1
|
Yan Y, Zhang H, Xu R, Luo L, Yin L, Wu H, Zhang Y, Li C, Lu S, Tang Y, Zhao X, Pan M, Wei Q, Peng S, Ma B. Single-cell sequencing reveals the transcriptional alternations of 17β-estradiol suppressing primordial follicle formation in neonatal mouse ovaries. Cell Prolif 2024; 57:e13713. [PMID: 38988058 PMCID: PMC11503257 DOI: 10.1111/cpr.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Estrogen has been implicated in multiple biological processes, but the variation underlying estrogen-mediated primordial follicle (PF) formation remains unclear. Here, we show that 17β-estradiol (E2) treatment of neonatal mice led to the inhibition of PF formation and cell proliferation. Single-cell RNA sequencing (scRNA-seq) revealed that E2 treatment caused significant changes in the transcriptome of oocytes and somatic cells. E2 treatment disrupted the synchronised development of oocytes, pre-granulosa (PG) cells and stromal cells. Mechanistically, E2 treatment disrupted several signalling pathways critical to PF formation, especially down-regulating the Kitl and Smad1/3/4/5/7 expression, reducing the frequency and number of cell communication. In addition, E2 treatment influenced key gene expression, mitochondrial function of oocytes, the recruitment and maintenance of PG cells, the cell proliferation of somatic cells, as well as disordered the ovarian microenvironment. This study not only revealed insights into the regulatory role of estrogen during PF formation, but also filled in knowledge of dramatic changes in perinatal hormones, which are critical for the physiological significance of understanding hormone changes and reproductive protection.
Collapse
Affiliation(s)
- Yutong Yan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Rui Xu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Linglin Luo
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Lu Yin
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Hao Wu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yiqian Zhang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chan Li
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sihai Lu
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yaju Tang
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoe Zhao
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Menghao Pan
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Qiang Wei
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Sha Peng
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Baohua Ma
- College of Veterinary MedicineNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Animal Biotechnology of the Ministry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Cascajosa-Lira A, Guzmán-Guillén R, Arjona AB, Aguinaga-Casañas MA, Ayala-Soldado N, Moyano-Salvago MR, Molina A, Jos Á, Cameán AM, Pichardo S. Risk assessment and environmental consequences of the use of the Allium-derived compound propyl-propane thiosulfonate (PTSO) in agrifood applications. ENVIRONMENTAL RESEARCH 2023; 236:116682. [PMID: 37459943 DOI: 10.1016/j.envres.2023.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
The organosulfur compound propyl-propane thiosulfonate (PTSO), mainly found in Allium cepa, has a promising use in the agrifood industry. To confirm its safety for livestock, consumers, and environment, toxicological assessment is needed. In this regard, endocrine-disrupting chemicals (EDCs) are in the spotlight of research. Therefore, as part of the risk assessment of PTSO, in the present work, an in vivo study was performed in mice exposed to PTSO to investigate its potential reproductive toxicity considering fertility, genetic and endocrine endpoints. Five-weeks-old CD1 mice (80 males, 80 females) were exposed for 11 or 16 weeks (males or females, respectively) to different doses of PTSO (0, 14, 28 and 55 mg PTSO/kg b.w./day; 20 animals per group and sex) through the food pellets. No clinical observations or mortality and no changes in absolute organ weights and relative organ weights/body weight or brain ratios occurred during the study. The estrous cycle did not undergo any significant toxicologically relevant change. Most of the sex hormones displayed normal values. Some alterations in the expression of some genes related to reproduction is only observed in females, but they do not appear to have consequences in the development of sex organs. Docking results showed the impossibility of stable binding to estrogen and androgen receptors. Considering all the results obtained, the safe profile of PTSO can be confirmed for different agrifood applications at the conditions assayed.
Collapse
Affiliation(s)
| | | | | | | | - Nahúm Ayala-Soldado
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - M Rosario Moyano-Salvago
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - Ana Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071, Córdoba, Spain
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Ana M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| |
Collapse
|
3
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
4
|
Suen AA, Kenan AC, Williams CJ. Developmental exposure to phytoestrogens found in soy: New findings and clinical implications. Biochem Pharmacol 2022; 195:114848. [PMID: 34801523 PMCID: PMC8712417 DOI: 10.1016/j.bcp.2021.114848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Exposure to naturally derived estrogen receptor activators, such as the phytoestrogen genistein, can occur at physiologically relevant concentrations in the human diet. Soy-based infant formulas are of particular concern because infants consuming these products have serum genistein levels almost 20 times greater than those seen in vegetarian adults. Comparable exposures in animal studies have adverse physiologic effects. The timing of exposure is particularly concerning because infants undergo a steroid hormone-sensitive period termed "minipuberty" during which estrogenic chemical exposure may alter normal reproductive tissue patterning and function. The delay between genistein exposure and reproductive outcomes poses a unique challenge to collecting epidemiological data. In 2010, the U.S. National Toxicology Program monograph on the safety of the use of soy formula stated that the use of soy-based infant formula posed minimal concern and emphasized a lack of data from human subjects. Since then, several new human and animal studies have advanced our epidemiological and mechanistic understanding of the risks and benefits of phytoestrogen exposure. Here we aim to identify clinically relevant findings regarding phytoestrogen exposure and female reproductive outcomes from the past 10 years, with a focus on the phytoestrogen genistein, and explore the implications of these findings for soy infant formula recommendations. Research presented in this review will inform clinical practice and dietary recommendations for infants based on evidence from both clinical epidemiology and basic research advances in endocrinology and developmental biology from mechanistic in vitro and animal studies.
Collapse
Affiliation(s)
- Alisa A Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anna C Kenan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Asiamah CA, Liu Y, Ye R, Pan Y, Lu LL, Zou K, Zhao Z, Jiang P, Su Y. Polymorphism analysis and expression profile of the estrogen receptor 2 gene in Leizhou black duck. Poult Sci 2021; 101:101630. [PMID: 35033905 PMCID: PMC8762077 DOI: 10.1016/j.psj.2021.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/13/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Our previous study on the ovarian transcriptomic analysis in Leizhou black duck revealed that the ESR2 gene was involved in hormone regulation in reproduction and the estrogen signaling pathway related to reproductive performance was enriched. This suggested that ESR2 may have a functional role in the reproductive performance of the Leizhou black duck. Thus, this study aimed at evaluating the polymorphism of the ESR2 gene and its association with egg-laying traits and the distribution pattern of ESR2 mRNA in laying and non-laying Leizhou black ducks. In this study, genomic DNA was extracted from blood samples of 101 Leizhou black ducks to identify single nucleotide polymorphisms (SNPs) of the ESR2 gene to elucidate molecular markers highly associated with egg-laying traits. Four each of laying and non-laying Leizhou black ducks were selected to collect different tissues to analyze the ESR2 gene expression. A total of 23 SNPs were identified and association analysis of the single SNP sites showed that SNPs g.56805646 T>C and exon 3-20G>A were significantly (P < 0.05) associated with egg weight. Ducks with CT and AG genotypes had significantly higher (P < 0.05) egg weights than their respective other genotypes. Haplotype association analysis of g.56805646 T>C and exon 3-20G>A showed that the haplotypes were significantly associated with egg weight. Higher egg weight was seen in individuals with H3H4 haplotypes. In the hypothalamus-pituitary-gonadal (HPG) axis, the results of qRT/PCR showed that ESR2 mRNA was significantly (P < 0.05) expressed in the ovaries of both duck groups than in the hypothalamus and pituitary. In the oviduct, ESR2 was significantly (P < 0.05) higher in the infundibulum and magnum of laying and non-laying ducks respectively. This study provides a molecular marker for selecting Leizhou black ducks for egg production. In addition, it offers theoretical knowledge for studying the related biological functions of the ESR2 gene at the cellular level.
Collapse
Affiliation(s)
- Collins Amponsah Asiamah
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Yuanbo Liu
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Rungen Ye
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Yiting Pan
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Li-Li Lu
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Kun Zou
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Zhihui Zhao
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Ping Jiang
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China
| | - Ying Su
- College of Coastal Agriculture, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, PR China.
| |
Collapse
|
6
|
Abstract
In vitro systems capable of reconstituting the process of mouse oogenesis are now being established to help develop further understanding of the mechanisms underlying oocyte/follicle development and differentiation. These systems could also help increase the production of useful livestock or genetically modified animals, and aid in identifying the causes of infertility in humans. Recently, we revealed, using an in vitro system for recapitulating oogenesis, that the activation of the estrogen signaling pathway induces abnormal follicle formation, that blocking estrogen-induced expression of anti-Müllerian hormone is crucial for normal follicle formation, and that the production of α-fetoprotein in fetal liver tissue is involved in normal in vivo follicle formation. In mouse fetuses, follicle formation is not carried out by factors within the ovaries but is instead orchestrated by distal endocrine factors. This review outlines findings from genetics, endocrinology, and in vitro studies regarding the factors that can affect the formation of primordial follicles in mammals.
