1
|
Yang DW, Kang JH, Kim MS, Kim SH. Regulatory role of N-myc downregulated genes in amelogenesis in rats. J Mol Histol 2024; 55:149-157. [PMID: 38407765 DOI: 10.1007/s10735-024-10182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Cytodifferentiation of odontogenic cells, a late stage event in odontogenesis is based on gene regulation. However, studies on the identification of the involved genes are scarce. The present study aimed to search for molecules for the cytodifferentiation of ameloblastic cells in rats. Differential display-PCR revealed a differentially expressed gene between cap/early bell stage and hard tissue formation stage in molars. This gene was identified as N-myc Downregulated Gene 1 (Ndrg1), which is the first report in tooth development. Real time PCR and western blotting confirmed that the mRNA level of Ndrg1 was higher during enamel formation than the cap stage. Ndrg1 expression was upregulated in the early bell, crown, and root stages in a time-dependent manner. These patterns of expression were similar in Ndrg2, but Ndrg3 and Ndrg4 levels did not change during the developmental stages. Immunofluorescence revealed that strong immunoreactivity against Ndrg1 were detected in differentiated ameloblasts only, not inner enamel epithelium, odontoblasts and ameloblastic cells in defected enamel regions. Alkaline phosphatase and alizarin red s stains along with real time PCR, revealed that Ndrg1 and Ndrg2 were involved in cytodifferentiation and enamel matrix mineralization by selectively regulating amelogenin and ameloblastin genes in SF2 ameloblastic cells. These results suggest that Ndrg may play a crucial functional role in the cytodifferentiation of ameloblasts for amelogenesis.
Collapse
Affiliation(s)
- Dong-Wook Yang
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Jee-Hae Kang
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | - Min-Seok Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| | - Sun-Hun Kim
- Department of Oral Anatomy, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
2
|
Azar C, Valentine MC, Trausch‐Azar J, Rois L, Mahjoub M, Nelson DM, Schwartz AL. RNA-Seq identifies genes whose proteins are upregulated during syncytia development in murine C2C12 myoblasts and human BeWo trophoblasts. Physiol Rep 2021; 9:e14671. [PMID: 33403800 PMCID: PMC7786548 DOI: 10.14814/phy2.14671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The fusion of villous cytotrophoblasts into the multinucleated syncytiotrophoblast is critical for the essential functions of the mammalian placenta. Using RNA-Seq gene expression, quantitative protein expression, and siRNA knockdown we identified genes and their cognate proteins which are similarly upregulated in two cellular models of mammalian syncytia development (human BeWo cytotrophoblast to syncytiotrophoblast and murine C2C12 myoblast to myotube). These include DYSF, PDE4DIP, SPIRE2, NDRG1, PLEC, GPR146, HSPB8, DHCR7, and HDAC5. These findings provide avenues for further understanding of the mechanisms underlying mammalian placental syncytiotrophoblast development.
Collapse
Affiliation(s)
- Christopher Azar
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Mark C. Valentine
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Julie Trausch‐Azar
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lisa Rois
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Moe Mahjoub
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - D. Michael Nelson
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Alan L. Schwartz
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
3
|
Park KC, Paluncic J, Kovacevic Z, Richardson DR. Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radic Biol Med 2020; 157:154-175. [PMID: 31132412 DOI: 10.1016/j.freeradbiomed.2019.05.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that is regulated by hypoxia, metal ions including iron, the free radical nitric oxide (NO.), and various stress stimuli. This intriguing molecule exhibits diverse functions in cancer, inhibiting epithelial-mesenchymal transition (EMT), cell migration and angiogenesis by modulation of a plethora of oncogenes via cellular signaling. Thus, pharmacological targeting of NDRG1 signaling in cancer is a promising therapeutic strategy. Of note, novel anti-tumor agents of the di-2-pyridylketone thiosemicarbazone series, which exert the "double punch" mechanism by binding metal ions to form redox-active complexes, have been demonstrated to markedly up-regulate NDRG1 expression in cancer cells. This review describes the mechanisms underlying NDRG1 modulation by the thiosemicarbazones and the diverse effects NDRG1 exerts in cancer. As a major induction mechanism, iron depletion appears critical, with NO. also inducing NDRG1 through its ability to bind iron and generate dinitrosyl-dithiol iron complexes, which are then effluxed from cells. Apart from its potent anti-metastatic role, several studies have reported a pro-oncogenic role of NDRG1 in a number of cancer-types. Hence, it has been suggested that NDRG1 plays pleiotropic roles depending on the cancer-type. The molecular mechanism(s) underlying NDRG1 pleiotropy remain elusive, but are linked to differential regulation of WNT signaling and potentially differential interaction with the tumor suppressor, PTEN. This review discusses NDRG1 induction mechanisms by metal ions and NO. and both the anti- and possible pro-oncogenic functions of NDRG1 in multiple cancer-types and compares the opposite effects this protein exerts on cancer progression.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jasmina Paluncic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
4
|
Watari K, Shibata T, Fujita H, Shinoda A, Murakami Y, Abe H, Kawahara A, Ito H, Akiba J, Yoshida S, Kuwano M, Ono M. NDRG1 activates VEGF-A-induced angiogenesis through PLCγ1/ERK signaling in mouse vascular endothelial cells. Commun Biol 2020; 3:107. [PMID: 32144393 PMCID: PMC7060337 DOI: 10.1038/s42003-020-0829-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Many diseases, including cancer, have been associated with impaired regulation of angiogenesis, of which vascular endothelial growth factor (VEGF)-A is a key regulator. Here, we test the contribution of N-myc downstream regulated gene 1 (NDRG1) to VEGF-A-induced angiogenesis in vascular endothelial cells (ECs). Ndrg1−/− mice exhibit impaired VEGF-A-induced angiogenesis in corneas. Tumor angiogenesis induced by cancer cells that express high levels of VEGF-A was also reduced in a mouse dorsal air sac assay. Furthermore, NDRG1 deficiency in ECs prevented angiogenic sprouting from the aorta and the activation of phospholipase Cγ1 (PLCγ1) and ERK1/2 by VEGF-A without affecting the expression and function of VEGFR2. Finally, we show that NDRG1 formed a complex with PLCγ1 through its phosphorylation sites, and the inhibition of PLCγ1 dramatically suppressed VEGF-A-induced angiogenesis in the mouse cornea, suggesting an essential role of NDRG1 in VEGF-A-induced angiogenesis through PLCγ1 signaling. Kosuke Watari et al. show that N-myc downstream-regulated gene 1 (NDRG1) stimulates new blood vessel formation that is induced by VEGF-A, using Ndrg1 knockout mice. They find that PLCγ1/ERK signaling mediates this regulation, providing mechanistic insights into how vascular endothelial cells form new vessels.
Collapse
Affiliation(s)
- Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, 859-3243, Japan
| | - Ai Shinoda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, 830-8543, Japan
| | - Hideyuki Abe
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Hiroshi Ito
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, 830-0011, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, 830-8543, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
N-Myc Downstream-Regulated Gene 1 Restricts Hepatitis C Virus Propagation by Regulating Lipid Droplet Biogenesis and Viral Assembly. J Virol 2018; 92:JVI.01166-17. [PMID: 29118118 DOI: 10.1128/jvi.01166-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Host cells harbor various intrinsic mechanisms to restrict viral infections as a first line of antiviral defense. Viruses have evolved various countermeasures against these antiviral mechanisms. Here we show that N-Myc downstream-regulated gene 1 (NDRG1) limits productive hepatitis C virus (HCV) infection by inhibiting viral assembly. Interestingly, HCV infection downregulates NDRG1 protein and mRNA expression. The loss of NDRG1 increases the size and number of lipid droplets, which are the sites of HCV assembly. HCV suppresses NDRG1 expression by upregulating MYC, which directly inhibits the transcription of NDRG1 The upregulation of MYC also leads to the reduced expression of the NDRG1-specific kinase serum/glucocorticoid-regulated kinase 1 (SGK1), resulting in a markedly diminished phosphorylation of NDRG1. The knockdown of MYC during HCV infection rescues NDRG1 expression and phosphorylation, suggesting that MYC regulates NDRG1 at both the transcriptional and posttranslational levels. Overall, our results suggest that NDRG1 restricts HCV assembly by limiting lipid droplet formation. HCV counteracts this intrinsic antiviral mechanism by downregulating NDRG1 via a MYC-dependent mechanism.IMPORTANCE Hepatitis C virus (HCV) is an enveloped single-stranded RNA virus that targets hepatocytes in the liver. HCV is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, and estimates suggest a global prevalence of 2.35%. Up to 80% of acutely infected individuals will develop chronic infection, and as many as 5% eventually progress to liver cancer. An understanding of the mechanisms behind virus-host interactions and viral carcinogenesis is still lacking. The significance of our research is that it identifies a previously unknown relationship between HCV and a known tumor-associated gene. Furthermore, our data point to a new role for this gene in the liver and in lipid metabolism. Thus, HCV infection serves as a great biological model to advance our knowledge of liver functions and the development of liver cancer.
