1
|
Drummer DJ, McAdam JS, Seay R, Aban I, Lavin KM, Wiggins D, Touliatos G, Yang S, Kelley C, Tuggle SC, Peoples B, Siegel H, Ghanem E, Singh JA, Schutzler S, Barnes CL, Ferrando AA, Bridges SL, Bamman MM. Perioperative assessment of muscle inflammation susceptibility in patients with end-stage osteoarthritis. J Appl Physiol (1985) 2022; 132:984-994. [PMID: 35238652 PMCID: PMC8993516 DOI: 10.1152/japplphysiol.00428.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Many individuals with end-stage osteoarthritis (OA) undergo elective total hip/knee arthroplasty (THA/TKA) to relieve pain, improve mobility and quality of life. However, ∼30% suffer long-term mobility impairment following surgery. This may be in part due to muscle inflammation susceptibility (MuIS+), an overt proinflammatory pathology localized to skeletal muscle surrounding the diseased joint, present in some patients with TKA/THA. We interrogated the hypothesis that MuIS+ status results in a perturbed perioperative gene expression profile and decreases skeletal muscle integrity in patients with end-stage OA. Samples were leveraged from the two-site, randomized, controlled trial R01HD084124, NCT02628795. Participants were dichotomized based on surgical (SX) muscle gene expression of TNFRSF1A (TNF-αR). MuIS+/- samples were probed for gene expression and fibrosis. Paired and independent two-tailed t tests were used to determine differences between contralateral (CTRL) and surgical (SX) limbs and between-subject comparisons, respectively. Significance was declared at P < 0.05. Seventy participants (26M/44F; mean age 62.41 ± 8.86 yr; mean body mass index 31.10 ± 4.91 kg/m2) undergoing THA/TKA were clustered as MuIS+ (n = 24) or MuIS- (n = 46). Lower skeletal muscle integrity (greater fibrosis) exists on the SX versus CTRL limb (P < 0.001). Furthermore, MuIS+ versus MuIS- muscle exhibited higher proinflammatory (IL-6R and TNF-α) and catabolic (TRIM63) gene expression (P < 0.001, P = 0.004, and 0.024 respectively), with a trend for greater fibrosis (P = 0.087). Patients with MuIS+ exhibit more inflammation and catabolic gene expression in skeletal muscle of the SX limb, accompanied by decreased skeletal muscle integrity (Trend). This highlights the impact of MuIS+ status emphasizing the potential value of perioperative MuIS assessment to inform optimal postsurgical care.NEW & NOTEWORTHY This study assessed the skeletal muscle molecular characteristics associated with end-stage osteoarthritis and refined an important phenotype, in some patients, termed muscle inflammation susceptibility (MuIS+) that may be an important consideration following surgery. Furthermore, we provide evidence of differential inflammatory and catabolic gene expression between the contralateral and surgical limbs along with differences between the skeletal muscle surrounding the diseased hip versus knee joints.
