1
|
Wang X, Xu M, Shi M, Tian Y, Zhi Y, Han X, Sui H, Wan Y, Jia X, Yang H. Macrophage polarization as a novel endpoint for assessing combined risk of phthalate esters. ENVIRONMENT INTERNATIONAL 2024; 190:108835. [PMID: 38908276 DOI: 10.1016/j.envint.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Combined exposure to phthalate esters (PAEs) has garnered increasing attention due to potential synergistic effects on human health. This study aimed to develop an in vitro model using human macrophages to evaluate the combined toxicity of PAEs and explore the underlying mechanisms. A high-throughput screening system was engineered by expressing a PPRE-eGFP reporter in THP-1 monocytes to monitor macrophage polarization upon PAEs exposure. Individual PAEs exhibited varied inhibitory effects on M2 macrophage polarization, with mono(2-ethylhexyl) phthalate (MEHP) being the most potent. Isobologram analysis revealed additive interactions when MEHP was combined with other PAEs, resulting in more pronounced suppression of M2 markers compared to individual compounds. Mechanistic studies suggested PAEs may exert effects by modulating PPARγ activity to inhibit M2 polarization. Notably, an equimolar mixture of six PAEs showed additive inhibition of M2 markers. In vivo experiments corroborated the combined hepatotoxic effects, with mice exposed to a PAEs mixture exhibiting reduced liver weight, dyslipidemia, and decreased hepatic M2 macrophages compared to DEHP alone. Transcriptome analysis highlighted disruptions in PPAR signaling, and distinct pathway alterations on cholesterol metabolism in the mixture group. Collectively, these findings underscore the importance of evaluating mixture effects and provide a novel approach for hazard assessment of combined PAEs exposure with implications for environmental health risk assessment.
Collapse
Affiliation(s)
- Xiaohong Wang
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Xu
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Sichuan Chengdu, China
| | - Miaoying Shi
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaru Tian
- School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangdong Key Laboratory of Tropical Disease Research, Guangzhou, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yuan Zhi
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiaomin Han
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haixia Sui
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xudong Jia
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Hui Yang
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, China; School of Public Health, Southern Medical University, Food Safety and Health Research Center, Guangdong Key Laboratory of Tropical Disease Research, Guangzhou, China.
| |
Collapse
|
2
|
Fang X, Tiwary R, Nguyen VP, Richburg JH. The blood-testis barrier disruption is a prerequisite for toxicant-induced peritubular macrophage increases in the testis of peripubertal rats. Toxicol Sci 2024; 200:70-78. [PMID: 38565259 PMCID: PMC11199910 DOI: 10.1093/toxsci/kfae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Peritubular macrophages (PTMφ) are predominantly localized near spermatogonial stem cells in the testis. We previously revealed that exposure of peripubertal male Fischer rats to mono-(2-ethylhexyl) phthalate (MEHP) leads to increased PTMφs in the testis. The mechanisms that trigger increases in PTMφs in the testis are poorly understood. However, MEHP exposure is known to both induce spermatocyte apoptosis and to perturb the blood-testis barrier (BTB). This study aims to elucidate the association between the disruption of BTB and the increases of PTMφs in the testis by comparing the effects observed with MEHP to 2 other testicular toxicants with variable effects on the BTB and subtype of germ cell undergoing apoptosis. Methoxyacetic acid (MAA) acts directly on spermatocytes and does not affect BTB function, whereas cadmium chloride (CdCl2) induces profound injury to BTB. The results indicated that MAA exposure significantly increased spermatocyte apoptosis, whereas no significant changes in the numbers of PTMφs in the testis occurred. In contrast, CdCl2 exposure disrupted BTB function and increased the abundance of PTMφs in the testis. To further investigate whether MEHP-induced changes in BTB integrity accounted for the increase in PTMφs, a plasmid for LG3/4/5, the functional component of laminin-alpha 2, was overexpressed in the testis to stabilize BTB integrity before MEHP exposure. The results showed that LG3/4/5 overexpression substantially reduced the ability of MEHP to compromise BTB integrity and prevented the increase in PTMφ numbers after MEHP exposure. These results indicate that BTB disruption is necessary to increase PTMφs in the testis induced by toxicants.