Collapse
|
7
|
Zhang FL, Kong L, Zhao AH, Ge W, Yan ZH, Li L, De Felici M, Shen W. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. ENVIRONMENTAL RESEARCH 2021; 198:111225. [PMID: 33971129 DOI: 10.1016/j.envres.2021.111225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Natural and synthetic environmental estrogens (EEs), interfering with the physiological functions of the body's estrogens, are widespread and are rising much concern for their possible deleterious effects on human and animal health, in particular on reproduction. In fact, increasing evidence indicate that EEs can be responsible for a variety of disfunctions of the reproductive system especially in females such as premature ovarian insufficiency (POI). Because of their great structural diversity, the modes of action of EEs are controversial. One important way through which EEs exert their effects on reproduction is the induction of apoptosis in the ovary. In general, EEs can exert pro-and anti-apoptotic effects by agonizing or antagonizing numerous estrogen-dependent signaling pathways. In the present work, results concerning apoptotic pathways and diseases induced by representative EEs (such as zearalenone, bisphenol A and di-2-ethylhexyl phthalate), in ovaries throughout development are presented into an integrated network. By reviewing and elaborating these studies, we propose inflammatory factors, centered on the production of tumor necrosis factor (TNF), as a major cause of the induction of apoptosis by EEs in the mammalian ovary. As a consequence, potential strategies to prevent such EE effect are suggested.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
8
|
Comparison of Ovarian Morphology and Follicular Disturbances between Two Inbred Strains of Cotton Rats ( Sigmodon hispidus). Animals (Basel) 2021; 11:ani11061768. [PMID: 34204816 PMCID: PMC8231567 DOI: 10.3390/ani11061768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Multi-oocyte follicles have been reported in several mammals, especially in rabbits and hamsters, although their significance remains unclear. The present study compared ovarian histology, focusing on folliculogenesis, between two inbred cotton rat strains maintained at Hokkaido Institute of Public Health and the University of Miyazaki. Abundant multi-oocyte follicles and double-nucleated oocytes were observed in the Hokkaido strain, whereas Miyazaki had fewer multi-oocyte follicles and lacked double-nucleated oocytes. These findings indicate that early folliculogenesis events such as oocyte nest breakdown and oocyte vitality, rather than proliferation and cell death in each oocyte, affect the unique ovarian phenotypes found in cotton rats, including multi-oocyte follicles or double-nucleated oocytes, and their differences between strains. Therefore, these results can clarify mammalian folliculogenesis and its abnormal processes. Abstract Most mammalian ovarian follicles contain only a single oocyte having a single nucleus. However, two or more oocytes and nuclei are observed within one follicle and one oocyte, respectively, in several species, including cotton rat (CR, Sigmodon hispidus). The present study compared ovarian histology, focusing on folliculogenesis, between two inbred CR strains, HIS/Hiph and HIS/Mz. At 4 weeks of age, ovarian sections from both the strains were analyzed histologically. Multi-oocyte follicles (MOFs) and double-nucleated oocytes (DNOs) were observed in all stages of developing follicles in HIS/Hiph, whereas HIS/Mz had MOFs up to secondary stages and lacked DNOs. The estimated total follicles in HIS/Mz were almost half that of HIS/Hiph, but interstitial cells were well developed in HIS/Mz. Furthermore, immunostaining revealed no clear strain differences in the appearance of oocytes positive for Ki67, PCNA, and p63 in MOF or DNOs; no cell death was observed in these oocytes. Ultrastructural analysis revealed more abundant mitochondrial clouds in oocytes of HIS/Hiph than HIS/Mz. Thus, we clarified the strain differences in the CR ovary. These findings indicate that early events during folliculogenesis affect the unique ovarian phenotypes found in CRs, including MOFs or DNOs, and their strain differences.
Collapse
|
9
|
Hall JM, Korach KS. Endocrine disrupting chemicals (EDCs) and sex steroid receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:191-235. [PMID: 34452687 DOI: 10.1016/bs.apha.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sex-steroid receptors (SSRs) are essential mediators of estrogen, progestin, and androgen signaling that are critical in vast aspects of human development and multi-organ homeostasis. Dysregulation of SSR function has been implicated in numerous pathologies including cancers, obesity, Type II diabetes mellitus, neuroendocrine disorders, cardiovascular disease, hyperlipidemia, male and female infertility, and other reproductive disorders. Endocrine disrupting chemicals (EDCs) modulate SSR function in a wide variety of cell and tissues. There exists strong experimental, clinical, and epidemiological evidence that engagement of EDCs with SSRs may disrupt endogenous hormone signaling leading to physiological abnormalities that may manifest in disease. In this chapter, we discuss the molecular mechanisms by which EDCs interact with estrogen, progestin, and androgen receptors and alter SSR functions in target cells. In addition, the pathological consequences of disruption of SSR action in reproductive and other organs by EDCs is described with an emphasis on underlying mechanisms of receptors dysfunction.
Collapse
Affiliation(s)
- Julianne M Hall
- Quinnipiac University Frank H. Netter MD School of Medicine, Hamden, CT, United States.
| | - Kenneth S Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| |
Collapse
|
10
|
Tanimoto R, Sekii K, Morohaku K, Li J, Pépin D, Obata Y. Blocking estrogen-induced AMH expression is crucial for normal follicle formation. Development 2021; 148:dev197459. [PMID: 33658225 PMCID: PMC7990856 DOI: 10.1242/dev.197459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022]
Abstract
In mammals, primordial follicles assembled in fetuses or during infancy constitute the oocyte resources for life. Exposure to 17beta-estradiol and phytogenic or endocrine-disrupting chemicals during pregnancy and/or the perinatal period leads to the failure of normal follicle formation. However, the mechanisms underlying estrogen-mediated abnormal follicle formation and physiological follicle formation in the presence of endogenous natural estrogen are not well understood. Here, we reveal that estrogen receptor 1, activated by estrogen, binds to the 5' region of the anti-Mullerian hormone (Amh) gene and upregulates its transcription before follicle formation in cultured mouse fetal ovaries. Ectopic expression of AMH protein was observed in pregranulosa cells of these explants. Furthermore, the addition of AMH to the culture medium inhibited normal follicle formation. Conversely, alpha-fetoprotein (AFP) produced in the fetal liver reportedly blocks estrogen action, although its role in follicle formation is unclear. We further demonstrated that the addition of AFP to the medium inhibited ectopic AMH expression via estrogen, leading to successful follicle formation in vitro Collectively, our in vitro experiments suggest that upon estrogen exposure, the integrity of follicle assembly in vivo is ensured by AFP.
Collapse
Affiliation(s)
- Ren Tanimoto
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kiyono Sekii
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kanako Morohaku
- Department of Agriculture and Life Sciences, Shinshu University 8304 Minami-Minowa-mura Kamiina-gun, Nagano 399-4598, Japan
| | - Jianzhen Li
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - David Pépin
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yayoi Obata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
11
|
Gu Y, Chen X, Fu S, Liu W, Wang Q, Liu KJ, Shen J. Astragali Radix Isoflavones Synergistically Alleviate Cerebral Ischemia and Reperfusion Injury Via Activating Estrogen Receptor-PI3K-Akt Signaling Pathway. Front Pharmacol 2021; 12:533028. [PMID: 33692686 PMCID: PMC7937971 DOI: 10.3389/fphar.2021.533028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Isoflavones are major neuroprotective components of a medicinal herb Astragali Radix, against cerebral ischemia-reperfusion injury but the mechanisms of neuroprotection remain unclear. Calycosin and formononetin are two major AR isoflavones while daidzein is the metabolite of formononetin after absorption. Herein, we aim to investigate the synergistic neuroprotective effects of those isoflavones of Astragali Radix against cerebral ischemia-reperfusion injury. Calycosin, formononetin and daidzein were organized with different combinations whose effects observed in both in vitro and in vivo experimental models. In the in vitro study, primary cultured neurons were subjected to oxygen-glucose deprivation plus reoxygenation (OGD/RO) or l-glutamate treatment. In the in vivo study, rats were subjected to middle cerebral artery occlusion to induce cerebral ischemia and reperfusion. All three isoflavones pre-treatment alone decreased brain infarct volume and improved neurological deficits in rats, and dose-dependently attenuated neural death induced by l-glutamate treatment and OGD/RO in cultured neurons. Interestingly, the combined formulas of those isoflavones revealed synergistically activated estrogen receptor (estrogen receptors)-PI3K-Akt signaling pathway. Using ER antagonist and phosphatidylinositol 3-kinase (PI3K) inhibitor blocked the neuroprotective effects of those isoflavones. In conclusion, isoflavones could synergistically alleviate cerebral ischemia-reperfusion injury via activating ER-PI3K-Akt pathway.
Collapse
Affiliation(s)
- Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Chinese Medicine, Haikou, China.,School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen, China.,School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Shuping Fu
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Wenlan Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke-Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Jiangang Shen
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,The University of Hong Kong-Shenzhen, Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
12
|
Annie L, Gurusubramanian G, Kumar Roy V. Visfatin protein may be responsible for suppression of proliferation and apoptosis in the infantile mice ovary. Cytokine 2021; 140:155422. [PMID: 33476980 DOI: 10.1016/j.cyto.2021.155422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022]
Abstract
Visfatin is an important adipokines, which are expressed in different tissues including ovary of mammals. The postnatal ovary in rodents undergoes dramatic changes of intra-ovarian factors in relation to proliferation and apoptosis. There are studies which showed that gonadal visfatin changes in postnatal life. However, role of visfatin in the early postnatal period i.e. infantile period has not been studied. Therefore, the present study was aimed to explore the role of visfatin in the early postnatal ovarian functions. Furthermore, to explore the role of visfatin, the endogenous visfatin was inhibited from PND14-PND21 by FK866 with dose of 1.5 mg/kg. Our results showed gain in body weight and ovarian weight after visfatin inhibition. The inhibition of visfatin increased the ovarian proliferation (increase in PCNA, GCNA expression and BrdU incorporation) and apoptosis (increase in BAX and active caspase3 expression). Moreover, visfatin inhibition decreased the expression of antiapoptotic/survival protein, BCL2 in the ovary. These findings suggest that visfatin in the infantile ovary may suppress the proliferation and apoptosis by up-regulating BCL2 expression. An interesting finding has been observed that circulating estrogen and progesterone remain unaffected, although visfatin inhibition up-regulated ER-β and down-regulated ER-α. It may also be suggested that visfatin could regulates proliferation and apoptosis via modulating estrogen signaling. In conclusion, visfatin inhibits the proliferation and apoptosis without modulating the ovarian steroid biosynthesis and visfatin mediated BCL2 expression could also be mechanism to preserve the good quality follicle in early postnatal period.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram - 796 004, India.