Collapse
Affiliation(s)
- Devin J Drummer
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeremy S McAdam
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | - Regina Seay
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Inmaculada Aban
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kaleen M Lavin
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | - Derek Wiggins
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabriel Touliatos
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sufen Yang
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christian Kelley
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - S Craig Tuggle
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| | - Brandon Peoples
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Herrick Siegel
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Elie Ghanem
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jasvinder A Singh
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Comprehensive Arthritis, Musculoskeletal, Bone, and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott Schutzler
- Department of Geriatrics and Center for Translational Research in Aging and Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - C Lowry Barnes
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Arny A Ferrando
- Department of Geriatrics and Center for Translational Research in Aging and Longevity, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - S Louis Bridges
- Department of Medicine, Hospital for Special Surgery, New York, New York
- Division of Rheumatology, Weill Cornell Medical Center, New York, New York
| | - Marcas M Bamman
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Florida Institute for Human and Machine Cognition, Pensacola, Florida
| |
Collapse
|
2
|
Zhang G, Anderson LJ, Gao S, Sin TK, Zhang Z, Wu H, Jafri SH, Graf SA, Wu PC, Dash A, Garcia JM, Li YP. Weight Loss in Cancer Patients Correlates With p38β MAPK Activation in Skeletal Muscle. Front Cell Dev Biol 2021; 9:784424. [PMID: 34950660 PMCID: PMC8688918 DOI: 10.3389/fcell.2021.784424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
Unintentional weight loss, a first clinical sign of muscle wasting, is a major threat to cancer survival without a defined etiology. We previously identified in mice that p38β MAPK mediates cancer-induced muscle wasting by stimulating protein catabolism. However, whether this mechanism is relevant to humans is unknown. In this study, we recruited men with cancer and weight loss (CWL) or weight stable (CWS), and non-cancer controls (NCC), who were consented to rectus abdominis (RA) biopsy and blood sampling (n = 20/group). In the RA of both CWS and CWL, levels of activated p38β MAPK and its effectors in the catabolic pathways were higher than in NCC, with progressively higher active p38β MAPK detected in CWL. Remarkably, levels of active p38β MAPK correlated with weight loss. Plasma analysis for factors that activate p38β MAPK revealed higher levels in some cytokines as well as Hsp70 and Hsp90 in CWS and/or CWL. Thus, p38β MAPK appears a biomarker of weight loss in cancer patients.
Collapse
Affiliation(s)
- Guohua Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Lindsey J Anderson
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Song Gao
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Thomas K Sin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Hongyu Wu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| | - Syed H Jafri
- Department of Medicine, Section of Oncology, University of Texas Health Science Center, Houston, TX, United States
| | - Solomon A Graf
- Division of Medical Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Peter C Wu
- Department of Surgery, University of Washington School of Medicine, Seattle, WA, United States.,Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Atreya Dash
- Department of Surgery, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States.,Department of Urology, Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, United States
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Medicine, Division of Gerontology and Geriatric Medicine, Seattle, WA, United States
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
3
|
Decreased miR-497-5p Suppresses IL-6 Induced Atrophy in Muscle Cells. Cells 2021; 10:cells10123527. [PMID: 34944037 PMCID: PMC8700610 DOI: 10.3390/cells10123527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin-6 (IL-6) is a pro-inflammatory cytokine associated with skeletal muscle wasting in cancer cachexia. The control of gene expression by microRNAs (miRNAs) in muscle wasting involves the regulation of thousands of target transcripts. However, the miRNA-target networks associated with IL6-induced muscle atrophy remain to be characterized. Here, we show that IL-6 promotes the atrophy of C2C12 myotubes and changes the expression of 20 miRNAs (5 up-regulated and 15 down-regulated). Gene Ontology analysis of predicted miRNAs targets revealed post-transcriptional regulation of genes involved in cell differentiation, apoptosis, migration, and catabolic processes. Next, we performed a meta-analysis of miRNA-published data that identified miR-497-5p, a down-regulated miRNAs induced by IL-6, also down-regulated in other muscle-wasting conditions. We used miR-497-5p mimics and inhibitors to explore the function of miR-497-5p in C2C12 myoblasts and myotubes. We found that miR-497-5p can regulate the expression of the cell cycle genes CcnD2 and CcnE1 without affecting the rate of myoblast cellular proliferation. Notably, miR-497-5p mimics induced myotube atrophy and reduced Insr expression. Treatment with miR-497-5p inhibitors did not change the diameter of the myotubes but increased the expression of its target genes Insr and Igf1r. These genes are known to regulate skeletal muscle regeneration and hypertrophy via insulin-like growth factor pathway and were up-regulated in cachectic muscle samples. Our miRNA-regulated network analysis revealed a potential role for miR-497-5p during IL6-induced muscle cell atrophy and suggests that miR-497-5p is likely involved in a compensatory mechanism of muscle atrophy in response to IL-6.