Collapse
Affiliation(s)
- Xin Fang
- Interdisciplinary Life Sciences Graduate Program, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Richa Tiwary
- Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Vivian P Nguyen
- Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John H Richburg
- Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
3
|
Fang X, Tiwary R, Nguyen VP, Richburg JH. Responses of peritubular macrophages and the testis transcriptome profiles of peripubertal and adult rodents exposed to an acute dose of MEHP. Toxicol Sci 2024; 198:76-85. [PMID: 38113427 PMCID: PMC10901151 DOI: 10.1093/toxsci/kfad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Exposure of rodents to mono-(2-ethylhexyl) phthalate (MEHP) is known to disrupt the blood-testis barrier and cause testicular germ cell apoptosis. Peritubular macrophages (PTMφ) are a newly identified type of testicular macrophage that aggregates near the spermatogonial stem cell niche. We have previously reported that MEHP exposure increased the numbers of PTMφs by 6-fold within the testis of peripubertal rats. The underlying mechanism(s) accounting for this change in PTMφs and its biological significance is unknown. This study investigates if MEHP-induced alterations in PTMφs occur in rodents (PND 75 adult rats and PND 26 peripubertal mice) that are known to be less sensitive to MEHP-induced testicular toxicity. Results show that adult rats have a 2-fold higher basal level of PTMφ numbers than species-matched peripubertal animals, but there was no significant increase in PTMφ numbers after MEHP exposure. Peripubertal mice have a 5-fold higher basal level of PTMφ compared with peripubertal rats but did not exhibit increases in number after MEHP exposure. Further, the interrogation of the testis transcriptome was profiled from both the MEHP-responsive peripubertal rats and the less sensitive rodents via 3' Tag sequencing. Significant changes in gene expression were observed in peripubertal rats after MEHP exposure. However, adult rats showed lesser changes in gene expression, and peripubertal mice showed only minor changes. Collectively, the data show that PTMφ numbers are associated with the sensitivity of rodents to MEHP in an age- and species-dependent manner.
Collapse
Affiliation(s)
- Xin Fang
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, USA
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Richa Tiwary
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Vivian P Nguyen
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John H Richburg
- Division of Pharmacology and Toxicology, College of Pharmacy, Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:203-212. [PMID: 38298799 PMCID: PMC10829632 DOI: 10.1016/j.bpsgos.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 02/02/2024] Open
Abstract
Background There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). For example, increased biomonitoring and epidemiological studies suggest that daily phthalate chemical exposure contributes to neurological and behavioral abnormalities; however, these mechanisms remain poorly understood. Therefore, the current study was aimed at examining the effects of chronic phthalate exposure on rodent anxiety behaviors and cognition and the impact on hypothalamic-pituitary-adrenal axis function. Methods Adult male mice (C57BL6/J) were administered MEHP via drinking water (1 mg/mL), and anxiety-like behavior and cognition combined with hypothalamic-pituitary-adrenal axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. Results MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze and center exploration in the open field. Tests of spatial memory and cognition were unchanged. Following MEHP administration, circulating levels of corticosterone and proinflammatory cytokines were significantly increased, while at the tissue level, there were MEHP-dependent reductions in glucocorticoid metabolism genes Hsd11b1 and Hsd11b2. Conclusions These data suggest that chronic MEHP exposure leads to enhanced generalized anxiety behaviors independent of rodent measures of cognition and memory, which may be driven by MEHP-dependent effects on hypothalamic-pituitary-adrenal axis and peripheral glucocorticoid metabolism function.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Laxmi Iyer
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Health Sciences, Bethesda, Maryland
| | - Adam P. Swiercz
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Paronett
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Manelle Ramadan
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| | - Paul J. Marvar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC
| | - Nikki Gillum Posnack
- Department of Pharmacology and Physiology, George Washington University, Washington, DC
- Children’s National Heart Institute, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC
| |
Collapse
|
5
|
Tiwary R, Richburg JH. Mono-(2-ethylhexyl) phthalate (MEHP) reversibly disrupts the blood-testis barrier (BTB) in pubertal rats. Toxicol Sci 2023; 197:kfad116. [PMID: 37941498 PMCID: PMC10823777 DOI: 10.1093/toxsci/kfad116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The blood-testis barrier (BTB) is constituted by tight junctions between adjacent Sertoli cells (SC) that create a specialized adluminal microenvironment to foster the development of spermatocytes and spermatids. The BTB is a well-studied target of numerous environmental toxicants, including di-(2-ethylhexyl) phthalate (DEHP), a compound widely used in various consumer products. MEHP is the active toxic metabolite of DEHP that has long been recognized in postnatal rodents to disrupt SC function. This study evaluates the impact of MEHP on the integrity of the BTB in both pubertal and adult rats and the signal transduction pathways known to be involved in the disruption of the BTB. Treatment of prepubertal rats with 700 mg/kg MEHP for 24 hours functionally disrupted the BTB integrity. A similar treatment of adult rats with MEHP did not disrupt the integrity of the BTB. The observed disruption of the BTB integrity in the MEHP-treated prepubertal rats occurred concomitantly with a decreased expression and mislocalization of both the ZO1 and occludin tight junction-associated proteins, as well as sloughing of spermatocytes and spermatids. At this same time, MEHP treatment induced a transient surge of p44/42 mitogen-activated protein kinase (MAPK) pathway. Interestingly, after a recovery period of 5 weeks, the BTB recovered and was functionally intact. This is the first report to indicate that acute MEHP exposure of prepubertal rats, but not adult rats, disrupts the functional integrity of the BTB and that this effect on the BTB is reversible.