| |
Collapse
|
13
|
New frontiers of developmental endocrinology opened by researchers connecting irreversible effects of sex hormones on developing organs. Differentiation 2020; 118:4-23. [PMID: 33189416 DOI: 10.1016/j.diff.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 01/17/2023]
Abstract
In the early 1960's, at Professor Bern's laboratory, University of California, Berkeley) in the US, Takasugi discovered ovary-independent, persistent vaginal changes in mice exposed neonatally to estrogen, which resulted in vaginal cancer later in life. Reproductive abnormalities in rodents were reported as a result of perinatal exposure to various estrogenic chemicals. Ten years later, vaginal cancers were reported in young women exposed in utero to the synthetic estrogen diethylstilbestrol (DES) and this has been called the "DES syndrome". The developing organism is particularly sensitive to developmental exposure to estrogens inducing long-term changes in various organs including the reproductive organs. The molecular mechanism underlying the persistent vaginal changes induced by perinatal estrogen exposure was partly demonstrated. Persistent phosphorylation and sustained expression of EGF-like growth factors, lead to estrogen receptor α (ESR1) activation, and then persistent vaginal epithelial cell proliferation. Agents which are weakly estrogenic by postnatal criteria may have major developmental effects, especially during a critical perinatal period. The present review outlines various studies conducted by four generations of investigators all under the influence of Prof. Bern. The studies include reports of persistent changes induced by neonatal androgen exposure, analyses of estrogen responsive genes, factors determining epithelial differentiation in the Müllerian duct, ESR and growth factor signaling, and polyovular follicles in mammals. This review is then expanded to the studies on the effects of environmental estrogens on wildlife and endocrine disruption in Daphnids.
Collapse
|
14
|
Bhardwaj JK, Panchal H, Saraf P. Ameliorating Effects of Natural Antioxidant Compounds on Female Infertility: a Review. Reprod Sci 2020; 28:1227-1256. [PMID: 32935256 DOI: 10.1007/s43032-020-00312-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
The prevalence of female infertility cases has been increasing at a frightening rate, affecting approximately 48 million women across the world. However, oxidative stress has been recognized as one of the main mediators of female infertility by causing various reproductive pathologies in females such as endometriosis, PCOS, preeclampsia, spontaneous abortion, and unexplained infertility. Nowadays, concerned women prefer dietary supplements with antioxidant properties over synthetic drugs as a natural way to lessen the oxidative stress and enhance their fertility. Therefore, the current review is an attempt to explore the efficacy of various natural antioxidant compounds including vitamins, carotenoids, and plant polyphenols and also of some medicinal plants in improving the fertility status of females. Our summarization of recent findings in the current article would pave the way toward the development of new possible antioxidant therapy to treat infertility in females. Natural antioxidant compounds found in fruits, vegetables, and other dietary sources, alone or in combination with other antioxidants, were found to be effective in ameliorating the oxidative stress-mediated infertility problems in both natural and assisted reproductive settings. Numerous medicinal plants showed promising results in averting the various reproductive disorders associated with female infertility, suggesting a plant-based herbal medicine to treat infertility. Although optimum levels of natural antioxidants have shown favorable results, however, their excessive intake may have adverse health impacts. Therefore, larger well-designed, dose-response studies in humans are further warranted to incorporate natural antioxidant compounds into the clinical management of female infertility.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
15
|
Islam MR, Ichii O, Nakamura T, Irie T, Masum MA, Hosotani M, Otani Y, Elewa YHA, Kon Y. Unique morphological characteristics in the ovary of cotton rat (Sigmodon hispidus). J Reprod Dev 2020; 66:529-538. [PMID: 32879182 PMCID: PMC7768171 DOI: 10.1262/jrd.2020-061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cotton rats (Sigmodon hispidus, CRs) are commonly used as animal models in biomedical research. However, the reproductive characteristics and ovarian development in the CRs has not been widely investigated. We have previously shown that female CRs, in particular, show several unique phenotypes associated with the urogenital system, such as chronic kidney disease and pyometra. Our investigation revealed unique morphologies in CR ovaries, particularly in oocytes. Cotton rat ovaries at 6-8 weeks of age were obtained from the Hokkaido Institute of Public Health, and their sections analyzed by light microscopy and transmission electron microscopy. Although the general histology and folliculogenesis of CR ovaries were similar to those of other experimental rodents, multi-oocyte follicles (MOFs) and double nucleated oocytes (DNOs) were also observed. Although MOFs were found at all stages of follicular development, a greater frequency of MOFs was observed in the primary and secondary stages. However, DNOs tended to be frequently observed in primordial follicles. Almost all MOF oocytes and a few DNOs possessed a clear zona pellucida, expressed DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 and Forkhead box protein 2, a representative marker of oocytes and follicular epithelial cells. Thus, our investigations revealed the unique phenotypes of the CR ovary. As MOFs and DNOs are occasionally observed in human patients with infertility, the CR would be a useful animal model to study for gaining a better understanding of folliculogenesis and oocytogenesis, as well as their abnormalities in humans and other animals.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Department of Surgery and Theriogenology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Hokkaido 060-0818, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Hokkaido 060-0818, Japan
| | - Takao Irie
- Medical Zoology Group, Dept. of Infectious Diseases, Hokkaido Institute of Public Health, Hokkaido 060-0818, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Marina Hosotani
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 060-0818, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| |
Collapse
|
16
|
Ganguly M, Hazarika J, Sarma S, Bhuyan P, Mahanta R. Estrogen receptor modulation of some polyphenols extracted from Daucus carota as a probable mechanism for antifertility effect: An in silico study. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620410047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The seeds of Daucus carota, traditionally used by women in many countries to prevent conception, were proved to have negative impact on reproductive hormone levels as well as on the estrous cycles in albino mice affecting the fertility status. This study is an attempt to investigate the possible role of polyphenols present in the seeds in hampering the reproductive processes. The Molecular Docking, Molecular Dynamics (MD) simulation and binding free energy calculation studies reveal that six polyphenols present in the seeds can bind with the active sites of human Estrogen Receptor (ER) and may interfere in the estrogen signaling in human. These polyphenols were found to bind to a conservative pocket of ER[Formula: see text], which is comprised of residues 343–388, 421–428 and 525–540. Docking studies indicated the presence of strong hydrogen bonding, pi–pi interactions and numerous hydrophobic interactions that stabilize the ER[Formula: see text]-polyphenol complexes. The docked complexes were further subjected to MM/GBSA analysis to calculate binding free energies. Molecular dynamic simulation studies carried out for a period of 20[Formula: see text]ns revealed low RMS deviation values suggesting high accuracy of the docking poses and stability of the complexes. Out of the six polyphenols, catechin and epicatechin have shown highest binding affinity towards the ER[Formula: see text] receptor. These findings will help in identifying ER modulators of plant origin targeting ER alpha and predicting their effects on the reproductive hormone homeostasis. Moreover, this study may form preliminary basis for further identification of potential herbal antifertility agents.
Collapse
Affiliation(s)
- Mausumi Ganguly
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Jnyandeep Hazarika
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Shruti Sarma
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Pranjal Bhuyan
- Department of Chemistry, Cotton University, Guwahati 781001, Assam, India
| | - Rita Mahanta
- Department of Zoology, Cotton University, Guwahati 781001, Assam, India
| |
Collapse
|
17
|
Wei Q, Wu G, Xing J, Mao D, Hutz RJ, Shi F. Roles of poly (ADP-ribose) polymerase 1 activation and cleavage in induction of multi-oocyte ovarian follicles in the mouse by 3-nitropropionic acid. Reprod Fertil Dev 2020; 31:1017-1032. [PMID: 30836053 DOI: 10.1071/rd18406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023] Open
Abstract
3-nitropropionic acid (3-NPA) is known to be a mitochondrial toxin produced by plants and fungi, which may produce DNA damage in cells. However, studies of its reproductive toxicology are lacking. We know that poly(ADP-ribose) polymerase (PARP) plays an important role in a large variety of physiological processes and is involved in DNA repair pathways. The present study was therefore aimed at exploring the involvement of PARP-1 activation and cleavage after 3-NPA stimulation in female mice. We observed an increased number of atretic follicles and multi-oocyte follicles (MOFs) after treatment with 3-NPA and serum concentrations of 17β-oestradiol and progesterone were significantly reduced. Our results provide evidence that PARP-1 cleavage and activational signals are involved in pathological ovarian processes stimulated by 3-NPA. In addition, total superoxide dismutase, glutathione peroxidase and catalase activities were significantly increased, whereas succinate dehydrogenase was decreased in a dose-dependent manner. Results from our in vitro study similarly indicated that 3-NPA inhibited the proliferation of mouse granulosa cells and increased apoptosis in a dose-dependent manner. In summary, 3-NPA induces granulosa cell apoptosis, follicle atresia and MOFs in the ovaries of female mice and causes oxidative stress so as to disrupt endogenous hormonal systems, possibly acting through PARP-1 signalling.