Collapse
|
4
|
Hodges PW, Bailey JF, Fortin M, Battié MC. Paraspinal muscle imaging measurements for common spinal disorders: review and consensus-based recommendations from the ISSLS degenerative spinal phenotypes group. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:3428-3441. [PMID: 34542672 DOI: 10.1007/s00586-021-06990-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Paraspinal muscle imaging is of growing interest related to improved phenotyping, prognosis, and treatment of common spinal disorders. We reviewed issues related to paraspinal muscle imaging measurement that contribute to inconsistent findings between studies and impede understanding. METHODS Three key contributors to inconsistencies among studies of paraspinal muscle imaging measurements were reviewed: failure to consider possible mechanisms underlying changes in paraspinal muscles, lack of control of confounding factors, and variations in spinal muscle imaging modalities and measurement protocols. Recommendations are provided to address these issues to improve the quality and coherence of future research. RESULTS Possible pathophysiological responses of paraspinal muscle to various common spinal disorders in acute or chronic phases are often overlooked, yet have important implications for the timing, distribution, and nature of changes in paraspinal muscle. These considerations, as well as adjustment for possible confounding factors, such as sex, age, and physical activity must be considered when planning and interpreting paraspinal muscle measurements in studies of spinal conditions. Adoption of standardised imaging measurement protocols for paraspinal muscle morphology and composition, considering the strengths and limitations of various imaging modalities, is critically important to interpretation and synthesis of research. CONCLUSION Study designs that consider physiological and pathophysiological responses of muscle, adjust for possible confounding factors, and use common, standardised measures are needed to advance knowledge of the determinants of variations or changes in paraspinal muscle and their influence on spinal health.
Collapse
Affiliation(s)
- Paul W Hodges
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jeannie F Bailey
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Maryse Fortin
- Department of Health, Kinesiology & Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Michele C Battié
- Faculty of Health Sciences and Western's Bone and Joint Institute, Western University, London, ON, Canada
| |
Collapse
|
5
|
Leucine-Rich Diet Improved Muscle Function in Cachectic Walker 256 Tumour-Bearing Wistar Rats. Cells 2021; 10:cells10123272. [PMID: 34943780 PMCID: PMC8699792 DOI: 10.3390/cells10123272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscle atrophy occurs in several pathological conditions, such as cancer, especially during cancer-induced cachexia. This condition is associated with increased morbidity and poor treatment response, decreased quality of life, and increased mortality in cancer patients. A leucine-rich diet could be used as a coadjutant therapy to prevent muscle atrophy in patients suffering from cancer cachexia. Besides muscle atrophy, muscle function loss is even more important to patient quality of life. Therefore, this study aimed to investigate the potential beneficial effects of leucine supplementation on whole-body functional/movement properties, as well as some markers of muscle breakdown and inflammatory status. Adult Wistar rats were randomly distributed into four experimental groups. Two groups were fed with a control diet (18% protein): Control (C) and Walker 256 tumour-bearing (W), and two other groups were fed with a leucine-rich diet (18% protein + 3% leucine): Leucine Control (L) and Leucine Walker 256 tumour-bearing (LW). A functional analysis (walking, behaviour, and strength tests) was performed before and after tumour inoculation. Cachexia parameters such as body weight loss, muscle and fat mass, pro-inflammatory cytokine profile, and molecular and morphological aspects of skeletal muscle were also determined. As expected, Walker 256 tumour growth led to muscle function decline, cachexia manifestation symptoms, muscle fibre cross-section area reduction, and classical muscle protein degradation pathway activation, with upregulation of FoxO1, MuRF-1, and 20S proteins. On the other hand, despite having no effect on the walking test, inflammation status or muscle oxidative capacity, the leucine-rich diet improved muscle strength and behaviour performance, maintained body weight, fat and muscle mass and decreased some protein degradation markers in Walker 256 tumour-bearing rats. Indeed, a leucine-rich diet alone could not completely revert cachexia but could potentially diminish muscle protein degradation, leading to better muscle functional performance in cancer cachexia.