Collapse
|
6
|
Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, Karasuyama K, Fukushi JI, Iwamoto Y, Kuwano M, Ono M. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep 2016; 6:19470. [PMID: 26778110 PMCID: PMC4726041 DOI: 10.1038/srep19470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot–Marie–Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages.
Collapse
Affiliation(s)
- Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Nabeshima
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ai Shinoda
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichi Fukunaga
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume 830-0011, Japan
| | - Kazuyuki Karasuyama
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun-Ichi Fukushi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yukihide Iwamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume 830-8543, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Wu F, Rom WN, Koshiji M, Mo Y, Hosomi Y, Tchou-Wong KM. Role of GLI1 and NDRG1 in Increased Resistance to Apoptosis Induction. J Environ Pathol Toxicol Oncol 2015; 34:213-25. [PMID: 26349604 DOI: 10.1615/jenvironpatholtoxicoloncol.2015013472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We examined the effects of GLI1 expression in PW mouse embryo fibroblasts and H441 lung carcinoma cells. Ectopic expression of GLI1 in PW cells induced anchorage-independent growth and increased resistance to staurosporine-induced apoptosis, and overexpression of GLI1 in H441 cells caused resistance to apoptosis induced by staurosporine and etoposide. GLI1 expression in both H441 and PW cells was associated with increased expression of NDRG1, a gene known to be downregulated by the MYC family of proteins, indicating that upregulation of NDRG1 by GLI1 is not cell-type specific. Consistent with suppression of NDRG1 by c-MYC and N-MYC, increased NDRG1 expression correlated with decreased expression of c-MYC and N-MYC in GLI1-expressing H441 and GLI1-expressing PW cells, respectively. Downregulation of GLI1 expression in A549 cells by siRNA transfection increased sensitivity to etoposide-induced apoptosis, and downregulation of NDRG1 expression in H441 cells by siRNA transfection increased sensitivity to etoposide-induced apoptosis. Of clinical significance, inhibition of GLI1 and NDRG1 expression may increase sensitivity of cancer cells to chemotherapeutic drugs. Strategies that aim to inhibit GLI1 function and NDRG1 expression may be useful for targeted therapy of cancers induced by the SHH-GLI signaling pathway.
Collapse
Affiliation(s)
- Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - William N Rom
- Division of Pulmonary and Critical Care Medicine, and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Minori Koshiji
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York; Clinical Oncology, Merck & Co., Inc., Whitehouse Station, New Jersey
| | - Yiqun Mo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York; Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, Kentucky
| | - Yukio Hosomi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York; Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kam-Meng Tchou-Wong
- Division of Pulmonary and Critical Care Medicine, and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
8
|
Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep 2015; 12:1050-8. [PMID: 25777142 PMCID: PMC4438970 DOI: 10.3892/mmr.2015.3492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) was previously shown to exhibit low expression in glioma tissue as compared with that in normal brain tissue; however, the role of NDRG1 in human glioma cells has remained to be elucidated. The present study used the U87 MG and SHG-44 human glioma cell lines as well as the normal human astrocyte cell line 1800, which are known to have differential NDRG1 expression. Small interfering (si)RNA targeting NDRG1, and NDRG1 overexpression vectors were transfected into the SHG-44 and U87 MG glioma cells, respectively. Cell proliferation, invasion, apoptosis and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model was used to investigate the effects of NDRG1 on the growth of glioma cells in vivo. Overexpression of NDRG1 was shown to inhibit cell proliferation and invasion, and induce apoptosis in the U87 MG glioma cells, whereas NDRG1 downregulation increased proliferation, suppressed apoptosis and promoted invasion of the SHG-44 glioma cells. In addition, in the subcutaneous tumor mouse model, overexpression of NDRG1 in U-87 MG cells suppressed tumorigenicity in vivo. The findings of the present study indicated that NDRG1 is required for the inhibition of gliomagenesis; therefore, targeting NDRG1 and its downstream targets may represent novel therapies for the treatment of glioma.
Collapse
Affiliation(s)
- Wei Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
9
|
Kim-Fuchs C, Winterhalder S, Winter A, Malinka T, Born D, Schäfer S, Stroka D, Gloor B, Candinas D, Angst E. The silencing of N-myc downstream-regulated gene-1 in an orthotopic pancreatic cancer model leads to more aggressive tumor growth and metastases. Dig Surg 2014; 31:135-42. [PMID: 24970329 DOI: 10.1159/000363065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/19/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.
Collapse
Affiliation(s)
- Corina Kim-Fuchs
- Department of Visceral Surgery and Medicine, Inselspital University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJR, Sahni S, Richardson DR. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1845:1-19. [PMID: 24269900 DOI: 10.1016/j.bbcan.2013.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.
Collapse
Affiliation(s)
- Bernard A Fang
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Žaklina Kovačević
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Shi XH, Larkin JC, Chen B, Sadovsky Y. The expression and localization of N-myc downstream-regulated gene 1 in human trophoblasts. PLoS One 2013; 8:e75473. [PMID: 24066183 PMCID: PMC3774633 DOI: 10.1371/journal.pone.0075473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/15/2013] [Indexed: 12/11/2022] Open
Abstract
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1’s subcellular distribution.
Collapse
Affiliation(s)
- Xiao-Hua Shi
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob C. Larkin
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, United States of America
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhou Q, Xiong Y, Chen Y, Du Y, Zhang J, Mu J, Guo Q, Wang H, Ma D, Li X. Effects of tissue factor pathway inhibitor-2 expression on biological behavior of BeWo and JEG-3 cell lines. Clin Appl Thromb Hemost 2011; 18:526-33. [PMID: 22203034 DOI: 10.1177/1076029611429785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To investigate the effect of tissue factor pathway inhibitor-2 (TFPI-2) expression on biological behavior of BeWo and JEG-3 cell lines. MATERIAL AND METHODS The expression of TFPI-2 in BeWo and JEG-3 cells was upregulated by pEGFP-N3-TFPI-2 and downregulated by small interference RNA transfection, confirmed by Western blotting assay and real-time polymerase chain reaction (RT-PCR). Boyden chamber, Cell Counting Kit-8 (CCK-8), and Hoechst 33258/terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL) assays were used for migration, invasion, and proliferation/apoptosis analysis, respectively. RESULTS In Western blotting and RT-PCR assay, protein and messenger RNA (mRNA) expression of TFPI-2 in transfected BeWo and JEG-3 cells were confirmed. Expression of TFPI-2 inhibited BeWo and downregulated JEG-3 cell migration, invasion, proliferation, and induced apoptosis (P < .05) in Boyden chamber, CCK-8, Hoechst 33258, and TUNEL detection, respectively. CONCLUSIONS TFPI-2 expression caused invasion and proliferation impair and induced apoptosis in TFPI-2 regulated BeWo and JEG-3 cells. It provides a clue for potential role of TFPI-2 in trophoblast.
Collapse
Affiliation(s)
- Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Angst E, Dawson DW, Stroka D, Gloor B, Park J, Candinas D, Reber HA, Hines OJ, Eibl G. N-myc downstream regulated gene-1 expression correlates with reduced pancreatic cancer growth and increased apoptosis in vitro and in vivo. Surgery 2011; 149:614-24. [PMID: 21236457 DOI: 10.1016/j.surg.2010.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 11/09/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND The role of N-myc downstream regulated gene-1 (NDRG1) in cancer has recently gained interest, as potential regulator of cell death and tumor suppressor. Although its normal function in the pancreas is largely unknown, loss of NDRG1 expression is associated with a more aggressive tumor phenotype and poor outcome in pancreatic cancer patients. METHODS NDRG1 expression was determined in human pancreatic cancer samples and across a panel of 6 pancreatic cancer cell lines. HPAF-II cells were stably transfected with full-length NDRG1 (HP(NDRG1)) or the empty vector (HP(NEG)). BxPC-3 cells were silenced for NDRG1. These cells were analyzed for cell growth, cell cycle, apoptosis, and pro-apoptotic gene expression. They were transduced with lentiviral vector expressing luciferase to establish an orthotopic xenograft model. In vivo tumor growth was assessed by bioluminescence imaging. RESULTS Growth of HP(NDRG1) was impaired in anchorage-dependent and abolished in anchorage-independent assays respectively. These results were confirmed in BxPC-3 silenced for NDRG1. Growth inhibition was induced by enhanced apoptosis. Seven pro-apoptotic genes were up-regulated in HP(NDRG1) cells. In vivo, HP(NDRG1) tumors showed no growth over 6 weeks, while HP(NEG) tumors grew prominently, correlating with a 325-fold increase in light emission. CONCLUSION In this model we found that expression of NDRG1 correlates with decreased growth in human pancreatic cancer cells in vitro and in vivo. The observation that NDRG1 completely inhibited growth in anchorage-independent assays and in vivo supports a biological function as a tumor suppressor in pancreatic cancer.