Collapse
Affiliation(s)
- Quanwei Wei
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyun Wu
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Xing
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; and Department of Animal Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China
| | - Dagan Mao
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Reinhold J Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, Milwaukee, WI 53211-0413, USA
| | - Fangxiong Shi
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; and Corresponding author.
| |
Collapse
|
18
|
Lv Z, Hu C, Jiang J, Jin S, Wei Q, Wei X, Yu D, Shi F. Effects of High-Dose Genistein on the Hypothalamic RNA Profile and Intestinal Health of Female Chicks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13737-13750. [PMID: 31789024 DOI: 10.1021/acs.jafc.9b05162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Genistein is abundant in animal feed. In this study, the side effects of high-dose genistein on intestinal health and hypothalamic RNA profile were evaluated. Chicks exposed to high-dose genistein by intraperitoneal injection (416 ± 21, 34.5 ± 2.5) and feed supplementation (308 ± 19, 27.2 ± 2.1) both showed a reduced body weight gain and feed intake in comparison with the control group (261 ± 16, 22.7 ± 1.6, P < 0.01). In comparison with the control (22.4 ± 0.5, 33.3 ± 2.4), serum levels of albumin and total protein were decreased after high-dose genistein injection (21.6 ± 0.5, 31.8 ± 1.6) and diet supplementation (20.6 ± 0.9, 29.9 ± 2.5, P < 0.001). Interestingly, the genistein diet presented the chick hypothalamus with downregulated expression of bitter receptors (TAS1R3, P < 0.05). Meanwhile, it upregulated the expressions of TAS2R1 (P < 0.05) and downstream genes (PLCB2 and IP3R3) in the ileum (P < 0.05). Accordingly, high-dose dietary genistein reduced villus height and the abundance of Lactobacillus, along with the increased abundance of pathogenic bacteria in the ileum (P < 0.05). Furthermore, transcriptomic analysis identified 348 differently expressed genes (168 upregulated and 224 downregulated) in the high-dose dietary genistein treated group in comparison with the control (P < 0.05, |log2FoldChange| > 0.585). Therefore, high-dose dietary genistein altered the hypothalamic RNA profile and signal processing. Cluster analysis further revealed that high-dose dietary genistein significantly influenced apoptosis, the immune process, and the whole synthesis of steroid hormones in the hypothalamus (P < 0.05). In conclusion, high-dose dietary genistein altered the hypothalamic RNA profile and intestinal health of female chicks.
Collapse
Affiliation(s)
- Zengpeng Lv
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Chenhui Hu
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Jingle Jiang
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Song Jin
- Changzhou Animal Disease Control Center , Changzhou 213003 , People's Republic of China
| | - Quanwei Wei
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Xihui Wei
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Debing Yu
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| | - Fangxiong Shi
- College of Animal Science and Technology , Nanjing Agricultural University , No. 1 Weigang Road , Nanjing , Jiangsu 210095 , People's Republic of China
| |
Collapse
|
19
|
Fenugreek seeds estrogenic activity in ovariectomized female rats. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
The estrogenic activities of fenugreek seeds (Trigonella foenum-graecum L.), widely used in traditional pharmacopoeia, are reflected in the uterus of ovariectomized female rats, with a slight increase in dry and wet weight, a thickening of the stroma and the uterine epithelium and the development of the endometrial glands. In the vagina, the estrogenic action is shown through an increase in the epidermal cell number and a tendency to keratinization, leading to vaginal opening.
Furthermore, this estrogenic potential of fenugreek seeds is confirmed by the over-expression of progesterone receptors in the uterine tissues supporting possible interactions between phytoestrogens and estrogen receptors.
Therefore, Fenugreek seeds may be capable of promoting the development of reproductive tissues of immature ovariectomized rats, and its estrogenic activity may take its action by holding phystoestrogens that interact with estrogen binding sites and activate the same estradiol-mediated cell signaling pathways.
Thus, our results give added scientific support to the popular use of Fenugreek seeds as an alternative for several health problems such as fertility and menopause related disorders.
Collapse
|
20
|
Shao Y, Xiao H, Di Paolo C, Deutschmann B, Brack W, Hollert H, Seiler TB. Integrated zebrafish-based tests as an investigation strategy for water quality assessment. WATER RESEARCH 2019; 150:252-260. [PMID: 30528920 DOI: 10.1016/j.watres.2018.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/30/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Water pollution risks to human health and the environment are emerging as serious concerns in the European Union and worldwide. With the aim to achieve good ecological and chemical status of all European water bodies, the "European Water Framework Directive" (WFD) was enacted. With the framework, bioanalytical techniques have been recognized as an important aspect. However, there are limitations to the application of bioassays directly for water quality assessment. Such approaches often fail to identify pollutants of concern, since the defined priority and monitored pollutants often fail to explain the observed toxicity. In this study, we integrated an effect-based risk assessment with a zebrafish-based investigation strategy to evaluate water sample extracts and fractions collected from the Danube. Four tiered bioassays were implemented, namely RNA-level gene expression assay, protein-level ethoxyresorufin-O-deethylase (EROD) assay, cell-level micronucleus assay and organism-level fish embryo test (FET). The results show that teratogenicity and lethality during embryonic development might be induced by molecular or cellular damages mediated by the aryl hydrocarbon receptor (AhR) -mediated activity, estrogenic activity and genotoxic activity. With the combination of high-throughput fractionation, this effect-based strategy elucidated the major responsible mixtures of each specific toxic response. In particularly, the most toxic mixture in faction F4, covering a log Kow range from 2.83 to 3.42, was composed by 12 chemicals, which were then evaluated as a designed mixture. Our study applied tiered bioassays with zebrafish to avoid interspecies differences and highlights effect-based approaches to address toxic mixtures in water samples. This strategy can be applied for large throughput screenings to support the main toxic compounds identification in water quality assessment.
Collapse
Affiliation(s)
- Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; UFZ - Helmholtz Centre for Environmental Research GmbH, Department of Cell Toxicology, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Hongxia Xiao
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Björn Deutschmann
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Werner Brack
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; UFZ - Helmholtz Centre for Environmental Research GmbH, Department for Effect-Directed Analysis, Permoserstraße 15, 04318, Leipzig, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Road Shapingba, 400044, Chongqing, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, 200092, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 200023, Nanjing, China
| | - Thomas Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
21
|
Alarcón R, Ingaramo PI, Rivera OE, Dioguardi GH, Repetti MR, Demonte LD, Milesi MM, Varayoud J, Muñoz-de-Toro M, Luque EH. Neonatal exposure to a glyphosate-based herbicide alters the histofunctional differentiation of the ovaries and uterus in lambs. Mol Cell Endocrinol 2019; 482:45-56. [PMID: 30550814 DOI: 10.1016/j.mce.2018.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to compare the effect of oral and subcutaneous exposure to a glyphosate-based herbicide (GBH) on the female reproductive system, specifically in the ovaries and uterus of prepubertal lambs. To this end, ewe lambs were exposed to a s.c. (n: 5) or an oral (n: 5) environmentally relevant dose of GBH (2 mg/kg/day) or to vehicle (controls, n: 12), from postnatal day (PND) 1 to PND14. Serum glyphosate and aminomethylphosphonic acid (AMPA) concentrations were measured on PND15 and PND45. The ovaries and uterus were obtained and weighed on PND45. Ovarian follicular dynamics and uterine morphological features were determined by picrosirius-hematoxylin staining. The proliferation marker Ki67 was evaluated by immunohistochemistry in ovarian and uterine samples. Glyphosate but not AMPA was detected in serum of exposed lambs on PND15, whereas neither glyphosate nor AMPA were detected on PND45. Controls were negative for glyphosate and AMPA on PND15 and PND45. GBH exposure did not affect ovarian or uterine weight. However, on PND45, the ovary of GBH-exposed lambs showed altered follicular dynamics, increased proliferation of granulosa and theca cells, and decreased mRNA expression of FSHR and GDF9, whereas their uterus showed decreased cell proliferation but no alterations in the histomorphology or gene expression. In conclusion, GBH exposure altered the ovarian follicular dynamics and gene expression, and the proliferative activity of the ovaries and uterus of lambs. It is noteworthy that all the adverse effects found in the ovaries and uterus of both GBH-exposed groups were similar, independently of the administration route.
Collapse
Affiliation(s)
- Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Oscar E Rivera
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - Gisela H Dioguardi
- Instituto de Investigación sobre Producción Agropecuaria, Ambiente y Salud (IIPAAs), Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mercedes M Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
22
|
Wu G, Wei Q, Yu D, Shi F. Neonatal genistein exposure disrupts ovarian and uterine development in the mouse by inhibiting cellular proliferation. J Reprod Dev 2019; 65:7-17. [PMID: 30333376 PMCID: PMC6379766 DOI: 10.1262/jrd.2018-070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Soy-based formula contains high concentrations of the isoflavone genistein. Genistein possesses estrogenic and tyrosine kinase inhibitory activity and interferes with cellular proliferation
and development. To date, the acute and chronic effects of genistein on ovarian and uterine development have not been fully elucidated. In this study, mice at postnatal day 1 were
subcutaneously injected with 100 mg/kg genistein for 10 consecutive days, and then their ovaries and uteri were collected on days 10, 21, and 90. Histological evaluation was performed after
hematoxylin and eosin staining. The proliferating activity was indicated by the proliferating indicator protein Ki67. Results showed that the subcutaneous injection of genistein to neonatal
mice induced the formation of multi-oocyte follicles and delayed the primordial follicle assembly in the ovaries. Genistein significantly enlarged the cross-sectional area of the uterine
cavity and wall and disrupted the regularity between the uterine stroma and myometrium. Genistein exposure inhibited proliferative activity because fewer Ki67-positive nuclei were detected
in ovarian and uterine cell populations than in the control. Furthermore, most ovaries from adult mice given neonatal genistein were without corpora lutea, and there appeared to be cystic
follicles and hypertrophy of the theca, and cortical and medullary layers. Considering the high concentration of isoflavone in soy-based infant formulas and livestock feed, we suggest that
the use of isoflavone-rich diets in humans and livestock receive closer examination.
