1
|
Tsuji H, Maeyama R, Kato Y. Optimization of culture-preservation methods to maintain developmental competence in porcine metaphase II (MII) oocytes post-in vitro maturation (IVM). Exp Anim 2025; 74:189-196. [PMID: 39617494 PMCID: PMC12044358 DOI: 10.1538/expanim.24-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 04/22/2025] Open
Abstract
After in vitro maturation (IVM) of porcine germinal vesicle (GV) oocytes, those that matured to the metaphase II (MII) stage were selected for further culture over a period of 24-48 h. Subsequently, these oocytes were either parthenogenetically activated or used for somatic cell nuclear transfer (SCNT) to evaluate their in vitro developmental competence. Parthenogenetically activated MII oocytes developed to the blastocyst stage after 42 h of continuous culture, whereas SCNT oocytes reached the blastocyst stage within 30 h of culture. These findings suggest that porcine MII oocytes retain their developmental competence after extended in vitro culture exceeding 30 h. This study highlights the potential of prolonged culture in enhancing the utility of MII-stage oocytes for livestock applications and possibly for future advancements in human infertility treatments.
Collapse
Affiliation(s)
- Haruhisa Tsuji
- Laboratory of Animal Reproduction, College of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan
| | - Rei Maeyama
- Laboratory of Animal Reproduction, College of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan
| | - Yoko Kato
- Laboratory of Animal Reproduction, College of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
2
|
Guo Y, Gao M, Liu X, Zhang H, Wang Y, Yan T, Wang B, Han X, Qi Y, Zhu H, Situ C, Li Y, Guo X. Single-Cell Multi-Omics Analysis of In Vitro Post-Ovulatory-Aged Oocytes Revealed Aging-Dependent Protein Degradation. Mol Cell Proteomics 2025; 24:100882. [PMID: 39571909 PMCID: PMC11728983 DOI: 10.1016/j.mcpro.2024.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Once ovulated, the oocyte has to be fertilized in a short time window or it will undergo post-ovulation aging (POA), whose underlying mechanisms are still not elucidated. Here, we optimized single-cell proteomics methods and performed single-cell transcriptomic, proteomic, and phosphoproteomic analysis of fresh, POA, and melatonin-treated POA oocytes. POA oocytes showed downregulation of most differentially expressed proteins, with little correlation with mRNA expression, and the protein changes can be rescued by melatonin treatment. MG132 treatment rescued the decreased fertilization and polyspermy rates and upregulated fragmentation and parthenogenesis rates of POA oocytes. MG132-treated oocytes displayed health status at proteome, phosphoproteome, and fertilization ability similar to fresh oocytes, suggesting that protein stabilization might be the underlying mechanism for melatonin to rescue POA. The important roles of proteasome-mediated protein degradation during oocyte POA revealed by single-cell multi-omics analyses offer new perspectives for increasing oocyte quality during POA and improving assisted reproduction technologies.
Collapse
Affiliation(s)
- Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mengmeng Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Tong Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China; School of Medicine, Southeast University, Nanjing, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Singh AK, Mohanty A, Kumar SL, Kumari A, Beniwal R, Kumar Etikuppam A, Birajdar P, Mohd A, Prasada Rao HBD. Diminished NAD+ levels and activation of retrotransposons promote postovulatory aged oocyte (POAO) death. Cell Death Discov 2024; 10:104. [PMID: 38418811 PMCID: PMC10902361 DOI: 10.1038/s41420-024-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Death is the fate of postovulatory aged or unfertilized oocytes (POAO) in many animals. However, precise molecular mechanisms are yet to be discovered. Here, we demonstrate that increased amounts of reactive oxygen species (ROS), calcium ion (Ca+2) channels, and retrotransposon activity induce apoptosis, which in turn causes POAO death. Notably, suppression of ROS, Ca+2 channels, and retrotransposons delayed POAO death. Further, we found that the histone H4K12 and K16 acetylation increased via downregulation of NAD+ and NAD+ -dependent histone deacetylase SIRT3. Furthermore, adding NMN, sodium pyruvate, or CD38 inhibition delayed the death of postovulatory aged oocytes. Finally, we demonstrate the conservation of retrotransposon-induced DNA damage-dependent POAO death in higher-order vertebrates. Our findings suggest that POAO mortality is caused by cyclic cascade metabolic interactions in which low NAD+ levels increase histone acetylation by inhibiting histone deacetylases, resulting in an increase in retrotransposons, ROS, and Ca+2 channel activity and thus contributing to DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Ajay K Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Department of Ophthalmology, University of Rochester, Rochester, NY, 14620, USA
| | - Aradhana Mohanty
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - S Lava Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Anjali Kumari
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Rohit Beniwal
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Ajith Kumar Etikuppam
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Pravin Birajdar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Athar Mohd
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - H B D Prasada Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India.
| |
Collapse
|
4
|
Goud PT, Goud AP, Camp OG, Bai D, Gonik B, Diamond MP, Abu-Soud HM. Chronological age enhances aging phenomena and protein nitration in oocyte. Front Endocrinol (Lausanne) 2023; 14:1251102. [PMID: 38149097 PMCID: PMC10749940 DOI: 10.3389/fendo.2023.1251102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
Background The average age of childbearing has increased over the years contributing to infertility, miscarriages, and chromosomal abnormalities largely invoked by an age-related decline in oocyte quality. In this study, we investigate the role of nitric oxide (NO) insufficiency and protein nitration in oocyte chronological aging. Methods Mouse oocytes were retrieved from young breeders (YB, 8-14 weeks [w]), retired breeders (RB, 48-52w) and old animals (OA, 80-84w) at 13.5 and 17 hours after ovulation trigger. They were assessed for zona pellucida dissolution time (ZPDT); ooplasmic microtubule dynamics (OMD); cortical granule (CG) status and spindle morphology (SM), as markers of oocyte quality. Sibling oocytes from RB were exposed to NO supplementation and assessed for aging phenomena (AP). All oocyte cumulus complexes were subjected to fluorescence nitrotyrosine (NT) immunocytochemistry and confocal microscopy to assess morphology and protein nitration. Results At 13.5 h from hCG trigger, oocytes from RB compared to YB had significantly increased ZPDT (37.8 ± 11.9 vs 22.1 ± 4.1 seconds [s]), OMD (46.9 vs 0%), CG loss (39.4 vs 0%), and decreased normal SM (30.3 vs 81.3%), indicating premature AP that worsened among oocytes from RB at 17 hours post-hCG trigger. When exposed to SNAP, RB AP significantly decreased (ZPDT: 35.1 ± 5.5 vs 46.3 ± 8.9s, OMD: 13.3 vs 75.0% and CG loss: 50.0 vs 93.3%) and SM improved (80.0 vs 14.3%). The incidence of NT positivity was significantly higher in cumulus cells (13.5 h, 46.7 ± 4.5 vs 3.4 ± 0.7%; 17 h, 82.2 ± 2.9 vs 23.3 ± 3.6%) and oocytes (13.5 h, 57.1 vs 0%; 17 h, 100.0 vs 55.5%) from RB compared to YB. Oocytes retrieved decreased with advancing age (29.8 ± 4.1 per animal in the YB group compared to 10.2 ± 2.1 in RB and 4.0 ± 1.6 in OA). Oocytes from OA displayed increased ZPDT, major CG loss, increased OMD and spindle abnormalities, as well as pronuclear formation, confirming spontaneous meiosis to interphase transition. Conclusions Oocytes undergo zona pellucida hardening, altered spindle and ooplasmic microtubules, and premature cortical granule release, indicative of spontaneous meiosis-interphase transition, as a function of chronological aging. These changes are also associated with NO insufficiency and protein nitration and may be alleviated through supplementation with an NO-donor.
Collapse
Affiliation(s)
- Pravin T. Goud
- Laurel Fertility Center, San Francisco, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis Medical School, Sacramento, CA, United States
- Department of Obstetrics and Gynecology, University of California Davis Medical School, Sacramento, CA, United States
| | - Anuradha P. Goud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Olivia G. Camp
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bernard Gonik
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael P. Diamond
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
5
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
6
|
Kordowitzki P, Haghani A, Zoller JA, Li CZ, Raj K, Spangler ML, Horvath S. Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging. Aging Cell 2021; 20:e13349. [PMID: 33797841 PMCID: PMC8135012 DOI: 10.1111/acel.13349] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/05/2021] [Accepted: 03/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cattle are an attractive animal model of fertility in women due to their high degree of similarity relative to follicle selection, embryo cleavage, blastocyst formation, and gestation length. To facilitate future studies of the epigenetic underpinnings of aging effects in the female reproductive axis, several DNA methylation-based biomarkers of aging (epigenetic clocks) for bovine oocytes are presented. One such clock was germane to only oocytes, while a dual-tissue clock was highly predictive of age in both oocytes and blood. Dual species clocks that apply to both humans and cattle were also developed and evaluated. These epigenetic clocks can be used to accurately estimate the biological age of oocytes. Both epigenetic clock studies and epigenome-wide association studies revealed that blood and oocytes differ substantially with respect to aging and the underlying epigenetic signatures that potentially influence the aging process. The rate of epigenetic aging was found to be slower in oocytes compared to blood; however, oocytes appeared to begin at an older epigenetic age. The epigenetic clocks for oocytes are expected to address questions in the field of reproductive aging, including the central question: how to slow aging of oocytes.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of SciencesOlsztynPoland
- Institute for Veterinary MedicineNicolaus Copernicus UniversityTorunPoland
| | - Amin Haghani
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Joseph A. Zoller
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| | - Caesar Z. Li
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| | - Ken Raj
- Radiation Effects DepartmentCentre for Radiation, Chemical and Environmental HazardsPublic Health EnglandDidcotUK
| | | | - Steve Horvath
- Department of Human GeneticsDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Department of BiostatisticsFielding School of Public HealthUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
7
|
Marine Nemertean Worms for Immunoblotting Studies of Oocyte Aging. Methods Mol Biol 2021. [PMID: 33074538 DOI: 10.1007/978-1-0716-0974-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunoblotting analyses employing phospho-specific antibodies can help elucidate potential roles played by protein kinases as oocytes age and lose their ability to undergo normal fertilization. This chapter updates a previously published protocol for conducting immunoblotting analyses of oocyte maturation in marine nemertean worms by adding general methods for obtaining adult worms and for handling their gametes in experiments assessing oocyte aging.
