1
|
Havel SL, Griswold MD. Temporal maturation of Sertoli cells during the establishment of the cycle of the seminiferous epithelium†. Biol Reprod 2024; 111:959-974. [PMID: 39077996 PMCID: PMC11473899 DOI: 10.1093/biolre/ioae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024] Open
Abstract
Sertoli cells, omnipresent, somatic cells within the seminiferous tubules of the mammalian testis are essential to male fertility. Sertoli cells maintain the integrity of the testicular microenvironment, regulate hormone synthesis, and of particular importance, synthesize the active derivative of vitamin A, all trans retinoic acid (atRA), which is required for germ cell differentiation and the commitment of male germ cells to meiosis. Stages VIII-IX, when atRA synthesis occurs in the testis, coincide with multiple germ cell development and testicular restructuring events that rely on Sertoli cell gene products to proceed normally. In this study, we have synchronized and captured the mouse testis at four recurrent points of atRA synthesis to observe transcriptomic changes within Sertoli cells as mice age and the Sertoli cells are exposed to increasingly developed germ cell subtypes. This work provides comprehensive, high-resolution characterization of the timing of induction of functional Sertoli cell genes across the first wave of spermatogenesis, and outlines in silico predictions of germ cell derived signaling mechanisms targeting Sertoli cells. We have found that Sertoli cells adapt to their environment, especially to the needs of the germ cell populations present and establish germ-Sertoli cell and Sertoli-Sertoli cell junctions early but gain many of their known immune-regulatory and protein secretory functions in preparation for spermiogenesis and spermiation. Additionally, we have found unique patterns of germ-Sertoli signaling present at each endogenous pulse of atRA, suggesting individual functions of the various germ cells in germ-Sertoli communication.
Collapse
Affiliation(s)
- Shelby L Havel
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
2
|
Vallés AM, Rubin T, Macaisne N, Dal Toe L, Molla-Herman A, Antoniewski C, Huynh JR. Transcriptomic analysis of meiotic genes during the mitosis-to-meiosis transition in Drosophila females. Genetics 2024; 228:iyae130. [PMID: 39225982 DOI: 10.1093/genetics/iyae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Germline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females. Here, to assess if additional meiotic genes were expressed earlier than expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our transcriptomic analysis reveals that all known meiosis I genes are already expressed in the mitotic region; however, only some of them are translated. As a case study, we focused on mei-W68, the Drosophila homolog of Spo11, to assess its expression at both the mRNA and protein levels and used different mutant alleles to assay for a premeiotic function. We could not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing germ cells. Our study paves the way for further functional analysis of meiotic genes expressed in the mitotic region.
Collapse
Affiliation(s)
- Ana Maria Vallés
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Thomas Rubin
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Nicolas Macaisne
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Laurine Dal Toe
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Anahi Molla-Herman
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005 Paris, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| |
Collapse
|
3
|
AbuMadighem A, Cohen O, Huleihel M. Elucidating the Transcriptional States of Spermatogenesis-Joint Analysis of Germline and Supporting Cell, Mice and Human, Normal and Perturbed, Bulk and Single-Cell RNA-Seq. Biomolecules 2024; 14:840. [PMID: 39062554 PMCID: PMC11274546 DOI: 10.3390/biom14070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In studying the molecular underpinning of spermatogenesis, we expect to understand the fundamental biological processes better and potentially identify genes that may lead to novel diagnostic and therapeutic strategies toward precision medicine in male infertility. In this review, we emphasized our perspective that the path forward necessitates integrative studies that rely on complementary approaches and types of data. To comprehensively analyze spermatogenesis, this review proposes four axes of integration. First, spanning the analysis of spermatogenesis in the healthy state alongside pathologies. Second, the experimental analysis of model systems (in which we can deploy treatments and perturbations) alongside human data. Third, the phenotype is measured alongside its underlying molecular profiles using known markers augmented with unbiased profiles. Finally, the testicular cells are studied as ecosystems, analyzing the germ cells alongside the states observed in the supporting somatic cells. Recently, the study of spermatogenesis has been advancing using single-cell RNA sequencing, where scientists have uncovered the unique stages of germ cell development in mice, revealing new regulators of spermatogenesis and previously unknown cell subtypes in the testis. An in-depth analysis of meiotic and postmeiotic stages led to the discovery of marker genes for spermatogonia, Sertoli and Leydig cells and further elucidated all the other germline and somatic cells in the testis microenvironment in normal and pathogenic conditions. The outcome of an integrative analysis of spermatogenesis using advanced molecular profiling technologies such as scRNA-seq has already propelled our biological understanding, with additional studies expected to have clinical implications for the study of male fertility. By uncovering new genes and pathways involved in abnormal spermatogenesis, we may gain insights into subfertility or sterility.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ofir Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
4
|
Mo S, Shu G, Cao C, Wang M, Yang J, Ye J, Gui Y, Yuan S, Ma Q. Sertoli cells require hnRNPC to support normal spermatogenesis and male fertility in mice†. Biol Reprod 2024; 111:227-241. [PMID: 38590182 DOI: 10.1093/biolre/ioae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Sertoli cells act as highly polarized testicular cells that nutritionally support multiple stages of germ cell development. However, the gene regulation network in Sertoli cells for modulating germ cell development has yet to be fully understood. In this study, we report that heterogeneous nuclear ribonucleoproteins C in Sertoli cells are essential for germ cell development and male fertility. Conditional knockout of heterogeneous nuclear ribonucleoprotein C in mouse Sertoli cells leads to aberrant Sertoli cells proliferation, disrupted cytoskeleton of Sertoli cells, and compromised blood-testis barrier function, resulting in loss of supportive cell function and, ultimately, defective spermiogenesis in mice. Further ribonucleic acid-sequencing analyses revealed these phenotypes are likely caused by the dysregulated genes in heterogeneous nuclear ribonucleoprotein C-deficient Sertoli cells related to cell adhesion, cell proliferation, and apoptotic process. In conclusion, this study demonstrates that heterogeneous nuclear ribonucleoprotein C plays a critical role in Sertoli cells for maintaining the function of Sertoli cells and sustaining steady-state spermatogenesis in mice.
Collapse
Affiliation(s)
- Shaomei Mo
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Ge Shu
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Congcong Cao
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Mingxia Wang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Jie Yang
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Jing Ye
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Yaoting Gui
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Ma
- Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Department of Urology, Peking University Shenzhen Hospital, the Fifth Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Ishiguro KI. Mechanisms of meiosis initiation and meiotic prophase progression during spermatogenesis. Mol Aspects Med 2024; 97:101282. [PMID: 38797021 DOI: 10.1016/j.mam.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Meiosis is a critical step for spermatogenesis and oogenesis. Meiosis commences with pre-meiotic S phase that is subsequently followed by meiotic prophase. The meiotic prophase is characterized by the meiosis-specific chromosomal events such as chromosome recombination and homolog synapsis. Meiosis initiator (MEIOSIN) and stimulated by retinoic acid gene 8 (STRA8) initiate meiosis by activating the meiotic genes by installing the meiotic prophase program at pre-meiotic S phase. This review highlights the mechanisms of meiotic initiation and meiotic prophase progression from the point of the gene expression program and its relevance to infertility. Furthermore, upstream pathways that regulate meiotic initiation will be discussed in the context of spermatogenic development, indicating the sexual differences in the mode of meiotic entry.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
6
|
Dai P, Ma C, Chen C, Liang M, Dong S, Chen H, Zhang X. Unlocking Genetic Mysteries during the Epic Sperm Journey toward Fertilization: Further Expanding Cre Mouse Lines. Biomolecules 2024; 14:529. [PMID: 38785936 PMCID: PMC11117649 DOI: 10.3390/biom14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The spatiotemporal expression patterns of genes are crucial for maintaining normal physiological functions in animals. Conditional gene knockout using the cyclization recombination enzyme (Cre)/locus of crossover of P1 (Cre/LoxP) strategy has been extensively employed for functional assays at specific tissue or developmental stages. This approach aids in uncovering the associations between phenotypes and gene regulation while minimizing interference among distinct tissues. Various Cre-engineered mouse models have been utilized in the male reproductive system, including Dppa3-MERCre for primordial germ cells, Ddx4-Cre and Stra8-Cre for spermatogonia, Prm1-Cre and Acrv1-iCre for haploid spermatids, Cyp17a1-iCre for the Leydig cell, Sox9-Cre for the Sertoli cell, and Lcn5/8/9-Cre for differentiated segments of the epididymis. Notably, the specificity and functioning stage of Cre recombinases vary, and the efficiency of recombination driven by Cre depends on endogenous promoters with different sequences as well as the constructed Cre vectors, even when controlled by an identical promoter. Cre mouse models generated via traditional recombination or CRISPR/Cas9 also exhibit distinct knockout properties. This review focuses on Cre-engineered mouse models applied to the male reproductive system, including Cre-targeting strategies, mouse model screening, and practical challenges encountered, particularly with novel mouse strains over the past decade. It aims to provide valuable references for studies conducted on the male reproductive system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China; (P.D.); (C.M.); (C.C.); (M.L.); (S.D.); (H.C.)