Collapse
Affiliation(s)
- Guoyun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
24
|
Álvarez D, Ceballo K, Olguín S, Martinez-Pinto J, Maliqueo M, Fernandois D, Sotomayor-Zárate R, Cruz G. Prenatal metformin treatment improves ovarian function in offspring of obese rats. J Endocrinol 2018; 239:325-338. [PMID: 30334444 DOI: 10.1530/joe-18-0352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Abstract
Maternal obesity causes a wide range of impairment in offspring, such as metabolic and reproductive dysfunctions. We previously demonstrated that female offspring of obese rats have increased serum estradiol levels during early postnatal life, probably because of decreased hepatic cytochrome P450 3A2 levels, which could lead to early onset of puberty and polycystic ovary condition in adulthood. Using metformin during pregnancy and nursing to improve the metabolic status of obese mothers could prevent the sequence of events that lead to an increase in postnatal serum estradiol levels in female offspring and, hence, reproductive dysfunction. We found that metformin prevented an increase in serum estradiol levels at postnatal day 14 in female offspring of obese mothers, which was associated with a restoration of hepatic cytochrome P450 3A2 levels to control values. Treatment using metformin could not prevent advanced puberty, but we observed that the number of antral follicles, follicular cysts and multi-oocyte follicles returned to control values in the female offspring of obese mothers treated with metformin. We also observed an increase in the levels of norepinephrine and the norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol in the ovaries, indicating increased sympathetic activity in female offspring induced by an obesogenic uterine environment. We found that this effect was prevented by metformin administration. From the results of this study, we concluded that metformin administration to obese mothers during pregnancy and nursing partially prevents ovarian dysfunction in female offspring during adulthood.
Collapse
Affiliation(s)
- Daniela Álvarez
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karina Ceballo
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sofía Olguín
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jonathan Martinez-Pinto
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Manuel Maliqueo
- Department of Medicine West Division, Endocrinology and Metabolism Laboratory, School of Medicine, University of Chile, Santiago, Chile
| | - Daniela Fernandois
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gonzalo Cruz
- Laboratorio de Alteraciones Reproductivas y Metabólicas, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
25
|
Sato T, Kim H, Kakuta H, Iguchi T. Effects of 2,3- Bis(4-hydroxyphenyl)-propionitrile on Induction of Polyovular Follicles in the Mouse Ovary. ACTA ACUST UNITED AC 2018; 32:19-24. [PMID: 29275294 DOI: 10.21873/invivo.11199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Neonatal diethylstilbestrol (DES) treatment induces polyovular follicles (PFs), which contain more than two oocytes in a follicle, through estrogen receptor (ER) β, not ERα. 2,3-Bis(4-hydroxyphenyl)-propionitrile (DPN) is a specific ERβ agonist; the effects of neonatal DPN exposure on PF induction and gene expression in the mouse ovary were examined. MATERIALS AND METHODS Histological analysis and real-time reverse transcription-polymerase chain reaction were performed. RESULTS The PF incidence was significantly high in the ovary of neonatally DPN-exposed mice compared to that in oil-exposed mice. The gene expression of growth differentiation factor 9 (Gdf9), Mullerian-inhibiting substance, steroidogenic factor 1 (Sf1) and steroidogenic acute regulatory protein (Star) in the ovary was significantly increased in the mice neonatally exposed to 40 μg DPN compared to oil-treated mice. CONCLUSION Since SF1 is an important transcription factor of several genes involved in ovarian function, up-regulation of Sf1 expression by neonatal exposure to DPN, through ERβ, might affect expression of Gdf9, Mis and Star, resulting in increased PFs in mouse ovary.
Collapse
Affiliation(s)
- Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan .,International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | - Hannah Kim
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Japan
| | - Hanako Kakuta
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
26
|
Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z. Neonatal triphenyl phosphate and its metabolite diphenyl phosphate exposure induce sex- and dose-dependent metabolic disruptions in adult mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:10-17. [PMID: 29466770 DOI: 10.1016/j.envpol.2018.01.047] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
The widespread application of organophosphorous flame retardants (OPFRs) has led to considerable human exposure, with major concerns regarding their health risks. Herein, we investigate the effects of triphenyl phosphate (TPP), one of the most widely used OPFRs, and one of its main metabolite diphenyl phosphate (DPP) on the endocrine systems and metabolic profiles after neonatal exposure from postnatal days 1-10 at two dosages (2 and 200 μg per day). Both TPP and DPP had no negative effect on uterine weight, glucose tolerance, and estradiol. 1H-NMR-based metabolomics revealed a sex-specific metabolic disturbance of TPP. Specifically, low dose of TPP altered the metabolic profiles of male mice while exerting no significant effects on female ones. Furthermore, a dose-dependent effect of TPP in male mice was observed, where a low toxicity dose up-regulated lipid-related metabolites, while a high toxicity dose down-regulated the pyruvate metabolism and TCA cycles. These results highlight the importance of carefully assessing the health impact of TPP on infants.
Collapse
Affiliation(s)
- Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
27
|
Whirledge SD, Kisanga EP, Oakley RH, Cidlowski JA. Neonatal Genistein Exposure and Glucocorticoid Signaling in the Adult Mouse Uterus. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:047002. [PMID: 29624291 PMCID: PMC6071733 DOI: 10.1289/ehp1575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Female reproductive tract development is sensitive to the endocrine-disrupting potential of environmental estrogens. Early-life exposure to the dietary phytoestrogen genistein impairs fertility and persistently alters the transcriptome in the oviduct and uterus of rodents. Glucocorticoid signaling, which has recently been shown to be essential for normal fertility in the female mouse uterus, is antagonized by genistein. OBJECTIVE Our goal was to determine whether early-life exposure to genistein disrupts glucocorticoid signaling in the mouse uterus, which may contribute to infertility. METHODS Female C57Bl/6 mice were exposed to either 50 mg/kg per day genistein, 10 μg/kg per day estradiol, or vehicle (corn oil) on postnatal days 1-5 (PND1-5), and then treated with the synthetic glucocorticoid dexamethasone (Dex: 1 mg/kg) or vehicle (saline) on PND5, at weaning on PND21, or as adults on PND56 following adrenalectomy and ovariectomy to evaluate glucocorticoid responsiveness. Uteri were isolated following treatment for gene expression or chromatin immunoprecipitation. RESULTS Neonatal exposure to genistein altered the uterine transcriptome of adult mice and caused substantial changes to the transcriptional response to glucocorticoids. Although expression of the glucocorticoid receptor was not affected, genistein exposure disrupted glucocorticoid receptor recruitment to specific regulatory sites in target genes. Many genes involved in chromatin remodeling were dysregulated in genistein-exposed mice, suggesting that epigenetic reprograming may contribute to the altered glucocorticoid response of the uterus following early-life exposure to genistein. These changes affected the biological activity of glucocorticoids within the uterus, as glucocorticoids antagonized the proliferative effects of estradiol in the uterus of control mice but not genistein-exposed mice. CONCLUSIONS Our findings suggest that disruption of glucocorticoid signaling due to early-life exposure to environmental estrogens may in part render the uterus unable to support implantation. https://doi.org/10.1289/EHP1575.
Collapse
Affiliation(s)
- Shannon D Whirledge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Edwina P Kisanga
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert H Oakley
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
28
|
Gao MQ, Zhang R, Yang Y, Luo Y, Jiang M, Zhang Y, Zhang Y, Qing S. A subchronic feeding safety evaluation of transgenic milk containing human β-defensin 3 on reproductive system of C57BL/6J mouse. Food Chem Toxicol 2018. [PMID: 29530639 DOI: 10.1016/j.fct.2018.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bovine mastitis is an infectious disease of the mammary gland which has been generally treated by antibiotic delivery. While the increasing drug-resistant bacteria and the high consumption of the antibiotic had become a noticeable concern. In a previous study, a mammary special vector expressing human β-defensin 3 (hBD3) was transfected into bovine fetal fibroblasts to produce mastitis-resistant bovine. This investigation focused on potential unintended effects of transgenic milk containing hBD3 produced by these mastitis-resistant bovine on the reproductive system of C57BL/6J mice. Mice were fed with diets containing transgenic milk or conventional milk, nutritionally balanced to an AIN93G diet for 90 days, and non-milk diet was selected as the negative group. The reproductive system was given special attention including reproductive organ/body ratios, necropsy and histopathology, serum sex hormone, sperm parameters, estrus cycle and the expression level of some specific genes which could indicate the development and function of reproductive system. No diet-related significant differences were observed among three groups in this 90-day feeding study. The results indicated that hBD3 milk does not appear to exert any effect on the reproductive system in C57BL/6J rats compared with conventional milk or the control diet.