Collapse
|
8
|
Wang W, Shao S, Chen W, Wang W, Chuai Y, Li Y, Guo Y, Han S, Shu M, Wang Q, Zhang L, Shang W. Electrofusion Stimulation Is an Independent Factor of Chromosome Abnormality in Mice Oocytes Reconstructed via Spindle Transfer. Front Endocrinol (Lausanne) 2021; 12:705837. [PMID: 34413830 PMCID: PMC8370092 DOI: 10.3389/fendo.2021.705837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022] Open
Abstract
Oocytes reconstructed by spindle transfer (ST) are prone to chromosome abnormality, which is speculated to be caused by mechanical interference or premature activation, the mechanism is controversial. In this study, C57BL/6N oocytes were used as the model, and electrofusion ST was performed under normal conditions, Ca2+ free, and at room temperature, respectively. The effect of enucleation and electrofusion stimulation on MPF activity, spindle morphology, γ-tubulin localization and chromosome arrangement was compared. We found that electrofusion stimulation could induce premature chromosome separation and abnormal spindle morphology and assembly by decreasing the MPF activity, leading to premature activation, and thus resulting in chromosome abnormality in oocytes reconstructed via ST. Electrofusion stimulation was an independent factor of chromosome abnormality in oocytes reconstructed via ST, and was not related to enucleation, fusion status, temperature, or Ca2+. The electrofusion stimulation number should be minimized, with no more than 2 times being appropriate. As the electrofusion stimulation number increased, several typical abnormalities in chromosome arrangement and spindle assembly occurred. Although blastocyst culture could eliminate embryos with chromosomal abnormalities, it would significantly decrease the number of normal embryos and reduce the availability of embryos. The optimum operating condition for electrofusion ST was the 37°C group without Ca2+.
Collapse
Affiliation(s)
- Wei Wang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Department of Reproductive Medicine, Harrison International Peace Hospital, Hengshui, China
| | - Suxia Shao
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Wei Chen
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
| | - Weizhou Wang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yunhai Chuai
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yunfei Li
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Yiming Guo
- Department of Biology, Kenneth P. Dietrich School of Art & Science, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shujie Han
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Navy Clinical Medical School, Anhui Medical University, Beijing, China
| | - Mingming Shu
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Qihang Wang
- Department of Reproductive Medicine, First Hospital of Tsinghua University, Beijing, China
| | - Lei Zhang
- Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lei Zhang, ; Wei Shang,
| | - Wei Shang
- Department of Obstetrics and Gynecology, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
- Navy Clinical Medical School, Anhui Medical University, Beijing, China
- *Correspondence: Lei Zhang, ; Wei Shang,
| |
Collapse
|
9
|
Kordowitzki P, Hamdi M, Derevyanko A, Rizos D, Blasco M. The effect of rapamycin on bovine oocyte maturation success and metaphase telomere length maintenance. Aging (Albany NY) 2020; 12:7576-7584. [PMID: 32339158 PMCID: PMC7202508 DOI: 10.18632/aging.103126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Maternal aging-associated reduction of oocyte viability is a common feature in mammals, but more research is needed to counteract this process. In women, the first aging phenotype appears with a decline in reproductive function, and the follicle number gradually decreases from menarche to menopause. Cows can be used as a model of early human embryonic development and reproductive aging because both species share a very high degree of similarity during follicle selection, cleavage, and blastocyst formation. Recently, it has been proposed that the main driver of aging is the mammalian target of rapamycin (mTOR) signaling rather than reactive oxygen species. Based on these observations, the study aimed to investigate for the first time the possible role of rapamycin on oocyte maturation, embryonic development, and telomere length in the bovine species, as a target for future strategies for female infertility caused by advanced maternal age. The 1nm rapamycin in vitro treatment showed the best results for maturation rates (95.21±4.18%) of oocytes and was considered for further experiments. In conclusion, rapamycin influenced maturation rates of oocytes in a concentration-dependent manner. Our results also suggest a possible link between mTOR, telomere maintenance, and bovine blastocyst formation.
Collapse
Affiliation(s)
- Pawel Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.,Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Meriem Hamdi
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Department of Animal Reproduction, Madrid, Spain
| | - Aksinya Derevyanko
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Dimitrios Rizos
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Department of Animal Reproduction, Madrid, Spain
| | - Maria Blasco
- Telomeres and Telomerase Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
10
|
Zhang Y, Ma Y, Fang Z, Hu S, Li Z, Zhu L, Jin L. Performing ICSI within 4 hours after denudation optimizes clinical outcomes in ICSI cycles. Reprod Biol Endocrinol 2020; 18:27. [PMID: 32290842 PMCID: PMC7155264 DOI: 10.1186/s12958-020-00587-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/02/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The study aimed to investigate whether and how general and partial time intervals between processes, from human chorionic gonadotrophin (HCG) trigger to intracytoplasmic sperm injection (ICSI), affected the laboratory and reproductive outcomes in ICSI cycles. METHODS This was a retrospective data analysis of 3602 women who underwent ICSI treatment cycles using partner or donor sperms, performed at Reproduction Medicine Center of Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology (Wuhan, China) between October 2016 and September 2018. The clinical pregnancy rate was the major outcome in the study. The fertilization and available embryo rates were secondary outcomes. RESULTS Data from 3602 consecutive fresh ICSI cycles was analysed. Multivariate linear regression and logistic regression analysis of factors related to fertilization and clinical pregnancy rates showed that fertilization rate (P = 0.001) and clinical pregnancy rate (P = 0.037) were significantly associated with denudation (DN)-ICSI interval. Long DN-ICSI interval was associated with higher rate of fertilization than short DN-ICSI interval but significantly decreased clinical pregnancy rate when the interval is over 4 h (P < 0.05). CONCLUSIONS DN-ICSI time interval can act as an independent predictor for clinical outcomes in ICSI cycles. The optimal time for ICSI is within 4 h after oocyte denudation for excellent laboratory and reproductive outcomes in ICSI cycles.
Collapse
Affiliation(s)
- Yini Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Yongzhuang Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zishui Fang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Shiqiao Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Niu YJ, Zhou W, Nie ZW, Zhou D, Xu YN, Ock SA, Yan CG, Cui XS. Ubiquinol-10 delays postovulatory oocyte aging by improving mitochondrial renewal in pigs. Aging (Albany NY) 2020; 12:1256-1271. [PMID: 31958774 PMCID: PMC7053629 DOI: 10.18632/aging.102681] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/25/2019] [Indexed: 02/02/2023]
Abstract
Ubiquinol-10, the reduced form of coenzyme Q10, protects mammalian cells from oxidative damage and enhances mitochondrial activity. However, the protective effect of ubiquinol-10 on mammalian oocytes is not well understood. In this study, we investigated the effect of ubiquinol-10 on porcine oocytes during postovulatory aging. Metaphase II oocytes were selected as fresh oocytes and further cultured for 48 h with different concentrations of ubiquinol-10 (0–400 μM) in vitro as a postovulatory aging model. After choosing the optimal concentration of ubiquinol-10 (100 μM) that maintained oocyte morphology and developmental competence during the progression of aging, the oocytes were randomly divided into five groups: fresh, control-24 h, ubiquinol-24 h, control-48 h, and ubiquinol-48 h. The results revealed that ubiquinol-10 significantly prevented aging-induced oxidative stress, GSH reduction, cytoskeleton impairment, apoptosis, and autophagy. Mitochondrial biogenesis (SIRT1 and PGC-1α) and mitophagy (PINK1 and PARKIN)-related proteins were decreased during aging. Addition of ubiquinol-10 prevented the aging-induced reduction of these proteins. Consequently, although mitochondrial content was decreased, the number of active mitochondria and ATP level were significantly increased upon treatment with ubiquinol-10. Thus, ubiquinol-10 has beneficial effects on porcine postovulatory aging oocytes owing to its antioxidant properties and ability to promote mitochondrial renewal.
Collapse
Affiliation(s)
- Ying-Jie Niu
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Wenjun Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Zheng-Wen Nie
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| | - Yong-Nan Xu
- College of Agriculture, Yanbian University, Yanji, China
| | - Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Jeonju, South Korea
| | - Chang-Guo Yan
- College of Agriculture, Yanbian University, Yanji, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
12
|
Park Y, Lee S, Yoon J, Kim E, Park S. Allicin protects porcine oocytes against damage during aging in vitro. Mol Reprod Dev 2019; 86:1116-1125. [DOI: 10.1002/mrd.23227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/01/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Yun‐Gwi Park
- Stem Cell Research CenterJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Faculty of Biotechnology, College of Applied Life SciencesJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Mirae Cell BioSeoul Korea
| | - Seung‐Eun Lee
- Stem Cell Research CenterJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Faculty of Biotechnology, College of Applied Life SciencesJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
| | - Jae‐Wook Yoon
- Stem Cell Research CenterJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Faculty of Biotechnology, College of Applied Life SciencesJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
| | - Eun‐Young Kim
- Stem Cell Research CenterJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Faculty of Biotechnology, College of Applied Life SciencesJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Mirae Cell BioSeoul Korea
- Byon Co., Ltd.Seoul Korea
| | - Se‐Pill Park
- Stem Cell Research CenterJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Faculty of Biotechnology, College of Applied Life SciencesJeju National UniversityJeju Jeju Special Self‐Governing Province Korea
- Mirae Cell BioSeoul Korea
| |
Collapse
|
13
|
Nucleus, Cytoskeleton, and Mitogen-Activated Protein Kinase p38 Dynamics during In Vitro Maturation of Porcine Oocytes. Animals (Basel) 2019; 9:ani9040163. [PMID: 31013909 PMCID: PMC6523277 DOI: 10.3390/ani9040163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The mitogen-activated kinase (MAPK) p38, a member of the MAPK subfamily, is conserved in all mammalian cells and plays important roles in response to various physiologic cues, including mitogens and heat shock. In the present study, MAPK p38 protein expression in porcine oocytes was analyzed during in vitro maturation (IVM) by Western blotting and immunocytochemistry. The levels of p-p38 or activated p38 and p38 expression were at the lowest in the germinal vesicle (GV) stage oocyte, gradually rising at the germinal vesicle breakdown (GVBD) and then reaching a plateau throughout the IVM culture (p < 0.05). Similarly, the expression level of total p38 was also lower in the GV oocyte than in the oocyte of other meiotic stages and uprising after GVBD and remained high until the metaphase III (MII) stage (p < 0.05). In the GV stage, phosphorylated p38 (p-p38) was initially detectable in the ooplasm and subsequently became clear around the nucleus and localized in the ooplasm at GVBD (18 h post-culture). During the metaphase I (MI) and metaphase II (MII) stages, p-p38 was evenly distributed throughout the ooplasm after IVM for 30 or 42 h. We found that the subcellular localization increased in p-p38 expression throughout oocyte maturation (p < 0.05) and that dynamic reorganization of the cytoskeleton, including microfilaments and microtubules, was progressively changed during the course of meiotic maturation which was likely to be associated with the activation or networking of p38 with other proteins in supporting oocyte development. In conclusion, the alteration of p38 activation is essential for the regulation of porcine oocyte maturation, accompanied by the progressive reorganization and redistribution of the cytoskeleton and MAPK p38, respectively, in the ooplasm.