| |
Collapse
|
7
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Chromatin Remodeling via Retinoic Acid Action during Murine Spermatogonial Development. Life (Basel) 2023; 13:life13030690. [PMID: 36983846 PMCID: PMC10058303 DOI: 10.3390/life13030690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Spermatogonial differentiation is a process that commits germ cells to the complex process of spermatogenesis. Spermatogonial differentiation is mediated by the action of retinoic acid, which triggers major morphological and transcriptional changes. While these transcriptional changes have been well explored, there has been little effort devoted to epigenetic regulation surrounding spermatogonial development. This study aimed to uncover the timing and dynamics of chromatin organization during spermatogonial development within the context of these transcriptional changes. Using germ cell synchrony and the assay for transposase accessible chromatin and next generation sequencing (ATAC-seq) to isolate subpopulations of developing spermatogonia and identify accessible regions within their genome, we found that 50% of accessible regions in undifferentiated spermatogonia were condensed following retinoic acid action within 18 h. Surprisingly, genes with known functional relevance during spermatogonial development were accessible at all times, indicating that chromatin state does not impact transcription at these sites. While there was an overall decrease in gene accessibility during spermatogonial development, we found that transcriptionally active regions were not predictive of chromatin state.
Collapse
|
9
|
Retinoic acid-induced differentiation of porcine prospermatogonia in vitro. Theriogenology 2023; 198:344-355. [PMID: 36640739 DOI: 10.1016/j.theriogenology.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Spermatogenesis is an intricate developmental process occurring in testes by which spermatogonial stem cells (SSCs) self-renew and differentiate into mature sperm. The molecular mechanisms for SSC self-renewal and differentiation, while have been well studied in mice, may differ between mice and domestic animals including pigs. To gain knowledge about the molecular mechanisms for porcine SSC self-renewal and differentiation that have so far been poorly understood, here we isolated and enriched prospermatogonia from neonatal porcine testes, and exposed the cells to retinoic acid, a direct inducer for spermatogonial differentiation. We then identified that retinoic acid could induce porcine prospermatogonial differentiation, which was accompanied by a clear transcriptomic alteration, as revealed by the RNA-sequencing analysis. We also compared retinoic acid-induced in vitro porcine spermatogonial differentiation with the in vivo process, and compared retinoic acid-induced in vitro spermatogonial differentiation between pigs and mice. Furthermore, we analyzed retinoic acid-induced differentially expressed long non-coding RNAs (lncRNAs), and demonstrated that a pig-specific lncRNA, lncRNA-106504875, positively regulated porcine spermatogonial proliferation by targeting the core transcription factor ZBTB16. Taken together, these results would help to elucidate the roles of retinoic acid in porcine spermatogonial differentiation, thereby contributing to further knowledge about the molecular mechanisms underlying porcine SSC development and, in the long run, to optimization of both long-term culture and induced differentiation systems for porcine SSCs.
Collapse
|
10
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Rabbani M, Zheng X, Manske GL, Vargo A, Shami AN, Li JZ, Hammoud SS. Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annu Rev Genet 2022; 56:339-368. [PMID: 36070560 PMCID: PMC10722372 DOI: 10.1146/annurev-genet-080320-040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a complex differentiation process coordinated spatiotemporally across and along seminiferous tubules. Cellular heterogeneity has made it challenging to obtain stage-specific molecular profiles of germ and somatic cells using bulk transcriptomic analyses. This has limited our ability to understand regulation of spermatogenesis and to integrate knowledge from model organisms to humans. The recent advancement of single-cell RNA-sequencing (scRNA-seq) technologies provides insights into the cell type diversity and molecular signatures in the testis. Fine-grained cell atlases of the testis contain both known and novel cell types and define the functional states along the germ cell developmental trajectory in many species. These atlases provide a reference system for integrated interspecies comparisons to discover mechanistic parallels and to enable future studies. Despite recent advances, we currently lack high-resolution data to probe germ cell-somatic cell interactions in the tissue environment, but the use of highly multiplexed spatial analysis technologies has begun to resolve this problem. Taken together, recent single-cell studies provide an improvedunderstanding of gametogenesis to examine underlying causes of infertility and enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Gabe L Manske
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Adrienne N Shami
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Urology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Farini D, De Felici M. The Beginning of Meiosis in Mammalian Female Germ Cells: A Never-Ending Story of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms232012571. [PMID: 36293427 PMCID: PMC9604137 DOI: 10.3390/ijms232012571] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.
Collapse
|
13
|
Abstract
Meiosis is critical for germ cell development in multicellular organisms. Initiation of meiosis coincides with pre-meiotic S phase, which is followed by meiotic prophase, a prolonged G2 phase that ensures numerous meiosis-specific chromosome events. Meiotic prophase is accompanied by robust alterations of gene expression. In mouse germ cells, MEIOSIN and STRA8 direct cell cycle switch from mitosis to meiosis. MEIOSIN and STRA8 coordinate meiotic initiation with cell cycle, by activating the meiotic genes to have meiotic prophase program installed at S phase. This review mainly focuses on the mechanism of meiotic initiation in mouse germ cells from the viewpoint of the transcription of meiotic genes. Furthermore, signaling pathways that regulate meiotic initiation will be discussed in the context of germ cell development, pointing out the sexual differences in the mode of meiotic initiation.
Collapse
Affiliation(s)
- Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
14
|
Cannarella R, Mancuso F, Arato I, Lilli C, Bellucci C, Gargaro M, Curto R, Aglietti MC, La Vignera S, Condorelli RA, Luca G, Calogero AE. Sperm-carried IGF2 downregulated the expression of mitogens produced by Sertoli cells: A paracrine mechanism for regulating spermatogenesis? Front Endocrinol (Lausanne) 2022; 13:1010796. [PMID: 36523595 PMCID: PMC9744929 DOI: 10.3389/fendo.2022.1010796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor 2 (IGF2) mRNA has been found in human and mouse spermatozoa. It is currently unknown whether the IGF2 protein is expressed in human spermatozoa and, if so, its possible role in the cross-talk between germ and Sertoli cells (SCs) during spermatogenesis. METHODS To accomplish this, we analyzed sperm samples from four consecutive Caucasian men. Furthermore, to understand its role during the spermatogenetic process, porcine SCs were incubated with increasing concentrations (0.33, 3.33, and 10 ng/mL) of recombinant human IGF2 (rhIGF2) for 48 hours. Subsequently, the experiments were repeated by pre-incubating SCs with the non-competitive insulin-like growth factor 1 receptor (IGF1R) inhibitor NVP-AEW541. The following outcomes were evaluated: 1) Gene expression of the glial cell-line derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and stem cell factor (SCF) mitogens; 2) gene and protein expression of follicle-stimulating hormone receptor (FSHR), anti-Müllerian hormone (AMH), and inhibin B; 3) SC proliferation. RESULTS We found that the IGF2 protein was present in each of the sperm samples. IGF2 appeared as a cytoplasmic protein localized in the equatorial and post-acrosomal segment and with a varying degree of expression in each cell. In SCs, IGF2 significantly downregulated GDNF gene expression in a concentration-dependent manner. FGF2 and SCF were downregulated only by the highest concentration of IGF2. Similarly, IGF2 downregulated the FSHR gene and FSHR, AMH, and inhibin B protein expression. Finally, IGF2 significantly suppressed the SC proliferation rate. All these findings were reversed by pre-incubation with NVP-AEW541, suggesting an effect mediated by the interaction of IGF2 with the IGFR. CONCLUSION In conclusion, sperm IGF2 seems to downregulate the expression of mitogens, which are known to be physiologically released by the SCs to promote gonocyte proliferation and spermatogonial fate adoption. These findings suggest the presence of paracrine regulatory mechanisms acting on the seminiferous epithelium during spermatogenesis, by which germ cells can influence the amount of mitogens released by the SCs, their sensitivity to FSH, and their rate of proliferation.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- *Correspondence: Rossella Cannarella,
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria C. Aglietti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovani Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
15
|
An Update on Semen Physiology, Technologies, and Selection Techniques for the Advancement of In Vitro Equine Embryo Production: Section I. Animals (Basel) 2021; 11:ani11113248. [PMID: 34827983 PMCID: PMC8614440 DOI: 10.3390/ani11113248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Male fertility is often estimated by simple sperm assessment, and therefore, it is crucial to establish species-specific baselines for normal sperm parameters. In this paper, sperm physiology, function, and common abnormalities in stallions will be reviewed. Abstract As the use of assisted reproductive technologies (ART) and in vitro embryo production (IVP) expand in the equine industry, it has become necessary to further our understanding of semen physiology as it applies to overall fertility. This segment of our two-section review will focus on normal sperm parameters, beginning with development and extending through the basic morphology of mature spermatozoa, as well as common issues with male factor infertility in IVP. Ultimately, the relevance of sperm parameters to overall male factor fertility in equine IVP will be assessed.
