine endometritis with host-pathogen interactions and the possibility of exploring the cellular sensors mechanism in a nanotechnology-based drug delivery system against persistent endometritis were reported in this review. The mechanism of Gram-negative bacteria and their ligands has been vividly explored, with the paucity of research detail on Gram-positive bacteria in bovine endometritis. The function of cell receptors, biomolecules proteins, and sensors were reportedly essential in transferring signals into cell signaling pathways to induce immuno-inflammatory responses by elevating pro-inflammatory cytokines. Therefore, understanding endometrial cellular components and signaling mechanisms across pathogenesis are essential for nanotherapeutic exploration against bovine endometritis. The nanotherapeutic discovery that could inhibit infectious signals at the various cell receptors and signal transduction levels, interfering with transcription factors activation and pro-inflammatory cytokines and gene expression, significantly halts endometritis. Abstract In order to control and prevent bovine endometritis, there is a need to understand the molecular pathogenesis of the infectious disease. Bovine endometrium is usually invaded by a massive mobilization of microorganisms, especially bacteria, during postpartum dairy cows. Several reports have implicated the Gram-negative bacteria in the pathogenesis of bovine endometritis, with information dearth on the potentials of Gram-positive bacteria and their endotoxins. The invasive bacteria and their ligands pass through cellular receptors such as TLRs, NLRs, and biomolecular proteins of cells activate the specific receptors, which spontaneously stimulates cellular signaling pathways like MAPK, NF-kB and sequentially triggers upregulation of pro-inflammatory cytokines. The cascade of inflammatory induction involves a dual signaling pathway; the transcription factor NF-κB is released from its inhibitory molecule and can bind to various inflammatory genes promoter. The MAPK pathways are concomitantly activated, leading to specific phosphorylation of the NF-κB. The provision of detailed information on the molecular pathomechanism of bovine endometritis with the interaction between host endometrial cells and invasive bacteria in this review would widen the gap of exploring the potential of receptors and signal transduction pathways in nanotechnology-based drug delivery system. The nanotherapeutic discovery of endometrial cell receptors, signal transduction pathway, and cell biomolecules inhibitors could be developed for strategic inhibition of infectious signals at the various cell receptors and signal transduction levels, interfering on transcription factors activation and pro-inflammatory cytokines and genes expression, which may significantly protect endometrium against postpartum microbial invasion.
Collapse
|
25
|
Gao F, Li H, Feng Y, Tian W, Cao R, Fu K. Aucubin ameliorates the LPS-induced inflammatory response in bovine endometrial epithelial cells by inhibiting NF-κB and activating the Keap1/Nrf2 signalling pathway. Reprod Domest Anim 2021; 56:972-982. [PMID: 33866621 DOI: 10.1111/rda.13939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 12/22/2022]
Abstract
Cows are susceptible to pathogenic bacterial infection after pregnancy, leading to inflammation of the endometrium. Aucubin (AU) has been proven to exhibit highly effective anti-inflammatory activity, but its ability to protect against endometritis in dairy cows remains unclear. Therefore, the goal of the present study was to evaluate the protective effect of AU on the LPS-induced inflammatory response of bovine endometrial epithelial cells (BEECs). After pre-treating BEECs with AU (10, 20 and 50 μM) for 6 hr, the cells were stimulated with LPS for 3 hr. Subsequently, BEECs apoptosis was analysed by flow cytometry, the expression of pro-inflammatory cytokine mRNA was detected by qRT-PCR, and changes in NF-κB and Keap1/Nrf2 signalling were analysed by western blotting and immunofluorescence analyses. The results showed that AU can reduce TNF-α, IL-1β, IL-6, COX-2 and iNOS mRNA expression in BEECs and reduce cell apoptosis. Furthermore, AU significantly reduced the level of NF-κB p65 and IκB phosphorylation and inhibited the nuclear translocation of NF-κB p65. AU also activated the Keap1/Nrf2 pathway, promoting the nuclear transfer of Nrf2 and increasing Keap1, Nrf2, HO-1 and NQO1 mRNA and protein levels. Taken together, these results indicate that AU ameliorates the LPS-induced inflammatory response by inhibiting NF-κB and activating the Keap1/Nrf2 signalling pathway, which has a protective effect on BEECs.
Collapse
Affiliation(s)
- Feng Gao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huatao Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanni Feng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenru Tian
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Rongfeng Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Kaiqiang Fu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
26
|
MicroRNA: Could It Play a Role in Bovine Endometritis? Inflammation 2021; 44:1683-1695. [PMID: 33907916 DOI: 10.1007/s10753-021-01458-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Endometritis in dairy cows is a major economic problem worldwide; without advances in lifestyle management and drug treatment, it causes high morbidity and death. Micro ribonucleic acid (miRNAs) these days is seen as an important part of gene control networks. It is a class of small nucleotides 20-25, single-stranded RNA molecules. In endometritis, the inflammatory response caused by the gram-negative bacteria Escherichia coli (E. coli) alters the expression of miRNA which can regulate the innate immune system. This manuscript reviews (1) the interaction of miRNAs with the signaling of NF-κB and dysregulation of miRNAs and NF-κB activity in endometritis and (2) the activity of miR-let-7c, miR-148a, and miR-488 in NF-κB activation and their effect on endometritis. Cows with reduced immunity are more vulnerable to transition diseases, such as endometritis. During post-partum, cows undergo stress, metabolic disorders, hormonal imbalance, negative energy balance, and changes in diet. One of the many categories of regulatory molecules, which explain its natural function and pathological impact on NF-κB dysregulation, is important to inform the complexity of the immune system and to develop treatments for endometritis. It shows that miRNAs could have multiple applications in veterinary medicine. Nevertheless, a comprehensive study of is essential which should be aimed at exploring the role of microRNA at physiological level and its effect due to dysfunction and dysregulation.