Collapse
|
14
|
Mizuno S, Ishikawa Y, Matsumoto H, Sato M, Ida M, Fukuda A, Morimoto Y. The timing of cumulus cell removal for intracytoplasmic sperm injection influences the capability of embryonic development. Reprod Med Biol 2019; 18:111-117. [PMID: 30655729 PMCID: PMC6332823 DOI: 10.1002/rmb2.12257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether the presence of intact cumulus cells during the preincubation period for ICSI should be considered as a critical factor in fertilization and embryonic development. METHODS The cohort of this prospective randomized study was limited to infertile women younger than 39 years of age who underwent controlled ovarian stimulation for ICSI between October 2013 and May 2015 and whose embryos were to be incubated until day 5. Women with estradiol levels of <2000 pmol/L on the day of HCG injection were excluded. Cumulus cells were removed immediately after OPU in Group A and at 120 minutes after OPU in Group B. ICSI was performed with all mature oocytes, and fertilized oocytes were cultured to the blastocyst stage. Maturation, fertilization, blastocyst, good quality blastocyst, pregnancy, live birth, and miscarriage rates were compared. RESULTS There were no significant differences in maturation, fertilization, blastocyst, pregnancy, live birth, or miscarriage rates between Groups A and B. However, the percentage of good quality blastocysts was significantly higher in Group B than Group A (52.0% vs 33.1%). CONCLUSIONS Intact cumulus cells should be maintained during the preincubation period, as they are important to embryonic development after fertilization.
Collapse
|
15
|
Functions and dysfunctions of the mammalian centrosome in health, disorders, disease, and aging. Histochem Cell Biol 2018; 150:303-325. [PMID: 30062583 DOI: 10.1007/s00418-018-1698-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 01/17/2023]
Abstract
Since its discovery well over 100 years ago (Flemming, in Sitzungsber Akad Wissensch Wien 71:81-147, 1875; Van Beneden, in Bull Acad R Belg 42:35-97, 1876) the centrosome is increasingly being recognized as a most impactful organelle for its role not only as primary microtubule organizing center (MTOC) but also as a major communication center for signal transduction pathways and as a center for proteolytic activities. Its significance for cell cycle regulation has been well studied and we now also know that centrosome dysfunctions are implicated in numerous diseases and disorders including cancer, Alstrom syndrome, Bardet-Biedl syndrome, Huntington's disease, reproductive disorders, and several other diseases and disorders. The present review is meant to build on information presented in the previous review (Schatten, in Histochem Cell Biol 129:667-686, 2008) and to highlight functions of the mammalian centrosome in health, and dysfunctions in disorders, disease, and aging with six sections focused on (1) centrosome structure and functions, and new insights into the role of centrosomes in cell cycle progression; (2) the role of centrosomes in tumor initiation and progression; (3) primary cilia, centrosome-primary cilia interactions, and consequences for cell cycle functions in health and disease; (4) transitions from centrosome to non-centrosome functions during cellular polarization; (5) other centrosome dysfunctions associated with the pathogenesis of human disease; and (6) centrosome functions in oocyte germ cells and dysfunctions in reproductive disorders and reproductive aging.
Collapse
|
16
|
Wang H, Jo YJ, Oh JS, Kim NH. Quercetin delays postovulatory aging of mouse oocytes by regulating SIRT expression and MPF activity. Oncotarget 2018; 8:38631-38641. [PMID: 28418847 PMCID: PMC5503559 DOI: 10.18632/oncotarget.16219] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
If no fertilization occurs at an appropriate time after ovulation, oocyte quality deteriorates rapidly as a process called postovulatory aging. Because the postovulatory aging of oocytes has detrimental effects on embryo development and offspring, many efforts have been made to prevent oocyte aging. Here we showed that quercetin prevented the decline in oocyte quality during postovulatory aging of oocytes. Quercetin treatment reduced aging-induced morphological changes and reactive oxygen species accumulation. Moreover, quercetin attenuated the aging-associated abnormalities in spindle organization and mitochondrial distribution, preventing decrease of SIRT expression and histone methylation. Quercetin also ameliorated the decrease in maturation-promoting factor activity and the onset of apoptosis during postovulatory aging. Furthermore, quercetin treatment during postovulatory aging improves early embryo development. Our results demonstrate that quercetin relieves deterioration in oocyte quality and improves subsequent embryo development.
Collapse
Affiliation(s)
- HaiYang Wang
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
17
|
Dang-Nguyen TQ, Nguyen HT, Somfai T, Wells D, Men NT, Viet-Linh N, Noguchi J, Kaneko H, Kikuchi K, Nagai T. Sucrose assists selection of high-quality oocytes in pigs. Anim Sci J 2018; 89:880-887. [PMID: 29671923 PMCID: PMC6001789 DOI: 10.1111/asj.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
Abstract
We investigated whether high‐quality in vitro matured (IVM) oocytes can be distinguished from poor ones based on the morphological changes after treatment with hyperosmotic medium containing 0.2 mol/L sucrose in pigs. We hypothesize that IVM oocytes maintaining round shape have higher quality than mis‐shapened oocytes following dehydration. Oocyte quality was verified by determining embryonic developmental competence using in vitro fertilization, nuclear transfer and parthenogenetic activation. In all cases, the round oocytes had greater (p < .05) developmental competence than that of mis‐shapened oocytes in terms of blastocyst rate and total cell number in blastocysts obtained after 6 days of in vitro culture. We also confirm that round aged oocytes are higher in quality than mis‐shapened aged oocytes. In an attempt to find out why high‐quality oocytes maintain a round shape whereas poorer oocytes become mis‐shapened following sucrose treatment, we examined the arrangement of actin microfilaments and microtubules. Abnormal organization of these cytoskeletal components was higher (p < .05) in mis‐shapened oocytes compared to round oocytes after 52 hr of IVM. In conclusion, sucrose treatment helps selection of high‐quality oocytes, including aged oocytes, in pigs. Abnormal cytoskeleton arrangements partly explain for low developmental competence of mis‐shapened oocytes.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiep Thi Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi City, Yamaguchi, Japan.,Institute of Biotechnology, Vietnam, Academy of Science and Technology, Hanoi, Vietnam
| | - Tamas Somfai
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, Japan
| | - David Wells
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - Nguyen Thi Men
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Nguyen Viet-Linh
- Institute of Biotechnology, Vietnam, Academy of Science and Technology, Hanoi, Vietnam
| | - Junko Noguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi City, Yamaguchi, Japan
| | - Takashi Nagai
- Department of Research Planning and Coordination, NARO, Tsukuba, Japan
| |
Collapse
|
18
|
Sahu K, Gupta A, Sharma A, Tiwari M, Pandey AN, Prasad S, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of granulosa cell mitogen-activated protein kinase 3/1 in gonadotropin-mediated meiotic resumption from diplotene arrest of mammalian oocytes. Growth Factors 2018; 36:41-47. [PMID: 29842809 DOI: 10.1080/08977194.2018.1475372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammals, preovulatory oocytes are encircled by several layers of granulosa cells (GCs) in follicular microenvironment. These follicular oocytes are arrested at diplotene arrest due to high level of cyclic nucleotides from encircling GCs. Pituitary gonadotropin acts at the level of encircling GCs and increases adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and activates mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. The MAPK3/1 disrupts the gap junctions between encircling GCs and oocyte. The disruption of gap junctions interrupts the transfer of cyclic nucleotides to the oocyte that results a drop in intraoocyte cAMP level. A transient decrease in oocyte cAMP level triggers maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggers meiotic resumption from diplotene arrest in follicular oocyte. Thus, MAPK3/1 from GCs origin plays important role in gonadotropin-mediated meiotic resumption from diplotene arrest in follicular oocyte of mammals.
Collapse
Affiliation(s)
- Kankshi Sahu
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Anumegha Gupta
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Alka Sharma
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Meenakshi Tiwari
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ashutosh N Pandey
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Shilpa Prasad
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Pramod K Yadav
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ajai K Pandey
- b Department of Kayachikitsa, Faculty of Ayurveda , Banaras Hindu University , Varanasi , India
| | - Tulsidas G Shrivastav
- c Department of Reproductive Biomedicine , National Institute of Health and Family Welfare , New Delhi , India
| | - Shail K Chaube
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| |
Collapse
|
19
|
Melatonin prevents postovulatory oocyte aging and promotes subsequent embryonic development in the pig. Aging (Albany NY) 2018; 9:1552-1564. [PMID: 28657543 PMCID: PMC5509455 DOI: 10.18632/aging.101252] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/15/2017] [Indexed: 12/22/2022]
Abstract
Oxidative stress is known as a major contributing factor involved in oocyte aging, which negatively affects oocyte quality and development after fertilization. Melatonin is an effective free radical scavenger and its metabolites AFMK and AMK are powerful detoxifiers that eliminate free radicals. In this study, we used porcine oocytes to test the hypothesis that melatonin could scavenge free radicals produced during oocyte aging, thereby maintaining oocyte quality. We compared reactive oxygen species levels, apoptosis levels, mitochondrial membrane potential ratios, total glutathione contents and expression levels in fresh, aged and melatonin-treated aged porcine oocytes and observed the percentage of blastocyst formation following parthenogenetic activation. We found that melatonin could effectively maintain the morphology of oocytes observed in control oocytes, alleviate oxidative stress, markedly decrease early apoptosis levels, retard the decline of mitochondrial membrane potential and significantly promote subsequent embryonic development in oocytes aged for 24 hr in vitro. These results strongly suggest that melatonin can prevent postovulatory oocyte aging and promote subsequent embryonic development in the pig, which might find practical applications to control oocyte aging in other mammalian species including humans to maintain the quality of human oocytes when performing clinical assisted reproductive technology.