Collapse
|
16
|
Gewiss RL, Law NC, Helsel AR, Shelden EA, Griswold MD. Two distinct Sertoli cell states are regulated via germ cell crosstalk. Biol Reprod 2021; 105:1591-1602. [PMID: 34494084 PMCID: PMC8689118 DOI: 10.1093/biolre/ioab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023] Open
Abstract
Sertoli cells are a critical component of the testis environment for their role in maintaining seminiferous tubule structure, establishing the blood-testis barrier, and nourishing maturing germ cells in a specialized niche. This study sought to uncover how Sertoli cells are regulated in the testis environment via germ cell crosstalk in the mouse. We found two major clusters of Sertoli cells as defined by their transcriptomes in Stages VII-VIII of the seminiferous epithelium and a cluster for all other stages. Additionally, we examined transcriptomes of germ cell-deficient testes and found that these existed in a state independent of either of the germ cell-sufficient clusters. Together, we highlight two main transcriptional states of Sertoli cells in an unperturbed testis environment, and a germ cell-deficient environment does not allow normal Sertoli cell transcriptome cycling and results in a state unique from either of those seen in Sertoli cells from a germ cell-sufficient environment.
Collapse
Affiliation(s)
- Rachel L Gewiss
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nathan C Law
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA.,Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | - Aileen R Helsel
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
17
|
Gòdia M, Casellas J, Ruiz-Herrera A, Rodríguez-Gil JE, Castelló A, Sánchez A, Clop A. Whole genome sequencing identifies allelic ratio distortion in sperm involving genes related to spermatogenesis in a swine model. DNA Res 2021; 27:5906030. [PMID: 32931559 PMCID: PMC7750926 DOI: 10.1093/dnares/dsaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Transmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher’s exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher’s test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis.
Collapse
Affiliation(s)
- Marta Gòdia
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joaquim Casellas
- Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain.,Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Anna Castelló
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Armand Sánchez
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Alex Clop
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia 08003, Spain
| |
Collapse
|
18
|
Suzuki S, McCarrey JR, Hermann BP. Differential RA responsiveness among subsets of mouse late progenitor spermatogonia. Reproduction 2021; 161:645-655. [PMID: 33835049 PMCID: PMC8105290 DOI: 10.1530/rep-21-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 01/11/2023]
Abstract
Initiation of spermatogonial differentiation in the mouse testis begins with the response to retinoic acid (RA) characterized by activation of KIT and STRA8 expression. In the adult, spermatogonial differentiation is spatiotemporally coordinated by a pulse of RA every 8.6 days that is localized to stages VII-VIII of the seminiferous epithelial cycle. Dogmatically, progenitor spermatogonia that express retinoic acid receptor gamma (RARG) at these stages will differentiate in response to RA, but this has yet to be tested functionally. Previous single-cell RNA-seq data identified phenotypically and functionally distinct subsets of spermatogonial stem cells (SSCs) and progenitor spermatogonia, where late progenitor spermatogonia were defined by expression of RARG and Dppa3. Here, we found late progenitor spermatogonia (RARGhigh KIT-) were further divisible into two subpopulations based on Dppa3 reporter expression (Dppa3-ECFP or Dppa3-EGFP) and were observed across all stages of the seminiferous epithelial cycle. However, nearly all Dppa3+ spermatogonia were differentiating (KIT+) late in the seminiferous epithelial cycle (stages X-XII), while Dppa3- late progenitors remained abundant, suggesting that Dppa3+ and Dppa3- late progenitors differentially responded to RA. Following acute RA treatment (2-4 h), significantly more Dppa3+ late progenitors induced KIT, including at the midpoint of the cycle (stages VI-IX), than Dppa3- late progenitors. Subsequently, single-cell analyses indicated a subset of Dppa3+ late progenitors expressed higher levels of Rxra, which we confirmed by RXRA whole-mount immunostaining. Together, these results indicate RARG alone is insufficient to initiate a spermatogonial response to RA in the adult mouse testis and suggest differential RXRA expression may discriminate responding cells.
Collapse
Affiliation(s)
- Shinnosuke Suzuki
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249 USA
| | - Brian P. Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249 USA
| |
Collapse
|
19
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Voigt AL, Thiageswaran S, de Lima e Martins Lara N, Dobrinski I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. Int J Mol Sci 2021; 22:1998. [PMID: 33670439 PMCID: PMC7922219 DOI: 10.3390/ijms22041998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The spermatogonial stem cell (SSC) is a unique adult stem cell that requires tight physiological regulation during development and adulthood. As the foundation of spermatogenesis, SSCs are a potential tool for the treatment of infertility. Understanding the factors that are necessary for lifelong maintenance of a SSC pool in vivo is essential for successful in vitro expansion and safe downstream clinical usage. This review focused on the current knowledge of prepubertal testicular development and germ cell metabolism in different species, and implications for translational medicine. The significance of metabolism for cell biology, stem cell integrity, and fate decisions is discussed in general and in the context of SSC in vivo maintenance, differentiation, and in vitro expansion.
Collapse
Affiliation(s)
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.L.V.); (S.T.); (N.d.L.e.M.L.)
| |
Collapse
|
21
|
Gewiss RL, Shelden EA, Griswold MD. STRA8 induces transcriptional changes in germ cells during spermatogonial development. Mol Reprod Dev 2021; 88:128-140. [PMID: 33400349 PMCID: PMC7920925 DOI: 10.1002/mrd.23448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022]
Abstract
Spermatogonial development is a key process during spermatogenesis to prepare germ cells to enter meiosis. While the initial point of spermatogonial differentiation is well‐characterized, the development of spermatogonia from the onset of differentiation to the point of meiotic entry has not been well defined. Further, STRA8 is highly induced at the onset of spermatogonial development but its function in spermatogonia has not been defined. To better understand how STRA8 impacts spermatogonia, we performed RNA‐sequencing in both wild‐type and STRA8 knockout mice at multiple timepoints during retinoic acid (RA)‐stimulated spermatogonial development. As expected, in spermatogonia from wild‐type mice we found that steady‐state levels of many transcripts that define undifferentiated progenitor cells were decreased while transcripts that define the differentiating spermatogonia were increased as a result of the actions of RA. However, the spermatogonia from STRA8 knockout mice displayed a muted RA response such that there were more transcripts typical of undifferentiated cells and fewer transcripts typical of differentiating cells following RA action. While spermatogonia from STRA8 knockout mice can ultimately form spermatocytes that fail to complete meiosis, it appears that the defect likely begins as a result of altered messenger RNA levels during spermatogonial differentiation.