Collapse
|
6
|
Baba MR, Buch SA. Revisiting Cancer Cachexia: Pathogenesis, Diagnosis, and Current Treatment Approaches. Asia Pac J Oncol Nurs 2021; 8:508-518. [PMID: 34527780 PMCID: PMC8420916 DOI: 10.4103/apjon.apjon-2126] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023] Open
Abstract
The objective of this article is to group together various management strategies and to highlight the recent treatment modifications that attempt to target the multimodal etiological factors involved in cancer cachexia. The contemporary role of nursing fraternity in psychosocial and nutritional assessment of cancer patients is briefly discussed. Cachexia is a syndrome of metabolic disturbance, characterized by the inflammation and loss of muscle with or without loss of adipose tissue. In cancer cachexia, a multifaceted condition, patients suffer from loss of body weight that leads to a negative impact on the quality of life and survival of the patients. The main cancers associated with cachexia are that of pancreas, stomach, lung, esophagus, liver, and that of bowel. The changes include increased proteolysis, lipolysis, insulin resistance, high energy expenditure, and reduced intake of food, all leading to impaired response to different treatments. There is no standardized treatment for cancer cachexia that can stabilize or reverse this complex metabolic disorder at present. The mainstay of cancer cachexia therapy remains to be sufficient nutritional supplements with on-going efforts to explore the drugs that target heightened catabolic processes and complex inflammation. There is a need to develop a multimodal treatment approach combining pharmacology, exercise program, and nutritional support to target anorexia and the severe metabolic changes encountered in cancer cachexia.
Collapse
Affiliation(s)
- Mudasir Rashid Baba
- Department of Paediatric Rehabilitation, Yenepoya Physiotherapy College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sajad Ahmad Buch
- Department of Oral Medicine and Radiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
7
|
Jayawardena TU, Kim SY, Jeon YJ. Sarcopenia; functional concerns, molecular mechanisms involved, and seafood as a nutritional intervention - review article. Crit Rev Food Sci Nutr 2021; 63:1983-2003. [PMID: 34459311 DOI: 10.1080/10408398.2021.1969889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fundamental basis for the human function is provided by skeletal muscle. Advancing age causes selective fiber atrophy, motor unit loss, and hybrid fiber formation resulting in hampered mass and strength, thus referred to as sarcopenia. Influence on the loss of independence of aged adults, contribute toward inclined healthcare costs conveys the injurious impact. The current understating of age-related skeletal muscle changes are addressed in this review, and further discusses mechanisms regulating protein turnover, although they do not completely define the process yet. Moreover, the reduced capacity of muscle regeneration due to impairment of satellite cell activation and proliferation with neuronal, immunological, hormonal factors were brought into the light of attention. Nevertheless, complete understating of sarcopenia requires disentangling it from disuse and disease. Nutritional intervention is considered a potentially preventable factor contributing to sarcopenia. Seafood is a crucial player in the fight against hunger and malnutrition, where it consists of macro and micronutrients. Hence, the review shed light on seafood as a nutritional intrusion in the treatment and prevention of sarcopenia. Understanding multiple factors will provide therapeutic targets in the prevention, treatment, and overcoming adverse effects of sarcopenia.