Collapse
|
20
|
Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEA-S) in Mammalian Reproduction: Known Roles and Novel Paradigms. VITAMINS AND HORMONES 2018; 108:223-250. [PMID: 30029728 DOI: 10.1016/bs.vh.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Steroid hormones form an integral part of normal development in mammalian organisms. Cholesterol is the parent compound from which all steroid hormones are synthesized. The product pregnenolone formed from cholesterol serves as precursor for mineralocorticoids, glucocorticoids, as well as dehydroepiandrosterone (DHEA) and its derived sexual hormones. DHEA assumes the prohormone status of a predominant endogenous precursor and a metabolic intermediate in ovarian follicular steroidogenesis. DHEA supplementation has been used to enhance ovarian reserve. Steroids like estradiol and testosterone have long been contemplated to play important roles in regulating meiotic maturation of oocytes in conjunction with gonadotropins. It is known that oocyte priming with estrogen is necessary to develop calcium (Ca2+) oscillations during maturation. Accruing evidence from diverse studies suggests that DHEA and its sulfate (dehydroepiandrosterone sulfate, DHEA-S) play significantly vital role not only as intermediates in androgen and estrogen formation, but may also be the probable 'oocyte factor' and behave as endogenous agonists triggering calcium oscillations for oocyte activation. DHEA/DHEA-S have been reported to regulate calcium channels for the passage of Ca2+ through the oocyte cytoplasm and for maintaining required threshold of Ca2+ oscillations. This role of DHEA/DHEA-S assumes critical significance in assisted reproductive technology and in-vitro fertilization treatment cycles where physical, chemical, and mechanical methods are employed for artificial oocyte activation to enhance fertilization rates. However, since these methods are invasive and may also cause adverse epigenetic modifications; oral or culture-media supplementation with DHEA/DHEA-S provides a noninvasive innate mechanism of in-vitro oocyte activation based on physiological metabolic pathway.
Collapse
|
21
|
Baek JI, Seol DW, Lee AR, Lee WS, Yoon SY, Lee DR. Maintained MPF Level after Oocyte Vitrification Improves Embryonic Development after IVF, but not after Somatic Cell Nuclear Transfer. Mol Cells 2017; 40:871-879. [PMID: 29145719 PMCID: PMC5712517 DOI: 10.14348/molcells.2017.0184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 12/23/2022] Open
Abstract
Levels of maturation-promoting factor (MPF) in oocytes decline after vitrification, and this decline has been suggested as one of the main causes of low developmental competence resulting from cryoinjury. Here, we evaluated MPF activity in vitrified mouse eggs following treatment with caffeine, a known stimulator of MPF activity, and/or the proteasome inhibitor MG132. Collected MII oocytes were vitrified and divided into four groups: untreated, 10 mM caffeine (CA), 10 μM MG132 (MG), and 10 mM caffeine +10 μM MG132 (CA+MG). After warming, the MPF activity of oocytes and their blastocyst formation and implantation rates in the CA, MG, and CA+MG groups were much higher than those in the untreated group. However, the cell numbers in blastocysts did not differ among groups. Analysis of the effectiveness of caffeine and MG132 for improving somatic cell nuclear transfer (SCNT) technology using cryopreserved eggs showed that supplementation did not improve the blastocyst formation rate of cloned mouse eggs. These results suggest that maintaining MPF activity after cryopreservation may have a positive effect on further embryonic development, but is unable to fully overcome cryoinjury. Thus, intrinsic factors governing the developmental potential that diminish during oocyte cryopreservation should be explored.
Collapse
Affiliation(s)
- Ji I Baek
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
| | - Dong-Won Seol
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
| | - Ah-Reum Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 06135,
Korea
| | - Sook-Young Yoon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 06135,
Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488,
Korea
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul 06135,
Korea
| |
Collapse
|
22
|
Zhao M, Lee S, Kim DH, No J, Nam Y, Ock SA, Ko YG, Hur TY. Dog cloning with in vivo matured oocytes obtaining using serum estradiol levels for predicting time of ovulation. Theriogenology 2017; 107:109-114. [PMID: 29145064 DOI: 10.1016/j.theriogenology.2017.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/04/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
Dog cloning using in vivo-matured oocytes has been carried out for a decade. To obtain mature oocytes, serum progesterone (P4) levels are used to evaluate ovulation. However, the accuracy of these methods is not sufficient. Thus, the aim of the present study was to verify the feasibility of serum estradiol (E2) on canine ovulation determination as assessed by the percentage of dogs yielding mature oocytes. In vivo-matured oocytes were utilized for canine somatic cell nuclear transfer (SCNT), and serum P4 and E2 levels were assessed to determine ovulation and oocyte maturation. Canine serum P4 and E2 concentrations during both pro-estrus and estrus were analyzed by electrochemiluminescence immunoassay. The percentage of dogs yielding mature oocytes using each of the two ovulation prediction methods were compared, and correlations between the percentage of each method and temperature were analyzed. Following evaluation, oocytes were collected surgically, and a significantly higher percentage (P < 0.05) of dogs yielding mature oocytes was observed using E2 (56.43%) for ovulation detection as compared with that using P4 (39.60%). The percentage of dogs yielding mature oocytes using P4 significantly lower (P < 0.05) than E2 in autumn (P4, 37.50% vs. E2, 52.00%) and winter (P4, 29.17% vs. E2, 59.09%). Using E2, the percentage was maintained at about 52.00-66.67% regardless of the season and temperature. Correlation analysis showed that the dynamic of percentage of dogs yielding mature oocyte using P4 was highly correlated with environmental temperature (RP4 = 0.862), whereas E2 was not affected by temperature (RE2 = 0.199). To determine whether serum E2 could be used for ovulation prediction for canine cloning, ovulation of 25 and 19 dogs (P < 0.05) were predicted using P4 or E2 methods, respectively and two puppies, one from each ovulation prediction method, were obtained after SCNT and embryo transfer. Thus, compared with the P4 method, E2 was an accurate and reliable method for canine cloning.
Collapse
Affiliation(s)
- Minghui Zhao
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seunghoon Lee
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Dong-Hoon Kim
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jingu No
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yoonseok Nam
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Sun A Ock
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yeoung-Gyu Ko
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Tai-Young Hur
- National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
23
|
The potential roles of c-Jun N-terminal kinase (JNK) during the maturation and aging of oocytes produced by a marine protostome worm. ZYGOTE 2017; 25:686-696. [PMID: 29032774 DOI: 10.1017/s0967199417000533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous investigations have indicated that c-Jun N-terminal kinase (JNK) regulates the maturation and aging of oocytes produced by deuterostome animals. In order to assess the roles of this kinase in a protostome, oocytes of the marine nemertean worm Cerebratulus were stimulated to mature and subsequently aged before being probed with phospho-specific antibodies against active forms of JNK and maturation-promoting factor (MPF). Based on blots of maturing oocytes, a 40-kD putative JNK is normally activated during germinal vesicle breakdown (GVBD), which begins at 30 min post-stimulation with seawater, whereas treating immature oocytes with JNK inhibitors downregulates both the 40-kD JNK signal and GVBD, collectively suggesting a 40-kD JNK may facilitate oocyte maturation. Along with this JNK activity, mature oocytes also exhibit high levels of MPF at 2 h post-stimulation. However, by ~6-8 h post-GVBD, mature oocytes lose the 40-kD JNK signal, and at ~20-30 h of aging, an ~48-kD phospho-JNK band arises as oocytes deactivate MPF and begin to lyse during a necroptotic-like mode of death. Accordingly, JNK inhibitors reduce the aging-related 48-kD JNK phosphorylation while maintaining MPF activity and retarding oocyte degradation. Such findings suggest that a 48-kD JNK may help deactivate MPF and trigger death. Possible mechanisms by which JNK activation either together with, or independently of, protein neosynthesis might stimulate oocyte degradation are discussed.
Collapse
|
24
|
Zhang X, Liu X, Chen L, Wu DY, Nie ZW, Gao YY, Miao YL. Caffeine delays oocyte aging and maintains the quality of aged oocytes safely in mouse. Oncotarget 2017; 8:20602-20611. [PMID: 28206974 PMCID: PMC5400529 DOI: 10.18632/oncotarget.15292] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/11/2017] [Indexed: 12/04/2022] Open
Abstract
Caffeine, as an oocyte aging inhibitor, was used in many different species to control or delay oocyte aging. However, the safety of caffeine and developmental competence of aged oocytes inhibited by caffeine has not been studied systematically. So we detected the spindle morphology, distribution of cortical granules, zona pellucida hardening and pronucleus formation to assess oocyte quality of caffeine treated oocytes. We found that aged oocytes treated by caffeine maintained weak susceptibility to activating stimuli and regained normal competent after aged further 6 hr. Caffeine maintained the spindle morphology, changed cortical granules distribution of aged oocytes and could not prevent zona pellucida hardening. Furthermore, caffeine increased pronucleus formation of aged oocytes and decreased fragmentation after fertilization. These results suggested that caffeine could maintain the quality of aged oocytes safely in mouse.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoyan Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Reproductive Medicine Centre, Affiliated Hospital of Qingdao Medical University, Yuhuangding Hospital of Yantai, Yantai, Shandong, China
| | - Li Chen
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Dan-Ya Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Wen Nie
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ying-Ying Gao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
25
|
Gil MA, Nohalez A, Martinez CA, Ake-Villanueva JR, Centurion-Castro F, Maside C, Cuello C, Roca J, Parrilla I, Martinez EA. Effects of meiotic inhibitors and gonadotrophins on porcine oocytes in vitro maturation, fertilization and development. Reprod Domest Anim 2017; 52:873-880. [PMID: 28543962 DOI: 10.1111/rda.12993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 01/06/2023]
Abstract
This study evaluated the effect of three reversible meiotic inhibitors (MINs) and their interaction with gonadotrophins (Gns) on the meiotic maturation and developmental competence of porcine oocytes. In experiment 1, the oocytes were matured for 22 hr in the presence or absence of dbcAMP (1 mM), cycloheximide (7 μM) or cilostamide (20 μM) with or without Gns, and for an additional 22 hr in the absence of MINs and Gns. At 22 hr of maturation, regardless of the presence of Gns, a higher proportion (p < .001) of oocytes cultured in the presence of MINs were effectively arrested at the germinal vesicle stage compared with the oocytes cultured without MINs. At 44 hr of maturation, the proportion of oocytes that reached MII was higher (p < .05) in groups with Gns compared with groups without Gns. In experiment 2, oocytes that were matured as in experiment 1 were inseminated and cultured for 7 days to evaluate fertilization parameters and blastocyst formation. Only oocytes from the dbcAMP + Gns group had higher (p < .05) efficiency of fertilization compared with the other treatment groups. The presence of dbcAMP during maturation also increased (p < .05) blastocyst formation and efficiency of blastocyst formation in both the presence and absence of Gns. These results indicate that the interaction of Gns with the tested MINs improved meiotic progression. In addition, regardless of supplementation with Gns, the presence of dbcAMP during the first maturation period increased and even doubled the capacity of oocytes to develop to the blastocyst stage.