Collapse
Affiliation(s)
- Rachel L Gewiss
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Michael D Griswold
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA
| |
Collapse
|
22
|
Koutsouveli V, Cárdenas P, Santodomingo N, Marina A, Morato E, Rapp HT, Riesgo A. The Molecular Machinery of Gametogenesis in Geodia Demosponges (Porifera): Evolutionary Origins of a Conserved Toolkit across Animals. Mol Biol Evol 2020; 37:3485-3506. [PMID: 32929503 PMCID: PMC7743902 DOI: 10.1093/molbev/msaa183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All animals are capable of undergoing gametogenesis. The ability of forming haploid cells from diploid cells through meiosis and recombination appeared early in eukaryotes, whereas further gamete differentiation is mostly a metazoan signature. Morphologically, the gametogenic process presents many similarities across animal taxa, but little is known about its conservation at the molecular level. Porifera are the earliest divergent animals and therefore are an ideal phylum to understand evolution of the gametogenic toolkits. Although sponge gametogenesis is well known at the histological level, the molecular toolkits for gamete production are largely unknown. Our goal was to identify the genes and their expression levels which regulate oogenesis and spermatogenesis in five gonochoristic and oviparous species of the genus Geodia, using both RNAseq and proteomic analyses. In the early stages of both female and male gametogenesis, genes involved in germ cell fate and cell-renewal were upregulated. Then, molecular signals involved in retinoic acid pathway could trigger the meiotic processes. During later stages of oogenesis, female sponges expressed genes involved in cell growth, vitellogenesis, and extracellular matrix reassembly, which are conserved elements of oocyte maturation in Metazoa. Likewise, in spermatogenesis, genes regulating the whole meiotic cycle, chromatin compaction, and flagellum axoneme formation, that are common across Metazoa were overexpressed in the sponges. Finally, molecular signals possibly related to sperm capacitation were identified during late stages of spermatogenesis for the first time in Porifera. In conclusion, the activated molecular toolkit during gametogenesis in sponges was remarkably similar to that deployed during gametogenesis in vertebrates.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC, Uppsala, Sweden
| | - Nadiezhda Santodomingo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esperanza Morato
- Servicio de Proteómica, Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autónoma de Madrid (UAM) and Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hans Tore Rapp
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| |
Collapse
|
23
|
Zamai L. Unveiling Human Non-Random Genome Editing Mechanisms Activated in Response to Chronic Environmental Changes: I. Where Might These Mechanisms Come from and What Might They Have Led To? Cells 2020; 9:E2362. [PMID: 33121045 PMCID: PMC7693803 DOI: 10.3390/cells9112362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
This article challenges the notion of the randomness of mutations in eukaryotic cells by unveiling stress-induced human non-random genome editing mechanisms. To account for the existence of such mechanisms, I have developed molecular concepts of the cell environment and cell environmental stressors and, making use of a large quantity of published data, hypothesised the origin of some crucial biological leaps along the evolutionary path of life on Earth under the pressure of natural selection, in particular, (1) virus-cell mating as a primordial form of sexual recombination and symbiosis; (2) Lamarckian CRISPR-Cas systems; (3) eukaryotic gene development; (4) antiviral activity of retrotransposon-guided mutagenic enzymes; and finally, (5) the exaptation of antiviral mutagenic mechanisms to stress-induced genome editing mechanisms directed at "hyper-transcribed" endogenous genes. Genes transcribed at their maximum rate (hyper-transcribed), yet still unable to meet new chronic environmental demands generated by "pollution", are inadequate and generate more and more intronic retrotransposon transcripts. In this scenario, RNA-guided mutagenic enzymes (e.g., Apolipoprotein B mRNA editing catalytic polypeptide-like enzymes, APOBECs), which have been shown to bind to retrotransposon RNA-repetitive sequences, would be surgically targeted by intronic retrotransposons on opened chromatin regions of the same "hyper-transcribed" genes. RNA-guided mutagenic enzymes may therefore "Lamarkianly" generate single nucleotide polymorphisms (SNP) and gene copy number variations (CNV), as well as transposon transposition and chromosomal translocations in the restricted areas of hyper-functional and inadequate genes, leaving intact the rest of the genome. CNV and SNP of hyper-transcribed genes may allow cells to surgically explore a new fitness scenario, which increases their adaptability to stressful environmental conditions. Like the mechanisms of immunoglobulin somatic hypermutation, non-random genome editing mechanisms may generate several cell mutants, and those codifying for the most environmentally adequate proteins would have a survival advantage and would therefore be Darwinianly selected. Non-random genome editing mechanisms represent tools of evolvability leading to organismal adaptation including transgenerational non-Mendelian gene transmission or to death of environmentally inadequate genomes. They are a link between environmental changes and biological novelty and plasticity, finally providing a molecular basis to reconcile gene-centred and "ecological" views of evolution.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; ; Tel./Fax: +39-0722-304-319
- National Institute for Nuclear Physics (INFN)-Gran Sasso National Laboratory (LNGS), 67100 Assergi, L’Aquila, Italy
| |
Collapse
|
24
|
Papadopoulos P, Kafasi A, De Cuyper IM, Barroca V, Lewandowski D, Kadri Z, Veldthuis M, Berghuis J, Gillemans N, Benavente Cuesta CM, Grosveld FG, van Zwieten R, Philipsen S, Vernet M, Gutiérrez L, Patrinos GP. Mild dyserythropoiesis and β-like globin gene expression imbalance due to the loss of histone chaperone ASF1B. Hum Genomics 2020; 14:39. [PMID: 33066815 PMCID: PMC7566067 DOI: 10.1186/s40246-020-00283-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 01/09/2023] Open
Abstract
The expression of the human β-like globin genes follows a well-orchestrated developmental pattern, undergoing two essential switches, the first one during the first weeks of gestation (ε to γ), and the second one during the perinatal period (γ to β). The γ- to β-globin gene switching mechanism includes suppression of fetal (γ-globin, HbF) and activation of adult (β-globin, HbA) globin gene transcription. In hereditary persistence of fetal hemoglobin (HPFH), the γ-globin suppression mechanism is impaired leaving these individuals with unusual elevated levels of fetal hemoglobin (HbF) in adulthood. Recently, the transcription factors KLF1 and BCL11A have been established as master regulators of the γ- to β-globin switch. Previously, a genomic variant in the KLF1 gene, identified by linkage analysis performed on twenty-seven members of a Maltese family, was found to be associated with HPFH. However, variation in the levels of HbF among family members, and those from other reported families carrying genetic variants in KLF1, suggests additional contributors to globin switching. ASF1B was downregulated in the family members with HPFH. Here, we investigate the role of ASF1B in γ- to β-globin switching and erythropoiesis in vivo. Mouse-human interspecies ASF1B protein identity is 91.6%. By means of knockdown functional assays in human primary erythroid cultures and analysis of the erythroid lineage in Asf1b knockout mice, we provide evidence that ASF1B is a novel contributor to steady-state erythroid differentiation, and while its loss affects the balance of globin expression, it has no major role in hemoglobin switching.
Collapse
Affiliation(s)
- Petros Papadopoulos
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - Athanassia Kafasi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
| | - Iris M De Cuyper
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
| | - Vilma Barroca
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
- U1274, Inserm, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Daniel Lewandowski
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
- U1274, Inserm, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Zahra Kadri
- Division of Innovative Therapies, UMR1184, Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Martijn Veldthuis
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Jeffrey Berghuis
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Celina María Benavente Cuesta
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Rob van Zwieten
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
- Laboratory of Red Blood Cell Diagnostics, Sanquin Diagnostics, Amsterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Muriel Vernet
- UMR Stabilité Génétique Cellules Souches et Radiations, Université de Paris and Université de Paris-Saclay, CEA, 18 route du Panorama, 92260, Fontenay-aux-Roses, France
| | - Laura Gutiérrez
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, AMC, UvA, Amsterdam, The Netherlands
- Platelet Research Lab -Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)-, Department of Medicine -University of Oviedo-, Oviedo, Spain
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Pathology, College of Medicine and Health Sciences and Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
25
|
Beedle MT, Stevison F, Zhong G, Topping T, Hogarth C, Isoherranen N, Griswold MD. Sources of all-trans retinal oxidation independent of the aldehyde dehydrogenase 1A isozymes exist in the postnatal testis†. Biol Reprod 2020; 100:547-560. [PMID: 30247516 DOI: 10.1093/biolre/ioy200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/01/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
Despite the essential role of the active metabolite of vitamin A, all-trans retinoic acid (atRA) in spermatogenesis, the enzymes, and cellular populations responsible for its synthesis in the postnatal testis remain largely unknown. The aldehyde dehydrogenase 1A (ALDH1A) family of enzymes residing within Sertoli cells is responsible for the synthesis of atRA, driving the first round of spermatogenesis. Those studies also revealed that the atRA required to drive subsequent rounds of spermatogenesis is possibly derived from the ALDH1A enzymes residing within the meiotic and post-meiotic germ cells. Three ALDH1A isozymes (ALDH1A1, ALDH1A2, and ALDH1A3) are present in the testis. Although, ALDH1A1 is expressed in adult Sertoli cells and is suggested to contribute to the atRA required for the pre-meiotic transitions, ALDH1A2 is proposed to be the essential isomer involved in testicular atRA biosynthesis. In this report, we first examine the requirement for ALDH1A2 via the generation and analysis of a conditional Aldh1a2 germ cell knockout and a tamoxifen-induced Aldh1a2 knockout model. We then utilized the pan-ALDH1A inhibitor (WIN 18446) to test the collective contribution of the ALDH1A enzymes to atRA biosynthesis following the first round of spermatogenesis. Collectively, our data provide the first in vivo evidence demonstrating that animals severely deficient in ALDH1A2 postnatally proceed normally through spermatogenesis. Our studies with a pan-ALDH1A inhibitor (WIN 18446) also suggest that an alternative source of atRA biosynthesis independent of the ALDH1A enzymes becomes available to maintain atRA levels for several spermatogenic cycles following an initial atRA injection.