Collapse
|
27
|
Nunes PP, Martins TDM, Leite AC, Silva EBM, da Paixão TA, Santos RL, Borges ÁM. Production of IL-1β, IL-6 and CXCL8 by endometrium of crossbred heifers stimulated with various pathogen-associated molecular patterns. Anim Reprod Sci 2021; 228:106736. [PMID: 33752096 DOI: 10.1016/j.anireprosci.2021.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/18/2022]
Abstract
Uterine bacterial infections are common during the post-partum period of dairy herds and, apparently, incidences in crossbred cattle are less than in Holsteins. The aims of this study were (I) to evaluate production of interleukin 1-β (IL-1β), interleukin-6 (IL-6) and chemokine CXCL8 using endometrial explants from Bos indicus crossbred heifers at diestrous, stimulated by various pathogen-associated molecular patterns (PAMP), and (II) assess production of these cytokines by lipopolysaccharide-stimulated endometrial explants from heifers when samples were collected at different stages of estrous cycle. In the first experiment, endometrial explants from heifers at diestrous were stimulated by ten-fold serial dilutions of lipopolysaccharide (LPS), triacylated lipopeptide (PAM3) or peptidoglycan (PGN). In the second experiment, endometrial explants collected at different stages of the estrous cycle were treated with LPS. Concentrations of IL-1β, IL-6 and CXCL8 were quantified in supernatant. There was a marked (P < 0.05) production of IL-1β, IL-6, and CXCL8 in response to LPS treatment. There was also production of IL-1β (P < 0.05) in response to PGN treatment. Explant samples collected at different stages of the estrous cycle responded to LPS treatment with production of IL-1β and IL-6, but with no differences (P > 0.05) between stages of estrous cycle. In conclusion, endometrial samples of crossbred Zebu-based heifers collected during diestrous produced IL-1β, IL-6 and CXCL8 in response to LPS and IL-1β in response to PGN. The cytokine production in response to LPS, however, was not affected by the stage of the estrous cycle in Bos indicus crossbred heifers.
Collapse
Affiliation(s)
- Philipe Pimenta Nunes
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Telma da Mata Martins
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Ana Carolina Leite
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Eliane Beatriz Magalhães Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Tatiane Alves da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Renato Lima Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Álan Maia Borges
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Gebremedhn S, Ali A, Hossain M, Hoelker M, Salilew-Wondim D, Anthony RV, Tesfaye D. MicroRNA-Mediated Gene Regulatory Mechanisms in Mammalian Female Reproductive Health. Int J Mol Sci 2021; 22:938. [PMID: 33477832 PMCID: PMC7832875 DOI: 10.3390/ijms22020938] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian reproductive health affects the entire reproductive cycle starting with the ovarian function through implantation and fetal growth. Various environmental and physiological factors contribute to disturbed reproductive health status leading to infertility problems in mammalian species. In the last couple of decades a significant number of studies have been conducted to investigate the transcriptome of reproductive tissues and organs in relation to the various reproductive health issues including endometritis, polycystic ovarian syndrome (PCOS), intrauterine growth restriction (IUGR), preeclampsia, and various age-associated reproductive disorders. Among others, the post-transcriptional regulation of genes by small noncoding miRNAs contributes to the observed transcriptome dysregulation associated with reproductive pathophysiological conditions. MicroRNAs as a class of non-coding RNAs are also known to be involved in various pathophysiological conditions either in cellular cytoplasm or they can be released to the extracellular fluid via membrane-bounded extracellular vesicles and proteins. The present review summarizes the cellular and extracellular miRNAs and their association with the etiology of major reproductive pathologies including PCOS, endometritis, IUGR and age-associated disorders in various mammalian species.
Collapse
Affiliation(s)
- Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Asghar Ali
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Munir Hossain
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Michael Hoelker
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Department of Animal Breeding and Husbandry, University of Bonn, 53115 Bonn, Germany; (M.H.); (D.S.-W.)
| | - Russell V. Anthony
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3051 Rampart Rd, Fort Collins, CO 80523, USA; (S.G.); (A.A.); (R.V.A.)
| |
Collapse
|
29
|
Tremaine TD, Fouladi-Nashta AA. Steroid regulation of secreted phosphoprotein 1 (SPP1) expression in ovine endometrium. Reprod Fertil Dev 2021; 33:257-269. [PMID: 33541520 DOI: 10.1071/rd20184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/04/2020] [Indexed: 11/23/2022] Open
Abstract
Secreted phosphoprotein 1 (SPP1) is an extracellular matrix glycoprotein that is highly expressed at the maternal-fetal interface and is a critical mediator of embryo implantation. The objectives of this study were to examine the spatial and temporal cyclical expression patterns and steroid regulation of SPP1 mRNA and protein in ovine endometrium, which may be further indicative of their functionality in embryo implantation. Uterine tissue was obtained following hysterectomy from ovariectomised ewes treated with ovarian steroids. In parallel, invitro culture of endometrial cells was used to investigate the effects of ovarian steroids on SPP1 expression in endometrial and luminal epithelial (LE) cells. A significant sustained mid-luteal phase increase in SPP1 mRNA in intercaruncular regions of the endometrium was observed, indicating that glandular epithelium is likely to be the primary source of SPP1 production. This increase in SPP1 was induced by progesterone treatment and was shown at the protein level by immunohistochemistry analysis. Similarly, treatment of stromal cells with 10ng mL-1 progesterone or in combination with 1ng mL-1 oestradiol significantly increased SPP1 expression (P<0.05). Collectively, expression levels of SPP1 are cycle-dependent and peak in the progesterone-dominant luteal phase. They are dependent on the interaction of uterine LE and stromal cells and may involve paracrine signalling by progesterone receptor-positive stromal cells.