Collapse
Affiliation(s)
- Richa Tiwary
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - John H Richburg
- Division of Pharmacology and Toxicology, Center for Molecular and Cellular Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
6
|
Yu Z, Iyer L, Swiercz AP, Paronett E, Ramadan M, Marvar PJ, Posnack NG. The Impact of Chronic Phthalate Exposure on Rodent Anxiety and Cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536567. [PMID: 37886449 PMCID: PMC10602041 DOI: 10.1101/2023.04.13.536567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
There is a growing importance for environmental contributions to psychiatric disorders and understanding the impact of the exposome (i.e., pollutants and toxins). Increased biomonitoring and epidemiological studies, for example, suggest that daily phthalate chemical exposure contribute to neurological and behavioral abnormalities, however these mechanisms remain poorly understood. The current study therefore aimed to examine the effects of chronic phthalate exposure on rodent anxiety behaviors, cognition, and the impact on hypothalamic-pituitary- adrenal (HPA)-axis function. Adult male mice (C57BL6/J) were administered mono-2-ethylhexyl phthalate (MEHP) via drinking water (1 mg/ml), and anxiety-like behavior, cognition combined with HPA- axis and inflammatory assays were assessed after 3 weeks of MEHP exposure. MEHP-treated mice exhibited enhanced generalized anxiety-like behaviors, as demonstrated by reduced time spent in the open-arm of the elevated plus maze (EPM) and center exploration in the open field (OF). Tests of spatial, cognition and memory function were unchanged. Following MEHP administration, circulating levels of corticosterone and pro- inflammatory cytokines were significantly increased, while at the tissue level, MEHP-dependent reductions in glucocorticoid metabolism genes 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2. These data suggest that chronic MEHP exposure leads to enhanced generalized-anxiety behaviors independent of rodent measures of cognition and memory, which maybe driven by MEHP-dependent effects on HPA-axis and peripheral glucocorticoid metabolism function.
Collapse
|
7
|
Wegner S, Workman T, Park JJ, Harris S, Wallace J, Stanaway I, Hong S, Hansen B, Griffith WC, Faustman EM. A Dynamic In vitro developing testis model reflects structures and functions of testicular development in vivo. Reprod Toxicol 2023; 118:108362. [PMID: 37011698 DOI: 10.1016/j.reprotox.2023.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023]
Abstract
To better define appropriate applications of our 3-dimensional testicular co-culture as a model for reproductive toxicology, we evaluated the ability of the model to capture structural and functional elements that can be targeted by reproductive toxicants. Testicular co-cultures were prepared from postnatal day 5 male rats and cultured with a Matrigel overlay. Following a 2-day acclimation period, we characterized functional pathway dynamics by evaluating morphology, protein expression, testosterone concentrations, and global gene expression at a range of timepoints from experimental days 0 to 21. Western blotting confirmed expression of Sertoli cell, Leydig cell, and spermatogonial cell-specific protein markers. Testosterone detected in cell culture media indicates active testosterone production. Quantitative pathway analysis identified Gene Ontology biological processes enriched among genes significantly changing over the course of 21 days. Processes enriched among genes significantly increasing through time include general developmental processes (morphogenesis, tissue remodeling, etc.), steroid regulation, Sertoli cell development, immune response, and stress and apoptosis. Processes enriched among genes significantly decreasing over time include several related to male reproductive development (seminiferous tubule development, male gonad development, Leydig cell differentiation, Sertoli cell differentiation), all of which appear to peak in expression between days 1 and 5 before decreasing at later timepoints. This analysis provides a temporal roadmap for specific biological process of interest for reproductive toxicology in the model and anchors the model to sensitive phases of in vivo development, helping to define the relevance of the model for in vivo processes.
Collapse
Affiliation(s)
- Susanna Wegner
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Tomomi Workman
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Julie Juyoung Park
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Sean Harris
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - James Wallace
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Ian Stanaway
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Sungwoo Hong
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Brad Hansen
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - William C Griffith
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, University of Washington School of Public Health, Seattle, WA, USA.
| |
Collapse
|
8
|
Gillette R, Tiwary R, Voss JJLP, Hewage SN, Richburg JH. Peritubular Macrophages Are Recruited to the Testis of Peripubertal Rats After Mono-(2-Ethylhexyl) Phthalate Exposure and Is Associated With Increases in the Numbers of Spermatogonia. Toxicol Sci 2021; 182:288-296. [PMID: 34010400 DOI: 10.1093/toxsci/kfab059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Peripubertal exposure of male rodents to the phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) causes testicular inflammation, spermatocyte apoptosis, and disruption of the blood-testis barrier. The MEHP-induced inflammatory response in the testis includes an infiltration of macrophages and neutrophils, although the cause and purpose of this response is unknown. Recently, a population of testicular macrophages known as peritubular macrophages that are phenotypically distinct from those resident in interstitium was described in mice. Peritubular macrophages aggregate near the spermatogonial stem cell niche and are believed to stimulate their differentiation. We hypothesized that if testicular peritubular macrophages do indeed stimulate spermatogonial differentiation, MEHP exposure would result in an increase of peritubular macrophages to stimulate the replacement of lost spermatocytes. Male rats were exposed to 700 mg/kg MEHP or corn oil (vehicle control) via oral gavage at postnatal day 28 and euthanized at 48 h, 1 or 2 weeks later. Seminiferous tubules were stained with immunofluorescent markers for macrophages (major histocompatibility complex class II [MHC-II+]) and undifferentiated spermatogonia (PLZF). Peritubular macrophages were observed in rat testis: MHC-II+ cells on the surface of seminiferous tubules with heterogeneous morphology. Quantification of MHC-II+ cells revealed that, unlike in the mouse, their numbers did not increase through puberty (2-week period). MEHP increased macrophage presence by 6-fold 48 h after exposure and remained elevated by 2-fold 2 weeks after exposure. An increase of differentiating spermatogonia occurred 2 weeks after MEHP exposure. Taken together, our results suggest that peritubular macrophages play a crucial role in the testis response to acute injury and the subsequent recovery of spermatogenesis.