Collapse
Affiliation(s)
- Eliane Angst
- Hirshberg Laboratories for Pancreatic Cancer Research, Department of Surgery, UCLA Center for Excellence in Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Coxiella burnetii, the agent of Q fever, replicates within trophoblasts and induces a unique transcriptional response. PLoS One 2010; 5:e15315. [PMID: 21179488 PMCID: PMC3001886 DOI: 10.1371/journal.pone.0015315] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/08/2010] [Indexed: 01/27/2023] Open
Abstract
Q fever is a zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium typically found in myeloid cells. The infection is a source of severe obstetrical complications in humans and cattle and can undergo chronic evolution in a minority of pregnant women. Because C. burnetii is found in the placentas of aborted fetuses, we investigated the possibility that it could infect trophoblasts. Here, we show that C. burnetii infected and replicated in BeWo trophoblasts within phagolysosomes. Using pangenomic microarrays, we found that C. burnetii induced a specific transcriptomic program. This program was associated with the modulation of inflammatory responses that were shared with inflammatory agonists, such as TNF, and more specific responses involving genes related to pregnancy development, including EGR-1 and NDGR1. In addition, C. burnetii stimulated gene networks organized around the IL-6 and IL-13 pathways, which both modulate STAT3. Taken together, these results revealed that trophoblasts represent a protective niche for C. burnetii. The activation program induced by C. burnetii in trophoblasts may allow bacterial replication but seems unable to interfere with the development of normal pregnancy. Such pathophysiologocal processes should require the activation of immune placental cells associated with trophoblasts.
Collapse
|
15
|
Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruïne AP, Baldwin HS, van Engeland M. The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. FASEB J 2010; 24:4153-66. [PMID: 20667976 DOI: 10.1096/fj.09-151464] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The N-myc downstream regulated gene (NDRG) family of proteins consists of 4 members, NDRG1-4, which are well conserved through evolution. The first member to be discovered and responsible for the family name was NDRG1, because its expression is repressed by the proto-oncogenes MYCN and MYC. All family members are characterized by an α/β hydrolase-fold motif; however, the precise molecular and cellular function of these family members has not been fully elucidated. Although the exact function of NDRG family members has not been clearly elucidated, emerging evidence suggests that mutations in these genes are associated with diverse neurological and electrophysiological syndromes. In addition, aberrant expression as well as tumor suppressor and oncogenic functions affecting key hallmarks of carcinogenesis such as cell proliferation, differentiation, migration, invasion, and stress response have been reported for several of the NDRG proteins. In this review, we summarize the current literature on the NDRG family members concerning their structure, origin, and tissue distribution. In addition, we review the current knowledge regarding the regulation and signaling of the NDRG family members in development and normal physiology. Finally, their role in disease and potential clinical applications (their role as detection or prognostic markers) are discussed.
Collapse
Affiliation(s)
- Veerle Melotte
- Department of Pathology, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Prouillac C, Lecoeur S. The Role of the Placenta in Fetal Exposure to Xenobiotics: Importance of Membrane Transporters and Human Models for Transfer Studies. Drug Metab Dispos 2010; 38:1623-35. [DOI: 10.1124/dmd.110.033571] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Jung EU, Yoon JH, Lee YJ, Lee JH, Kim BH, Yu SJ, Myung SJ, Kim YJ, Lee HS. Hypoxia and retinoic acid-inducible NDRG1 expression is responsible for doxorubicin and retinoic acid resistance in hepatocellular carcinoma cells. Cancer Lett 2010; 298:9-15. [PMID: 20573444 DOI: 10.1016/j.canlet.2010.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/14/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Hypoxia may activate survival signals in cancer cells. Moreover, hypoxic cells are less sensitive than normoxic cells to doxorubicin cytotoxicity, a potent activator of the p53 tumor suppressor gene. N-myc downstream-regulated gene-1 (NDRG1) is a hypoxia- and retinoic acid-inducible protein, and has been previously implicated in carcinogenesis. As this protein is also a downstream target of p53 and hepatocellular carcinoma (HCC) cells frequently evidence resistance to retinoic acid (RA) cytotoxicity, we attempted to determine whether the suppression of NDRG1 expression may sensitize HCC cells to doxorubicin and/or RA cytotoxicity. HCC cells expressed NDRG1 protein, and the expression of this protein was hypoxia- and RA-inducible. Doxorubicin treatment induced HCC cell cytotoxicity via the activation of mitochondrial apoptotic signals, including caspase-9 activation. Hypoxic HCC cells are less sensitive to doxorubicin-induced apoptosis. The suppression of NDRG1 expression either by siRNA or flavopiridol sensitized hypoxic HCC cells to doxorubicin cytotoxicity, and this was attributed to more profound augmentation of JNK and caspase-9 activation. The suppression of NDRG1 expression also sensitized RA-resistant HCC cells to RA-induced apoptosis, and this sensitization was more apparent in hypoxic HCC cells than in normoxic cells. Glutaredoxin2 expression was down-regulated in NDRG1-suppressed HCC cells. These results show that hypoxia- and RA-inducible NDRG1 expression is responsible for doxorubicin and RA resistance in HCC cells. Thus, the selective interruption of NDRG1 signaling may prove to be therapeutically useful in HCCs, particularly in the advanced infiltrative type of tumors exposed to hypoxic environments.
Collapse
Affiliation(s)
- Eun Uk Jung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Localization of N-myc downstream-regulated gene 1 in gastric cancer tissue. Dig Liver Dis 2009; 41:96-103. [PMID: 18602353 DOI: 10.1016/j.dld.2008.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 03/22/2008] [Accepted: 04/17/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM N-myc downstream-regulated gene 1 is detected in normal tissue but is down-regulated in cancer tissue. Furthermore, research has suggested that co-expression with p53 is necessary for induction of p53-mediated apoptosis. This study sought to investigate the clinicopathological significance of N-myc downstream-regulated gene 1 and p53 expression in gastric cancer tissue. PATIENTS AND METHODS Immunohistochemical detection of N-myc downstream-regulated gene 1 and p53 was performed with tissue samples from 96 cases of gastric cancer, and the relationship between expression profiles of proteins and clinicopathological characteristics was statistically analysed. RESULTS Positive staining of N-myc downstream-regulated gene 1 was observed in the cytoplasm (22 of 96 cases, 22.9%) and/or nucleus (29 of 96 cases, 30.2%) of cancer cells. In 15 cases (15.6%), both cytoplasm-positive cells and nucleus-positive cells were observed in the cancerous region. The nuclear localization of N-myc downstream-regulated gene 1 was frequently observed in the region of cancerous invasion and was significantly related to lymph node metastasis. In addition, accumulation of p53 protein in the nucleus of cancer cells significantly coincided with the nuclear localization of N-myc downstream-regulated gene 1. CONCLUSIONS Localization of N-myc downstream-regulated gene 1 and its significant correlation with p53 expression may play an important role in cancer progression.
Collapse
|
19
|
Li S, Huang SM, Lim JS, Kim JM. Expression profiling of the differentiation related protein N-myc downstream regulated gene 2 in normal human tissues. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1755-9294.2008.00017.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Neelima PS, Rao AJ. Gene expression profiling during Forskolin induced differentiation of BeWo cells by differential display RT-PCR. Mol Cell Endocrinol 2008; 281:37-46. [PMID: 18035478 DOI: 10.1016/j.mce.2007.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/07/2007] [Accepted: 10/08/2007] [Indexed: 01/05/2023]
Abstract
The differentiation of cytotrophoblasts into syncytiotrophoblasts in the placenta has been employed as a model to investigate stage specific expression as well as regulation of genes during this process. While the cytotrophoblasts are highly invasive and proliferative with relatively less capacity to synthesize pregnancy related proteins, the multinucleated syncytiotrophoblasts are non-proliferative and non-invasive. However, syncytiotrophoblasts are the site of synthesis of a variety of protein, peptide and steroid hormones as well as several growth factors. Both the freshly isolated cytotrophoblasts from human placenta as well as the BeWo cell, a choriocarcinoma cell line model which retain several characteristic of cytotrophoblasts has been employed by us to study regulation of differentiation. In the present study, we have employed the differential display RT-PCR analysis (DD-RT-PCR) to evaluate gene expression changes during Forskolin induced in vitro differentiation of BeWo cells. We have identified several genes which are differentially expressed during differentiation and the differential expression of 10 transcripts was confirmed by Northern blot analysis. Based on the identity of the transcripts an attempt has been made to relate the known function of the gene products, to changes observed during differentiation. Of the several transcripts, one of the transcripts, namely Secretory Leukocyte Protease Inhibitor (SLPI) which is known to have multiple functions was found to increase 15-fold in the syntiotrophoblast.