Collapse
Affiliation(s)
- Tina D Tremaine
- Reproduction Research Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK
| | - Ali A Fouladi-Nashta
- Reproduction Research Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK; and Corresponding author.
| |
Collapse
|
30
|
Ding X, Lv H, Deng L, Hu W, Peng Z, Yan C, Yang D, Tong C, Wang X. Analysis of Transcriptomic Changes in Bovine Endometrial Stromal Cells Treated With Lipopolysaccharide. Front Vet Sci 2020; 7:575865. [PMID: 33324700 PMCID: PMC7725876 DOI: 10.3389/fvets.2020.575865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022] Open
Abstract
Endometritis adversely affects the ability of cattle to reproduce and significantly reduces milk production. The is mainly composed of epithelial and stromal cells, and they produce the first immune response to invading pathogens. However, most of the epithelial cells are disrupted, and stromal cells are exposed to an inflammatory environment when endometritis occurs, especially postpartum. Many bacteria and toxins start attacking stromal cell due to loss of epithelium, which stimulates Toll-like receptor (TLRs) on stromal cells and causes upregulated expression of cytokines. Understanding the genome-wide characterization of bovine endometritis will be beneficial for prevention and treatment of endometritis. In this study, whole-transcriptomic gene changes in bovine endometrial stromal cells (BESCs) treated with LPS were compared with those treated with PBS (control group) and were analyzed by RNA sequencing. Compared with the control group, a total of 366 differentially expressed genes (DEGs) were identified in the LPS-induced group (234 upregulated and 132 downregulated genes), with an adjusted P < 0.05 by DESeq. Gene Ontology (GO) enrichment analysis revealed that DEGs were most enriched in interleukin-1 receptor binding, regulation of cell activation, and lymphocyte-activated interleukin-12 production. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed DEGs were most enriched in the TNF signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, NF-κB signaling pathway, and chemokine signaling pathway. The results of this study unraveled BESCs affected with LPS transcriptome profile alterations, which may have a significant effect on treatment inflammation by comprehending molecular mechanisms and authenticating unique genes related to endometritis.
Collapse
Affiliation(s)
- Xuefen Ding
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Haimiao Lv
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lixin Deng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wenju Hu
- College of Agricultural Medicine, Henan Radio and Television University, Zhengzhou, China
| | - Zhan Peng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Wuhu Overseas Students Pioneer Park, WuHu, China
| | - Xinzhuang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
31
|
Mierzejewski K, Paukszto Ł, Kurzyńska A, Kunicka Z, Jastrzębski JP, Bogacka I. Transcriptome analysis of porcine endometrium after LPS-induced inflammation: effects of the PPAR-gamma ligands in vitro†. Biol Reprod 2020; 104:130-143. [PMID: 33112378 DOI: 10.1093/biolre/ioaa200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/29/2020] [Accepted: 10/23/2019] [Indexed: 12/25/2022] Open
Abstract
Female fertility depends greatly on the capacity of the uterus to recognize and eliminate microbial infections, a major reason of inflammation in the endometrium in many species. This study aimed to determine the in vitro effect of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the transcriptome genes expression and alternative splicing in the porcine endometrium in the mid-luteal phase of the estrous cycle during LPS-stimulated inflammation using RNA-seq technology. The endometrial slices were incubated in vitro in the presence of LPS and PPARγ agonists-PGJ2 or pioglitazone and antagonist-T0070907. We identified 222, 3, 4, and 62 differentially expressed genes after LPS, PGJ2, pioglitazone, or T0070907 treatment, respectively. In addition, we detected differentially alternative spliced events: after treatment with LPS-78, PGJ2-60, pioglitazone-52, or T0070907-134. These results should become a basis for further studies explaining the mechanism of PPARγ action in the reproductive system in pigs.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zuzanna Kunicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
32
|
Protective Effect of Hydroxytyrosol on LPS-Induced Inflammation and Oxidative Stress in Bovine Endometrial Epithelial Cell Line. Vet Sci 2020; 7:vetsci7040161. [PMID: 33114084 PMCID: PMC7712648 DOI: 10.3390/vetsci7040161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Bovine endometritis is a serious pathogen-induced infectious disease that affects the physiological processes of estrus, pregnancy and the postpartum condition. The inflamed endometrium responds by activating an inflammatory intracellular signaling cascade that leads to increased expression of proinflammatory cytokines and reactive oxygen species (ROS). Oxidative stress is closely related to several pathological conditions in perinatal dairy cows and play a key role in tissue damage. Hydroxytyrosol (HT), a natural phenolic alcohol with a strong antioxidant activity, displayed a wide range of biological effect. The aim of this study was to evaluate the protective effects of HT in an in vitro model of lipopolysaccharide (LPS)-induced inflammation in bovine uterine endometrial cells. Our results showed that HT had a significant protective effect in LPS-induced inflammation and oxidative stress. HT was also able to increase the capacity of endogenous antioxidant systems through the up-regulation of the NRF2 pathway. Furthermore, HT restored the tight junction protein expressions. In conclusion, our results showed the protective effects of HT in LPS-stimulated BEND cells. Therefore, the results of this study suggest an important protective role of HT in the treatment and prevention of uterine pathologies in dairy cows.
Collapse
|
33
|
Impaired pathogen-induced autophagy and increased IL-1β and TNFα release in response to pathogenic triggers in secretory phase endometrial stromal cells of endometriosis patients. Reprod Biomed Online 2020; 41:767-781. [PMID: 32978075 DOI: 10.1016/j.rbmo.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 11/20/2022]
Abstract
RESEARCH QUESTION It is not clear whether innate immunity along with autophagy is altered in endometrial cells of patients with endometriosis. DESIGN This study evaluated the effects of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C) stimulation on autophagy induction, pro-IL-1β expression, and secretion of interleukin-1β (IL-1β) and tumour necrosis factor-α (TNFα) in endometrial epithelial and/or stromal cells of patients with endometriosis (EE-endo, ES-endo, respectively), those of patients with hydrosalpinx (EE-hydro, ES-hydro, respectively) and those of healthy fertile women (EE-healthy, ES-healthy, respectively), with and without inhibition of autophagy by autophagy-related (ATG)13 gene small interfering RNA (siRNA). RESULTS Stimulation with either LPS or poly I:C triggered autophagy in EE/ES-healthy, whereas no significant induction was observed in either EE/ES-endo or EE/ES-hydro. In EE- and/or ES-healthy, IL-1β and/or TNFα secretion after stimulation with LPS or poly I:C was significantly higher in cells with ATG13 knockdown compared with those with siRNA control (P < 0.03), whereas no significant difference was observed in either EE/ES-endo or EE/ES-hydro. In the secretory phase ES-endo without autophagy inhibition, IL-1β and TNFα secretion were significantly higher compared with those of ES-healthy after stimulation with either LPS or poly I:C for 4 h (P < 0.001) and for 24 h (P < 0.01). CONCLUSION Pathogen-induced autophagy was impaired in EE/ES-endo. Increased IL-1β and TNFα release in response to pathogenic triggers in the secretory phase ES-endo may result in the development of an inflammatory uterine microenvironment detrimental to successful embryo implantation.