Collapse
Affiliation(s)
- Ross Gillette
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| | - Richa Tiwary
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| | - Jorine J L P Voss
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| | - Shavini N Hewage
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John H Richburg
- Division of Pharmacology and Toxicology, The Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, Austin, Texas 78712, USA
| |
Collapse
|
9
|
Zhao TX, Wei YX, Wang JK, Han LD, Sun M, Wu YH, Shen LJ, Long CL, Wu SD, Wei GH. The gut-microbiota-testis axis mediated by the activation of the Nrf2 antioxidant pathway is related to prepuberal steroidogenesis disorders induced by di-(2-ethylhexyl) phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35261-35271. [PMID: 32588312 DOI: 10.1007/s11356-020-09854-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer, which is known to be an environmental endocrine-disrupting chemical that can jeopardize the male reproductive system. Prepuberal exposure to DEHP leads to steroidogenesis disorders. However, the specific mechanism remains ambiguous. Therefore, Sprague Dawley (SD) rats underwent prepuberal DEHP exposure at a dose of 500 mg/kg per day through gavage. Additionally, the resulting testicular injury was evaluated to confirm the disturbed steroidogenesis. Changes in testicular histology, significant reduction of serum testosterone (P < 0.01) and luteinizing hormone (P < 0.001), and significantly decreased expressions of steroidogenic acute regulatory protein (P < 0.01) and 3-beta-hydroxysteroid dehydrogenase (P < 0.05) were found in DEHP-treated rats. DEHP exposure resulted in obvious intestinal damage and oxidative stress imbalance, primarily in the jejunum. Both the activation of the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway and alterations of microbiota profiles were observed in all three gut specimens, but were most notable in the jejunum. We hypothesize that the gut-microbiota-testis axis, which is mediated by the activation of the Nrf2 antioxidant pathway, could be involved in the dysfunction of prepuberal steroidogenesis induced by DEHP.
Collapse
Affiliation(s)
- Tian-Xin Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yue-Xin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
| | - Jun-Ke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Lin-Dong Han
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Mang Sun
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yu-Hao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Lian-Ju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Chun-Lan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Sheng-De Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| | - Guang-Hui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
10
|
Sarkar D, Singh VK, Singh SK. Maternal BDE-209 exposure during lactation perturbs steroidogenesis, germ cell kinetics and THRα1 expression in testes of prepubertal mice offspring. Food Chem Toxicol 2018; 122:104-119. [DOI: 10.1016/j.fct.2018.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 11/17/2022]
|
11
|
Voss JJLP, Stermer AR, Ghaffari R, Tiwary R, Richburg JH. MEHP-induced rat testicular inflammation does not exacerbate germ cell apoptosis. Reproduction 2018; 156:35-46. [PMID: 29743262 DOI: 10.1530/rep-18-0093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The testis is an organ that maintains an immune suppressive environment. We previously revealed that exposure of pre-pubertal rats to an acute dose of a well-described Sertoli cell toxicant, mono-(2-ethylhexyl) phthalate (MEHP), leads to an accumulation of CD11b+ immune cells in the testicular interstitial space that closely correlates with a robust incidence of germ cell (GC) apoptosis. Here, we test the hypothesis that the infiltrating immune cells contribute to GC apoptosis. Postnatal day 28 Fischer rats that received an oral dose of 700 mg/kg MEHP showed a significant infiltration of both CD11bc+/CD68+/CD163- macrophages and neutrophils. The infiltration peaked at 12 h, but had reduced by 48 h. Testicular macrophages from MEHP-treated rats showed significantly upregulated expression of Tnfa and Il6, and the Arg1/Nos2 ratio was reduced compared to controls. However, small increases in anti-inflammatory genes Il10 and Tgfb1 were also observed. Depletion of circulating monocytes with clodronate liposomes prior to MEHP treatment reduced the macrophage influx into the testis, but did not lower GC apoptosis. Additionally, depletion of neutrophils using an anti-polymorphonuclear cell antibody prevented both macrophage and neutrophil infiltration into the testis, and also did not affect GC apoptosis. Together, these results show that exposure to MEHP leads to a rapid and temporary influx of pro-inflammatory monocytes and neutrophils in the interstitium of the testis. However, with this acute dosing paradigm, these infiltrating leukocytes do not appear to contribute to MEHP-induced testicular GC apoptosis leaving the functional significance of these infiltrating cells in the pathogenesis of MEHP-induced testicular injury unresolved.