Collapse
Affiliation(s)
- Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Seo-Young Kim
- Division of Practical Application, Honam National Institute of Biological Resources, Mokpo-si, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea.,Marine Science Institute, Jeju National University, Jeju, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
8
|
Yun HW, Kim CJ, Kim JW, Kim HA, Suh CH, Jung JY. The Assessment of Muscle Mass and Function in Patients with Long-Standing Rheumatoid Arthritis. J Clin Med 2021; 10:jcm10163458. [PMID: 34441751 PMCID: PMC8397223 DOI: 10.3390/jcm10163458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Muscular dysfunction in rheumatoid arthritis (RA) can affect the quality of life and comorbidities. We enrolled 320 patients with RA, and evaluated their muscle mass, grip strength, and physical performance. Seven (2.2%) and 21 RA patients (6.6%) had sarcopenia, as defined by the European and Asian Working Group for Sarcopenia (EWGS and AWGS), respectively; 54 patients (16.9%) were determined to have low muscle mass with normal muscle function, as defined by the EWGS; 38 patients (11.9%) reported sarcopenia by SARC-F questionnaire. Male sex (odds ratio (OR) 140.65), low body mass index (BMI) (OR 0.41), and use of tumor necrosis factor (TNF) inhibitors (OR 4.84) were associated with a low muscle mass as defined by the EWGS, while male sex, old age, and low BMI were associated with sarcopenia as defined by the AWGS. Old age (OR 1.11), high BMI (OR 1.13), and a high Disease Activity Score 28 (OR 1.95) were associated with sarcopenia as reported on the SARC-F. Male, low BMI, and use of TNF inhibitors were associated with a low muscle mass, while male sex, old age, and low BMI were associated with sarcopenia in patients with long-standing RA.
Collapse
Affiliation(s)
- Hye-Won Yun
- Department of Nursing, Andong Science College of Nursing, 189 Seoseon-gil, Seohu-myeon, Andong 36616, Korea;
| | - Chun-Ja Kim
- College of Nursing and Research Institute of Nursing Science, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea;
| | - Ji-Won Kim
- Department of Rheumatology, Department of Nursing, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea; (J.-W.K.); (H.-A.K.); (C.-H.S.)
| | - Hyoun-Ah Kim
- Department of Rheumatology, Department of Nursing, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea; (J.-W.K.); (H.-A.K.); (C.-H.S.)
| | - Chang-Hee Suh
- Department of Rheumatology, Department of Nursing, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea; (J.-W.K.); (H.-A.K.); (C.-H.S.)
| | - Ju-Yang Jung
- Department of Rheumatology, Department of Nursing, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea; (J.-W.K.); (H.-A.K.); (C.-H.S.)
- Correspondence: ; Tel.: +82-31-219-5134; Fax: +82-31-219-5157
| |
Collapse
|
9
|
Li H, Chen C, Wang DW. Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Front Physiol 2021; 12:695047. [PMID: 34276413 PMCID: PMC8281681 DOI: 10.3389/fphys.2021.695047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Despite mounting evidence demonstrating the significance of inflammation in the pathophysiological mechanisms of heart failure (HF), most large clinical trials that target the inflammatory responses in HF yielded neutral or even worsening outcomes. Further in-depth understanding about the roles of inflammation in the pathogenesis of HF is eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells, and extracardiac organs that orchestrate the complex inflammatory responses in HF and highlights emerging therapeutic targets.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
López-Seoane J, Martinez-Ferran M, Romero-Morales C, Pareja-Galeano H. N-3 PUFA as an ergogenic supplement modulating muscle hypertrophy and strength: a systematic review. Crit Rev Food Sci Nutr 2021; 62:9000-9020. [PMID: 34128440 DOI: 10.1080/10408398.2021.1939262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is growing evidence that suggests that n-3 polyunsaturated fatty acids (PUFA) may improve physical performance when combined with proper training through modulation of muscle hypertrophy, muscle strength, and delayed onset muscle soreness (DOMS). This systematic review aims to examine the effect and optimal dosage of n-3 PUFA supplementation on muscle hypertrophy, muscle strength, and DOMS when combined with physical exercise. The PubMed, Web of Science, MEDLINE Complete, CINAHL and SPORTDiscus databases were searched following the PRISMA guidelines. Randomized controlled trials performed with healthy humans were considered. Fifteen studies with a total of 461 individuals were included in this systematic review. All of them measured muscle function (short physical performance test, range of motion (ROM), electromechanical delay (EMD), muscle echo intensity or muscle quality) and DOMS. Fourteen studies evaluated muscle strength and only six assessed muscle hypertrophy. Our results demonstrated that n-3 PUFA does not improve muscle hypertrophy, muscle strength or skeletal muscle biomarkers of inflammation and muscle damage beyond the benefits obtained by the training itself. Nevertheless, n-3 PUFA improves DOMS recovery and muscle function (measured by ROM, EMD and muscle quality).