Collapse
|
34
|
Liu J, Guo S, Zhang T, Ma X, Wu Z, Jiang K, Zhang X, Guo X, Deng G. MiR-505 as an anti-inflammatory regulator suppresses HMGB1/NF-κB pathway in lipopolysaccharide-mediated endometritis by targeting HMGB1. Int Immunopharmacol 2020; 88:106912. [PMID: 32829092 DOI: 10.1016/j.intimp.2020.106912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022]
Abstract
Endometritis is characterized by severe inflammation and tissue damage. It is a common clinical disease that causes infertility due to infectious diseases of the reproductive system. MicroRNAs (miRNAs) are the current focus of research on the regulation of the inflammatory process and play a vital role in various inflammatory diseases. The highly conserved miR-505 regulates the mechanism of lipopolysaccharide (LPS) induced endometritis, but the extent to which pro-inflammatory genes are activated remains unclear. The results of this study showed that the expression of miR-505 was significantly down-regulated in mouse endometritis tissue and LPS-stimulated BEND cells. The study also showed that overexpression of miR-505 significantly suppressed the production of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α, and this effect was reversed by inhibiting the expression of miR-505. Moreover, miR-505 inhibited the expression of HMGB1 by targeting its 3'-UTR, thereby inhibiting the activation of HMGB1/NF-κB signalling. Taken together, the results of this study further confirmed that miR-505, as an anti-inflammatory agent, regulates the activation of the HMGB1/NF-κB signalling pathway through negative feedback.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Animal Science, Tarim University, Alar, Xinjiang 843300, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiuping Zhang
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, People's Republic of China
| | - Xuefeng Guo
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, People's Republic of China.
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
35
|
Marey MA, Aboul Ezz M, Akthar I, Yousef MS, Imakawa K, Shimada M, Miyamoto A. Sensing sperm via maternal immune system: a potential mechanism for controlling microenvironment for fertility in the cow. J Anim Sci 2020; 98:S88-S95. [PMID: 32810249 DOI: 10.1093/jas/skaa147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohamed Ali Marey
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhur University, Behera, Egypt
| | - Mohamed Aboul Ezz
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ihshan Akthar
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamed Samy Yousef
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Masayuki Shimada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Akio Miyamoto
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
36
|
Pandey S, Ahmad Bhat I, Kumar Bharti M, Shabir U, Ahmad Peer B, Baiju I, Sonwane A, Chandra V, Sai Kumar G, Taru Sharma G. Progesterone modulates adhesion molecules in uterine epithelial cells and in vitro embryo production in buffalo. Reprod Domest Anim 2020; 55:833-843. [PMID: 32335951 DOI: 10.1111/rda.13691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/21/2020] [Indexed: 01/07/2023]
Abstract
This study was undertaken to evaluate the role of progesterone (P4) in modulation of the expression profile of adhesion-related molecules in uterine epithelial cells (UECs) and in vitro blastocyst production in buffalo. UECs were isolated from slaughterhouse-derived uteri by enzymatic treatment, and cells were characterized by immunocytochemistry (ICC) and PCR assays. The well-characterized UECs were exposed to different concentrations of P4 (0, 0.314, 3.14 and 6.28 ng/ml) along with the basal level of oestradiol for 6 days. Thereafter, the relative mRNA expression of different biomolecules such as mucin 1 (MUC1), osteopontin, integrin alpha (α3, α6 and αV) and beta (β1 and β3) subunits, progesterone receptor (PR) and oestrogen receptor, was evaluated. Further, day 2 post-insemination embryos were cultured in mSOF supplemented with or without P4. UECs were found positive for cytokeratin expression and negative for vimentin expression. Progesterone treatment significantly enhanced the mRNA expression of most of the transcripts compared with the control group, and correspondingly, the immunofluorescence depicted higher protein expression of all these molecules. Further, the long-term exposure of UECs to P4 downregulated the expression of PR and, concomitantly, MUC1. Progesterone supplementation to embryo culture medium significantly (p < .05) improved the blastocyst rate. The study demonstrates the role of P4 hormone in modulation of the expression of early implantation-related biomolecules in uterine epithelial cells; hence, adequate level of steroids is crucial for normal embryo development and its implantation.
Collapse
Affiliation(s)
- Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Irfan Ahmad Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Mukesh Kumar Bharti
- Department of Veterinary Physiology & Biochemistry, Faculty of Veterinary and Animal Sciences, RGSC, BHU, Barkachha, India
| | - Uffaq Shabir
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Bilal Ahmad Peer
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Indu Baiju
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Arvind Sonwane
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Gutulla Sai Kumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
37
|
Canisso IF, Segabinazzi LG, Fedorka CE. Persistent Breeding-Induced Endometritis in Mares - a Multifaceted Challenge: From Clinical Aspects to Immunopathogenesis and Pathobiology. Int J Mol Sci 2020; 21:E1432. [PMID: 32093296 PMCID: PMC7073041 DOI: 10.3390/ijms21041432] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Post-breeding endometritis (i.e., inflammation/infection of the endometrium), is a physiological reaction taking place in the endometrium of mares within 48 hours post-breeding, aimed to clear seminal plasma, excess sperm, microorganisms, and debris from the uterine lumen in preparation for the arrival of an embryo. Mares are classified as susceptible or resistant to persistent breeding-induced endometritis (PBIE) based on their ability to clear this inflammation/infection by 48 hours post-breeding. Mares susceptible to PBIE, or those with difficulty clearing infection/inflammation, have a deficient immune response and compromised physical mechanisms of defense against infection. Molecular pathways of the innate immune response known to be involved in PBIE are discussed herein. The role of the adaptive uterine immune response on PBIE remains to be elucidated in horses. Advances in the pathobiology of microbes involved in PBIE are also revised here. Traditional and non-traditional therapeutic modalities for endometritis are contrasted and described in the context of clinical and molecular aspects. In recent years, the lack of efficacy of traditional therapeutic modalities, alongside the ever-increasing incidence of antibiotic-resistant microorganisms, has enforced the development of non-traditional therapies. Novel biological products capable of modulating the endometrial inflammatory response are also discussed here as part of the non-traditional therapies for endometritis.