Collapse
Affiliation(s)
- Jorine J L P Voss
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Angela R Stermer
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Rashin Ghaffari
- University of Texas at AustinInstitute of Cellular and Molecular Biology, College of Natural Sciences, The Austin, Texas, USA
| | - Richa Tiwary
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - John H Richburg
- Center for Molecular Carcinogenesis and ToxicologyDivision of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
12
|
Kamińska A, Pardyak L, Marek S, Górowska-Wójtowicz E, Kotula-Balak M, Bilińska B, Hejmej A. Bisphenol A and dibutyl phthalate affect the expression of juxtacrine signaling factors in rat testis. CHEMOSPHERE 2018; 199:182-190. [PMID: 29438945 DOI: 10.1016/j.chemosphere.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/28/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
The study was designed to examine the effects of model plastic derived compounds, bisphenol A (BPA) and dibutyl phthalate (DBP), on juxtacrine communication in adult rat testis, by evaluating the expression of Notch pathway components. Testicular explant were exposed in vitro to BPA (5 × 10-6 M, 2.5 × 10-5 M, 5 × 10-5 M) or DBP (10-6 M, 10-5 M, 10-4 M) for 24 h. To determine the expression of Notch1, Dll4, Hey1, Hes1 and Hey5 real-time RT-PCR was used. Protein levels and localization of NOTCH1 receptor, its ligand DLL4 as well as HEY1, HES1 and HEY5 factors were detected by western blot analysis and immunohistochemistry, respectively. Upregulation of Notch1, Dll4 and Hey1 at the mRNA and protein level was demonstrated in testis explants after BPA and DBP treatment (p < 0.05; p < 0.01; p < 0.001). Hes5 expression decreased after BPA (p < 0.05; p < 0.01; p < 0.001), whereas Hes1 expression was not altered by either BPA or DBP. Tested chemicals altered immunoexpression of activated NOTCH1, DLL4, HEY1 and HES5 both in seminiferous epithelium and interstitial tissue, exerting differential effects on particular cell types. In conclusion, BPA and DBP affect Notch signaling pathway in rat testis, which indicates that juxtacrine communication is a potential target for the action of plastic derived compounds in male gonad.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewelina Górowska-Wójtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
13
|
Protective Effects of Genistein against Mono-(2-ethylhexyl) Phthalate-Induced Oxidative Damage in Prepubertal Sertoli Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2032697. [PMID: 29259978 PMCID: PMC5702931 DOI: 10.1155/2017/2032697] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/13/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) and genistein are two of the most prevalent endocrine-disrupting chemicals (EDCs) that present in the environment and food. However, how these two EDCs would affect prepubertal Sertoli cells development was rarely studied. In this study, primary prepubertal Sertoli cells were isolated from 22-day-old Sprague Dawley rats and exposed to MEHP at 1 μmol/L, 10 μmol/L, and 100 μmol/L (M1, M10, and M100), genistein at 10 μmol/L (G), and their combination (G + M1, G + M10, and G + M100). Cell proliferation inhibition rate, apoptosis and necrosis rate, and cellular redox state were evaluated. Our results revealed that MEHP could significantly increase cell proliferation inhibition rate, apoptosis rate, necrosis rate, and intracellular reactive oxidative species level. However, coadministration of genistein could partially alleviate MEHP-induced prepubertal Sertoli cells oxidative injuries via enhancement of testicular antioxidative enzymes activities and upregulation of Nrf2 and HO-1, indicating that genistein could partially attenuate MEHP-induced prepubertal Sertoli cells damage through antioxidative action and may have promising future on its curative role for attenuating other EDCs-induced reproductive disorders.
Collapse
|
14
|
Sarkar D, Singh SK. Effect of neonatal hypothyroidism on prepubertal mouse testis in relation to thyroid hormone receptor alpha 1 (THRα1). Gen Comp Endocrinol 2017; 251:109-120. [PMID: 27519547 DOI: 10.1016/j.ygcen.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022]
Abstract
Thyroid hormones (THs) are important for growth and development of many tissues, and altered thyroid status affects various organs and systems. Testis also is considered as a thyroid hormone responsive organ. Though THs play an important role in regulation of testicular steroidogenesis and spermatogenesis, the exact mechanism of this regulation remains poorly understood. The present study, therefore, is designed to examine the effect of neonatal hypothyroidism on prepubertal Parkes (P) strain mice testis in relation to thyroid hormone receptor alpha 1 (THRα1). Hypothyroidism was induced by administration of 6-propyl-2-thiouracil (PTU) in mother's drinking water from birth to day 28; on postnatal day (PND) 21 only pups, and on PND 28, both pups and lactating dams were euthanized. Serum T3 and T4 were markedly reduced in pups at PND 28 and in lactating mothers, while serum and intra-testicular testosterone levels were considerably decreased in pups of both age groups. Further, serum and intra-testicular levels of estrogen were significantly increased in hypothyroid mice at PND 28 with concomitant increase in CYP19 expression. Histologically, marked changes were noticed in testes of PTU-treated mice; immunohistochemical and western blot analyses of testes in treated mice also revealed marked decrease in the expression of THRα1 at both age groups. Semiquantitative RT-PCR and western blot analyses also showed reductions in both testicular mRNA and protein levels of SF-1, StAR, CYP11A1 and 3β-HSD in these mice. In conclusion, our results suggest that neonatal hypothyroidism alters localization and expression of THRα1 and impairs testicular steroidogenesis by down-regulating the expression SF-1, thereby affecting spermatogenesis in prepubertal mice.