Collapse
Affiliation(s)
- My-Thanh Beedle
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Faith Stevison
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cathryn Hogarth
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Michael D Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
27
|
Hernandez A, Martinez ME. Thyroid hormone action in the developing testis: intergenerational epigenetics. J Endocrinol 2020; 244:R33-R46. [PMID: 31977317 PMCID: PMC7220832 DOI: 10.1530/joe-19-0550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
Male fertility involves the successful transmission of the genetic code to the next generation. It requires appropriately timed cellular processes during testis development, adequate support of spermatogenesis by hormonal cues from the reproductive axis and cellular cross-talk between germ and somatic cells. In addition to being the vessel of the father’s genome, increasing evidence shows that the mature sperm carries valuable epigenetic information – the epigenome – that, after fecundation, influences the development of the next generation, affecting biological traits and disease susceptibility. The epigenome of the germ line is susceptible to environmental factors, including exogenous chemicals and diet, but it is also affected by endogenous molecules and pathophysiological conditions. Factors affecting testis development and the epigenetic information of the germ line are critical for fertility and of relevance to the non-genetic but heritable component in the etiology of complex conditions. Thyroid hormones are one of those factors and their action, when untimely, produces profound effects on the developing testis, affecting spermatogenesis, steroidogenesis, testis size, reproductive hormones and fertility. Altered thyroid hormone states can also change the epigenetic information of the male germ line, with phenotypic consequences for future generations. In the context of past literature concerning the consequences of altered thyroid hormone action for testis development, here we review recent findings about the pathophysiological roles of the principal determinants of testicular thyroid hormone action. We also discuss limited work on the effects of thyroid hormone on the male germ line epigenome and the implications for the intergenerational transmission of phenotypes via epigenetic mechanisms.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - M. Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME, 04074, USA
| |
Collapse
|
28
|
MEIOSIN Directs the Switch from Mitosis to Meiosis in Mammalian Germ Cells. Dev Cell 2020; 52:429-445.e10. [DOI: 10.1016/j.devcel.2020.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/10/2019] [Accepted: 01/09/2020] [Indexed: 01/12/2023]
|
29
|
Martinez ME, Lary CW, Karaczyn AA, Griswold MD, Hernandez A. Spermatogonial Type 3 Deiodinase Regulates Thyroid Hormone Target Genes in Developing Testicular Somatic Cells. Endocrinology 2019; 160:2929-2945. [PMID: 31621880 PMCID: PMC6853691 DOI: 10.1210/en.2019-00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Premature overexposure to thyroid hormone causes profound effects on testis growth, spermatogenesis, and male fertility. We used genetic mouse models of type 3 deiodinase (DIO3) deficiency to determine the genetic programs affected by premature thyroid hormone action and to define the role of DIO3 in regulating thyroid hormone economy in testicular cells. Gene expression profiling in the neonatal testis of DIO3-deficient mice identified 5699 differentially expressed genes. Upregulated and downregulated genes were, respectively, involved according to DAVID analysis with cell differentiation and proliferation. They included anti-Müllerian hormone and genes involved in the formation of the blood-testis barrier, which are specific to Sertoli cells (SCs). They also included steroidogenic genes, which are specific to Leydig cells. Comparison with published data sets of genes enriched in SCs and spermatogonia, and responsive to retinoic acid (RA), identified a subset of genes that were regulated similarly by RA and thyroid hormone. This subset of genes showed an expression bias, as they were downregulated when enriched in spermatogonia and upregulated when enriched in SCs. Furthermore, using a genetic approach, we found that DIO3 is not expressed in SCs, but spermatogonia-specific inactivation of DIO3 led to impaired testis growth, reduced SC number, decreased cell proliferation and, especially during neonatal development, altered gene expression specific to somatic cells. These findings indicate that spermatogonial DIO3 protects testicular cells from untimely thyroid hormone signaling and demonstrate a mechanism of cross-talk between somatic and germ cells in the neonatal testis that involves the regulation of thyroid hormone availability and action.
Collapse
Affiliation(s)
- M Elena Martinez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Christine W Lary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, Maine
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| | - Aldona A Karaczyn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
| | - Michael D Griswold
- School for Molecular Sciences, Washington State University, Pullman, Washington
- Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, Maine
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, Maine
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
- Correspondence: Arturo Hernandez, PhD, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074. E-mail:
| |
Collapse
|
30
|
Gewiss R, Topping T, Griswold MD. Cycles, waves, and pulses: Retinoic acid and the organization of spermatogenesis. Andrology 2019; 8:892-897. [PMID: 31670467 PMCID: PMC7496180 DOI: 10.1111/andr.12722] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/16/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022]
Abstract
Background Spermatogenesis in mammals is organized in a manner that maximizes sperm production. The central aspect of this organization is the cycle of the seminiferous epithelium that is characterized by an asynchronous repeating series of germ cell associations. These cell associations are the result of a fixed point of entry into the cycle at regular short time intervals and the longer time required for cells to fully differentiate and exit the cycle. Objective This review will examine the current information on the action and metabolism of retinoic acid in the testis, the interaction of retinoic acid (RA) with the cycle and the spermatogenic wave, and the mechanisms that can lead to synchronous spermatogenesis. Finally, the unique applications of synchronous spermatogenesis to the study of the cycle and the mass isolation of specific germ cell populations are described. Materials and methods Retinoic acid metabolism and spermatogonial differentiation have been examined by gene deletions, immunocytochemistry, chemical inhibitors, and mass spectrometry. Results, discussion, and conclusion Both the Sertoli cells and the germ cells have the capacity to synthesize retinoic acid from retinol and in the mouse the entry into the cycle of the seminiferous epithelium, and the subsequent conversion of undifferentiated spermatogonia into differentiating spermatogonia is governed by a peak of RA synthesis occurring at stages VIII‐IX of the cycle. Normal asynchronous spermatogenesis can be modified by altering RA levels, and as a result the entire testis will consist of a few closely related stages of the cycle.
Collapse
Affiliation(s)
- Rachel Gewiss
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Michael D Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| |
Collapse
|
31
|
Jauregui EJ, Mitchell D, Garza SM, Topping T, Hogarth CA, Griswold MD. Leydig cell genes change their expression and association with polysomes in a stage-specific manner in the adult mouse testis. Biol Reprod 2019; 98:722-738. [PMID: 29408990 DOI: 10.1093/biolre/ioy031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/30/2018] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium. This study utilized the WIN 18,446 and retinoic acid (RA) treatment regime combined with the RiboTag mouse methodology to synchronize male germ cell development and allow for the in vivo mapping of the Leydig cell translatome across the different stages of one cycle of the seminiferous epithelium. Using microarrays analysis, we identified 11 Leydig cell-enriched genes that were expressed in stage-specific manner such as the glucocorticoid synthesis and transport genes, Cyp21a1 and Serpina6. In addition, there were nine Leydig cell transcripts that change their association with polysomes in correlation with the different stages of the spermatogenic cycle including Egr1. Interestingly, the signal intensity of EGR1 and CYP21 varied among Leydig cells in the adult asynchronous testis. However, testosterone levels across the different stages of germ cell development did not cycle. These data show, for the first time, that Leydig cell gene expression changes in a stage-specific manner during the cycle of the seminiferous epithelium and indicate that a heterogeneous Leydig cell population exists in the adult mouse testis.