Collapse
Affiliation(s)
- Jaime López-Seoane
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | - Helios Pareja-Galeano
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences-INEF, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Physical Education, Sport and Human Movement, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Aquilani R, Maestri R, Dossena M, La Rovere MT, Buonocore D, Boschi F, Verri M. Altered Amino Acid Metabolism in Patients with Cardiorenal Syndrome Type 2: Is It a Problem for Protein and Exercise Prescriptions? Nutrients 2021; 13:nu13051632. [PMID: 34067952 PMCID: PMC8152258 DOI: 10.3390/nu13051632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
The goal of this retrospective study was to document any alterations in plasma amino acids (AAs) in subjects with cardiorenal syndrome type 2 (CRS 2). We analyzed data from sixteen patients with CRS 2 and eight healthy subjects (control group, C), whose plasma arterial (A) and venous (V) AA concentrations had been measured. Compared to C, the group of CRS 2 patients showed significant reductions by more than 90% in A (p < 0.01) and V (p < 0.01) individual AAs, whereas negative A-V differences that indicated a net muscle AA release (muscle hypercatabolism) were found in 59% of CRS 2 patients (p < 0.03). No significant differences in plasma A and V AA concentrations nor in A-V differences were found between patients with mild kidney damage (N = 5; estimated glomerular filtration rate, eGFR ≥ 60 mL/min/1.73 m2) and patients with moderate-severe kidney damage (N = 11; eGFR < 60 mL/min/1.73 m2). Several plasma arterial AAs correlated with hemodynamic variables, but not with GFR. The study showed that patients with CRS 2 had very low concentrations of circulating AAs, independent of the degree of GFR damage.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (M.D.); (D.B.)
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, Italy;
| | - Maurizia Dossena
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (M.D.); (D.B.)
| | - Maria Teresa La Rovere
- Department of Cardiac Rehabilitation of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, Italy;
| | - Daniela Buonocore
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (M.D.); (D.B.)
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Manuela Verri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (M.D.); (D.B.)
- Correspondence: ; Tel.: +39-0382-986423
| |
Collapse
|
12
|
Kim Y. Emerging Treatment Options for Sarcopenia in Chronic Liver Disease. Life (Basel) 2021; 11:life11030250. [PMID: 33803020 PMCID: PMC8002763 DOI: 10.3390/life11030250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Sarcopenia is characterized by a skeletal muscle disorder with progressive and generalized loss of muscle mass and function, and it increases the risk of adverse outcomes with considerable prevalence in patients with chronic liver disease. Sarcopenia in chronic liver disease underlies complicated and multifactorial mechanisms for pathogenesis, including alterations in protein turnover, hyperammonemia, energy disposal, hormonal changes, and chronic inflammation. The key contribution to sarcopenia in patients with chronic liver diseases can be the hyperammonemia-induced upregulation of myostatin, which causes muscle atrophy via the expression of atrophy-related genes. Several clinical studies on emerging treatment options for sarcopenia have been reported, but only a few have focused on patients with chronic liver diseases, with mostly nutritional and behavioral interventions being carried out. The inhibition of the myostatin-activin receptor signaling pathway and hormonal therapy might be the most promising therapeutic options in combination with an ammonia-lowering approach in sarcopenic patients with chronic liver diseases. This review focuses on current and emerging treatment options for sarcopenia in chronic liver diseases with underlying mechanisms to counteract this condition.