Collapse
Affiliation(s)
- M A Gil
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - A Nohalez
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - C A Martinez
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - J R Ake-Villanueva
- Department Animal Reproduction and Genetic Improvement, Autonomous University of Yucatán, Mérida, Mexico
| | - F Centurion-Castro
- Department Animal Reproduction and Genetic Improvement, Autonomous University of Yucatán, Mérida, Mexico
| | - C Maside
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - C Cuello
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - J Roca
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - I Parrilla
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| | - E A Martinez
- Department Animal Medicine and Surgery, University of Murcia, Murcia, Spain
| |
Collapse
|
26
|
Schatten H, Sun QY. Centrosome and microtubule functions and dysfunctions in meiosis: implications for age-related infertility and developmental disorders. Reprod Fertil Dev 2017; 27:934-43. [PMID: 25903261 DOI: 10.1071/rd14493] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/18/2015] [Indexed: 12/13/2022] Open
Abstract
The effects of oocyte aging on meiotic spindle dynamics have been well recognised, but the mechanisms underlying the effects are not well understood. In this paper we review the role of centrosomes and the microtubule cytoskeleton in meiotic spindle formation and maintenance, and the impact of oocyte aging on spindle integrity resulting in centrosome and microtubule dysfunctions that are associated with aneuploidy. Loss of spindle integrity includes dispersion of proteins from the centrosome core structure and loss of attachment of microtubules to centrosomes and kinetochores, which will result in abnormal chromosome separation. The inability of centrosomal proteins to accurately associate with the centrosome structure may be the result of destabilisation of the core structure itself or of microtubule destabilisation at the centrosome-facing microtubule areas that are acetylated in fresh oocytes but may not be acetylated in aging oocytes. Microtubule destabilisation prevents accurate motor-driven transport of centrosomal proteins along microtubules to form and maintain a functional centrosome. Other factors to form and maintain the MII spindle include signal transductions that affect microtubule dynamics and stability. Understanding the mechanisms underlying centrosome and microtubule dysfunctions during oocyte aging will allow diagnosis and analysis of oocyte quality and abnormalities as important aspects for targeted treatment of aging oocytes to extend or restore viability and developmental capacity. New therapeutic approaches will allow improvements in reproductive success rates in IVF clinics, as well as improvements in reproductive success rates in farm animals. This review is focused on: (1) centrosome and microtubule dynamics in fresh and aging oocytes; (2) regulation of centrosome and/or microtubule dynamics and function; and (3) possible treatments to extend the oocyte's reproductive capacity and viability span.
Collapse
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, 1600 E Rollins Street, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
27
|
Dog cloning with in vivo matured oocytes obtained using electric chemiluminescence immunoassay-predicted ovulation method. PLoS One 2017; 12:e0173735. [PMID: 28288197 PMCID: PMC5348006 DOI: 10.1371/journal.pone.0173735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/24/2017] [Indexed: 11/19/2022] Open
Abstract
Radioactive immunoassay (RIA) is a traditional serum hormone assay method, but the application of the method in reproductive studies is limited by the associated radioactivity. The aim of present study was to evaluate the reliability of RIA and to compare its canine serum progesterone concentration determination accuracy to that of the electric chemiluminescence immunoassay (ECLI). In vivo matured oocytes were utilized for canine somatic cell nuclear transfer (SCNT), and serum progesterone levels were assessed to accurately determine ovulation and oocyte maturation. Canine serum progesterone concentrations during both proestrus and estrus were analyzed by RIA and ECLI to determine the ovulation day. Although both methods detected similar progesterone levels before ovulation, the mean progesterone concentration determined using ECLI was significantly higher than of RIA three days before ovulation. Following ovulation, oocytes were collected by surgery, and a lower percentage of mature oocytes were observed using ECLI (39%) as compared to RIA (67%) if 4-8ng/ml of progesterone were used for determination of ovulation. A high percentage of mature oocytes was observed using ECLI when 6-15 ng/mL of progesterone was used for ovulation determination. To determine whether ECLI could be used for canine cloning, six canines were selected as oocyte donors, and two puppies were obtained after SCNT and embryo transfer. In conclusion, compared to the traditional RIA method, the ECLI method is a safe and reliable method for canine cloning.
Collapse
|
28
|
Liang S, Guo J, Choi JW, Kim NH, Cui XS. Effect and possible mechanisms of melatonin treatment on the quality and developmental potential of aged bovine oocytes. Reprod Fertil Dev 2017; 29:1821-1831. [DOI: 10.1071/rd16223] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022] Open
Abstract
After reaching the metaphase II (MII) stage, unfertilised oocytes undergo a time-dependent process of quality deterioration referred to as oocyte aging. The associated morphological and cellular changes lead to decreased oocyte developmental potential. This study investigated the effect of exogenous melatonin supplementation on in vitro aged bovine oocytes and explored its underlying mechanisms. The levels of cytoplasmic reactive oxygen species and DNA damage response in bovine oocytes increased during in vitro aging. Meanwhile, maturation promoting factor activity significantly decreased and the proportion of morphologically abnormal oocytes significantly increased. Melatonin supplementation significantly decreased quality deterioration in aged bovine MII oocytes (P < 0.05). Additionally, it decreased the frequency of aberrant spindle organisation and cortical granule release during oocyte aging (P < 0.05). In the melatonin-supplemented group, mitochondrial membrane potential and ATP production were significantly increased compared with control. Furthermore, melatonin treatment significantly increased the speed of development of bovine oocytes to the blastocyst stage after in vitro fertilisation and significantly decreased the apoptotic rate in the blastocysts (P < 0.05). The expression of Bax and Casp3 in the blastocysts was significantly reduced after treatment with melatonin, whereas expression of Bcl2 significantly increased (P < 0.05). In conclusion, these findings suggest that supplementation of aged bovine oocytes with exogenous melatonin improves oocyte quality, thereby enhancing the developmental capacity of early embryos.
Collapse
|
29
|
Schatten H, Sun QY. Cytoskeletal Functions, Defects, and Dysfunctions Affecting Human Fertilization and Embryo Development. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Heide Schatten
- Department of Veterinary Pathobiology; University of Missouri; Columbia MO USA
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
30
|
Zheng J, Yin XQ, Ge W, He GF, Qian WP, Ma JY, Shen W, Yin S, Sun QY. Post-ovulatory aging of mouse oocytesin vivoandin vitro: Effects of caffeine on exocytosis and translocation of cortical granules. Anim Sci J 2016; 87:1340-1346. [DOI: 10.1111/asj.12611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/28/2015] [Accepted: 01/08/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Jie Zheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology; Qingdao Agricultural University; Qingdao Shandong China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
| | - Xun-Qiang Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology; Qingdao Agricultural University; Qingdao Shandong China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology; Qingdao Agricultural University; Qingdao Shandong China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
| | - Gui-Fang He
- College of Life Science; Qingdao Agricultural University; Qingdao China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
| | - Wei-Ping Qian
- Department of Reproductive Medicine; Peking University Shenzhen Hospital; Medical Center of Peking University; Shenzhen Guangdong China
| | - Jun-Yu Ma
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology; Qingdao Agricultural University; Qingdao Shandong China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology; Qingdao Agricultural University; Qingdao Shandong China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
| | - Shen Yin
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology; Qingdao Agricultural University; Qingdao Shandong China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
| | - Qing-Yuan Sun
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology; Qingdao Agricultural University; Qingdao Shandong China
- Institute of Reproductive Sciences; Qingdao Agricultural University; Qingdao China
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
31
|
Stricker SA, Beckstrom B, Mendoza C, Stanislawski E, Wodajo T. Oocyte aging in a marine protostome worm: The roles of maturation-promoting factor and extracellular signal regulated kinase form of mitogen-activated protein kinase. Dev Growth Differ 2016; 58:250-9. [PMID: 26918273 DOI: 10.1111/dgd.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
The roles of maturation-promoting factor (MPF) and an extracellular signal regulated kinase form of mitogen-activated protein kinase (ERK MAPK) are analyzed during oocyte aging in the marine protostome worm Cerebratulus. About a day after removal from the ovary, unfertilized metaphase-I-arrested oocytes of Cerebratulus begin to flatten and swell before eventually lysing, thereby exhibiting characteristics of a necroptotic mode of regulated cell death. Based on immunoblots probed with phospho-specific antibodies, MPF and ERK are initially active in freshly mature specimens. However, as oocytes age, both kinase activities decline, with ERK deactivation occurring well before MPF downregulation. Experiments using pharmacological modulators indicate that oocyte degradation is promoted by the maturation-initiated activation of ERK as well as by the deactivation of MPF that occurs in extensively aged specimens. The potential significance of these findings is discussed relative to previously published results for apoptotic eggs and oocytes of echinoderm and vertebrate deuterostomes.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bradley Beckstrom
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Cristina Mendoza
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Emma Stanislawski
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tewodros Wodajo
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
32
|
Chimote NM, Nath NM, Chimote NN, Chimote BN. Follicular fluid dehydroepiandrosterone sulfate is a credible marker of oocyte maturity and pregnancy outcome in conventional in vitro fertilization cycles. J Hum Reprod Sci 2016; 8:209-13. [PMID: 26751787 PMCID: PMC4691972 DOI: 10.4103/0974-1208.170397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AIM: To investigate if the level of dehydroepiandrosterone sulfate (DHEA-s) in follicular fluid (FF) influences the competence of oocytes to fertilize, develop to the blastocyst stage, and produce a viable pregnancy in conventional in vitro fertilization (IVF) cycles. SETTINGS AND DESIGN: Prospective study of age-matched, nonpolycystic ovary syndrome (PCOS) women undergoing antagonist stimulation protocol involving conventional insemination and day 5 blastocyst transfer. MATERIALS AND METHODS: FF levels of DHEA-s and E2 were measured by a radio-immuno-assay method using diagnostic kits. Fertilization rate, embryo development to the blastocyst stage and live birth rate were main outcome measures. Cycles were divided into pregnant/nonpregnant groups and also into low/medium/high FF DHEA-s groups. Statistical analysis was done by GraphPad Prism V software. RESULTS: FF DHEA-s levels were significantly higher in pregnant (n = 111) compared to nonpregnant (n = 381) group (1599 ± 77.45 vs. 1372 ± 40.47 ng/ml; P = 0.01). High (n = 134) FF DHEA-s group had significantly higher percentage of metaphase II (MII) oocytes (91.5 vs. 85.54 vs. 79.44%, P < 0.0001), fertilization rate (78.86 vs. 74.16 vs. 71.26%, P < 0.0001), cleavage rate (83.67 vs. 69.1 vs. 66.17%, P = 0.0002), blastocyst formation rate (37.15 vs. 33.01 vs. 26.95%, P < 0.0001), and live birth rate (29.85 vs. 22.22 vs. 14.78%, P = 0.017) compared to medium (n = 243) and low (n = 115) FF DHEA-s groups, respectively despite comparable number of oocytes retrieved and number of blastocysts transferred. FF DHEA-s levels correlated significantly with the attainment of MII oocytes (Pearson r = 0.41) and fertilization rates (Pearson r = 0.35). CONCLUSION: FF DHEA-s level influences the oocyte maturation process and is predictive of fertilization, embryo development to the blastocyst stage and live birth rates in non-PCOS women undergoing conventional IVF cycles.