Collapse
Affiliation(s)
- Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
| | - Lorenzo G.T.M. Segabinazzi
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
- Department of Animal Reproduction and Veterinary Radiology, Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-000, São Paulo, Brazil
| | - Carleigh E. Fedorka
- The Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA;
| |
Collapse
|
38
|
Funeshima N, Tanikawa N, Yaginuma H, Watanabe H, Iwata H, Kuwayama T, Hamano S, Shirasuna K. Adverse reproductive effects of S100A9 on bovine sperm and early embryonic development in vitro. PLoS One 2020; 15:e0227885. [PMID: 31945120 PMCID: PMC6964853 DOI: 10.1371/journal.pone.0227885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
The phenomenon of aging arises from multiple, complex interactions causing dysfunction in cells and organs. In particular, fertility drastically decreases with age. Previously, we have demonstrated that the functional characteristics of the bovine oviduct and uterus change with the age-dependent upregulation of inflammation and noted that S100A9 triggers inflammatory responses in oviduct epithelial cells. In the present study, we investigated the hypothesis that S100A9 affects reproductive events to aspect such as sperm function, fertilization, and the development of the embryo in cows. To investigate the effect of S100A9 on bovine sperm, we incubated sperms in vitro with S100A9 for 5 h and observed significantly decreased sperm motility and viability. During in vitro fertilization, S100A9 treatment for 5 h did not affect the rate of fertilization, time of first division of embryos, or embryo development to blastocyst stage. Treatment of 2-cell stage embryos with S100A9 for 5 h significantly reduced the proportion of cells undergoing normal division (4-8 cell embryos) and embryo development to the blastocyst stage. In experiment involving 24 h treatment of 2-cell embryos, the development of all embryos stopped at the 2-cell stage in the S100A9-treated group. In blastocyst-stage embryos, S100A9 treatment significantly stimulated the expression of endoplasmic reticulum (ER) and the mRNA expression of ER stress markers, and activated caspase-3 with subsequent nuclear fragmentation. Pre-treatment with an ER stress inhibitor significantly suppressed caspase-3 activation by the S100A9 treatment, suggesting that S100A9 induces blastocyst dysfunction by apoptosis (via caspase-3 activation) depending on ER stress. These results indicate that direct exposure to S100A9 exerted adverse effects on sperm function and embryo development. These findings suggest that excessive dose of S100A9 may have an adverse effect to the reproductive machinery by inducing inflammation and tissue dysfunction.
Collapse
Affiliation(s)
- Natsumi Funeshima
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Nao Tanikawa
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hikari Yaginuma
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo, Japan
| | - Hiroyuki Watanabe
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Seizo Hamano
- Animal Bio-Technology Center, Livestock Improvement Association of Japan Inc., Tokyo, Japan
- Maebashi Institute of Animal Science, Livestock Improvement Association of Japan Inc., Gunma, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
39
|
Liu J, Guo S, Jiang K, Zhang T, Zhiming W, Yaping Y, Jing Y, Shaukat A, Deng G. miR-488 mediates negative regulation of the AKT/NF-κB pathway by targeting Rac1 in LPS-induced inflammation. J Cell Physiol 2019; 235:4766-4777. [PMID: 31674024 DOI: 10.1002/jcp.29354] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Endometritis is an inflammatory change in the structure of the endometrium due to various causes and is a common cause of infertility. Studies have confirmed that microRNAs (miRNAs) play a key regulatory role in various inflammatory diseases. However, the miRNA-mediated mechanism of endometrial inflammation induced by lipopolysaccharides (LPS) remains unclear. In this study, real-time quantitative polymerase chain reaction, Western blot analysis, immunofluorescence and Rac family small GTPase 1 (Rac1) interference were used to reveal the overexpression of miR-488 in the LPS-induced bovine uterus, and the effect of protein kinase B κ-light chain enhancement of the nuclear factor-activated B cells (AKT/NF-κB) pathway in intimal epithelial cells. The results showed that the expression of inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α in the experimental group was significantly lower than that in the control group when miR-488 was overexpressed. Similar results were observed in the expression levels of p-AKT, p-IKK, and p-p65 proteins. In addition, the dual-luciferase reporter system confirmed that miRNA-488 may directly target the 3'-untranslated region of Rac1. In turn, the expression of Rac1 was inhibited. Moreover, the nuclear translocation of NF-κB was inhibited, and meanwhile, the accumulation of reactive oxygen species (ROS) in the cells was reduced. Thus, we provide basic data for the negative regulation of miR-488 in LPS-induced inflammation by inhibiting ROS production and the AKT/NF-kB pathway in intimal epithelial cells.
Collapse
Affiliation(s)
- Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Animal Science, Tarim University, Alar, Xinjiang, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wu Zhiming
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Yaping
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Jing
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle. Anim Health Res Rev 2019; 20:72-85. [PMID: 31895016 DOI: 10.1017/s1466252319000057] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is an important infectious disease agent that causes significant reproductive and economic losses in the cattle industry worldwide. Although BVDV infection is known to cause poor fertility in cattle, a greater part of the underlying mechanisms particularly associated with early reproductive losses are not clearly understood. Previous studies reported viral compromise of reproductive function in infected bulls. In females, BVDV infection is thought to be capable of killing the oocyte, embryo or fetus directly, or to induce lesions that result in fetal abortion or malformation. BVDV infections may also induce immune dysfunction, and predispose cattle to other diseases that cause poor health and fertility. Other reports also suggested BVDV-induced disruption of the reproductive endocrine system, and a disruption of leukocyte and cytokine functions in the reproductive organs. More recent studies have provided evidence of viral-induced suppression of endometrial innate immunity that may predispose to uterine disease. Furthermore, there is new evidence that BVDV may potentially disrupt the maternal recognition of pregnancy or the immune protection of the conceptus. This review brings together the previous reports with the more recent findings, and attempts to explain some of the mechanisms linking this important virus to infertility in cattle.