Collapse
Affiliation(s)
- Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
13
|
Abstract
Significance: Cell senescence was originally defined by an acute loss of replicative capacity and thus believed to be restricted to proliferation-competent cells. More recently, senescence has been recognized as a cellular stress and damage response encompassing multiple pathways or senescence domains, namely DNA damage response, cell cycle arrest, senescence-associated secretory phenotype, senescence-associated mitochondrial dysfunction, autophagy/mitophagy dysfunction, nutrient and stress signaling, and epigenetic reprogramming. Each of these domains is activated during senescence, and all appear to interact with each other. Cell senescence has been identified as an important driver of mammalian aging. Recent Advances: Activation of all these senescence domains has now also been observed in a wide range of post-mitotic cells, suggesting that senescence as a stress response can occur in nondividing cells temporally uncoupled from cell cycle arrest. Here, we review recent evidence for post-mitotic cell senescence and speculate about its possible relevance for mammalian aging. Critical Issues: Although a majority of senescence domains has been found to be activated in a range of post-mitotic cells during aging, independent confirmation of these results is still lacking for most of them. Future Directions: To define whether post-mitotic senescence plays a significant role as a driver of aging phenotypes in tissues such as brain, muscle, heart, and others. Antioxid. Redox Signal. 34, 308-323.
Collapse
Affiliation(s)
- Thomas von Zglinicki
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Molecular Biology and Genetics, Arts and Sciences Faculty, Near East University, Nicosia, Turkey
| | - Tengfei Wan
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Satomi Miwa
- Ageing Research Laboratories, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Role of Sphingosine 1-Phosphate Signalling Axis in Muscle Atrophy Induced by TNFα in C2C12 Myotubes. Int J Mol Sci 2021; 22:ijms22031280. [PMID: 33525436 PMCID: PMC7866171 DOI: 10.3390/ijms22031280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle mass causing reduced agility, increased fatigability and higher risk of bone fractures. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα), are strong inducers of skeletal muscle atrophy. The bioactive sphingolipid sphingosine 1-phoshate (S1P) plays an important role in skeletal muscle biology. S1P, generated by the phosphorylation of sphingosine catalyzed by sphingosine kinase (SK1/2), exerts most of its actions through its specific receptors, S1P1-5. Here, we provide experimental evidence that TNFα induces atrophy and autophagy in skeletal muscle C2C12 myotubes, modulating the expression of specific markers and both active and passive membrane electrophysiological properties. NMR-metabolomics provided a clear picture of the deep remodelling of skeletal muscle fibre metabolism induced by TNFα challenge. The cytokine is responsible for the modulation of S1P signalling axis, upregulating mRNA levels of S1P2 and S1P3 and downregulating those of SK2. TNFα increases the phosphorylated form of SK1, readout of its activation. Interestingly, pharmacological inhibition of SK1 and specific antagonism of S1P3 prevented the increase in autophagy markers and the changes in the electrophysiological properties of C2C12 myotubes without affecting metabolic remodelling induced by the cytokine, highlighting the involvement of S1P signalling axis on TNFα-induced atrophy in skeletal muscle.
Collapse
|
15
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
16
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
17
|
Biswas AK, Acharyya S. The Etiology and Impact of Muscle Wasting in Metastatic Cancer. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037416. [PMID: 31615873 DOI: 10.1101/cshperspect.a037416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metastasis arises when cancer cells disseminate from their site of origin and invade distant organs. While cancer cells rarely colonize muscle, they often induce a debilitating muscle-wasting condition known as cachexia that compromises feeding, breathing, and cardiac function in metastatic cancer patients. In fact, nearly 80% of metastatic cancer patients experience a spectrum of muscle-wasting states, which deteriorates the quality of life and overall survival of cancer patients. Muscle wasting in cancer results from increased muscle catabolism induced by circulating tumor factors and a systemic metabolic dysfunction. In addition, muscle loss can be exacerbated by the exposure to antineoplastic therapies and the process of aging. With no approved therapies to alleviate cachexia, muscle health, therefore, becomes a key determinant of prognosis, treatment response, and survival in metastatic cancer patients. This review will discuss the current understanding of cancer-associated cachexia and highlight promising therapeutic strategies to treat muscle wasting in the context of metastatic cancers.