Collapse
Affiliation(s)
- Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruiqi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yange Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuru Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yingli Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
29
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. Soy Formula and Epigenetic Modifications: Analysis of Vaginal Epithelial Cells from Infant Girls in the IFED Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:447-452. [PMID: 27539829 PMCID: PMC5332195 DOI: 10.1289/ehp428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/28/2016] [Accepted: 06/09/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Early-life exposure to estrogenic compounds affects the development of the reproductive system in rodent models and humans. Soy products, which contain phytoestrogens such as genistein, are one source of exposure in infants fed soy formula, and they result in high serum concentrations. OBJECTIVES Our goal was to determine whether soy exposure is associated with differential DNA methylation in vaginal cells from soy-fed infant girls. METHODS Using the Illumina HumanMethylation450 BeadChip, we evaluated epigenome-wide DNA methylation in vaginal cells from four soy formula-fed and six cow formula-fed girls from the Infant Feeding and Early Development (IFED) study. Using pyrosequencing we followed up the two most differentially methylated sites in 214 vaginal cell samples serially collected between birth and 9 months of age from 50 girls (28 soy formula-fed and 22 cow formula-fed). With a mouse model, we examined the effect of neonatal exposure to genistein on gene specific mRNA levels in vaginal tissue. RESULTS The epigenome-wide scan suggested differences in methylation between soy formula-fed and cow formula-fed infants at three CpGs in the gene proline rich 5 like (PRR5L) (p < 104). Pyrosequencing of the two feeding groups found that methylation levels progressively diverged with age, with pointwise differences becoming statistically significant after 126 days. Genistein-exposed mice showed a 50% decrease in vaginal Prr5l mRNA levels compared to controls. CONCLUSIONS Girls fed soy formula have altered DNA methylation in vaginal cell DNA which may be associated with decreased expression of an estrogen-responsive gene. Citation: Harlid S, Adgent M, Jefferson WN, Panduri V, Umbach DM, Xu Z, Stallings VA, Williams CJ, Rogan WJ, Taylor JA. 2017. Soy formula and epigenetic modifications: analysis of vaginal epithelial cells from infant girls in the IFED study. Environ Health Perspect 125:447-452; http://dx.doi.org/10.1289/EHP428.
Collapse
Affiliation(s)
- Sophia Harlid
- Epigenetics and Stem Cell Biology Laboratory,
- Epidemiology Branch,
| | | | | | | | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Jack A. Taylor
- Epigenetics and Stem Cell Biology Laboratory,
- Epidemiology Branch,
| |
Collapse
|
31
|
Zhang GL, Sun XF, Feng YZ, Li B, Li YP, Yang F, Nyachoti CM, Shen W, Sun SD, Li L. Zearalenone exposure impairs ovarian primordial follicle formation via down-regulation of Lhx8 expression in vitro. Toxicol Appl Pharmacol 2017; 317:33-40. [PMID: 28089945 DOI: 10.1016/j.taap.2017.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/14/2016] [Accepted: 01/08/2017] [Indexed: 11/24/2022]
Abstract
Zearalenone (ZEA) is an estrogenic mycotoxin mainly produced as a secondary metabolite by numerous species of Fusarium. Previous work showed that ZEA had a negative impact on domestic animals with regard to reproduction. The adverse effects and the mechanisms of ZEA on mammalian ovarian folliculogenesis remain largely unknown, particularly its effect on primordial follicle formation. Thus, we investigated the biological effects of ZEA exposure on murine ovarian germ cell cyst breakdown and primordial follicle assembly. Our results demonstrated that newborn mouse ovaries exposed to 10 or 30μM ZEA in vitro had significantly less germ cell numbers compared to the control group. Moreover, the presence of ZEA in vitro increased the numbers of TUNEL and γH2AX positive cells within mouse ovaries and the ratio of mRNA levels of the apoptotic genes Bax/Bcl-2. Furthermore, ZEA exposure reduced the mRNA of oocyte specific genes such as LIM homeobox 8 (Lhx8), newborn ovary homeobox (Nobox), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and factor in the germline alpha (Figlα) in a dose dependent manner. Exposure to ZEA led to remarkable changes in the Lhx8 3'-UTR DNA methylation dynamics in oocytes and severely impaired folliculogenesis in ovaries after transplantation under the kidney capsules of immunodeficient mice. In conclusion, ZEA exposure impairs mouse primordial follicle formation in vitro.
Collapse
Affiliation(s)
- Guo-Liang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Feng Sun
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yan-Zhong Feng
- Institute of Animal Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China
| | - Bo Li
- Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437, China
| | - Ya-Peng Li
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fan Yang
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | | | - Wei Shen
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Shi-Duo Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lan Li
- Institute of Reproductive Sciences, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
32
|
Zhou W, Fang F, Zhu W, Chen ZJ, Du Y, Zhang J. Bisphenol A and Ovarian Reserve among Infertile Women with Polycystic Ovarian Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 14:ijerph14010018. [PMID: 28036005 PMCID: PMC5295269 DOI: 10.3390/ijerph14010018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022]
Abstract
To better understand possible effects of bisphenol A (BPA) exposure on ovarian reserve in women with polycystic ovary syndrome (PCOS), we measured creatinine adjusted urinary BPA (BPA_Cre) concentrations and used regression models to evaluate the association between urinary BPA level and antral follicle count (AFC), antimullerian hormone (AMH), day-3 follicle stimulating hormone levels (FSH) and inhibin B (INHB) in 268 infertile women diagnosed with PCOS. BPA was detected in all women with a median concentration of 2.35 ng/mL (the 25th and 75th percentiles of 1.47 ng/mL and 3.95 ng/mL). A unit increase in BPA_Cre was associated with a significant decrease of 0.34 in AFC (β = −0.34, 95% CI = −0.60, −0.08; p = 0.01). Likewise, BPA was negatively associated with AMH and day-3 FSH levels, but neither of them reached statistical significance. No association was observed between BPA and INHB. Our results suggest that in women with PCOS, BPA may affect ovarian follicles and, therefore, reduce ovarian reserve.
Collapse
Affiliation(s)
- Wei Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200092, China.
| | - Fang Fang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200092, China.
| | - Wenting Zhu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200092, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Shandong 250100, China.
- Ministry of Education-The Key Laboratory of Reproductive Endocrinology, Shandong University, Shandong 250100, China.
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200092, China.
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200092, China.
| |
Collapse
|
33
|
Müller DR, Soukup ST, Kurrat A, Liu X, Schmicke M, Xie MY, Kulling SE, Diel P. Neonatal isoflavone exposure interferes with the reproductive system of female Wistar rats. Toxicol Lett 2016; 262:39-48. [PMID: 27506417 DOI: 10.1016/j.toxlet.2016.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/20/2022]
Abstract
There is increasing concern about possible adverse effects of soy based infant formulas (SBIF) due to their high amount of isoflavones (ISO). The aim of the present study was to investigate effects of neonatal exposure to ISO on reproductive system of female Wistar rats. Animals were exposed to an ISO depleted diet or a diet enriched with an ISO extract (IRD; 508mg ISO/kg) during embryogenesis and adolescence. Pups of each group were fed daily by pipette with ISO-suspension (ISO+; 32mg ISO/kg bw) or placebo from postnatal day (PND) 1 until PND23 resulting in plasma concentrations similar to levels reported in infants fed SBIF. The visceral fat mass was reduced by long-term IRD. Vaginal epithelial height was increased at PND23 and vaginal opening was precocious in ISO+ groups. Later in life, more often irregular estrus cycles were observed in rats of ISO+ groups. In addition, FSH levels and uterine epithelial heights were increased at PND80 in ISO+ groups. In summary, the results indicate that neonatal ISO intake, resulting in plasma concentrations achievable through SBIF, has an estrogenic effect on prepubertal rats and influences female reproductive tract later in life.
Collapse
Affiliation(s)
- Dennis R Müller
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Cologne, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany, Germany
| | - Anne Kurrat
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Cologne, Germany
| | - Xin Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, China
| | - Marion Schmicke
- Clinic for Cattle, Endocrinology, University of Veterinary Medicine, Hannover, Germany
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, China
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany, Germany
| | - Patrick Diel
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University, Cologne, Germany.
| |
Collapse
|
34
|
Kemiläinen H, Adam M, Mäki-Jouppila J, Damdimopoulou P, Damdimopoulos AE, Kere J, Hovatta O, Laajala TD, Aittokallio T, Adamski J, Ryberg H, Ohlsson C, Strauss L, Poutanen M. The Hydroxysteroid (17β) Dehydrogenase Family Gene HSD17B12 Is Involved in the Prostaglandin Synthesis Pathway, the Ovarian Function, and Regulation of Fertility. Endocrinology 2016; 157:3719-3730. [PMID: 27490311 DOI: 10.1210/en.2016-1252] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hydroxysteroid (17beta) dehydrogenase (HSD17B)12 gene belongs to the hydroxysteroid (17β) dehydrogenase superfamily, and it has been implicated in the conversion of estrone to estradiol as well as in the synthesis of arachidonic acid (AA). AA is a precursor of prostaglandins, which are involved in the regulation of female reproduction, prompting us to study the role of HSD17B12 enzyme in the ovarian function. We found a broad expression of HSD17B12 enzyme in both human and mouse ovaries. The enzyme was localized in the theca interna, corpus luteum, granulosa cells, oocytes, and surface epithelium. Interestingly, haploinsufficiency of the HSD17B12 gene in female mice resulted in subfertility, indicating an important role for HSD17B12 enzyme in the ovarian function. In line with significantly increased length of the diestrous phase, the HSD17B+/- females gave birth less frequently than wild-type females, and the litter size of HSD17B12+/- females was significantly reduced. Interestingly, we observed meiotic spindle formation in immature follicles, suggesting defective meiotic arrest in HSD17B12+/- ovaries. The finding was further supported by transcriptome analysis showing differential expression of several genes related to the meiosis. In addition, polyovular follicles and oocytes trapped inside the corpus luteum were observed, indicating a failure in the oogenesis and ovulation, respectively. Intraovarian concentrations of steroid hormones were normal in HSD17B12+/- females, whereas the levels of AA and its metabolites (6-keto prostaglandin F1alpha, prostaglandin D2, prostaglandin E2, prostaglandin F2α, and thromboxane B2) were decreased. In conclusion, our study demonstrates that HSD17B12 enzyme plays an important role in female fertility through its role in AA metabolism.