Collapse
Affiliation(s)
- P S Neelima
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
21
|
Okuda T, Kokame K, Miyata T. Differential expression patterns of NDRG family proteins in the central nervous system. J Histochem Cytochem 2007; 56:175-82. [PMID: 17998568 DOI: 10.1369/jhc.7a7323.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The N-myc downstream-regulated gene (NDRG) family consists of four proteins: NDRG1, NDRG2, NDRG3, and NDRG4 in mammals. NDRG1 has been thoroughly studied as an intracellular protein associated with stress response, cell growth, and differentiation. A nonsense mutation in the NDRG1 gene causes hereditary motor and sensory neuropathy, Charcot-Marie-Tooth disease type 4D. We previously generated Ndrg1-deficient mice and found that they exhibited peripheral nerve degeneration caused by severe demyelination, but that the complicated motor abilities were retained. These results implied that other NDRG family proteins may compensate for the NDRG1 deficiency in the central nervous system. In this study we raised specific antibodies against each member of the NDRG protein family and examined their cellular expression patterns in the mouse brain. In the cerebrum, NDRG1 and NDRG2 were localized in oligodendrocytes and astrocytes, respectively, whereas NDRG3 and NDRG4 were ubiquitous. In the cerebellum, NDRG1 and NDRG4 were localized in Purkinje cells and NDRG2 in Bergmann glial cells. NDRG3 was detected in the nuclei in most cells. These expression patterns demonstrated the cell type-specific and ubiquitous localization of the NDRG family proteins. Each NDRG may play a partially redundant role in specific cells in the brain.
Collapse
Affiliation(s)
- Tomohiko Okuda
- National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | |
Collapse
|
22
|
Svensson E, Vidovic K, Olofsson T, Vallon-Christersson J, Borg A, Gullberg U. The Wilms' tumor gene 1 (WT1) induces expression of the N-myc downstream regulated gene 2 (NDRG2). DNA Cell Biol 2007; 26:589-97. [PMID: 17688410 DOI: 10.1089/dna.2007.0586] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Wilms' tumor gene 1 (WT1) protein is a transcriptional regulator that is highly expressed in immature hematopoietic progenitor cells and in the majority of patients with acute and chronic myeloid leukemia. However, it is still unclear how WT1 exerts its function(s) in hematopoietic cells. The aim of this work was to investigate the function of WT1 as a transcription factor in human hematopoietic progenitor cells. To this end, an oligonucleotide array approach was used to study the gene expression in CD34(+) cells from human cord blood retrovirally transduced with WT1 or a control vector. We found that the expression of the putative tumor suppressor gene N-myc downstream regulated gene 2 (NDRG2) mRNA was induced by WT1 in CD34(+) cells and also in leukemic U937 cells. Furthermore, a novel transcription start site in the NDRG2 gene was identified in WT1-transduced cells, in addition to two previously reported transcription start sites. These results show that the expression of the NDRG2 gene is directly or indirectly induced by WT1, and provide the first insights into transcriptional regulation of the NDRG2 gene, including demonstration of a novel splice variant.
Collapse
Affiliation(s)
- Emelie Svensson
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Kimura AP, Sizova D, Handwerger S, Cooke NE, Liebhaber SA. Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Mol Cell Biol 2007; 27:6555-68. [PMID: 17636034 PMCID: PMC2099626 DOI: 10.1128/mcb.00273-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hGH cluster contains a single human pituitary growth hormone gene (hGH-N) and four placenta-specific paralogs. Activation of the cluster in both tissues depends on 5' remote regulatory elements. The pituitary-specific locus control elements DNase I-hypersensitive site I (HSI) and HSII, located 14.5 kb 5' of the cluster (position -14.5), establish a continuous domain of histone acetylation that extends to and activates hGH-N in the pituitary gland. In contrast, histone modifications in placental chromatin are restricted to the more 5'-remote HSV-HSIII region (kb -28 to -32) and to the placentally expressed genes in the cluster, with minimal modification between these two regions. These data predict distinct modes of hGH cluster gene activation in the pituitary and placenta. Here we used cell culture models to track structural changes at the hGH locus through placental-gene activation. The data revealed that this process was initiated in primary cytotrophoblasts by histone H3K4 di- and trimethylation and H4 acetylation restricted to HSV and to the individual placental-gene repeat (PGR) units within the cluster. Later stages of transcriptional induction were accompanied by enhancement and extension of these modifications and by robust H3 acetylation at HSV, at HSIII, and throughout the placental-gene regions. These data suggested that elements restricted to HSIII-HSV regions and each individual PGR might be sufficient for activation of the hCS genes. This model was tested by comparing hCS transgene expression in the placentas of mouse embryos carrying a full hGH cluster to that in placentas in which the HSIII-HSV region was directly linked to the individual hCS-A PGR unit. The findings indicate that the HSIII-HSV region and the PGR units, although targeted for initial chromatin structural modifications, are insufficient to activate gene expression and that this process is dependent on additional, as-yet-unidentified chromatin determinants.
Collapse
Affiliation(s)
- Atsushi P Kimura
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Choi SJ, Oh SY, Kim JH, Sadovsky Y, Roh CR. Increased expression of N-myc downstream-regulated gene 1 (NDRG1) in placentas from pregnancies complicated by intrauterine growth restriction or preeclampsia. Am J Obstet Gynecol 2007; 196:45.e1-7. [PMID: 17240229 DOI: 10.1016/j.ajog.2006.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 06/13/2006] [Accepted: 08/01/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE N-myc downstream-regulated gene 1 (NDRG1) modulates placental response to hypoxia. We therefore hypothesized that the expression of NDRG1 is altered in placentas from pregnancies complicated by intrauterine growth restriction (IUGR) or preeclampsia (PE), which are associated with fetoplacental underperfusion and cellular hypoxia. STUDY DESIGN Thirty-five pregnant women in the third trimester of pregnancy were recruited according to the following 3 groups: (1) normal term pregnancy (n = 10), (2) pregnancy complicated by IUGR (n = 9), and (3) pregnancy with severe PE (n = 16). Placental samples were collected after cesarean delivery without labor. NDRG1 was measured with the use of immunostaining, Western blot, and real-time quantitative polymerase chain reaction (RT-qPCR). Umbilical artery blood flow velocity waveforms were recorded by Doppler ultrasound in women with IUGR and PE. RESULTS By using immunostaining, we found a predominant expression of NDRG1 in the cytoplasm of villous trophoblasts. The expression of NDRG1 in samples from PE or IUGR was higher than control, with highest expression in PE. We confirmed these results by using immunoblotting and RT-qPCR. There was no correlation between the level of NDRG1 and umbilical artery blood flow. CONCLUSION The expression of NDRG1 is upregulated in placentas from pregnancies complicated by severe PE or IUGR. This finding likely reflects trophoblast response to hypoxic injury.
Collapse
Affiliation(s)
- Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
25
|
Chen B, Nelson DM, Sadovsky Y. N-Myc Down-regulated Gene 1 Modulates the Response of Term Human Trophoblasts to Hypoxic Injury. J Biol Chem 2006; 281:2764-72. [PMID: 16314423 DOI: 10.1074/jbc.m507330200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The placenta is susceptible to diverse insults during human pregnancy. The expression of the protein N-myc down-regulated gene 1 (NDRG1) is regulated during cell proliferation, differentiation, and in response to stress. Nevertheless, the function of this protein in humans remains unknown. We tested the hypothesis that NDRG1 is up-regulated in hypoxic primary human trophoblasts and that NDRG1 modulates trophoblast response to hypoxia. We initially demonstrated that the expression of NDRG1 is enhanced in primary human trophoblasts exposed to hypoxia. Importantly, we found a similar increase in NDRG1 expression in placental samples derived from either singleton gestations complicated by intrauterine growth restriction or from dizygotic twin gestation where one twin exhibited growth restriction. Having established efficient lentivirus-mediated transfection of primary human trophoblasts, we overexpressed NDRG1 in trophoblasts, which resulted in enhanced trophoblast differentiation. In contrast, lentivirus-driven short interfering RNA-mediated silencing of NDRG1 diminished trophoblast viability and differentiation. Consistent with these results, NDRG1 reduced the expression level of p53 in trophoblasts cultured in standard or hypoxic conditions. Furthermore, NDRG1 expression was regulated by the activity of SIRT1 (Sir2-like protein 1), which promotes cell survival. Together, our data indicate that NDRG1 interacts with SIRT1/p53 signaling to attenuate hypoxic injury in human trophoblasts.