Collapse
|
41
|
Differential gene expression in bovine endometrial epithelial cells after challenge with LPS; specific implications for genes involved in embryo maternal interactions. PLoS One 2019; 14:e0222081. [PMID: 31487323 PMCID: PMC6728075 DOI: 10.1371/journal.pone.0222081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipopolysaccharide (LPS) expressed on the surface of Gram-negative bacteria activates pro-inflammatory pathways, dys-regulates the function of endometrial cells and is a key player in the mechanisms involved in endometritis. This study aimed to investigate the effects of LPS on bovine endometrial epithelial cells (bEEC) from whole transcriptome with a special focus on genes involved in embryo-maternal interactions. Following in vitro culture, bEEC from three cows were exposed to 0, 2, and 8 μg/mL LPS for 24h. RNA samples extracted at 0 and 24 hours were analyzed by RNA sequencing (RNA-seq). At 24h, 2035 differentially expressed genes (DEGs) were identified between controls and samples treated with 2 μg/mL LPS. Gene ontology analysis showed that over-expressed DEGs were associated to immune response, response to stress and external stimuli, catalytic activity, and cell cycle. Genes associated with cell membrane and cell adhesion pathways were under-expressed. LPS induced changes in expression of specific genes related to embryo-maternal interactions including under-expression of eight members of the cadherin superfamily, over-expression of six members of the mucin family, and differential expression of a large set of genes binding the above molecules and of more than 20 transcripts coding for cytokines and their receptors. Type I interferon-τ dependent genes were also over-expressed. From a sub-set of 19 genes, (biological replicates of bEEC from cows taken at time 6 (n = 3), 24 (n = 6) and 48 hours (n = 3), and 2 technical replicates per sample) differential gene expression was confirmed by RT2-qPCR (r2 between fold changes at 24 hours by RT2-qPCR and RNA-seq = 0.97). These results indicate that LPS affects the function of bEEC in many ways by differential transcription, glycolytic metabolism and oxidative stress. Many transcriptomic signatures related to implantation and embryo maternal interactions were strongly affected by LPS. These results pave the way for further studies to investigate the duration of these changes and their possible impact on endometrial function and fertility.
Collapse
|
42
|
Targeted transcript analysis revealed association of suboptimal expression of certain endometrial immunity-related genes with disparate uterine diseases in zebu cows. Trop Anim Health Prod 2019; 51:2493-2503. [PMID: 31197726 DOI: 10.1007/s11250-019-01958-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
The onset of uterine infection during postpartum period compromises uterine health, fertility, and productivity of dairy cattle. Endometrial innate immunity plays a key role in eliminating uterine infection and keeping the uterus healthy. Hence, the present study has been designed with the hypothesis that altered endometrial immune response around calving may compromise uterine health during postpartum period. Expression of interleukins (IL-1β, IL-6, IL-8, IL-10, and TNF-α), prostaglandin synthase (PGFS, PGES), and antimicrobial peptides (beta-defensins (BDEF-4, BDEF-5), lingual antimicrobial peptide (LAP), and calcium-binding proteins (S100A8, S100A9, and S100A12) in endometrial tissues on the day of calving was studied using qRT-PCR, and circulating concentrations of prostaglandin E and F metabolites (PGEM and PGFM) during peripartum period (on days - 7, - 4, - 1 (before calving), 0 (on the day of calving), + 1, + 4, and + 7 (post calving)) of normal (healthy) cows (n = 11) that did not develop postpartum uterine infection and cows that developed puerperal metritis (n = 7) and clinical endometritis (n = 6) were studied. Endometrial expression of IL-1β, TNF-α, BDEF-4, BDEF-5, S100A8, S100A12, and PGFS was higher (P < 0.05), and expression of IL-6, IL-8, IL-10, and PGES was lower (P < 0.05) in normal (healthy) cows than puerperal metritic and clinical endometritic cows. The PGFM concentration in serum was high (P < 0.05) on days 0, + 1, and + 4 of calving in puerperal metritic cows followed by normal and clinical endometritic cows. However, PGEM concentration in serum was high (P < 0.05) during peripartum period in uterine-infected (puerperal metritic and clinical endometritic) cows compared with normal cows. From the above findings, it is concluded that higher constitutive expression of IL-1β, TNF-α, PGFS, BDEF-4, BDEF-5, S100A8, and S100A12 genes in the endometrium and lower concentration of PGEM during the period immediate to calving might be beneficial for uterine health of cows.
Collapse
|
43
|
Zhou M, Yi Y, Hong L. Oridonin Ameliorates Lipopolysaccharide-Induced Endometritis in Mice via Inhibition of the TLR-4/NF-κBpathway. Inflammation 2019; 42:81-90. [PMID: 30132202 DOI: 10.1007/s10753-018-0874-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endometritis is a health threat to both humans and animals and poses a huge economic burden. Oridonin (Ori) is a natural diterpenoid isolated from the traditional Chinese herb Rabdosiarubescens (R. rubescens) and has multiple health-promoting effects, including antioxidant, anti-inflammatory, and antitumor effects. There is little evidence showing that Ori can effectively treat endometritis, and the relevant mechanisms need to be further clarified. In this study, we investigated the effects of Ori on LPS-induced endometritis in vivo. Additionally, we examined the effects of Ori on LPS-stimulated mouse endometrial epithelial cells (mEECs). The results showed that Ori treatment significantly alleviated LPS-induced endometritis and reduced the activity of myeloperoxidase. ELISA and qPCR results indicated that Ori dose-dependently decreased the expression of TNF-α, IL-1β, and IL-6 both in tissues and in mEECs. In addition, Ori was found to inhibit LPS-induced TLR4/NF-κB signaling pathway activation. These results suggest that Ori effectively attenuates LPS-induced endometritis by inhibiting the TLR4/NF-κB signaling pathway and that Ori might be an effective drug for the prevention and treatment of LPS-induced endometritis.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China
| | - Yinyi Yi
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China.
| |
Collapse
|
44
|
MANIMARAN AYYASAMY, KUMARESAN ARUMUGAM, SARKAR SOUVENDRANATH, BOYA SANJANNA, SREELA L, MOOVENTHAN P, WANKHADE PRATIKR. Differential expression of bovine major acute phase proteins, cytokines and metabolic indicator genes in clinical endometritis cows. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i4.89139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Among the uterine diseases, clinical endometritis (CE) is a major challenge to livestock farming as it causes sub- or infertility problems in dairy animals. The aim of this study was to evaluate the expression of cytokines (IL- 1β, TNF-α, IL-6, and IL-8), acute phase proteins [APPs; haptoglobin (Hp), serum amyloid A (SAA) and alpha-1 acid glycoprotein (AGP)] and energy indicators [leptin and insulin-like growth factor (IGF)-1] genes in uterine tissue of CE affected cows. The uterine biopsy from CE cows (4) and non-endometritis cows (4) was processed for quantitative real-time PCR to study the mRNA expression of these innate immune molecules. We observed that mRNA expression of SAA, IL-1β, IL-8 and leptin genes were significantly up-regulated while, TNF-α and IGF-I genes were significantly down-regulated in CE cows. It can be concluded that bovine APPs, cytokines and energy indicators genes are differentially expressed in CE affected cows.