Collapse
Affiliation(s)
- Natachandra M Chimote
- Department of Endocrinology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Nirmalendu M Nath
- Department of Biochemistry, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Nishad N Chimote
- Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Bindu N Chimote
- Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Department of Biochemistry, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| |
Collapse
|
33
|
Tripathi A, Chaube SK. Roscovitine inhibits extrusion of second polar body and induces apoptosis in rat eggs cultured in vitro. Pharmacol Rep 2015; 67:866-74. [DOI: 10.1016/j.pharep.2015.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
|
34
|
Lee K, Davis A, Zhang L, Ryu J, Spate LD, Park KW, Samuel MS, Walters EM, Murphy CN, Machaty Z, Prather RS. Pig oocyte activation using a Zn²⁺ chelator, TPEN. Theriogenology 2015; 84:1024-32. [PMID: 26143360 DOI: 10.1016/j.theriogenology.2015.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 02/03/2023]
Abstract
Artificial oocyte activation is a critical step during SCNT. Most current activation protocols focus on inducing an increase in the intracellular free Ca(2+) concentration of the oocyte. Here, we have used a zinc chelator, TPEN, to enhance the efficiency of oocyte activation during SCNT. TPEN treatment of matured pig oocytes resulted in the reduction of available Zn(2+) in pig oocytes; however, the cytosolic Ca(2+) concentration in the oocytes was not affected by the TPEN treatment. When various concentrations (100-250 μM) and incubation durations (45 minutes-2.5 hours) of TPEN were used to activate oocytes, the efficiency of oocyte activation was not different from conventional activation methods. When oocytes that were activated by conventional activation methods were incubated with a lower concentration of TPEN (5-10 μM), a significant increase in embryos developing to the blastocyst stage was observed. In addition, when oocytes receiving a small Ca(2+) stimulus were further activated by higher concentration of TPEN (100-200 μM), a significant increase in the frequency of blastocyst formation was observed, compared to a conventional activation method. This result indicated that TPEN can be a main reagent in oocyte activation. No increase in the cytosolic Ca(2+) level was detected when oocytes were exposed to various concentrations of TPEN, indicating the ability of TPEN to induce oocyte activation is independent of an intracellular Ca(2+) increase. We were able to produce clones through SCNT by using the TPEN-assisted activation procedure, and the piglets produced through the process did not show any signs of abnormality. In this study, we have developed an efficient way to use TPEN to increase the developmental potential of cloned embryos.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, USA.
| | - Alyssa Davis
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Lu Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Junghyun Ryu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, USA
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Kwang-Wook Park
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Melissa S Samuel
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Clifton N Murphy
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
35
|
Combined inhibitory effects of low temperature and N-acetyl-l-cysteine on the postovulatory aging of mouse oocytes. ZYGOTE 2015; 24:195-205. [PMID: 25801325 DOI: 10.1017/s0967199415000039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The postovulatory aging of oocytes eventually affects the development of oocytes and embryos. Oxidative stress is known to accelerate the onset of apoptosis in oocytes and influence their capacity for fertilisation. This study aimed to reveal the roles of temperature and the antioxidant N-acetyl-l-cysteine in preventing the aging of postovulatory mouse oocytes. First, newly ovulated mouse oocytes were cultured at various temperature and time combinations in HCZB medium with varying concentrations of N-acetyl-l-cysteine to assess signs of aging and developmental potential. When cultured in HCZB with 300 μM N-acetyl-l-cysteine at different temperature and incubation time combinations (namely 25°C for 12 h, 15°C for 24 h and 5°C for 12 h), the increase in the susceptibility of oocytes to activating stimuli was efficiently prevented, and the developmental potential was maintained following Sr2+ activation or in vitro fertilisation. After incubation at either 15°C for 36 h or 5°C for 24 h, oocytes that had decreased blastocyst rates displayed unrecoverable abnormal cortical granule distribution together with decreased BCL2 levels, total glutathione concentrations and glutathione/glutathione disulphide (GSH/GSSG) ratios. In conclusion, postovulatory oocyte aging could be effectively inhibited by appropriate N-acetyl-l-cysteine addition at low temperatures. In addition, a simple method for the temporary culture of mature oocytes was established.
Collapse
|
36
|
Zhao S, Liu ZX, Bao ZJ, Wu Y, Wang K, Yu GM, Wang CM, Zeng SM. Age-associated potency decline in bovine oocytes is delayed by blocking extracellular Ca(2+) influx. Theriogenology 2015; 83:1493-501. [PMID: 25784452 DOI: 10.1016/j.theriogenology.2015.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/09/2015] [Accepted: 01/17/2015] [Indexed: 10/24/2022]
Abstract
Oocyte aging due to delayed fertilization is associated with declining quality and developmental potential. Intracellular calcium (Ca(2+)) concentration ([Ca(2+)]i) regulates oocyte growth, maturation, and fertilization and has also been implicated in aging. Using bovine oocytes, we tested the hypothesis that oocyte aging could be delayed by reducing [Ca(2+)]ivia blocking the influx of extracellular Ca(2+) or chelating ooplasmic free Ca(2+). After IVM, cumulus-oocyte complexes or denuded oocytes were cultured in medium supplemented with 1-octanol, phorbol 12-myristate 13-acetate, or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis-acetoxymethyl ester (BAPTA-AM) to manipulate [Ca(2+)]i. Addition of 1-mM 1-octanol increased blastocyst development rates in the cumulus-oocyte complexes aged for 6 hours by IVF and for 6, 12, and 24 hours by parthenoactivation, and this effect was independent of the presence of cumulus cells. The intracellular levels of ATP, Glutathione, and Glutathione disulfide were not affected by 1-octanol, but [Ca(2+)]i was significantly decreased. When oocytes were cultured in Ca(2+)-free medium for 12 hours, the blastocyst development rate was greater and the beneficial effects of 1-octanol on oocyte aging were abolished. However, when the medium was supplemented with phorbol 12-myristate 13-acetate, [Ca(2+)]i increased and the blastocyst development rate decreased. Moreover, BAPTA-AM reduced [Ca(2+)]i and increased blastocyst development rates after IVF or parthenoactivation. We conclude that the age-associated developmental potency decline was delayed by blocking the influx of extracellular Ca(2+) or reducing ooplasmic free Ca(2+). 1-Octanol, BAPTA-AM, or Ca(2+)-free medium could be used to lengthen the fertilization windows of aged bovine oocytes.
Collapse
Affiliation(s)
- Shuan Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen-Xing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhong-Jian Bao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of genitourinary, Assisted Reproductive Technology Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yi Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guang-Min Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cui-Mei Wang
- Yantai Research Institute, China Agricultural University, Yantai, Shandong, China
| | - Shen-Ming Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; Laboratory of Animal Embryonic Biotechnology, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
37
|
Krejcova T, Smelcova M, Petr J, Bodart JF, Sedmikova M, Nevoral J, Dvorakova M, Vyskocilova A, Weingartova I, Kucerova-Chrpova V, Chmelikova E, Tumova L, Jilek F. Hydrogen sulfide donor protects porcine oocytes against aging and improves the developmental potential of aged porcine oocytes. PLoS One 2015; 10:e0116964. [PMID: 25615598 PMCID: PMC4304783 DOI: 10.1371/journal.pone.0116964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 01/10/2023] Open
Abstract
Porcine oocytes that have matured in in vitro conditions undergo the process of aging during prolonged cultivation, which is manifested by spontaneous parthenogenetic activation, lysis or fragmentation of aged oocytes. This study focused on the role of hydrogen sulfide (H2S) in the process of porcine oocyte aging. H2S is a gaseous signaling molecule and is produced endogenously by the enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST). We demonstrated that H2S-producing enzymes are active in porcine oocytes and that a statistically significant decline in endogenous H2S production occurs during the first day of aging. Inhibition of these enzymes accelerates signs of aging in oocytes and significantly increases the ratio of fragmented oocytes. The presence of exogenous H2S from a donor (Na2S.9H2O) significantly suppressed the manifestations of aging, reversed the effects of inhibitors and resulted in the complete suppression of oocyte fragmentation. Cultivation of aging oocytes in the presence of H2S donor positively affected their subsequent embryonic development following parthenogenetic activation. Although no unambiguous effects of exogenous H2S on MPF and MAPK activities were detected and the intracellular mechanism underlying H2S activity remains unclear, our study clearly demonstrates the role of H2S in the regulation of porcine oocyte aging.