Collapse
Affiliation(s)
- Debarshi Sarkar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
15
|
Campioli E, Lee S, Lau M, Marques L, Papadopoulos V. Effect of prenatal DINCH plasticizer exposure on rat offspring testicular function and metabolism. Sci Rep 2017; 7:11072. [PMID: 28894178 PMCID: PMC5593853 DOI: 10.1038/s41598-017-11325-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022] Open
Abstract
In 2002, the plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) was introduced in the European market as a substitute for endocrine-disrupting phthalates. We found that in utero exposure of rats to DINCH from gestational day 14 until parturition affected reproductive organ physiology and reduced circulating testosterone levels at post-natal day 60, indicating a long-term effect on Leydig cells of the testis. Metabolically, animals exhibited randomly increased serum glucose concentrations not associated with impaired glucose utilization. Analysis of liver markers in the serum showed a hepatic effect; e.g. reduced bilirubin levels and albumin/globulin ratio. At post-natal day 200, random appearance of testicular atrophy was noted in exposed offspring, and limited changes in other reproductive parameters were observed. In conclusion, DINCH exposure appears to directly affect Leydig cell function, likely causing premature aging of the testes and impaired liver metabolic capacity. These effects might be attenuated with physiologic aging.
Collapse
Affiliation(s)
- Enrico Campioli
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sunghoon Lee
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Matthew Lau
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Lucas Marques
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
- Department of Medicine, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
- Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
16
|
Sarkar D, Singh SK. Maternal exposure to polybrominated diphenyl ether (BDE-209) during lactation affects germ cell survival with altered testicular glucose homeostasis and oxidative status through down-regulation of Cx43 and p27Kip1 in prepubertal mice offspring. Toxicology 2017; 386:103-119. [DOI: 10.1016/j.tox.2017.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/12/2017] [Accepted: 05/27/2017] [Indexed: 11/29/2022]
|
17
|
Kaur G, Vadala S, Dufour JM. An overview of a Sertoli cell transplantation model to study testis morphogenesis and the role of the Sertoli cells in immune privilege. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx012. [PMID: 29492314 PMCID: PMC5804552 DOI: 10.1093/eep/dvx012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 05/29/2023]
Abstract
Advanced testicular germ cells, expressing novel cell surface and intracellular proteins, appear after the establishment of central tolerance and thus are auto-immunogenic. However, due to testis immune privilege these germ cells normally do not evoke a detrimental immune response. The Sertoli cell (SC) barrier (also known as the blood-testis barrier) creates a unique microenvironment required for the completion of spermatogenesis and sequesters the majority of the advanced germ cells from the immune system. Given that an intact SC barrier is necessary for spermatogenesis and that disruption of the SC barrier results in loss of advanced germ cells independent of an immune response, this dual role of the SC barrier makes it difficult to directly test the importance of the SC barrier in immune privilege. The ability of SCs to survive and protect co-grafted cells when transplanted ectopically (outside the testis) across immunological barriers is well-documented. Here, we will discuss the use of a SC transplantation model to investigate the role of SC and the SC barrier in immune privilege. Additionally, the formation of cord/tubule like structures in this model, containing both SCs and myoid cells, further extends its application to study testis morphogenesis. We will also discuss the potential use of this model to study the effects of drugs/environmental toxins on testis morphogenesis, tight junction formation and SC-myoid cell interactions.
Collapse
Affiliation(s)
- Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Scott Vadala
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
18
|
Sarkar D, Singh SK. Neonatal hypothyroidism affects testicular glucose homeostasis through increased oxidative stress in prepubertal mice: effects on GLUT3, GLUT8 and Cx43. Andrology 2017; 5:749-762. [PMID: 28471544 DOI: 10.1111/andr.12363] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
Thyroid hormones (THs) play an important role in maintaining the link between metabolism and reproduction and the altered THs status is associated with induction of oxidative stress in various organs like brain, heart, liver and testis. Further, reactive oxygen species play a pivotal role in regulation of glucose homeostasis in several organs, and glucose utilization by Leydig cells is essential for testosterone biosynthesis and thus is largely dependent on glucose transporter 8 (GLUT8). Glucose uptake by Sertoli cells is mediated through glucose transporter 3 (GLUT3) under the influence of THs to meet energy requirement of developing germ cells. THs also modulate level of gap junctional protein such as connexin 43 (Cx43), a potential regulator of cell proliferation and apoptosis in the seminiferous epithelium. Although the role of transient neonatal hypothyroidism in adult testis in terms of testosterone production is well documented, the effect of THs deficiency in early developmental period and its role in testicular glucose homeostasis and oxidative stress with reference to Cx43 in immature mice remain unknown. Therefore, the present study was conducted to evaluate the effect of neonatal hypothyroidism on testicular glucose homeostasis and oxidative stress at postnatal days (PND) 21 and 28 in relation to GLUT3, GLUT8 and Cx43. Hypothyroidism induced by 6-propyl-2-thiouracil (PTU) markedly decreased testicular glucose level with considerable reduction in expression level of GLUT3 and GLUT8. Likewise, lactate dehydrogenase (LDH) activity and intratesticular concentration of lactate were also decreased in hypothyroid mice. There was also a rise in germ cell apoptosis with increased expression of caspase-3 in PTU-treated mice. Further, neonatal hypothyroidism affected germ cell proliferation with decreased expression of proliferating cell nuclear antigen (PCNA) and Cx43. In conclusion, our results suggest that neonatal hypothyroidism alters testicular glucose homeostasis via increased oxidative stress in prepubertal mice, thereby affecting germ cell survival and proliferation.