Collapse
Affiliation(s)
- Heidi Kemiläinen
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Marion Adam
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Jenni Mäki-Jouppila
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Pauliina Damdimopoulou
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Anastasios E Damdimopoulos
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Juha Kere
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Outi Hovatta
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Teemu D Laajala
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Tero Aittokallio
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Jerzy Adamski
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Henrik Ryberg
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Claes Ohlsson
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Leena Strauss
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Matti Poutanen
- Department of Physiology and Turku Center for Disease Modeling (H.K., M.A., J.M.-J., T.D.L., L.S., M.P.), Institute of Biomedicine, University of Turku, FI-20540 Turku, Finland; Department of Clinical Science, Intervention and Technology (P.D., O.H.), Karolinska Institute, 141 52 Huddinge, Sweden; Swedish Toxicology Sciences Research Center (P.D.), Karolinska Institutet, 141 86 Stockholm, Sweden; Department of Biosciences and Nutrition (A.E.D., J.K.), Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Mathematics and Statistics (T.D.L., T.A.), University of Turku, FI-20014 Turku, Finland; Institute for Molecular Medicine Finland (T.A.), University of Helsinki, FI-00014 Helsinki, Finland; Experimental Genetics (J.A.), Center of Life and Food Sciences, Weihenstephan, 85354 Freising, Germany; Institute of experimental Genetics (J.A.), Helmholtz Zentrum, 81377 München, Germany; Genome Analysis Center (J.A.), German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Neuroscience and Physiology (H.R.), Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Institute of Medicine (C.O., M.P.), The Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| |
Collapse
|
35
|
Al Naib A, Tucker H, Xie G, Keisler D, Bartol F, Rhoads R, Akers R, Rhoads M. Prepubertal tamoxifen treatment affects development of heifer reproductive tissues and related signaling pathways. J Dairy Sci 2016; 99:5780-5792. [DOI: 10.3168/jds.2015-10679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
36
|
Ward WE, Kaludjerovic J, Dinsdale EC. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E488. [PMID: 27187422 PMCID: PMC4881113 DOI: 10.3390/ijerph13050488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, our research group has characterized and used a mouse model to demonstrate that "nutritional programming" of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health.
Collapse
Affiliation(s)
- Wendy E Ward
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Jovana Kaludjerovic
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Elsa C Dinsdale
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
37
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
38
|
Lim W, Song G. Stimulatory Effects of Coumestrol on Embryonic and Fetal Development Through AKT and ERK1/2 MAPK Signal Transduction. J Cell Physiol 2016; 231:2733-40. [PMID: 26991852 DOI: 10.1002/jcp.25381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/15/2016] [Indexed: 01/25/2023]
Abstract
Successful establishment of pregnancy is required for fetal-maternal interactions regulating implantation, embryonic development and placentation. A uterine environment with insufficient growth factors and nutrients increases the incidence of intrauterine growth restriction (IUGR) leading to an impaired uterine environment. In the present study, we demonstrated the effects of the phytoestrogen coumestrol on conceptus development in the pig that is regarded as an excellent biomedical animal model for research on IUGR. Results of this study indicated that coumestrol induced migration of porcine trophectoderm (pTr) cells in a concentration-dependent manner. In response to coumestrol, the phosphorylation of AKT, P70S6K, S6, ERK1/2 MAPK, and P90RSK proteins were activated in pTr cells and ERK1/2 MAPK and P90RSK phosphorylation was prolonged for a longer period than for the other proteins. To identify the signal transduction pathway induced by coumestrol, pharmacological inhibitors U0126 (an ERK1/2 inhibitor) and LY294002 (a PI3K inhibitor) were used to pretreat pTr cells. The results showed that coumestrol-induced phosphorylation of ERK1/2 MAPK and P90RSK was blocked by U0126. In addition, the increased phosphorylation in response to coumestrol was completely inhibited following pre-treatment incubation of pTr cells in the presence of LY294002 and U0126. Furthermore, these two inhibitors suppressed the ability of coumestrol to induce migration of pTr cells. Collectively, these findings suggest that coumestrol affects embryonic development through activation of the PI3K/AKT and ERK1/2 MAPK cell signal transduction pathways and improvement in the uterine environment through coumestrol supplementation may provide beneficial effects of enhancing embryonic and fetal survival and development. J. Cell. Physiol. 231: 2733-2740, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whasun Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Genistein exposure inhibits growth and alters steroidogenesis in adult mouse antral follicles. Toxicol Appl Pharmacol 2016; 293:53-62. [PMID: 26792615 DOI: 10.1016/j.taap.2015.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/02/2015] [Accepted: 12/30/2015] [Indexed: 01/25/2023]
Abstract
Genistein is a naturally occurring isoflavone phytoestrogen commonly found in plant products such as soybeans, lentils, and chickpeas. Genistein, like other phytoestrogens, has the potential to mimic, enhance, or impair the estradiol biosynthesis pathway, thereby potentially altering ovarian follicle growth. Previous studies have inconsistently indicated that genistein exposure may alter granulosa cell proliferation and hormone production, but no studies have examined the effects of genistein on intact antral follicles. Thus, this study was designed to test the hypothesis that genistein exposure inhibits follicle growth and steroidogenesis in intact antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice were cultured with vehicle (dimethyl sulfoxide; DMSO) or genistein (6.0 and 36μM) for 18-96h. Every 24h, follicle diameters were measured to assess growth. At the end of each culture period, the media were pooled to measure hormone levels, and the cultured follicles were collected to measure expression of cell cycle regulators and steroidogenic enzymes. The results indicate that genistein (36μM) inhibits growth of mouse antral follicles. Additionally, genistein (6.0 and 36μM) increases progesterone, testosterone, and dehydroepiandrosterone (DHEA) levels, but decreases estrone and estradiol levels. The results also indicate that genistein alters the expression of steroidogenic enzymes at 24, 72 and 96h, and the expression of cell cycle regulators at 18h. These data indicate that genistein exposure inhibits antral follicle growth by inhibiting the cell cycle, alters sex steroid hormone levels, and dysregulates steroidogenic enzymes in cultured mouse antral follicles.
Collapse
|
40
|
Mu X, Liao X, Chen X, Li Y, Wang M, Shen C, Zhang X, Wang Y, Liu X, He J. DEHP exposure impairs mouse oocyte cyst breakdown and primordial follicle assembly through estrogen receptor-dependent and independent mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:232-240. [PMID: 26073378 DOI: 10.1016/j.jhazmat.2015.05.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Estrogen plays an essential role in the development of mammalian oocytes, and recent studies suggest that it also regulates primordial follicle assembly in the neonatal ovaries. During the last decade, potential exposure of humans and animals to estrogen-like endocrine disrupting chemicals has become a growing concern. In the present study, we focused on the effect of diethylhexyl phthalate (DEHP), a widespread plasticizer with estrogen-like activity, on germ-cell cyst breakdown and primordial follicle assembly in the early ovarian development of mouse. Neonatal mice injected with DEHP displayed impaired cyst breakdown. Using ovary organ cultures, we revealed that impairment was mediated through estrogen receptors (ERs), as ICI 182,780, an efficient antagonist of ER, reversed this DEHP-mediated effect. DEHP exposure reduced the expression of ERβ, progesterone receptor (PR), and Notch2 signaling components. Finally, DEHP reduced proliferation of pregranulosa precursor cells during the process of primordial folliculogenesis. Together, our results indicate that DEHP influences oocyte cyst breakdown and primordial follicle formation through several mechanisms. Therefore, exposure to estrogen-like chemicals during fetal or neonatal development may adversely influence early ovarian development.
Collapse
Affiliation(s)
- Xinyi Mu
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinggui Liao
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanli Li
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Meirong Wang
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Cha Shen
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xue Zhang
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
41
|
Piasecka-Srader J, Sadowska A, Nynca A, Orlowska K, Jablonska M, Jablonska O, Petroff BK, Ciereszko RE. The combined effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and the phytoestrogen genistein on steroid hormone secretion, AhR and ERβ expression and the incidence of apoptosis in granulosa cells of medium porcine follicles. J Reprod Dev 2015; 62:103-13. [PMID: 26568065 PMCID: PMC4768784 DOI: 10.1262/jrd.2015-125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Low doses of endocrine disrupting chemicals (EDCs) used in combination may act in a manner different from
that of individual compounds. The objective of the study was to examine in vitro effects of
low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 100 pM) and genistein (500 nM) on: 1)
progesterone (P4) and estradiol (E2) secretion (48 h); 2) dynamic changes in aryl
hydrocarbon receptor (AhR) mRNA and protein expression (1, 3, 6, 24 and 48 h); 3) dynamic changes in estrogen
receptor β (ERβ) mRNA and protein expression (1, 3, 6, 24 and 48 h); and 4) induction of apoptosis in porcine
granulosa cells derived from medium follicles (3, 6 and 24 h). TCDD had no effect on P4 or
E2 production, but potentiated the inhibitory effect of genistein on P4 production. In
contrast to the individual treatments which did not produce any effects, TCDD and genistein administered
together decreased ERβ and AhR protein expression in granulosa cells. Moreover, the inhibitory effect of TCDD
on AhR mRNA expression was abolished by genistein. The treatments did not induce apoptosis in the cells. In
summary, combined effects of low concentrations of TCDD and genistein on follicular function of pigs differed
from that of individual compounds. The results presented in the current paper clearly indicate that effects
exerted by low doses of EDCs applied in combination must be taken into consideration when studying potential
risk effects of EDCs on biological processes.