Collapse
Affiliation(s)
- Tereza Krejcova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Miroslava Smelcova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | | | - Jean-Francois Bodart
- Université Lille1, Sciences et Technologies, Laboratoire de Régulation des Signaux de Division - EA 4479, Villeneuve d´Ascq, France
| | - Marketa Sedmikova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Jan Nevoral
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Marketa Dvorakova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Alena Vyskocilova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Ivona Weingartova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Veronika Kucerova-Chrpova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Eva Chmelikova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Lenka Tumova
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| | - Frantisek Jilek
- Czech University of Life Sciences in Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
| |
Collapse
|
38
|
Changes of spontaneous parthenogenetic activation and development potential of golden hamster oocytes during the aging process. Acta Histochem 2015; 117:104-10. [PMID: 25480399 DOI: 10.1016/j.acthis.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 11/21/2022]
Abstract
The golden hamster is an excellent animal experimental model for oocyte research. The hamster oocytes are very useful in clinical examination of human spermatozoan activity. Non-fertile oocytes can lead to time-dependent processes of aging, which will affect the results of human spermatozoa examination. As a consequence there is a need to investigate the aging and anti-aging processes of golden hamster oocytes. In order to study the aging processes and parthenogenetic activation of golden hamster oocytes, in vivo oocytes, oocytes cultured with or without cumulus cells, and oocytes treated with Trichostatin A (TSA) or caffeine were collected and investigated. We found that: (1) spontaneous parthenogenetic activation, developmental potential (cleavage rate), and zona pellucida (ZP) hardening undergo age-dependent changes in in vivo, in vitro, and after TSA or caffeine treatment; (2) in vivo, oocytes became spontaneously parthenogenetic 25 h post-hCG treatment; (3) in vitro, cumulus cells did not significantly increase the parthenogenetic activation rate of cultured hamster oocytes; and (4) TSA or caffeine could delay spontaneous oocyte parthenogenetic activation and the aging processes by at least 5h, but also accelerated the hardening of the ZP. These results define the conditions for the aging and anti-aging processes in golden hamster oocytes. TSA and caffeine play roles in controlling spontaneous activation, which could facilitate the storage and use of golden hamster oocytes for studying processes relevant to human reproduction.
Collapse
|
39
|
Tripathi A, Chaube SK. Reduction of phosphorylated Thr-161 Cdk1 level participates in roscovitine-induced Fas ligand-mediated apoptosis in rat eggs cultured in vitro. In Vitro Cell Dev Biol Anim 2014; 51:174-82. [PMID: 25148827 DOI: 10.1007/s11626-014-9812-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/17/2014] [Indexed: 12/28/2022]
Abstract
The present study was aimed to find out whether roscovitine reduces phosphorylated Thr-161 of cyclin-dependent kinase 1 (Cdk1) level and induces egg apoptosis through Fas ligand (FasL)-mediated pathway. For this purpose, ovulated eggs were cultured in media 199 with or without various concentrations of roscovitine (0, 25, 50, 100, 200 μM) for 3 h in vitro. The morphological apoptotic changes, phosphorylation status of Cdk1, FasL concentration, caspase-8 and caspase-3 activities, and DNA fragmentation were analyzed. Data of the present study suggest that roscovitine significantly reduced Thr-161 phosphorylated Cdk1 level without altering the total level of Cdk1 and induced cytoplasmic fragmentation, a morphological apoptotic feature in a concentration-dependent manner. The roscovitine-induced cytoplasmic fragmentation was associated with increased FasL concentration. The increased FasL concentration induced caspase-8 followed by caspase-3 activities. The increased caspases activity finally induced DNA fragmentation in eggs that showed cytoplasmic fragmentation. Taken together, these results suggest that roscovitine reduced phosphorylated Thr-161 of Cdk1 level and induces apoptosis through FasL-mediated pathway in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Anima Tripathi
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
40
|
Carrying-over effects of GVBD blocking on post-blocking meiotic progression of oocytes: species difference and the signaling pathway leading to MPF activation. PLoS One 2014; 9:e103838. [PMID: 25078078 PMCID: PMC4117542 DOI: 10.1371/journal.pone.0103838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 11/19/2022] Open
Abstract
Efforts to improve the quality of in vitro matured oocytes by blocking germinal vesicle breakdown (GVBD) and allowing more time for ooplasmic maturation have achieved little due to a lack of knowledge on the molecular events during GVBD blocking. Such knowledge is also important for studies aimed at regulating gene expression in maturing oocytes prior to GVBD. We studied species difference and signaling pathways leading to the carrying-over effect of GVBD blocking on post-blocking meiotic progression (PBMP). Overall, GVBD-blocking with roscovitine decelerated PBMP of mouse oocytes but accelerated that of pig oocytes. During blocking culture, whereas cyclin B of pig oocytes increased continuously, that of mouse oocytes declined first and then increased slowly. In both species, (a) whereas active CDC2A showed a dynamics similar to cyclin B, inactive CDC2A decreased continuously; (b) when oocytes were blocked in blocking medium containing cycloheximide, PBMP was decelerated significantly while cyclin B and active CDC2A decreasing to the lowest level; (c) whereas sodium vanadate in blocking medium reduced PBMP, epidermal growth factor (EGF) in blocking medium accelerated PBMP significantly with no effect on cyclin B levels. In conclusion, the EGF signaling cascade accelerated PBMP by promoting the pre-MPF (M-phase-promoting factor) to MPF conversion during GVBD blocking with roscovitine. The significant difference in PBMP observed between mouse and pig oocytes was caused by species difference in cyclin B dynamics during blocking culture as no species difference was observed in either pre-MPF to MPF conversion or the EGF signaling activity.
Collapse
|
41
|
Lee SE, Kim EY, Choi HY, Moon JJ, Park MJ, Lee JB, Jeong CJ, Park SP. Rapamycin rescues the poor developmental capacity of aged porcine oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:635-47. [PMID: 25049998 PMCID: PMC4093196 DOI: 10.5713/ajas.2013.13816] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/22/2014] [Accepted: 02/21/2014] [Indexed: 11/27/2022]
Abstract
Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; 44 h+10 μM rapamycin/24 h, 47.52±5.68) or control oocytes (44 h IVM; 42.14±4.40) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, 22.04±5.68) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.
Collapse
Affiliation(s)
- Seung Eun Lee
- Stem Cell Research Center, Jeju National University, Jeju 690-756, Korea
| | - Eun Young Kim
- Stem Cell Research Center, Jeju National University, Jeju 690-756, Korea ; Miraebio Research Institute, Mirae Biotech, Seoul 143-854, Korea
| | - Hyun Yong Choi
- Stem Cell Research Center, Jeju National University, Jeju 690-756, Korea
| | - Jeremiah Jiman Moon
- Stem Cell Research Center, Jeju National University, Jeju 690-756, Korea ; Faculty of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 690-756, Korea
| | - Min Jee Park
- Stem Cell Research Center, Jeju National University, Jeju 690-756, Korea ; Miraebio Research Institute, Mirae Biotech, Seoul 143-854, Korea . ; Faculty of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 690-756, Korea
| | | | | | - Se Pill Park
- Stem Cell Research Center, Jeju National University, Jeju 690-756, Korea ; Miraebio Research Institute, Mirae Biotech, Seoul 143-854, Korea . ; Faculty of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 690-756, Korea
| |
Collapse
|
42
|
Fathi M, Seida AA, Sobhy RR, Darwish GM, Badr MR, Moawad AR. Caffeine supplementation during IVM improves frequencies of nuclear maturation and preimplantation development of dromedary camel oocytes following IVF. Theriogenology 2014; 81:1286-92. [DOI: 10.1016/j.theriogenology.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
43
|
Samiec M, Skrzyszowska M. Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod Biol 2014; 14:128-39. [PMID: 24856472 DOI: 10.1016/j.repbio.2013.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
Abstract
A novel method termed the biological transcomplementary activation (B-TCA) has been recently utilized for the stimulation of porcine oocytes reconstituted by somatic cell nuclear transfer (SCNT). The use of cytosolic components originating from fertilized (FE) rabbit zygotes as the stimuli for the B-TCA of SCNT-derived pig oocytes appeared to be a highly efficient strategy applied to promote the in vitro development of cloned embryos, leading to a significant improvement in the blastocyst yield (43.6%) compared to the yields achieved using the standard protocol of simultaneous fusion and electrical activation (SF-EA; [31.3%]) or the protocol of delayed electrical activation (D-EA) independent of extracellular Ca(2+) ions (0%). The FE rabbit zygote cytoplast-mediated B-TCA resulted in the increased blastocyst formation rate of porcine cloned embryos as compared to the B-TCA triggered by either cytoplasts isolated from pig parthenogenotes (PAs; [27.8%]) or rabbit PA-descended cytoplasts (0%). A considerably lower percentage of blastocysts containing apoptotic and/or necrotic (annexin V-eGFP-positive) cells were obtained from the SCNT-derived oocytes stimulated by the FE rabbit zygote cytoplast-based B-TCA (22.2%) compared to those stimulated using the SF-EA protocol (35.1%). In contrast to the B-TCA induced by FE rabbit zygote cytoplasts, apoptosis/necrosis incidence decreased totally among the cloned pig blastocysts that developed from reconstituted oocytes undergoing the porcine PA cytoplast-evoked B-TCA. In conclusion, the FE rabbit zygote cytoplast-mediated B-TCA turned out to be a relatively effective strategy for the in vitro production of porcine blastocyst clones of higher quality compared to those created using the standard SF-EA approach.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Cracow, Poland.