Collapse
|
45
|
Li T, Mao W, Liu B, Gao R, Zhang S, Wu J, Fu C, Deng Y, Liu K, Shen Y, Cao J. LP induced/mediated PGE 2 synthesis through activation of the ERK/NF-κB pathway contributes to inflammatory damage triggered by Escherichia coli-infection in bovine endometrial tissue. Vet Microbiol 2019; 232:96-104. [PMID: 31030852 DOI: 10.1016/j.vetmic.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/31/2023]
Abstract
The bovine endometrium is constantly challenged with pathogenic bacteria, especially with Escherichia coli. In previous studies, we showed that prostaglandin E2 (PGE2) synthesis was increased in E. coli-infected bovine endometrial tissue, which promoted the development of inflammatory damage. However, the molecular mechanism underlying this accumulation of PGE2 remained undefined. Lipoprotein (LP) is one of critical outer membrane protein in E. coli, which regulates inflammatory response. In this study, we determined the role of LP in PGE2 accumulation in bovine endometrial tissue by infecting the tissue with wild endometrial pathogenic E. coli and E. coli LP deletion mutant (JE5505) strains. We demonstrate that JE5505 was less effective than pathogenic E. coli in inducing the production of PGE2,IL-6, TNF-α, HMGB-1, and HABP1 and that the induction of cytokines was dependent on the activation of MAPKs, as revealed by rapid phosphorylation of ERK1/2/NF-κB in the endometrial tissues, furthermore, LP also induced PGE2 synthessis and cytokine secretion. Additionally, ERK and NF-κB inhibitors significantly inhibited PGE2 production and cytokine secretion and reduced or attenuated tissue damage in JE5505-infected and LP induced endometrial tissues. What is more important, we reported PGE2 introduction increased the expression of pro-inflammatory factors and DAMPs in E. coli-infected bovine endometrial tissue. Taken together, these results indicate that LP is involved in the accumulation of PGE2 through the activation of the ERK/NF-κB pathway that induces the production of pro-inflammatory factors and damage-associated molecular patterns (DAMPs) in E. coli-infected bovine endometrial tissue. These results should help in better understanding and management of postpartum inflammatory diseases in dairy cows.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Shuangyi Zhang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Changqi Fu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yang Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yuan Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China.
| |
Collapse
|
46
|
Ibrahim S, Szóstek-Mioduchowska A, Skarzynski D. Expression profiling of selected miRNAs in equine endometrium in response to LPS challenge in vitro: A new understanding of the inflammatory immune response. Vet Immunol Immunopathol 2019; 209:37-44. [PMID: 30885304 DOI: 10.1016/j.vetimm.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
Bacterial infections of the genital tract are the major cause of reproductive failure in the mares. MiRNAs are important regulators of gene expression, mostly through transcriptional and translational regression. We hypothesized that LPS induced aberrant expression of miRNAs and their targets, which are involved in regulation of uterine homeostasis. Three groups of primary endometrial epithelial and stromal cells, and endometrial tissue explants were cultured. The 1st group was kept as control, while the 2nd and 3rd groups were challenged with low (0.5 μg/mL) or high (3.0 μg/mL) doses of Lipopolysaccharides (LPS). Cell pellets and tissue explants were collected after 24 and 48 h, for total RNA isolation and qRT-PCR of the selected miRNAs and their targets. Culture media and cell lysates were collected after 24 and 48 h, for cytokines (IL6 and TNFα) and prostaglandins (PGE2 & PGFα2) measurement. Both endometrial cells expressed TLR4 and its accessory molecules (MyD88 & CD14) that are required for triggering inflammatory immune response after LPS, via up-regulation of TRAF6, TNFα, IL6 and IL8, compared to the respective control. After both doses of LPS challenge, miR-155, miR-223 and miR-17 were significantly increased; miR-181b, miR-21 and let-7a were significantly decreased compared to respective controls. Interestingly, miR-24 and miR-532-5p were clearly up-regulated after only the low LPS dose. TNFα, IL6 and PGs in culture media and from cell lysates revealed dose- and time-dependent patterns, after LPS. Results indicated that both epithelial and stromal cells have a primary role in innate immune response after LPS challenge, while this recognition occurred via TLR4 and its accessory molecules. Dysregulation of miRNAs and their targets expression after LPS might affect normal uterine function through perturbation of PG and cytokine secretion.
Collapse
Affiliation(s)
- Sally Ibrahim
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland; Department of Animal Reproduction and A.I, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt.