Collapse
Affiliation(s)
- D Sarkar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - S K Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Mono-(2-ethylhexyl) phthalate-induced Sertoli cell injury stimulates the production of pro-inflammatory cytokines in Fischer 344 rats. Reprod Toxicol 2017; 69:150-158. [PMID: 28238932 DOI: 10.1016/j.reprotox.2017.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022]
Abstract
Exposure of rodents to the Sertoli cell (SC) toxicant mono-(2-ethylhexyl) phthalate (MEHP) has been reported to trigger an infiltration of macrophages into the testis in an age- and species-dependent manner. Here we challenge the hypothesis that the peripubertal rat-specific infiltration of macrophages after MEHP exposure is due, in part, to an increase in SC-specific inflammatory cytokine expression. To rule out that germ cell(GC) apoptosis itself is responsible for macrophage recruitment, rats were exposed to a direct GC toxicant, methoxyacetic acid (MAA), but no infiltration of macrophages was observed. Next, mRNA levels of inflammatory cytokines were evaluated after MEHP exposure. IL-1α, IL-6, and MCP-1 expression were increased in vivo and correlated with macrophage infiltration in a species-specific manner. Additionally, IL-6 and MCP-1 expression was increased in SC-GC co-cultures and ASC-17D SCs. These results indicate that MEHP-injury in pubertal rats specifically stimulates secretion of pro-inflammatory cytokines and alters the immune microenvironment.
Collapse
|
20
|
Harris S, Shubin SP, Wegner S, Van Ness K, Green F, Hong SW, Faustman EM. The presence of macrophages and inflammatory responses in an in vitro testicular co-culture model of male reproductive development enhance relevance to in vivo conditions. Toxicol In Vitro 2016; 36:210-215. [PMID: 27511800 PMCID: PMC5026229 DOI: 10.1016/j.tiv.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 02/03/2023]
Abstract
Our 3-dimensional testis co-culture system (3D-TCS) represents a promising model of male reproductive toxicity which captures sensitive processes of male reproductive development and contains the main testes cell types (germ, Leydig and Sertoli cells). Macrophages are another cell type important for testicular function and help to modulate immuno-endocrine processes during testes development. Chemicals such as phthalate esters (PE's) affect macrophage function and testosterone production in the testes in vivo. The aim of this study was to determine whether macrophages were present in the 3D-TCS and investigate responses in our model that may be related to immuno-endocrine functions. We observed consistent expression of the resident macrophage marker ED2 as well as increases in inflammatory cytokines produced by macrophages and testes cells (IL-6, TNF-α and KC/GRO) after exposure to toxic PE's. Pathway analysis of gene expression changes after exposure to PE's showed that IL-6 and TNF-α signaling pathways were enriched after treatment with reproductively toxic, but not non-reproductively toxic phthalates. These results indicate that macrophages and inflammatory processes are captured in the 3D-TCS and that these processes are impacted by exposure to reproductive toxicants. These processes represent a major mode of action for in vivo testis toxicity for a variety of compounds and our novel in vitro model is able to capture toxicant perturbation of immune function.