Collapse
Affiliation(s)
- Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
26
|
Wyatt SM, Kraus FT, Roh CR, Elchalal U, Nelson DM, Sadovsky Y. The correlation between sampling site and gene expression in the term human placenta. Placenta 2005; 26:372-9. [PMID: 15850641 DOI: 10.1016/j.placenta.2004.07.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/01/2004] [Accepted: 07/16/2004] [Indexed: 10/26/2022]
Abstract
Using oligonucleotide microarrays we recently identified a set of transcripts that were up-regulated in hypoxic human trophoblasts. To test the hypothesis that expression of hypoxia-related placental transcripts depends on sampling site we analyzed nine different sites from term human placentas (n=6), obtained after uncomplicated pregnancies. These sites spanned the placental center to the lateral border and the basal to the chorionic plate. Relative gene expression at each site, determined using quantitative PCR, was correlated with villous histology. The expression of vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF), the cytoskeleton proteins lamininA3 and alpha-tubulin, and the signal transduction protein Rad was enhanced in the subchorionic lateral border compared to medial basal site (1.6-2.9 fold, p<0.05). In contrast, the expression of NDRG1, adipophilin and human placental lactogen was unchanged. Enhanced villous maturation, syncytial knots and fibrin deposits were more frequent in the subchorionic placental lateral border, and correlated with up-regulation of hypoxia-related transcripts (p<0.05). The association between sample site and expression level was not observed in placentas with marginal cord insertion. The expression of hypoxia-related genes in the term human placenta is dependent on sampling site within the placental disk, likely reflecting local differences in villous perfusion.
Collapse
Affiliation(s)
- S M Wyatt
- Department of OBGYN, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mogass M, York TP, Li L, Rujirabanjerd S, Shiang R. Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma. Biochem Biophys Res Commun 2004; 325:124-32. [PMID: 15522210 DOI: 10.1016/j.bbrc.2004.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Indexed: 11/28/2022]
Abstract
Mutations in the Treacher Collins syndrome gene, TCOF1, cause a disorder of craniofacial development. We manipulated the levels of Tcof1 and its protein treacle in a murine neuroblastoma cell line to identify downstream changes in gene expression using a microarray platform. We identified a set of genes that have similar expression with Tcof1 as well as a set of genes that are negatively correlated with Tcof1 expression. We also showed that the level of Tcof1 and treacle expression is downregulated during differentiation of neuroblastoma cells into neuronal cells. Inhibition of Tcof1 expression by siRNA induced morphological changes in neuroblastoma cells that mimic differentiation. Thus, expression of Tcof1 and treacle synthesis play an important role in the proliferation of neuroblastoma cells and we have identified genes that may be important in this pathway.
Collapse
Affiliation(s)
- Michael Mogass
- Department of Human Genetics, Virginia Commonwealth University Medical Center, P.O. Box 980033, Richmond, VA 23298-0033, USA
| | | | | | | | | |
Collapse
|
28
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2749-2752. [DOI: 10.11569/wcjd.v12.i11.2749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Stein S, Thomas EK, Herzog B, Westfall MD, Rocheleau JV, Jackson RS, Wang M, Liang P. NDRG1 is necessary for p53-dependent apoptosis. J Biol Chem 2004; 279:48930-40. [PMID: 15377670 DOI: 10.1074/jbc.m400386200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although a number of target genes for the tumor suppressor p53 have been described, the mechanism of p53-dependent apoptosis is incompletely understood. Thus, it is essential to identify and characterize additional target genes that could mediate apoptosis. In the study reported here, we isolated a p53-regulated gene named NDRG1 (N-Myc down-regulated gene 1). Its expression is induced by DNA damage in a p53-dependent fashion. The promoter region of the NDRG1 gene contains a p53 binding site that confers p53-dependent transcriptional activation via a heterologous reporter. RNA interference and inducible gene expression approaches suggest that NDRG1 is necessary but not sufficient for p53-mediated caspase activation and apoptosis. This report further supports the notion that p53 controls a network of genes that are required for its apoptotic function.
Collapse
Affiliation(s)
- Susanne Stein
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
García J, Castrillo JL. Differential display RT-PCR analysis of human choriocarcinoma cell lines and normal term trophoblast cells: identification of new genes expressed in placenta. Placenta 2004; 25:684-93. [PMID: 15450385 DOI: 10.1016/j.placenta.2003.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2003] [Indexed: 10/26/2022]
Abstract
In this study, we performed the differential display technique to identify genes specifically expressed in human choriocarcinoma cell lines (JEG-3, JAR and BeWo) and normal placental term cells. Few differences were found among the expression profiles of the three choriocarcinoma cell lines and most of the differentially expressed genes were detected in normal term placenta. A total of 36 cDNA fragments were isolated and analysed. Of these, 19 sequences corresponded to regions in the human genome coding for potential novel genes. We confirmed by RT-PCR, the placental mRNA expression of three selected new human genes, on chromosomes 16q12, 9q32 and 6q22. The other 17 sequences showed high similarity to known human genes (like PSG3, FN1, PAI-2). Interestingly, the functions of five known proteins (from genes IK, TRA-1, HERPUD1, UBA-2, and TRAP240) have not yet been well characterized in placenta tissue. In addition, new alternative spliced mRNAs were detected for IK, TRAP240 and PLAC3 genes. The differential expression of the PAI-2 gene among the choriocarcinoma cell lines was also confirmed. The genes identified in this analysis will be of interest for future studies regarding both a better understanding of the biology of the trophoblast cell and the formation of placental tumors.
Collapse
Affiliation(s)
- J García
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
31
|
Mitchelmore C, Büchmann-Møller S, Rask L, West MJ, Troncoso JC, Jensen NA. NDRG2: a novel Alzheimer's disease associated protein. Neurobiol Dis 2004; 16:48-58. [PMID: 15207261 DOI: 10.1016/j.nbd.2004.01.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/05/2003] [Accepted: 01/08/2004] [Indexed: 10/26/2022] Open
Abstract
Our understanding of the genes involved in Alzheimer's disease (AD) is incomplete. Using subtractive cloning technology, we discovered that the alpha/beta-hydrolase fold protein gene NDRG2 (NDRG family member 2) is upregulated at both the RNA and protein levels in AD brains. Expression of NDRG2 in affected brains was revealed in (1) cortical pyramidal neurons, (2) senile plaques and (3) cellular processes of dystrophic neurons. Overexpression of two splice variants encoding a long and short NDRG2 isoform in hippocampal pyramidal neurons of transgenic mice resulted in localization of both isoforms to dendritic processes. Taken together, our findings suggest that NDRG2 upregulation is associated with disease pathogenesis in the human brain and provide new insight into the molecular changes that occur in AD.
Collapse
Affiliation(s)
- Cathy Mitchelmore
- Laboratory of Mammalian Molecular Genetics, The Panum Institute 6.5, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Bertani GR, Gladney CD, Johnson RK, Pomp D. Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR: II. Anterior pituitary. J Anim Sci 2004; 82:32-40. [PMID: 14753346 DOI: 10.2527/2004.82132x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to identify differentially expressed genes in the anterior pituitary (AP) of sows selected for enhanced reproductive phenotypes. Selection in the Index (I) line was based on an index of ovulation rate and embryo survival, whereas random selection was used in the Control (C) line. Average numbers of fully formed piglets at birth were 12.5 +/- 1.5 and 9.9 +/- 2.0 for Line I and C sows used in this study, respectively. In order to induce luteolysis and synchronize follicle development, sows were injected (i.m.) with 2 mL of prostaglandin F2alpha analog between d 12 and 14 of the estrous cycle. Tissue was harvested 2 d (d2) or 4 d (d4) after injection, resulting in four experimental groups: Cd2 (n = 6), Cd4 (n = 4), Id2 (n = 6), and Id4 (n = 7). Differential display PCR (ddPCR) was used to search for transcriptional changes between selection lines in the AP, using samples within line but pooled across days. Northern hybridization was used to confirm ddPCR results. For ddPCR, two pools were used from each line (C and I). Three genes were confirmed to be differentially expressed between Lines I and C: G-beta like protein, ferritin heavy-chain, and follicle stimulating hormone beta subunit, whereas many other expressed sequence tags were observed to be differentially expressed but still require confirmation. Our findings indicate that long-term selection to increase ovulation rate and decrease embryo mortality has altered transcriptional patterns in the anterior pituitary, most likely as correlated responses.
Collapse
Affiliation(s)
- G R Bertani
- Department of Animal Science, University of Nebraska, Lincoln 68583-0908, USA
| | | | | | | |
Collapse
|
33
|
Okuda T, Higashi Y, Kokame K, Tanaka C, Kondoh H, Miyata T. Ndrg1-deficient mice exhibit a progressive demyelinating disorder of peripheral nerves. Mol Cell Biol 2004; 24:3949-56. [PMID: 15082788 PMCID: PMC387740 DOI: 10.1128/mcb.24.9.3949-3956.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NDRG1 is an intracellular protein that is induced under a number of stress and pathological conditions, and it is thought to be associated with cell growth and differentiation. Recently, human NDRG1 was identified as a gene responsible for hereditary motor and sensory neuropathy-Lom (classified as Charcot-Marie-Tooth disease type 4D), which is characterized by early-onset peripheral neuropathy, leading to severe disability in adulthood. In this study, we generated mice lacking Ndrg1 to analyze its function and elucidate the pathogenesis of Charcot-Marie-Tooth disease type 4D. Histological analysis showed that the sciatic nerve of Ndrg1-deficient mice degenerated with demyelination at about 5 weeks of age. However, myelination of Schwann cells in the sciatic nerve was normal for 2 weeks after birth. Ndrg1-deficient mice showed muscle weakness, especially in the hind limbs, but complicated motor skills were retained. In wild-type mice, NDRG1 was abundantly expressed in the cytoplasm of Schwann cells rather than the myelin sheath. These results indicate that NDRG1 deficiency leads to Schwann cell dysfunction, suggesting that NDRG1 is essential for maintenance of the myelin sheaths in peripheral nerves. These mice will be used for future analyses of the mechanisms of myelin maintenance.