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| |
Collapse
|
47
|
Wang J, Yan X, Nesengani LT, Ding H, Yang L, Lu W. LPS-induces IL-6 and IL-8 gene expression in bovine endometrial cells "through DNA methylation". Gene 2018; 677:266-272. [PMID: 30077008 DOI: 10.1016/j.gene.2018.07.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/21/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Uterine infection in dairy cows causes great economic loss. In bovine endometrial cells, lipopolysaccharide (LPS)-stimulated increase in interleukin 6 (IL-6) and interleukin 8 (IL-8) mRNA is crucial for the inflammatory response; however, the regulatory mechanisms remain unclear. Here, we investigated the role of DNA methylation in IL-6 and IL-8 mRNA expression following LPS-induction in bovine endometrial cells. IL-6 and IL-8 mRNA expression was evaluated under DNA methylation inhibition using 5-Aza-2'-deoxycytodine (5Aza) following LPS stimulation. Expression of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), methyl CpG-binding protein 2 (MeCP2) and DNA methylation at IL-6 and IL-8 regions, were analyzed using quantitative real-time PCR (qRT-PCR) and bisulfite sequencing PCR (BSP) following 24 h of LPS treatment. Inhibition of DNA methylation significantly enhanced LPS-induced IL-6 and IL-8 mRNA expression. LPS increased IL-6 and IL-8 mRNA expression, and decreased methylation levels of specific CpG sites at the IL-6 promoter (at -366 and -660) and the IL-8 promoter (at -120 and -48) after 24 h. Furthermore, LPS treatment for 24 h significantly increased DNMT1, DNMT3A, DNMT3B, and MeCP2 mRNA expression. Our results indicate that treating bovine endometrial cells with LPS induces the expression of IL-6 and IL-8 mRNA regulated by IL-6 and IL-8 promoter methylation.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoxiao Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Lucky T Nesengani
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - He Ding
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
48
|
Eicosanoid pathway expression in bovine endometrial epithelial and stromal cells in response to lipopolysaccharide, interleukin 1 beta, and tumor necrosis factor alpha. Reprod Biol 2018; 18:390-396. [PMID: 30344089 DOI: 10.1016/j.repbio.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
During endometrial inflammation, bovine endometrium responds by increasing the production of pro-inflammatory mediators, such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and eicosanoids. The purpose of this study was to establish and characterize an in vitro model of endometrial inflammation using bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. We evaluated the effects of the infectious agent (bacterial lipopolysaccharide; LPS) and pro-inflammatory mediators (IL-1β and TNFα) on eicosanoid biosynthesis pathway gene expression and production by bEEL and bCSC cells. Based on concentration-response experiments, the optimal concentrations for responses were 1 μg/mL LPS, 10 ng/mL IL-1β and 50 ng/mL TNFα. Real-time PCR results show that there was an upregulation of relative mRNA expression of PTGS2 when bEEL and bCSC were treated with LPS, IL-1β and TNFα. An increase in PTGES3 expression was observed when bEEL cells were treated with LPS and IL-1β and PTGES2 when treated with IL-1β. In bCSC cells, FAAH relative mRNA was decreased upon treatments. Rate of production of PGE2, PGF2α, PGE2-EA and PGF2α-EA were also determined using liquid chromatography tandem mass spectrometry. Our results show that eicosanoid production was increased in both cell lines in response to LPS, IL-1β, and TNFα. We suggest that the characteristics of bEEL and bCSC cell lines mimic the physiological responses found in mammals with endometrial infection, making them excellent in vitro models for intrauterine environment studies.
Collapse
|
49
|
Zhao G, Jiang K, Yang Y, Zhang T, Wu H, Shaukat A, Qiu C, Deng G. The Potential Therapeutic Role of miR-223 in Bovine Endometritis by Targeting the NLRP3 Inflammasome. Front Immunol 2018; 9:1916. [PMID: 30186287 PMCID: PMC6113393 DOI: 10.3389/fimmu.2018.01916] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022] Open
Abstract
Bovine endometritis affects milk production and reproductive performance in dairy cows and causes serious economic loss. The underlying molecular mechanisms or signaling pathways of bovine endometritis remain unclear. In this study, we attempted to determine the expression mechanism of mir-223 in endometritis of dairy cows and evaluate its potential therapeutic value. We first confirmed that there was an increased level of miR-223 in endometritis, and then, an LPS-induced bovine endometrial epithelial cell (BEND) line was used to mimic the inflammatory model in vitro. Our data showed that activation of NF-κB promoted the transcription of miR-223, thus inhibiting activation of the inflammatory mediator NLRP3 and its mediation of IL-1β production to protect against inflammatory damage. Meanwhile, in vivo studies showed that inhibition of mir-223 resulted in an enhanced pathology of mice during LPS-induced endometritis, while overexpression of mir-223 attenuated the inflammatory conditions in the uterus. In summary, our study highlights that miR-223 serves both to constrain the level of NLRP3 activation and to act as a protective factor in the inflammatory response and thus provides a future novel therapeutic modality for active flares in cow endometritis and other inflammatory diseases.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Koh YQ, Mitchell MD, Almughlliq FB, Vaswani K, Peiris HN. Regulation of inflammatory mediator expression in bovine endometrial cells: effects of lipopolysaccharide, interleukin 1 beta, and tumor necrosis factor alpha. Physiol Rep 2018; 6:e13676. [PMID: 29707922 PMCID: PMC5925570 DOI: 10.14814/phy2.13676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
An abnormal uterine environment can influence maternal-fetal communication, conception rate and disrupt normal embryo development, thereby affecting fertility and the reproductive performance of dairy cows. Animal variability means that development of endometrial cell lines with appropriate characteristic are required. We evaluated the effect of an infectious agent (i.e., bacterial lipopolysaccharide; LPS) and proinflammatory mediators (i.e., Interleukin 1 beta; IL-1β, and tumor necrosis factor alpha; TNFα) on inflammatory mediator gene expression and production by bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. Expression of CXCL8/IL8, IL1A, IL1B, and IL6 cytokine genes was significantly upregulated in both epithelial and stromal cells when treated with LPS and IL-1β. LPS treatment of epithelial cells (compared with treatment by IL-1β and TNFα) exhibited greater CXCL8/IL8, IL1A, IL1B, and IL6 cytokine gene expression. Whereas, in stromal cells, IL-1β treatment (compared with LPS and TNFα) exhibited greater CXCL8/IL8, IL1A, IL1B, and IL6 cytokine gene expression. Interestingly, bEEL and bCSC cells treated with IL-1β increased IL1B gene expression, suggesting that IL-1β may act unusually in an autocrine-positive feedback loop. Cytokine production was stimulated by these agents in both cell types. We suggest that the characteristics of these two cell lines make them excellent tools for the study of intrauterine environment.
Collapse
Affiliation(s)
- Yong Qin Koh
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Murray D. Mitchell
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Fatema B. Almughlliq
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Kanchan Vaswani
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hassendrini N. Peiris
- University of Queensland Centre for Clinical ResearchFaculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|