Collapse
Affiliation(s)
- Joanna Piasecka-Srader
- Department of Animal Physiology, University of Warmia and Mazury, 10-719, Olsztyn, Poland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The role of diet and housing-temperature in the production of genetically modified mouse embryos and their developmental capacity after cryopreservation. Theriogenology 2015; 84:1306-13. [DOI: 10.1016/j.theriogenology.2015.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/16/2015] [Accepted: 07/08/2015] [Indexed: 11/22/2022]
|
43
|
Abstract
The adult mammalian ovary is devoid of definitive germline stem cells. As such, female reproductive senescence largely results from the depletion of a finite ovarian follicle pool that is produced during embryonic development. Remarkably, the crucial nature and regulation of follicle assembly and survival during embryogenesis is just coming into focus. This developmental pathway involves the coordination of meiotic progression and the breakdown of germ cell cysts into individual oocytes housed within primordial follicles. Recent evidence also indicates that genetic and environmental factors can specifically perturb primordial follicle assembly. Here, we review the cellular and molecular mechanisms by which the mammalian ovarian reserve is established, highlighting the presence of a crucial checkpoint that allows survival of only the highest-quality oocytes.
Collapse
Affiliation(s)
- Kathryn J Grive
- Brown University, MCB Graduate Program, Providence, RI 02912, USA
| | | |
Collapse
|
44
|
Stel J, Legler J. The Role of Epigenetics in the Latent Effects of Early Life Exposure to Obesogenic Endocrine Disrupting Chemicals. Endocrinology 2015; 156:3466-72. [PMID: 26241072 PMCID: PMC4588824 DOI: 10.1210/en.2015-1434] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research supports a role for exposure to endocrine-disrupting chemicals (EDCs) in the global obesity epidemic. Obesogenic EDCs have the potential to inappropriately stimulate adipogenesis and fat storage, influence metabolism and energy balance and increase susceptibility to obesity. Developmental exposure to obesogenic EDCs is proposed to interfere with epigenetic programming of gene regulation, partly by activation of nuclear receptors, thereby influencing the risk of obesity later in life. The goal of this minireview is to briefly describe the epigenetic mechanisms underlying developmental plasticity and to evaluate the evidence of a mechanistic link between altered epigenetic gene regulation by early life EDC exposure and latent onset of obesity. We summarize the results of recent in vitro, in vivo, and transgenerational studies, which clearly show that the obesogenic effects of EDCs such as tributyltin, brominated diphenyl ether 47, and polycyclic aromatic hydrocarbons are mediated by the activation and associated altered methylation of peroxisome proliferator-activated receptor-γ, the master regulator of adipogenesis, or its target genes. Importantly, studies are emerging that assess the effects of EDCs on the interplay between DNA methylation and histone modifications in altered chromatin structure. These types of studies coupled with genome-wide rather than gene-specific analyses are needed to improve mechanistic understanding of epigenetic changes by EDC exposure. Current advances in the field of epigenomics have led to the first potential epigenetic markers for obesity that can be detected at birth, providing an important basis to determine the effects of developmental exposure to obesogenic EDCs in humans.
Collapse
Affiliation(s)
- Jente Stel
- Institute for Environmental Studies Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Juliette Legler
- Institute for Environmental Studies Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
45
|
Suzuki H, Kanai-Azuma M, Kanai Y. From Sex Determination to Initial Folliculogenesis in Mammalian Ovaries: Morphogenetic Waves along the Anteroposterior and Dorsoventral Axes. Sex Dev 2015; 9:190-204. [DOI: 10.1159/000440689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 11/19/2022] Open
|
46
|
Qu XL, Fang Y, Zhang M, Zhang YZ. Phytoestrogen intake and risk of ovarian cancer: a meta- analysis of 10 observational studies. Asian Pac J Cancer Prev 2015; 15:9085-91. [PMID: 25422183 DOI: 10.7314/apjcp.2014.15.21.9085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epidemiology studies have shown an inconclusive relationship between phytoestrogen intake and ovarian cancer risk and there have been no relevant meta-analyses directly regarding this topic. The purpose of the present meta-analysis was therefore to investigate any association between phytoestrogen intake and ovarian cancer in detail. MATERIALS AND METHODS We conducted a search of PubMed, EMBASE, EBSCO, the Cochrane Library, CNKI and Chinese Biomedical Database (up to April 2014) using common keywords for studies that focused on phytoestrogen and ovarian cancer risk. Study-specific risk estimates (RRs) were pooled using fixed effect or random-effect models. RESULTS Ten epidemiologic studies were finally included in the meta-analysis. The total results indicated higher phytoestrogen intake was associated with a reduced ovarian cancer risk (RR, 0.70; 95%CI: 0.56-0.87). The association was similar in sensitivity analysis. Meta regression analysis demonstrated sources and possibly types and regions as heterogeneous factors. Subgroup analysis of types, sources and regions showed that isoflavones (RR: 0.63; 95%CI: 0.46, 0.86), soy foods (RR: 0.51; 95%CI: 0.39, 0.68) and an Asian diet (RR: 0.48; 95%CI: 0.37, 0.63) intake could reduce the incidence of ovarian cancer. CONCLUSIONS Our findings show possible protection by phytoestrogens against ovarian cancer. We emphasize specific phytoestrogens from soy foods, but not all could reduce the risk. The habit of plentiful phytoestrogen intake by Asians is worthy to recommendation. However, we still need additional larger well designed observational studies to fully characterize underlying associations.
Collapse
Affiliation(s)
- Xin-Lan Qu
- The Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail :
| | | | | | | |
Collapse
|
47
|
Tousen Y, Ishiwata H, Ishimi Y, Ikegami S. Equol, a Metabolite of Daidzein, Is More Efficient than Daidzein for Bone Formation in Growing Female Rats. Phytother Res 2015; 29:1349-1354. [PMID: 26096577 DOI: 10.1002/ptr.5387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 11/10/2022]
Abstract
Few studies have examined the effects of isoflavones and particularly equol, a metabolite of the isoflavone daidzein, on bone formation during the growth period in animals. The present study investigated the effects of orally administered daidzein or equol on bone formation and bone mineral density in growing female rats. Female Sprague-Dawley rats, aged 3 weeks, were divided into four groups (n = 8 per group) as follows: rats were orally administered a corn oil, 8 mg/day of daidzein, 4 mg/day of equol or 8 mg/day of equol in corn oil for 4 weeks. Daidzein and equol increased the bone mineral density of growing female rats by stimulating bone formation without exhibiting a substantial effect on the weight of their reproductive organs. Bone growth caused by increased bone mineralizing surface and bone formation rate in rats administered with equol was approximately twice that of rats administered with daidzein. These results suggest that equol might be more efficient than daidzein for bone formation in growing female rats. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Hajimu Ishiwata
- Department of Human Nutrition, Seitoku University, 550 Iwase, Mastudo, Chiba, 271-8555, Japan
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Sachie Ikegami
- Department of Home Economics, Otsuma Woman's University, 12 Sanbancho, Chiyoda-ku, Tokyo, 102-8357, Japan
| |
Collapse
|
48
|
Kang BH, Kim SH, Jung KA, Kim SY, Chung SH, Park YS, Yoon KL, Shim KS. Comparison of growth and pubertal progression in wild type female rats with different bedding types. Ann Pediatr Endocrinol Metab 2015; 20:53-8. [PMID: 25883928 PMCID: PMC4397274 DOI: 10.6065/apem.2015.20.1.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/03/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Endocrine-disrupting chemicals interfere with the endocrine system and therefore affect growth and pubertal progression. The study aim was to compare the growth and pubertal progression in wild-type female rats with different bedding types. METHODS Twenty 5-week-old female wild-type Sprague Dawley rats were randomly assigned to two groups with different bedding types: one group received wood shaving bedding, while a second group received corncob bedding. We determined crown-rump length and body weight as anthropometric measurements and assessed the serum growth hormone (GH) and estradiol levels. The gh1 mRNA expression levels were compared using quantitative real time transcription polymerase chain reaction. The estrous cycle was evaluated by vaginal smear. RESULTS The anthropometric measurements were not significantly different between the two groups. The mean relative expression of the gh1 gene was lower in the corncob bedding group than that in the wood shaving group (P=0.768). Meanwhile serum GH and estradiol were increased in the wood shaving bedding group; however this difference was not statistically significant. The time to first estrus and the length of the estrous cycle were increased in the corncob bedding group; the proportion of normal estrous cycles was also decreased. These findings indicate irregularities in the estrous cycle. CONCLUSION Endocrine-disrupting chemicals in corncob bedding might be associated with time to first estrus and length of the estrous cycle. Therefore, the type of bedding should be considered as a factor affecting pubertal progression in rodents.
Collapse
Affiliation(s)
- Byung Ho Kang
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Shin-Hee Kim
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung A Jung
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - So Youn Kim
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sung-Hoon Chung
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Young Shil Park
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Kyung Lim Yoon
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Kye Shik Shim
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| |
Collapse
|
49
|
Bircsak KM, Aleksunes LM. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter. Curr Drug Metab 2015; 16:124-40. [PMID: 26179608 PMCID: PMC4713194 DOI: 10.2174/138920021602150713114921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturallyoccurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure.
Collapse
Affiliation(s)
| | - Lauren M Aleksunes
- Dept. of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA.
| |
Collapse
|
50
|
Ly C, Yockell-Lelièvre J, Ferraro ZM, Arnason JT, Ferrier J, Gruslin A. The effects of dietary polyphenols on reproductive health and early development†. Hum Reprod Update 2014; 21:228-48. [DOI: 10.1093/humupd/dmu058] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|