Collapse
Affiliation(s)
- Tomohiko Okuda
- National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Gratton RJ, Gluszynski M, Nygard K, Mazzuca DM, Graham CH, Han VKM. Reducing Agent and Tunicamycin-responsive Protein (RTP) mRNA Expression in the Placentae of Normal and Pre-eclamptic Women. Placenta 2004; 25:62-9. [PMID: 15013640 DOI: 10.1016/s0143-4004(03)00216-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2002] [Indexed: 10/26/2022]
Abstract
Recently, the gene encoding a new stress-induced protein termed reducing agent and tunicamycin-responsive protein (RTP) was identified. The function of RTP is unknown, however, the strong upregulation of RTP during cellular differentiation, and exposure to stress conditions including hypoxia suggests a specific role for RTP in these processes. In pre-eclampsia, impaired spiral artery remodelling and reduced perfusion may reduce oxygen tension in the placenta and thereby alter trophoblast differentiation and function. We therefore hypothesized that the expression of RTP mRNA is altered in the placentae of women with pre-eclampsia. The aims of this study were to determine the regional distribution and cellular localization of RTP mRNA expression and compare mRNA abundance in different regions of normotensive control and pre-eclamptic placentae. In normal and pre-eclamptic placentae, RTP mRNA was expressed in the syncytiotrophoblasts and in the intermediate trophoblasts of the basal plate. In early onset pre-eclampsia, RTP mRNA was more abundant in the chorionic villi regions. A further increase was localized to the syncytial knots and to the trophoblasts in the peri-infarct regions. The increased RTP expression may reflect lower oxygen tension and/or other stress stimuli in the placenta in pre-eclampsia.
Collapse
Affiliation(s)
- R J Gratton
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Kyuno JI, Fukui A, Michiue T, Asashima M. Identification and characterization of Xenopus NDRG1. Biochem Biophys Res Commun 2003; 309:52-7. [PMID: 12943662 DOI: 10.1016/s0006-291x(03)01522-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NDRG1 is a member of the N-myc downstream-regulated gene (NDRG) family and is involved in cellular differentiation, activation of p53, cell cycle arrest, metastasis, and hypoxia. Expression of NDRG1 is repressed by the proto-oncogene, N-myc during mouse development, although the exact functional role of NDRG1 in development remains unknown. Here, we report the characterization of Xenopus laevis NDRG1 (xNDRG1) during X. laevis development. Expression of xNDRG1 transcript was first detected at stage 15, and was localized to the presumptive pronephric anlagen at stage 26 and to pronephros, eye, branchial arches, and tail-bud at stage 32. Overexpression of xNDRG1 results in a reduced pronephros and disorganized somites. Depletion of xNDRG1, using morpholinos, causes failure of pronephros development. These results suggest that xNDRG1 is required for pronephros development in X. laevis.
Collapse
Affiliation(s)
- Jun-ichi Kyuno
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Hunter M, Bernard R, Freitas E, Boyer A, Morar B, Martins IJ, Tournev I, Jordanova A, Guergelcheva V, Ishpekova B, Kremensky I, Nicholson G, Schlotter B, Lochmüller H, Voit T, Colomer J, Thomas PK, Levy N, Kalaydjieva L. Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth Disease. Hum Mutat 2003; 22:129-35. [PMID: 12872253 DOI: 10.1002/humu.10240] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a previous study, we have shown that N-myc downstream-regulated gene 1 (NDRG1), classified in databases as a tumor suppressor and heavy metal-response protein, is mutated in hereditary motor and sensory neuropathy Lom (HMSNL), a severe autosomal recessive form of Charcot-Marie-Tooth (CMT) disease. The private founder mutation R148X, causing HMSNL in patients of Romani ethnicity, has so far remained the only molecular defect linking NDRG1 to a specific disease phenotype. Here we report the first study aiming to assess the overall contribution of this gene to the pathogenesis of peripheral neuropathies, in cases where the most common causes of CMT disease have been excluded. Sequence analysis of NDRG1 in 104 CMT patients of diverse ethnicity identified one novel disease-causing mutation, IVS8-1G>A (g.2290787G>A), which affects the splice-acceptor site of IVS8 and results in the skipping of exon 9. The phenotype of the IVS8-1G>A homozygote was very closely related to that of HMSNL patients. In addition, we have detected homozygosity for the known R148X mutation in two affected individuals. Mutations in NDRG1 thus accounted for 2.88% of our overall group of patients, and for 4.68% of cases with demyelinating neuropathies. No other variants were identified in the coding sequence, whereas 12 single nucleotide polymorphisms were observed in the introns. Hum Mutat 22:129-135, 2003.
Collapse
Affiliation(s)
- Michael Hunter
- Laboratory of Molecular Genetics, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li J, Kretzner L. The growth-inhibitory Ndrg1 gene is a Myc negative target in human neuroblastomas and other cell types with overexpressed N- or c-myc. Mol Cell Biochem 2003; 250:91-105. [PMID: 12962147 DOI: 10.1023/a:1024918328162] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A major prognostic marker for neuroblastoma (Nb) is N-myc gene amplification, which predicts a poor clinical outcome. We sought genes differentially expressed on a consistent basis between multiple human Nb cell lines bearing normal versus amplified N-myc, in hopes of finding target genes that might clarify how N-myc overexpression translates into poor clinical prognosis. Using differential display, we find the previously described growth-inhibitory gene Ndrg1 is strongly repressed in all tested Nb cell lines bearing N-myc amplification, as well as in a neuroepithelioma line with amplified c-myc. Overexpression of N-myc in non-amplified Nb cells leads to repression of Ndrg1, as does activation of an inducible c-myc transgene in fibroblasts. Conversely, N-myc downregulation in N-myc-amplified Nb cells results in re-expression of the Ndrg1, and stimuli known to induce Ndrg1 do so in Nb cells while simultaneously down-regulating N-myc. Relevant to these results, we demonstrate an in vitro interaction of Myc protein with the Ndrg1 core promoter. We also find that Ndrg1 levels increase dramatically during in vitro differentiation of two cell lines modeling neural and glial development, while c- and N-myc levels decline. Our results combined with previous information on the Ndrg1 gene product suggest that downregulation of this gene is an important component of N-Myc effects in neuroblastomas with poor clinical outcome. In support of this notion, we find that re-expression of Ndrg1 in high-Myc Nb cells results in smaller cells with reduced colony size in soft-agar assays, further underscoring the functional significance of this gene in human neuroblastoma cells.
Collapse
MESH Headings
- Agar/chemistry
- Agar/metabolism
- Biomarkers, Tumor
- Blotting, Northern
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cell Differentiation
- Cell Division
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- Cloning, Molecular
- Down-Regulation
- Gene Expression Profiling
- Glutathione Transferase/metabolism
- Humans
- Immunoblotting
- Intracellular Signaling Peptides and Proteins
- Neuroblastoma/metabolism
- Neuroectodermal Tumors, Primitive, Peripheral/metabolism
- Prognosis
- Promoter Regions, Genetic
- Protein Binding
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Sequence Analysis, DNA
- Time Factors
Collapse
Affiliation(s)
- Jun Li
- Department of Cellular and Molecular Biology, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD, USA
| | | |
Collapse
|
38
|
Tellgren A, Wood TJJ, Flores-Morales A, Torndal UB, Eriksson L, Norstedt G. Differentially expressed transcripts in neoplastic hepatic nodules and neonatal rat liver studied by cDNA microarray analysis. Int J Cancer 2003; 104:131-8. [PMID: 12569566 DOI: 10.1002/ijc.10946] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular mechanisms underlying hepatocarcinogenesis remain unclear. Wistar rats treated with 2-AAF develop hepatocarcinoma in histologically well-characterised stages. In our study, cDNA microarrays were used to measure the expression of 3,000 genes during the progression of liver carcinogenesis in persistent neoplastic nodules. Because tumours frequently revert into a more poorly differentiated phenotype, we also studied the expression of the same set of transcripts in neonatal rat liver. Approximately 2,000 transcripts gave a detectable signal in experiments comparing gene expression in nodules and control tissue. Approximately 8% of these were identified as differentially expressed in liver nodules. The differentially expressed genes fell into several categories with putative or demonstrated roles in signal transduction, metabolism, detoxification, cell-structure and transport. Many of the differentially expressed genes in nodules were not previously known to be regulated during liver carcinogenesis. A universal transcript profile for gene expression in hepatic liver nodules and neonatal liver has been created.