Collapse
Affiliation(s)
- Estela J Jauregui
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Savanna M Garza
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Traci Topping
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
32
|
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod 2019; 99:112-126. [PMID: 29385397 DOI: 10.1093/biolre/ioy021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Collapse
|
33
|
Li X, Long XY, Xie YJ, Zeng X, Chen X, Mo ZC. The roles of retinoic acid in the differentiation of spermatogonia and spermatogenic disorders. Clin Chim Acta 2019; 497:54-60. [PMID: 31302099 DOI: 10.1016/j.cca.2019.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
Male fertility depends on the regulatory balance between germ cell self-renewal and differentiation, and the spatial and temporal patterns of this balance must be maintained throughout the life cycle. Retinoic acid and its receptors are important factors in spermatogenesis. Spermatogonia cells can self-proliferate and differentiate and have unique meiotic capabilities; they halve their genetic material and produce monomorphic sperm to pass genetic material to the next generation. A number of studies have found that the spermatogenesis process is halted in animals with vitamin A deficiency and that most germ cells are degraded, but they tend to recover after treatment with RA or vitamin A. This literature review discusses our understanding of how RA regulates sperm cell differentiation and meiosis and also reviews the functional information and details of RA.
Collapse
Affiliation(s)
- Xuan Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiang-Yang Long
- Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yuan-Jie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xin Zeng
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Zhong-Cheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
34
|
Abstract
Retinoic acid (RA), a metabolite of retinol (vitamin A), functions as a ligand for nuclear RA receptors (RARs) that regulate development of chordate animals. RA-RARs can activate or repress transcription of key developmental genes. Genetic studies in mouse and zebrafish embryos that are deficient in RA-generating enzymes or RARs have been instrumental in identifying RA functions, revealing that RA signaling regulates development of many organs and tissues, including the body axis, spinal cord, forelimbs, heart, eye and reproductive tract. An understanding of the normal functions of RA signaling during development will guide efforts for use of RA as a therapeutic agent to improve human health. Here, we provide an overview of RA signaling and highlight its key functions during development.
Collapse
Affiliation(s)
- Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Beedle MT, Topping T, Hogarth C, Griswold M. Differential localization of histone variant TH2B during the first round compared with subsequent rounds of spermatogenesis. Dev Dyn 2019; 248:488-500. [PMID: 30939211 PMCID: PMC6545161 DOI: 10.1002/dvdy.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 02/02/2023] Open
Abstract
Background Male germ cells are unique because they express a substantial number of variants of the general DNA binding proteins, known as histones, yet the biological significance of these variants is still unknown. In the present study, we aimed to address the expression pattern of the testis‐specific histone H2B variant (TH2B) and the testis‐specific histone H2A variant (TH2A) within the neonatal mouse testis. Results We demonstrate that TH2B and TH2A are present in a testis‐enriched for undifferentiated spermatogonia. Co‐localization studies with an undifferentiated marker, ZBTB16, revealed that TH2B and ZBTB16 co‐localize in the neonatal testis. Upon the appearance of the primary spermatocytes, TH2B no longer co‐localized with the ZBTB16 positive spermatogonia but were instead detected within the differentiating spermatogonia. This pattern of expression where TH2B and ZBTB16 no longer co‐localize was maintained in the adult testis. Conclusion These findings are in contrast to previous studies, which demonstrated that TH2B and TH2A were found only in adult spermatocytes. Our data are in support of a switch in the expression of these variants following the first round of spermatogonial differentiation. These studies reinforce current understandings that spermatogonia within the neonatal mouse testis are inherently different from those residing within the adult testis. Contrary to previous beliefs, testis specific histone variants TH2B and TH2A are also expressed expressed in undifferentiated spermatogonia in the neonatal mouse testis. Upon the appearance of the primary spermatocytes, TH2B switches its expression from spermatogonia to the spermatocyte population. This study reinforces the idea that spermatogonia in the neonatal mouse testis is inherently different than those residing within the adult.
Collapse
Affiliation(s)
- My-Thanh Beedle
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Traci Topping
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Cathryn Hogarth
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Michael Griswold
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
36
|
Kojima ML, de Rooij DG, Page DC. Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. eLife 2019; 8:43738. [PMID: 30810530 PMCID: PMC6392498 DOI: 10.7554/elife.43738] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/10/2019] [Indexed: 12/22/2022] Open
Abstract
The germ line provides the cellular link between generations of multicellular organisms, its cells entering the meiotic cell cycle only once each generation. However, the mechanisms governing this initiation of meiosis remain poorly understood. Here, we examined cells undergoing meiotic initiation in mice, and we found that initiation involves the dramatic upregulation of a transcriptional network of thousands of genes whose expression is not limited to meiosis. This broad gene expression program is directly upregulated by STRA8, encoded by a germ cell-specific gene required for meiotic initiation. STRA8 binds its own promoter and those of thousands of other genes, including meiotic prophase genes, factors mediating DNA replication and the G1-S cell-cycle transition, and genes that promote the lengthy prophase unique to meiosis I. We conclude that, in mice, the robust amplification of this extraordinarily broad transcription program by a common factor triggers initiation of meiosis.
Collapse
Affiliation(s)
- Mina L Kojima
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | | | - David C Page
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, United States
| |
Collapse
|
37
|
Teletin M, Vernet N, Yu J, Klopfenstein M, Jones JW, Féret B, Kane MA, Ghyselinck NB, Mark M. Two functionally redundant sources of retinoic acid secure spermatogonia differentiation in the seminiferous epithelium. Development 2019; 146:dev.170225. [PMID: 30487180 PMCID: PMC6340151 DOI: 10.1242/dev.170225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Abstract
In mammals, all-trans retinoic acid (ATRA) is instrumental to spermatogenesis. It is synthesized by two retinaldehyde dehydrogenases (RALDH) present in both Sertoli cells (SCs) and germ cells (GCs). In order to determine the relative contributions of each source of ATRA, we have generated mice lacking all RALDH activities in the seminiferous epithelium (SE). We show that both the SC- and GC-derived sources of ATRA cooperate to initiate and propagate spermatogenetic waves at puberty. In adults, they exert redundant functions and, against all expectations, the GC-derived source does not perform any specific roles despite contributing to two-thirds of the total amount of ATRA present in the testis. The production from SCs is sufficient to maintain the periodic expression of genes in SCs, as well and the cycle and wave of the SE, which account for the steady production of spermatozoa. The production from SCs is also specifically required for spermiation. Importantly, our study shows that spermatogonia differentiation depends upon the ATRA synthesized by RALDH inside the SE, whereas initiation of meiosis and expression of STRA8 by spermatocytes can occur without ATRA. Summary: All-trans retinoic acid made by Sertoli cells is instrumental to spermatogenesis and is specifically required for spermatid release.
Collapse
Affiliation(s)
- Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France.,Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Muriel Klopfenstein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France .,Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), France
| |
Collapse
|
38
|
Okabe M, Motojima M, Miyazaki Y, Pastan I, Yokoo T, Matsusaka T. Global polysome analysis of normal and injured podocytes. Am J Physiol Renal Physiol 2018; 316:F241-F252. [PMID: 30379099 DOI: 10.1152/ajprenal.00115.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Podocyte injury is a key event for progressive renal failure. We have previously established a mouse model of inducible podocyte injury (NEP25) that progressively develops glomerulosclerosis after immunotoxin injection. We performed polysome analysis of intact and injured podocytes utilizing the NEP25 and RiboTag transgenic mice, in which a hemagglutinin tag is attached to ribosomal protein L22 selectively in podocytes. Podocyte-specific polysomes were successfully obtained by immunoprecipitation with an antihemagglutinin antibody from glomerular homogenate and analyzed using a microarray. Compared with glomerular cells, 353 genes were highly expressed and enriched in podocytes; these included important podocyte genes and also heretofore uncharacterized genes, such as Dach1 and Foxd2. Podocyte injury by immunotoxin induced many genes to be upregulated, including inflammation-related genes despite no infiltration of inflammatory cells in the glomeruli. MafF and Egr-1, which structurally have the potential to antagonize MafB and WT1, respectively, were rapidly and markedly increased in injured podocytes before MafB and WT1 were decreased. We demonstrated that Maff and Egr1 knockdown increased the MafB targets Nphs2 and Ptpro and the WT1 targets Ptpro, Nxph3, and Sulf1, respectively. This indicates that upregulated MafF and Egr-1 may promote deterioration of podocytes by antagonizing MafB and WT1. Our systematic microarray study of the heretofore undescribed behavior of podocyte genes may open new insights into the understanding of podocyte pathophysiology.