| | - Maria Skrzyszowska
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Cracow, Poland
| |
Collapse
|
44
|
Cecconi S, Rossi G, Deldar H, Cellini V, Patacchiola F, Carta G, Macchiarelli G, Canipari R. Post-ovulatory ageing of mouse oocytes affects the distribution of specific spindle-associated proteins and Akt expression levels. Reprod Fertil Dev 2014; 26:562-9. [PMID: 23622715 DOI: 10.1071/rd13010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2023] Open
Abstract
The aim of this study has been to determine the effects of in vivo post-ovulatory ageing (POA) on the distribution of spindle-associated proteins, histone H3/H4 post-translational modifications and on v-akt murine thymoma viral oncogene homolog 1 (Akt) expression levels. To this end, oocytes were retrieved 13, 29 and 33h after human chorionic gonadotrophin (hCG) treatment. The presence and distribution at the meiotic spindle of acetylated tubulin, γ-tubulin, polo kinase-1 and Ser473/Thr308 phosphorylated Akt (pAkt) as well as histone H3 and H4 acetylation and phosphorylation levels were assayed via immunofluorescence. Akt expression levels were determined via reverse transcription-polymerase chain reaction and western blotting analyses. Spindles from oocytes recovered 13h and 29h after hCG treatment showed similar levels of acetylated tubulin but ageing induced: (1) translocation of γ-tubulin from spindle poles to microtubules, (2) absence of Thr308- and Ser473-pAkt in 76% and 30% of oocytes, respectively, and (3) a significant reduction in phosphorylation levels of serine 10 on histone 3. At 29h, a significant decrease in Akt mRNA, but not in pAkt or Akt protein levels, was recorded. By contrast, protein content significantly decreased 33h after hCG. We conclude that POA impairs oocyte viability and fertilisability by altering the expression levels and spindle distribution of proteins that are implicated in cell survival and chromosome segregation. Together, these events could play a role in oocyte apoptosis.
Collapse
Affiliation(s)
- Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, Coppito, 67100 L'Aquila, Italy
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, Coppito, 67100 L'Aquila, Italy
| | - Hamid Deldar
- Department of Animal Science, College of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari, Iran
| | - Valerio Cellini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, Coppito, 67100 L'Aquila, Italy
| | - Felice Patacchiola
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, Coppito, 67100 L'Aquila, Italy
| | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, Coppito, 67100 L'Aquila, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, Coppito, 67100 L'Aquila, Italy
| | - Rita Canipari
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Embryology, School of Pharmacy and Medicine, 'Sapienza' University of Rome, V.le Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
45
|
Jin YX, Zhao MH, Zheng Z, Kwon JS, Lee SK, Cui XS, Kim NH. Histone deacetylase inhibitor trichostatin A affects porcine oocyte maturation in vitro. Reprod Fertil Dev 2014; 26:806-16. [DOI: 10.1071/rd13013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/13/2013] [Indexed: 11/23/2022] Open
Abstract
Previous studies show that porcine oocyte aging resulting from asynchronised IVM impairs embryo developmental competence. In the present study we investigated whether trichostatin A (TSA; an inhibitor of histone deacetylation) prolongs the maturation time and prevents the aging of oocytes. Porcine oocytes were cultured in medium containing increasing concentrations of TSA (300 nM) for 24, 44 or 64 h. The percentage of oocytes that underwent germinal vesicle breakdown was significantly lower in the TSA-treated group (300 nM) than in the control group. TSA did not affect oocyte quality at MII based on levels of maturation-promoting factor, the phosphorylation status of mitogen-activated protein kinase or histone H3K9 acetylation analysis. We also compared the preimplantation developmental competence and the viability of pathenogenetic embryos treated with 100 nM TSA for 24 h and then continuously cultured for another 24 h in TSA free condition. No significant differences were observed for either parameter between the TSA-treated and control groups. These results indicate that TSA prolongs the IVM of porcine oocytes but that oocyte quality and aging are not affected. These findings provide a feasible option by which to adjust the initiation time of downstream experiments based on porcine matured oocytes.
Collapse
|
46
|
Abstract
With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.
Collapse
|
47
|
Abstract
With extended periods of time following ovulation, the metaphase II stage oocyte experiences deterioration in quality referred to as post-ovulatory oocyte ageing. Post-ovulatory ageing occurs both in vivo and in vitro and has been associated with reduced fertilization rates, poor embryo quality, post-implantation errors and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been established, the molecular mechanisms controlling this process are not well defined. This review analyses the relationships between biochemical changes exhibited by the ageing oocyte and the symptoms associated with the ageing phenotype. We also discuss molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We propose that oxidative stress may act as the initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to cause a decline in levels of critical cell cycle factors such as maturation-promoting factor, impair calcium homoeostasis, induce mitochondrial dysfunction and directly damage multiple intracellular components of the oocyte such as lipids, proteins and DNA. Finally, this review addresses current strategies for delaying post-ovulatory oocyte ageing with a particular focus on the potential use of compounds such as caffeine or selected antioxidants in the development of more refined media for the preservation of oocyte integrity during IVF procedures.
Collapse
|
48
|
Hajian M, Kiani M, Hosseini MS, Ostadhosseini S, Forouzanfar M, Afrough M, Nasr-Esfahani MH. Specific activation requirements of zona-free sheep oocytes before and after somatic cell nuclear transfer. Cell Reprogram 2013; 15:247-57. [PMID: 23713434 DOI: 10.1089/cell.2012.0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, the effect of the steps involved in zona-free somatic cell nuclear transfer (SCNT) on oocyte transcripts was investigated in sheep. To establish the reliable combined electrical-chemical activation for zona-free oocytes, oocytes were first exposed to an electrical pulse and then treated with 18 chemical activation regimens designed through modifying duration and concentration of ionomycin and 6-dimethyl aminopurine (6-DMAP), which is routinely used for SCNT. Electrofusion-mediated nuclear transfer significantly reduced transcript abundances of CCNB1, POU5F1, NPM2, GMMN, and CX43 compared to intact oocytes. Maximum parthenogenetic blastocyst development was obtained when oocytes were submitted to electric pulse and then to (1) 5 μM ionomycin for 5 or 2.5 min, both followed by 2 h of incubation with 6-DMAP (41.7±1.1, and 42.4±1.4%, respectively), (2) 5 μM ionomycin for 1 min+6-DMAP for 4 h (43.1±1.4%), and (3) 2.5 μM ionomycin for 1 min+6-DMAP for 2 h (42.4±1.4%), with significant differences compared to all the other groups. Statistical assessment of interactions between duration and concentration of ionomycin and duration of 6-DMAP exposure revealed that (1) concentration of ionomycin may be a more important factor than its duration, (2) both a long exposure period and a low concentration of ionomycin had marked decreasing effects on parthenogenetic development of zona-free oocytes, and (3) high duration of exposure to 6-DMAP can reduce parthenogenetic development. Despite an activation preference of parthenogenetic oocytes, a significantly higher rate of cloned blastocyst development was observed when reconstructed oocytes were activated with 5 μM ionomycin for 5 min rather than 2.5 μM ionomycin for 1 min (8.8±2.5 vs. 1.25±2.2%). These results suggested that SCNT steps have determining effects on oocyte transcripts and activation preferences of the reconstituted oocytes compared to intact counterparts. In this sense, reconstituted oocytes may need a higher concentration of ionomycin for a longer period than intact oocytes.
Collapse
Affiliation(s)
- M Hajian
- Department of Reproduction and Development, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee J, You J, Lee GS, Hyun SH, Lee E. Pig oocytes with a large perivitelline space matured in vitro show greater developmental competence after parthenogenesis and somatic cell nuclear transfer. Mol Reprod Dev 2013; 80:753-62. [DOI: 10.1002/mrd.22205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 06/05/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Joohyeong Lee
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
| | - Jinyoung You
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
- Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| | - Sang-Hwan Hyun
- College of Veterinary Medicine; Chungbuk National University; Cheongju Korea
| | - Eunsong Lee
- College of Veterinary Medicine; Kangwon National University; Chuncheon Korea
- Institute of Veterinary Science; Kangwon National University; Chuncheon Korea
| |
Collapse
|
50
|
Shaeib F, Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radic Biol Med 2013; 58:154-9. [PMID: 23261938 PMCID: PMC4482232 DOI: 10.1016/j.freeradbiomed.2012.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
Abstract
Here we show that hydroxyl radical ((•)OH) generated through the Fenton reaction alters metaphase-II mouse oocyte microtubules (MT) and chromosomal alignment (CH). Metaphase-II mouse oocytes, obtained commercially, were grouped as follows: control, hydrogen peroxide (H2O2), Fe(II), and combined (Fe(II) +H2O2) treatments. After 7-10 min of incubation at 37 °C, MT and CH were evaluated on fixed and stained oocytes and scored by two blinded observers. Pearson χ(2) test and Fisher exact test were used to compare outcomes between controls and treated groups and also among the treated groups. Our results showed that poor scores for MT and CH increased significantly in oocytes treated with a combination of H2O2 and Fe(II) (p<0.001); oocytes treated with H2O2 alone or Fe(II) alone showed no or few changes compared to control. Comparison of oocyte groups that received increasing concentrations of H2O2 and a fixed amount of Fe(II) showed that 70-80% demonstrated poor scores in both MT and CH when pretreated with 5 μM H2O2, and this increased up to 90-100% when treated with 10-20 μM H2O2. Hydroxyl radical generated by H2O2-driven Fenton reaction deteriorates the metaphase-II mouse oocyte spindle and CH alignment, which is thought to be a potential cause of poor oocyte quality. Thus, free iron and/or ROS scavengers could attenuate the (•)OH-mediated spindle and chromosomal damage, thereby serving as a possible approach for further examination as a therapeutic option in inflammatory states.
Collapse
Affiliation(s)
| | | | | | | | - Husam M. Abu-Soud
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Address correspondence to: Husam M Abu-Soud, Ph.D Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock Detroit, MI 48201, Tel. 313 577-6178, Fax. 313 577-8554,
| |
Collapse
|