Collapse
Affiliation(s)
- Asa Tellgren
- Department of Molecular Medicine, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Durand S, Abadie P, Angeletti S, Genti-Raimondi S. Identification of multiple differentially expressed messenger RNAs in normal and pathological trophoblast. Placenta 2003; 24:209-18. [PMID: 12566248 DOI: 10.1053/plac.2002.0885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In an attempt to assess the molecular basis of phenotypic alterations present in the gestational trophoblastic diseases (GTDs) and to identify genes whose expression is specifically associated to these placental proliferative disorders we performed differential display techniques. Initially 19 candidate gene fragments were identified and differential expression was confirmed in eight of these fragments by Northern blot analysis. At the mRNA level ribosomal L26 (rL26), ribosomal L27 (rL27), a new Krüppel type zinc finger protein and TIS11d were preferentially expressed in normal early placenta (NEP) relative to complete hydatidiform mole (CHM), persistent gestational trophoblastic disease (PGTD) and choriocarcinoma JEG-3 cell line. In contrast, heterogeneous ribonucleoprotein A1 (hnRNPA1), the ferritin light chain mRNA, and the uncharacterized protein KIAA0992 were predominantly expressed in JEG-3 cell line. Finally, decorin, a prototype member of an expanding family of small leucine-rich proteoglycans, showed high expression in CHM. In addition we demonstrated by immunohistochemistry analysis that increased decorin mRNA in CHM reflected a genuine augmentation in average steady state mRNA levels within cells. Taken together, these findings provide several interesting candidates for regulation of tumorigenic expression as well as early placentation development, including those involved in protein synthesis (rL26 and rL27), metabolism (ferritin light chain), intercellular communication (decorin) and regulation of gene expression (Krüppel-like zinc finger, TIS11d and hnRNPA1). Information about such alterations in gene expression could be useful for elucidating the genetic events associated to gestational trophoblastic pathogenesis, developing new diagnostic markers, or determining novel therapeutic targets.
Collapse
Affiliation(s)
- S Durand
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ala Oeste, Ciudad Universitaria, Argentina
| | | | | | | |
Collapse
|
40
|
Boulkroun S, Fay M, Zennaro MC, Escoubet B, Jaisser F, Blot-Chabaud M, Farman N, Courtois-Coutry N. Characterization of rat NDRG2 (N-Myc downstream regulated gene 2), a novel early mineralocorticoid-specific induced gene. J Biol Chem 2002; 277:31506-15. [PMID: 12072429 DOI: 10.1074/jbc.m200272200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The early phase of the stimulatory action of aldosterone on sodium reabsorption in tight epithelia involves hormone-regulated genes that remain to be identified. Using a subtractive hybridization technique on isolated renal cortical collecting ducts from rats injected with a physiological dose of aldosterone, we have identified an early response cDNA highly homologous to human and murine NDRG2 (N-Myc downstream regulated gene 2), which consists of four isoforms and belongs to a new family of differentiation-related genes. NDRG2 mRNA was expressed in classical aldosterone target epithelia, and in the kidney, it was specifically located in the collecting duct, the site of aldosterone-regulated sodium absorption. NDRG2 mRNA was increased within 45 min by aldosterone in the kidney and distal colon, whereas it was unaffected in the heart. In the RCCD2 collecting duct cell line, NDRG2 mRNA was enhanced as early as 15 min after aldosterone addition by transcription-dependent effects. NDRG2 was induced by aldosterone concentrations as low as 10(-9) M, and a maximal effect was observed at 10(-8) M. In contrast, the glucocorticoid dexamethasone was ineffective in NDRG2 expression, whereas the glucocorticoid-regulated gene sgk was induced. Taken together, these results indicate that NDRG2 regulation by aldosterone is an early mineralocorticoid-specific effect. Interestingly, NDRG2 is homologous to Drosophila MESK2, a component of the Ras pathway, suggesting that activation of the Ras cascade may play a significant role in mineralocorticoid signaling.
Collapse
Affiliation(s)
- Sheerazed Boulkroun
- INSERM U478, IFR02, Université Paris 7, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75870 Paris Cedex 18, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ohki T, Hongo S, Nakada N, Maeda A, Takeda M. Inhibition of neurite outgrowth by reduced level of NDRG4 protein in antisense transfected PC12 cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 135:55-63. [PMID: 11978393 DOI: 10.1016/s0165-3806(02)00300-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
NDRG4, a member of the new NDRG gene family, was originally cloned as a gene that was expressed predominantly in the early postnatal rat brain. To determine whether the NDRG4 protein contributes to differentiation of neural cells, the effect of lowering the cellular NDRG4 protein level on the nerve growth factor (NGF)-induced neurite formations and transcription factor activations in PC12 cells was examined. An antisense construct of rat NDRG4 cDNA was made and transfected to PC12 cells, which constitutively express a basal level of the NDRG4 protein. Of the stably transfected antisense cell clones that expressed exogenous NDRG4 antisense RNA, six clones showed reduced levels of the NDRG4 protein, but unexpectedly two clones showed quite higher levels of NDRG4 protein than the control cells. The clones having decreased levels of the NDRG4 protein extended shorter neurites than control cells in response to NGF or dibutyryl cAMP. In contrast, the NDRG4 protein-highly expressing clones did not show suppressed neurite outgrowth induced by NGF. NGF-mediated activation of the transcription factor AP-1 was found to be suppressed in the NDRG4 protein-diminished clone and enhanced in the NDRG4 protein-upregulated clone as compared with those in the control cells. These results suggest that NDRG4 plays a role in neurite outgrowth and has an influence on an NGF-stimulated AP-1 activation by an undefined mechanism in PC12 cells.
Collapse
Affiliation(s)
- Takeshi Ohki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
42
|
Nakada N, Hongo S, Ohki T, Maeda A, Takeda M. Molecular characterization of NDRG4/Bdm1 protein isoforms that are differentially regulated during rat brain development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 135:45-53. [PMID: 11978392 DOI: 10.1016/s0165-3806(02)00303-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously reported the identification of a novel gene, Bdm1/NDRG4, that was expressed predominantly in the postnatal rat brain and might possibly play a role in this process. We describe here the characterization of a NDRG4 protein in a developing and maturing rat brain. Antibody raised against glutathione S-transferase (GST)-NDRG4 fusion protein recognized four protein species of 38, 39, 41, and 45 kDa on Western blotting of proteins from differently staged rat brains. The 38-kDa form was revealed after birth, and the amount of this species peaked on postnatal day 15. The 39-kDa form became detectable after postnatal week 6. The 41-kDa form appeared late in embryogenesis, increased by postnatal day 15, and disappeared at postnatal week 6. The 45-kDa form was abundant during the late embryonic period and slightly decreased after birth. Subcellular fractionation of cerebra indicated that the NDRG4 protein was distributed mainly in the mitochondria and endoplasmic reticulum (ER). Detergent solubility assays and protease susceptibility demonstrated that in the ER NDRG4 protein is membrane-associated and luminally oriented. The 45-kDa isoform was induced during NGF-mediated neuronal differentiation of PC12 cells, but not by tunicamycin which causes ER stress. Differential expressions of NDRG4 protein isoforms may be a mechanism for modifying the NDRG4 function and for the formation of a functioning nervous system.
Collapse
Affiliation(s)
- Noriyuki Nakada
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | |
Collapse
|
43
|
Rama S, Suresh Y, Rao AJ. Regulation of telomerase during human placental differentiation: a role for TGFbeta1. Mol Cell Endocrinol 2001; 182:233-48. [PMID: 11514058 DOI: 10.1016/s0303-7207(01)00550-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transient tumor-like attributes of the first-trimester placenta anchor the developing embryo to the uterine wall thus establishing a vital link between the mother and the fetus. Dysregulation of this invasive behavior and/or controlled proliferation of the placenta is associated with abnormal pregnancies. Several of these diseased states also exhibit aberrant telomerase activity, among other pathophysiological manifestations. Considering the strong correlation between telomerase activity and tumorigenesis, it was of interest to see whether the crucial processes of trophoblast proliferation and differentiation were brought about through the modulation of telomerase. Using two in vitro model systems of trophoblast differentiation, we demonstrate here that telomerase activity is negatively regulated during placental differentiation. We further show that this modulation is at the level of transcription of hTERT. We also propose a role for TGF beta1 in regulating telomerase activity in differentiating trophoblasts by down-regulating the expression of hTERT at the transcriptional level.