Collapse
Affiliation(s)
- Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan.,Department of Basic Medicine, Tokai University School of Medicine , Isehara , Japan
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine , Isehara , Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, Tokai University School of Medicine , Isehara , Japan.,Institute of Medical Science, Tokai University School of Medicine , Isehara , Japan
| |
Collapse
|
39
|
Romer KA, de Rooij DG, Kojima ML, Page DC. Isolating mitotic and meiotic germ cells from male mice by developmental synchronization, staging, and sorting. Dev Biol 2018; 443:19-34. [PMID: 30149006 DOI: 10.1016/j.ydbio.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023]
Abstract
Isolating discrete populations of germ cells from the mouse testis is challenging, because the adult testis contains germ cells at every step of spermatogenesis, in addition to somatic cells. We present a novel method for isolating precise, high-purity populations of male germ cells. We first synchronize germ cell development in vivo by manipulating retinoic acid metabolism, and perform histological staging to verify synchronization. We use fluorescence-activated cell sorting to separate the synchronized differentiating germ cells from contaminating somatic cells and undifferentiated spermatogonia. We achieve ~90% purity at each step of development from undifferentiated spermatogonia through late meiotic prophase. Utilizing this "3 S" method (synchronize, stage, and sort), we can separate germ cell types that were previously challenging or impossible to distinguish, with sufficient yield for epigenetic and biochemical studies. 3 S expands the toolkit of germ cell sorting methods, and should facilitate detailed characterization of molecular and biochemical changes that occur during the mitotic and meiotic phases of spermatogenesis.
Collapse
Affiliation(s)
- Katherine A Romer
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dirk G de Rooij
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA
| | - Mina L Kojima
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David C Page
- Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Whitehead Institute, 455 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
40
|
Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, Moritz L, Sultan C, Gurczynski SJ, Moore BB, Tallquist MD, Li JZ, Hammoud SS. A Comprehensive Roadmap of Murine Spermatogenesis Defined by Single-Cell RNA-Seq. Dev Cell 2018; 46:651-667.e10. [PMID: 30146481 DOI: 10.1016/j.devcel.2018.07.025] [Citation(s) in RCA: 310] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/03/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Spermatogenesis requires intricate interactions between the germline and somatic cells. Within a given cross section of a seminiferous tubule, multiple germ and somatic cell types co-occur. This cellular heterogeneity has made it difficult to profile distinct cell types at different stages of development. To address this challenge, we collected single-cell RNA sequencing data from ∼35,000 cells from the adult mouse testis and identified all known germ and somatic cells, as well as two unexpected somatic cell types. Our analysis revealed a continuous developmental trajectory of germ cells from spermatogonia to spermatids and identified candidate transcriptional regulators at several transition points during differentiation. Focused analyses delineated four subtypes of spermatogonia and nine subtypes of Sertoli cells; the latter linked to histologically defined developmental stages over the seminiferous epithelial cycle. Overall, this high-resolution cellular atlas represents a community resource and foundation of knowledge to study germ cell development and in vivo gametogenesis.
Collapse
Affiliation(s)
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel L Manske
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Xianing Zheng
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Simone Marini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Moritz
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Bethany B Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
41
|
Griswold MD. 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biol Reprod 2018; 99:87-100. [PMID: 29462262 PMCID: PMC7328471 DOI: 10.1093/biolre/ioy027] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 01/15/2023] Open
Abstract
The complex morphology of the Sertoli cells and their interactions with germ cells has been a focus of investigators since they were first described by Enrico Sertoli. In the past 50 years, information on Sertoli cells has transcended morphology alone to become increasingly more focused on molecular questions. The goal of investigators has been to understand the role of the Sertoli cells in spermatogenesis and to apply that information to problems relating to male fertility. Sertoli cells are unique in that they are a nondividing cell population that is active for the reproductive lifetime of the animal and cyclically change morphology and gene expression. The numerous and distinctive junctional complexes and membrane specializations made by Sertoli cells provide a scaffold and environment for germ cell development. The increased focus of investigators on the molecular components and putative functions of testicular cells has resulted primarily from procedures that isolate specific cell types from the testicular milieu. Products of Sertoli cells that influence germ cell development and vice versa have been characterized from cultured cells and from the application of transgenic technologies. Germ cell transplantation has shown that the Sertoli cells respond to cues from germ cells with regard to developmental timing and has furthered a focus on spermatogenic stem cells and the stem cell niche. Very basic and universal features of spermatogenesis such as the cycle of the seminiferous epithelium and the spermatogenic wave are initiated by Sertoli cells and maintained by Sertoli-germ cell cooperation.
Collapse
Affiliation(s)
- Michael D Griswold
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
42
|
Beyond stem cells: Commitment of progenitor cells to meiosis. Stem Cell Res 2018; 27:169-171. [PMID: 29415862 PMCID: PMC5860671 DOI: 10.1016/j.scr.2018.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 02/03/2023] Open
Abstract
The first step in established spermatogenesis is the production of progenitor cells by the stem cell population. The progenitor cells (undifferentiated A spermatogonia) expand in number via the formation of syncytial chains by mitosis. The mechanism by which these progenitor cells commit to meiosis and spermatogenesis is tightly controlled and results in complex morphological organization all of which is designed to efficiently achieve large numbers of spermatozoa. The major extrinsic factor that triggers the commitment to meiosis and establishes the structural complexity is retinoic acid (RA). Retinoic acid is produced from retinol via two oxidation steps in low abundance near its site of action. The action of RA on undifferentiated A spermatogonia results in the timed progression of these progenitor cells into the cycle of the seminiferous epithelium. We have utilized a drug WIN 18,446 that inhibits the second oxidation step in RA biosynthesis to block the progression of undifferentiated A spermatogonia in the mouse testis. As a result of this block the undifferentiated progenitor cells accumulate but do not differentiate into A1 spermatogonia. When the block is released and a bolus of RA is simultaneously administered the accumulated spermatogonia progress through the differentiation pathway in complete synchrony and maintain that synchrony with regard to stages of the cycle of the seminiferous epithelium for several months. This procedure allowed us to accumulate sufficient material to measure retinoic acid levels across the cycle and will allow us to isolate and analyze large number of progenitor cells proceeding synchronously down the pathway to meiosis. We have been able to show that the cycle of the seminiferous epithelium is established and maintained by pulses of RA that appear at stages VIII and IX of the cycle.
Collapse
|
43
|
Agrimson KS, Oatley MJ, Mitchell D, Oatley JM, Griswold MD, Hogarth CA. Retinoic acid deficiency leads to an increase in spermatogonial stem number in the neonatal mouse testis, but excess retinoic acid results in no change. Dev Biol 2017; 432:229-236. [PMID: 29037932 DOI: 10.1016/j.ydbio.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023]
Abstract
The onset of spermatogenesis occurs in response to retinoic acid (RA), the active metabolite of vitamin A. However, whether RA plays any role during establishment of the spermatogonial stem cell (SSC) pool is unknown. Because designation of the SSC population and the onset of RA signaling in the testis that induces differentiation have similar timing, this study asked whether RA influenced SSC establishment. Whole mount immunofluorescence and flow cytometric analysis using the Id4-eGfp transgenic reporter mouse line revealed an enrichment for ID4-EGFP+ cells within the testis following inhibition of RA synthesis by WIN 18,446 treatment. Transplantation analyses confirmed a significant increase in the number of SSCs in testes from RA-deficient animals. Conversely, no difference in the ID4-EGFP+ population or change in SSC number were detected following exposure to an excess of RA. Collectively, reduced RA altered the number of SSCs present in the neonatal testis but precocious RA exposure in the neonatal testis did not, suggesting that RA deficiency causes a greater proportion of progenitor undifferentiated spermatogonia to retain their SSC state past the age when the pool is thought to be determined.
Collapse
Affiliation(s)
- Kellie S Agrimson
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Melissa J Oatley
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Jon M Oatley
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
44
|
Alikhani M, Mirzaei M, Sabbaghian M, Parsamatin P, Karamzadeh R, Adib S, Sodeifi N, Gilani MAS, Zabet-Moghaddam M, Parker L, Wu Y, Gupta V, Haynes PA, Gourabi H, Baharvand H, Salekdeh GH. Quantitative proteomic analysis of human testis reveals system-wide molecular and cellular pathways associated with non-obstructive azoospermia. J Proteomics 2017; 162:141-154. [DOI: 10.1016/j.jprot.2017.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022]
|
45
|
Teletin M, Vernet N, Ghyselinck NB, Mark M. Roles of Retinoic Acid in Germ Cell Differentiation. Curr Top Dev Biol 2017; 125:191-225. [PMID: 28527572 DOI: 10.1016/bs.ctdb.2016.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The modalities of gametogenesis differ markedly between sexes. Female are born with a definitive reserve of oocytes whose size is crucial to ensure fertility. Male fertility, in contrast, relies on a tightly regulated balance between germ cell self-renewal and differentiation, which operates throughout life, according to recurring spatial and temporal patterns. Genetic and pharmacological studies conducted in the mouse and discussed in this review have revealed that all-trans retinoic acid and its nuclear receptors are major players of gametogenesis and are instrumental to fertility in both sexes.