Collapse
Affiliation(s)
- Sean Harris
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Sara Pacheco Shubin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, United States
| | - Susanna Wegner
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Kirk Van Ness
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, United States
| | - Foad Green
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | - Sung Woo Hong
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, United States
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States; Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
21
|
Mullins AB, Despain KE, Wallace SM, Honnold CL, May Lent E. Testicular effects of 3-nitro-1,2,4-triazol-5-one (NTO) in mice when exposed orally. Toxicol Mech Methods 2016; 26:97-103. [DOI: 10.3109/15376516.2015.1118175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anna B. Mullins
- Veterinary Services Program, Walter Reed Army Institute of Research/Naval Medical Research Center, Silver Spring, MD, USA and
| | - Kenneth E. Despain
- Veterinary Services Program, Walter Reed Army Institute of Research/Naval Medical Research Center, Silver Spring, MD, USA and
| | - Shannon M. Wallace
- Veterinary Services Program, Walter Reed Army Institute of Research/Naval Medical Research Center, Silver Spring, MD, USA and
| | - Cary L. Honnold
- Veterinary Services Program, Walter Reed Army Institute of Research/Naval Medical Research Center, Silver Spring, MD, USA and
| | - Emily May Lent
- U.S. Army Public Health Command, Army Institute of Public Health, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
22
|
Tang EI, Mruk DD, Cheng CY. Regulation of microtubule (MT)-based cytoskeleton in the seminiferous epithelium during spermatogenesis. Semin Cell Dev Biol 2016; 59:35-45. [PMID: 26791048 DOI: 10.1016/j.semcdb.2016.01.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022]
Abstract
In rodents and humans, testicular cells, similar to other mammalian cells, are supported by actin-, microtubule (MT)- and intermediate filament-based cytoskeletons. Although the cytoskeletal network of the testis serves an important role in regulating spermatogenesis during the epithelial cycle, most of the published findings in the literature are limited to studies that only visualize these cytoskeletons in the seminiferous epithelium. Few focus on the underlying molecular mechanism that regulates their organization in the epithelium in response to changes in the stages of the epithelial cycle. Functional studies in the last decade have begun to focus on the role of binding proteins that regulate these cytoskeletons, with some interesting findings rapidly emerging in the field. Since the actin- and intermediate filament-based cytoskeletons have been recently reviewed, herein we focus on the MT-based cytoskeleton for two reasons. First, besides serving as a structural support cytoskeleton, MTs are known to serve as the track to support and facilitate the transport of germ cells, such as preleptotene spermatocytes connected in clones and elongating/elongated spermatids during spermiogenesis, across the blood-testis barrier (BTB) and the adluminal compartment, respectively, during spermatogenesis. While these cellular events are crucial to the completion of spermatogenesis, they have been largely ignored in the past. Second, MT-based cytoskeleton is working in concert with the actin-based cytoskeleton to provide structural support for the transport of intracellular organelles across the cell cytosol, such as endosome-based vesicles, and phagosomes, which contain residual bodies detached from spermatids, to maintain the cellular homeostasis in the seminiferous epithelium. We critically evaluate some recent published findings herein to support a hypothesis regarding the role of MT in conferring germ cell transport in the seminiferous epithelium.
Collapse
Affiliation(s)
- Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
23
|
Murphy CJ, Richburg JH. Implications of Sertoli cell induced germ cell apoptosis to testicular pathology. SPERMATOGENESIS 2015; 4:e979110. [PMID: 26413394 DOI: 10.4161/21565562.2014.979110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022]
Abstract
After exposure to toxicants, degenerating germ cells represents the most common testicular histopathological alteration, regardless of the mechanism of toxicity. Therefore, deciphering the primary toxicant cellular target and mechanism of action can be extremely difficult. However, most testicular toxicants display a cell-specific and a stage-specific pattern of damage, which is the best evidence for identifying the primary cellular target (i.e. germ cell, Sertoli cell, peritubular myoid cell, or Leydig cell). Some toxicant-induced Sertoli cell injury presents with germ cell apoptosis occurring primarily in spermatocytes in rats in stages XI-XIV, I and II. Although some toxicants result in spermatid degeneration and apoptosis, it is still unclear if spermatid apoptosis is a result of Sertoli cell-selective apoptosis or a direct effect of toxicants on spermatids, therefore if this is seen as the earliest change, one cannot infer the mechanism of apoptosis. This review summarizes some of the distinguishing features of Sertoli cell-induced germ cell apoptosis and the associated mechanisms of cell death to provide the toxicologist observing similar cell death, with evidence about a potential mode of action.
Collapse
Affiliation(s)
- Caitlin J Murphy
- Center for Molecular and Cellular Toxicology; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| | - John H Richburg
- Center for Molecular and Cellular Toxicology; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| |
Collapse
|
24
|
Rodriguez-Sosa JR, Bondareva A, Tang L, Avelar GF, Coyle KM, Modelski M, Alpaugh W, Conley A, Wynne-Edwards K, França LR, Meyers S, Dobrinski I. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice. Mol Cell Endocrinol 2014; 398:89-100. [PMID: 25450860 PMCID: PMC4277019 DOI: 10.1016/j.mce.2014.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023]
Abstract
Di-n-Butyl (DBP) and Di-(2-EthylHexyl) (DEHP) phthalates can leach from daily-use products resulting in environmental exposure. In male rodents, phthalate exposure results in reproductive effects. To evaluate effects on the immature primate testis, testis fragments from 6-month-old rhesus macaques were grafted subcutaneously to immune-deficient mice, which were exposed to 0, 10, or 500 mg/kg of DBP or DEHP for 14 weeks or 28 weeks (DBP only). DBP exposure reduced the expression of key steroidogenic genes, indicating that Leydig cell function was compromised. Exposure to 500 mg/kg impaired tubule formation and germ cell differentiation and reduced numbers of spermatogonia. Exposure to 10 mg/kg did not affect development, but reduced Sertoli cell number and resulted in increased expression of inhibin B. Exposure to DEHP for 14 week also affected steroidogenic genes expression. Therefore, long-term exposure to phthalate esters affected development and function of the primate testis in a time and dosage dependent manner.
Collapse
Affiliation(s)
- Jose R Rodriguez-Sosa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, United States
| | - Alla Bondareva
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Lin Tang
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gleide F Avelar
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Krysta M Coyle
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Modelski
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, United States
| | - Whitney Alpaugh
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alan Conley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Katherine Wynne-Edwards
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Luiz R França
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Stuart Meyers
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Ina Dobrinski
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348, United States.
| |
Collapse
|