Collapse
Affiliation(s)
- S Rama
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
44
|
Zhou RH, Kokame K, Tsukamoto Y, Yutani C, Kato H, Miyata T. Characterization of the human NDRG gene family: a newly identified member, NDRG4, is specifically expressed in brain and heart. Genomics 2001; 73:86-97. [PMID: 11352569 DOI: 10.1006/geno.2000.6496] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RTP/Drg1/Cap43/rit42/TDD5/Ndr1/NDRG1 (referred to as NDRG1 hereafter) is a cytoplasmic protein involved in stress responses, hormone responses, cell growth, and differentiation. Recently, the mutation of this gene was reported to be causative for hereditary motor and sensory neuropathy-Lom. Here, we cloned two human cDNAs encoding NDRG3 and NDRG4, which are homologous to NDRG1. These two genes, together with NDRG1 and a previously deposited cDNA (designated NDRG2), constitute the NDRG gene family. The four members share 57-65% amino acid identity. NDRG4 was further characterized because its mRNA expression was quite specific in brain and heart, in contrast to the relatively ubiquitous expression of the other three members. NDRG4 mRNA consists of three isoforms, NDRG4-B, NDRG4-B(var), and NDRG4-H. Northern and Western blot analyses showed that NDRG4-B was expressed only in the brain, whereas NDRG4-H was expressed in both brain and heart. NDRG4-B(var) was a minor product. NDRG4 expression was more abundant in adult than fetal brain and heart and was markedly decreased in the Alzheimer's diseased brain. In situ hybridization showed that NDRG4 was localized in neurons of the brain and spinal cord. The NDRG4 gene contains 17 exons. mRNA expression of the three NDRG4 isoforms is regulated by alternative splicing and possibly by alternative promoter usage. The finely tuned expression of the NDRG gene family members suggests that they have different specific functions.
Collapse
Affiliation(s)
- R H Zhou
- Research Institute, Department of Pathology, National Cardiovascular Center, 5-7-1 Fujishirodai, Suita, 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Aronow BJ, Richardson BD, Handwerger S. Microarray analysis of trophoblast differentiation: gene expression reprogramming in key gene function categories. Physiol Genomics 2001; 6:105-16. [PMID: 11459926 DOI: 10.1152/physiolgenomics.2001.6.2.105] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Placental development results from a highly dynamic differentiation program. We used DNA microarray analysis to characterize the process by which human cytotrophoblast cells differentiate into syncytiotrophoblast cells in a purified cell culture system. Of 6,918 genes analyzed, 141 genes were induced and 256 were downregulated by more than 2-fold. Dynamically regulated genes were divided by the K-means algorithm into 9 kinetic pattern groups, then by biologic classification into 6 overall functional categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tag (EST) and function unknown. Gene expression changes within key functional categories were tightly coupled to morphological changes. In several key gene function categories, such as cell and tissue structure, many gene members of the category were strongly activated while others were strongly repressed. These findings suggest that differentiation is augmented by "categorical reprogramming" in which the function of induced genes is enhanced by preventing the further synthesis of categorically related gene products.
Collapse
Affiliation(s)
- B J Aronow
- Departments of Endocrinology and Molecular and Developmental Biology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-2029, USA
| | | | | |
Collapse
|
46
|
Zhao W, Tang R, Huang Y, Wang W, Zhou Z, Gu S, Dai J, Ying K, Xie Y, Mao Y. Cloning and expression pattern of the human NDRG3 gene. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:134-8. [PMID: 11406283 DOI: 10.1016/s0167-4781(01)00210-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We report the cloning and expression pattern of a novel N-myc downstream-regulated gene 3 (NDRG3), located on human chromosome 20q11.21-11.23. The NDRG3 cDNA is 2588 base pair in length, encoding a 363 amino acid polypeptide highly related to mouse Ndr3 protein. Northern blot reveals that NDRG3 is highly expressed in testis, prostate and ovary. By in situ hybridization, the NDRG3 mRNA was localized to the outer layers of seminiferous epithelium, indicating that it may play a role in spermatogenesis.
Collapse
Affiliation(s)
- W Zhao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rutherford MN, Bayly GR, Matthews BP, Okuda T, Dinjens WM, Kondoh H, LeBrun DP. The leukemogenic transcription factor E2a-Pbx1 induces expression of the putative N-myc and p53 target gene NDRG1 in Ba/F3 cells. Leukemia 2001; 15:362-70. [PMID: 11237058 DOI: 10.1038/sj.leu.2402059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chimeric transcription factor E2a-Pbx1 is expressed as a result of the 1;19 chromosomal translocation in some 5% of cases of pediatric acute lymphoblastic leukemia. We investigated the biological and transcriptional consequences of forced expression of E2a-Pbx1 in the interleukin-3 (IL-3) dependent, bone marrow-derived cell line Ba/F3. We show that forced expression of E2a-Pbx1 induces apoptosis in Ba/F3 cells without apparent effects on cell cycle progression. This pro-apoptotic effect is enhanced on cytokine deprivation. Furthermore, using cDNA representational difference analysis (RDA), we show that these cellular effects are associated with marked induction of the gene NDRG1, which was previously identified as a target of transcriptional repression by N-myc and induction by the tumor suppressor protein p53. We identify a portion of the NDRG1 promoter capable of mediating transcriptional induction by E2a-Pbx1 and show that NDRG1 is also induced on simple IL-3 deprivation of BaF3 cells. Although we show that E2a-Pbx1 induction of NDRG1 is not impaired as a result of targeting p53 using HPV E6, and therefore does not appear to be p53-dependent, our results overall are consistent with the notion that induction of NDRG1 by E2a-Pbx1 may represent part of an apoptotic or cytostatic cellular response to oncogene activation.
Collapse
Affiliation(s)
- M N Rutherford
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Kalaydjieva L, Gresham D, Gooding R, Heather L, Baas F, de Jonge R, Blechschmidt K, Angelicheva D, Chandler D, Worsley P, Rosenthal A, King RH, Thomas PK. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am J Hum Genet 2000; 67:47-58. [PMID: 10831399 PMCID: PMC1287101 DOI: 10.1086/302978] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2000] [Accepted: 05/11/2000] [Indexed: 12/22/2022] Open
Abstract
Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival.
Collapse
Affiliation(s)
- L Kalaydjieva
- Centre for Human Genetics, Edith Cowan University, Perth, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Agarwala KL, Kokame K, Kato H, Miyata T. Phosphorylation of RTP, an ER stress-responsive cytoplasmic protein. Biochem Biophys Res Commun 2000; 272:641-7. [PMID: 10860807 DOI: 10.1006/bbrc.2000.2833] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RTP, also called Drg1/Cap43/rit42/TDD5/Ndr1, was originally identified as a homocysteine-responsive gene product, and is now considered to be involved in stress responses, atherosclerosis, carcinogenesis, differentiation, androgen responses, hypoxia, and N-myc pathways. We raised an antiserum against a recombinant human RTP. Western blot analysis showed that RTP expression was induced in human umbilical vein endothelial cells under conditions causing endoplasmic reticulum stress. RTP was partially phosphorylated at seven or more sites. The phosphorylation was reversible, and was enhanced by an increased level of intracellular cAMP and inhibited by both a protein kinase A inhibitor and a calmodulin kinase inhibitor. Protein kinase A directly phosphorylated recombinant RTP in vitro. The phosphorylated forms were abundant in cells at the early log phase, and then decreased with increasing cell density. These data demonstrated that RTP is a phosphorylated stress-responsive protein, and its phosphorylation may be related to cell growth.
Collapse
Affiliation(s)
- K L Agarwala
- National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
50
|
Okuda T, Kondoh H. Identification of new genes ndr2 and ndr3 which are related to Ndr1/RTP/Drg1 but show distinct tissue specificity and response to N-myc. Biochem Biophys Res Commun 1999; 266:208-15. [PMID: 10581191 DOI: 10.1006/bbrc.1999.1780] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ndr1 was isolated as a gene upregulated in N-myc mutant mouse embryos and is repressed by N-myc and c-myc. Consistent with Myc regulation, the same gene was also isolated as one sensitive to transformation (Drg1), and in addition as one induced under a few stress conditions (RTP). Two new genes, Ndr2 and Ndr3, were identified which encode proteins highly related to Ndr1/RTP/Drg1 and constitute the Ndr gene family. Ndr2 and Ndr3 are under spatio-temporal regulations distinct from Ndr1, and are not activated in N-myc mutants. When whole embryo RNA was analyzed, Ndr3 expression was already high at 9.5 days postcoitus (dpc), while expression of Ndr2 and Ndr1 became significant after 12.5 dpc and 13. 5 dpc, respectively. At 14.5 dpc, expression of these genes partially overlaps, but many tissues are unique to one of them. For instance, Ndr1 is strongly expressed in the liver and gut epithelium, Ndr2 in the ventricular zone throughout the CNS, and Ndr3 in the spinal cord and the thymus rudiment. Genes of the Ndr family probably have tissue-dependent allotments of the possibly related functions.
Collapse
Affiliation(s)
- T Okuda
- Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|