Collapse
Affiliation(s)
- Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France; Université de Strasbourg (UNISTRA), Strasbourg, France; Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
| |
Collapse
|
46
|
Joshi D, Singh SK. Localization and expression of Orexin A and its receptor in mouse testis during different stages of postnatal development. Gen Comp Endocrinol 2017; 241:50-56. [PMID: 27174745 DOI: 10.1016/j.ygcen.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 11/25/2022]
Abstract
Orexin A (OXA), a hypothalamic neuropeptide, is involved in regulation of various biological functions and its actions are mediated through G-protein-coupled receptor, OX1R. This neuropeptide has emerged as a central neuroendocrine modulator of reproductive functions. Both OXA and OX1R have been shown to be expressed in peripheral organs such as gastrointestinal and genital tracts. In the present study, localization and expression of OXA and OX1R in mouse testis during different stages of postnatal development have been investigated. Immunohistochemical results demonstrated localization of OXA and OX1R in both the interstitial and the tubular compartments of the testis throughout the period of postnatal development. In testicular sections on 0day postpartum (dpp), gonocytes, Sertoli cells and foetal Leydig cells showed OXA and OX1R-immunopositive signals. At 10dpp, Sertoli cells, spermatogonia, early spermatocytes and Leydig cells showed immunopositive signals for both, the ligand and the receptor. On 30 and 90dpp, the spermatogonia, Sertoli cells, spermatocytes, spermatids and Leydig cells showed the OXA and OX1R-immunopositive signals. At 90dpp, strong OXA-positive signals were seen in Leydig cells, primary spermatocytes and spermatogonia, while OX1R-immunopositive intense signals were observed in Leydig cells and elongated spermatids. Further, semiquantitative RT-PCR and immunoblot analyses showed that OXA and OX1R were expressed in the testis both at transcript and protein levels during different stages of postnatal development. The expression of OXA and OX1R increased progressively from day of birth (0dpp) until adulthood (90dpp), with maximal expression at 90 dpp. The results suggest that OXA and OX1R are expressed in the testis and that they may help in proliferation and development of germ cells, Leydig cells and Sertoli cells, and in the spermatogenic process and steroidogenesis.
Collapse
Affiliation(s)
- Deepanshu Joshi
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
47
|
Post-Testicular Sperm Maturation: Centriole Pairs, Found in Upper Epididymis, are Destroyed Prior to Sperm's Release at Ejaculation. Sci Rep 2016; 6:31816. [PMID: 27534805 PMCID: PMC4989225 DOI: 10.1038/srep31816] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/26/2016] [Indexed: 01/19/2023] Open
Abstract
The fertilizing sperm’s lengthiest unchartered voyage is through the longest, least-investigated organ in a man’s body – the Epididymis. Over six meters long in men, ~80 meters in stallions and over one-hundred times a mouse’s body length, there are few functions known aside from sperm storage and nutrition. While spermatogenesis is completed in the testes, here we demonstrate sperm centriole reduction occurs within the epididymis. Investigations of GFP-CENTR mice and controls demonstrate both the presence of centriole pairs in the upper caput region of the epididymis and, the destruction, first, of the distal and, then, of the proximal centriole as the sperm transits to the cauda and vas deferens in preparation for its climactic release. These centrioles can neither recruit γ-tubulin nor nucleate microtubules when eggs are inseminated or microinjected, yet numerous maternally-nucleated cytasters are found. These sperm centrioles appear as vestigial basal bodies, destroyed in the mid-to-lower corpus. Post-testicular sperm maturation, in which sperm centrioles found in the caput are destroyed prior to ejaculation, is a newly discovered function for the epididymis.
Collapse
|
48
|
Agrimson KS, Onken J, Mitchell D, Topping TB, Chiarini-Garcia H, Hogarth CA, Griswold MD. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis. Biol Reprod 2016; 95:81. [PMID: 27488029 PMCID: PMC5176362 DOI: 10.1095/biolreprod.116.141770] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, is known to be required for the differentiation of spermatogonia. The first round of spermatogenesis initiates in response to RA and occurs in patches along the length of the seminiferous tubule. However, very little is known about the individual differentiating spermatogonial populations and their progression through the cell cycle due to the heterogeneous nature of the onset of spermatogenesis. In this study, we utilized WIN 18,446 and RA as tools to generate testes enriched with different populations of spermatogonia to further investigate 1) the undifferentiated to differentiating spermatogonial transition, 2) the progression of the differentiating spermatogonia through the cell cycle, and 3) Sertoli cell number in response to altered RA levels. WIN 18,446/RA-treated neonatal mice were used to determine when synchronous S phases occurred in the differentiating spermatogonial population following treatment. Five differentiating spermatogonial S phase windows were identified between spermatogonial differentiation and formation of preleptotene spermatocytes. In addition, a slight increase in Sertoli cell number was observed following RA treatment, possibly implicating a role for RA in Sertoli cell cycle progression. This study has enhanced our understanding of the spermatogonial populations present in the neonatal testis during the onset of spermatogenesis by mapping the cell cycle kinetics of both the undifferentiated and the differentiating spermatogonial populations and identifying the precise timing of when specific individual differentiating spermatogonial populations are enriched within the testis following synchrony, thus providing an essential tool for further study of the differentiating spermatogonia.
Collapse
Affiliation(s)
- Kellie S Agrimson
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Jennifer Onken
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Traci B Topping
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Hélio Chiarini-Garcia
- Laboratory of Structural Biology and Reproduction, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Pampulha, Belo Horizonte, MG, Brazil
| | - Cathryn A Hogarth
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Michael D Griswold
- School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
49
|
Chalmel F, Rolland AD. Linking transcriptomics and proteomics in spermatogenesis. Reproduction 2016; 150:R149-57. [PMID: 26416010 DOI: 10.1530/rep-15-0073] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Spermatogenesis is a complex and tightly regulated process leading to the continuous production of male gametes, the spermatozoa. This developmental process requires the sequential and coordinated expression of thousands of genes, including many that are testis-specific. The molecular networks underlying normal and pathological spermatogenesis have been widely investigated in recent decades, and many high-throughput expression studies have studied genes and proteins involved in male fertility. In this review, we focus on studies that have attempted to correlate transcription and translation during spermatogenesis by comparing the testicular transcriptome and proteome. We also discuss the recent development and use of new transcriptomic approaches that provide a better proxy for the proteome, from both qualitative and quantitative perspectives. Finally, we provide illustrations of how testis-derived transcriptomic and proteomic data can be integrated to address new questions and how the 'proteomics informed by transcriptomics' technique, by combining RNA-seq and MS-based proteomics, can contribute significantly to the discovery of new protein-coding genes or new protein isoforms expressed during spermatogenesis.
Collapse
Affiliation(s)
- Frédéric Chalmel
- Inserm U1085-IrsetUniversité de Rennes 1, F-35042 Rennes, France
| | | |
Collapse
|
50
|
Abstract
Mammalian spermatogenesis requires a stem cell pool, a period of amplification of cell numbers, the completion of reduction division to haploid cells (meiosis), and the morphological transformation of the haploid cells into spermatozoa (spermiogenesis). The net result of these processes is the production of massive numbers of spermatozoa over the reproductive lifetime of the animal. One study that utilized homogenization-resistant spermatids as the standard determined that human daily sperm production (dsp) was at 45 million per day per testis (60). For each human that means ∼1,000 sperm are produced per second. A key to this level of gamete production is the organization and architecture of the mammalian testes that results in continuous sperm production. The seemingly complex repetitious relationship of cells termed the "cycle of the seminiferous epithelium" is driven by the continuous commitment of undifferentiated spermatogonia to meiosis and the period of time required to form spermatozoa. This commitment termed the A to A1 transition requires the action of retinoic acid (RA) on the undifferentiated spermatogonia or prospermatogonia. In stages VII to IX of the cycle of the seminiferous epithelium, Sertoli cells and germ cells are influenced by pulses of RA. These pulses of RA move along the seminiferous tubules coincident with the spermatogenic wave, presumably undergoing constant synthesis and degradation. The RA pulse then serves as a trigger to commit undifferentiated progenitor cells to the rigidly timed pathway into meiosis and spermatid differentiation.
Collapse
Affiliation(s)
- Michael D Griswold
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|