Collapse
Affiliation(s)
- Anup K Biswas
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
| | - Swarnali Acharyya
- Department of Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032, USA.,Herbert Irving Comprehensive Cancer Center, New York, New York 10032, USA
| |
Collapse
|
18
|
Nonaka K, Akiyama J, Yoshikawa Y, Une S, Ito K. 1,25-Dihydroxyvitamin D 3 Inhibits Lipopolysaccharide-Induced Interleukin-6 Production by C2C12 Myotubes. ACTA ACUST UNITED AC 2020; 56:medicina56090450. [PMID: 32899782 PMCID: PMC7558322 DOI: 10.3390/medicina56090450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/31/2022]
Abstract
Background and Objective: 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits proinflammatory cytokines in microglial cells and monocytes. However, it is unclear whether 1,25(OH)2D3 inhibits proinflammatory cytokines in muscle cells. This study was conducted to investigate whether 1,25(OH)2D3 inhibits the production of proinflammatory cytokines, resulting in inhibition of the protein expression of E3 ubiquitin ligases and muscle protein loss. Materials and Methods: C2C12 myoblasts were proliferated in Dulbecco’s modified Eagle medium (DMEM) containing 10% fetal bovine serum, and myoblasts were differentiated into myotubes in DMEM containing 2% horse serum. Myotubes were treated with 1,25(OH)2D3 for 24 h, followed by lipopolysaccharide (LPS) stimulation for 48 h. Results: Interleukin (IL)-6 protein concentrations were higher in the culture supernatant following LPS stimulation compared to that without LPS stimulation (p < 0.001). However, the IL-6 concentration was significantly lower in C2C12 myotubes following 1,25(OH)2D3 treatment than in C2C12 myotubes without 1,25(OH)2D3 treatment (p < 0.001). The myosin heavy chain (MHC), muscle atrophy F-box, and muscle ring-finger protein-1 protein levels did not significantly differ (P = 0.324, 0.552, and 0.352, respectively). We could not compare tumor necrosis factor α (TNFα) protein levels because they were below the limit of detection of our assay in many supernatant samples, including in LPS-stimulated samples. Conclusions: 1,25(OH)2D3 inhibited increases in IL-6 protein concentrations in muscle cells stimulated by LPS, suggesting that 1,25(OH)2D3 inhibits inflammation in muscle cells. The findings suggest that 1,25(OH)2D3 can prevent or improve sarcopenia, which is associated with IL-6. The TNFα protein content could not be measured, and MHC was not decreased despite LPS stimulation of C2C12 myotubes. Further studies are needed to examine the effects of higher doses of LPS stimulation on muscle cells and use more sensitive methods for measuring TNFα protein to investigate the preventive effects of 1,25(OH)2D3 on increased TNFα and muscle proteolysis.
Collapse
Affiliation(s)
- Koji Nonaka
- Faculty of Health Sciences, Naragakuen University, Nara, Nara 631-8524, Japan; (Y.Y.); (K.I.)
- Correspondence: ; Tel.: +81-742-93-5425
| | - Junichi Akiyama
- Department of Physical Therapy, School of Health Care and Social Welfare, Kibi International University, Takahashi, Okayama 716-8508, Japan;
| | - Yoshiyuki Yoshikawa
- Faculty of Health Sciences, Naragakuen University, Nara, Nara 631-8524, Japan; (Y.Y.); (K.I.)
| | - Satsuki Une
- Faculty of Education, Kagawa University, Takamatsu 760-8521, Japan;
| | - Kenichi Ito
- Faculty of Health Sciences, Naragakuen University, Nara, Nara 631-8524, Japan; (Y.Y.); (K.I.)
| |
Collapse
|
19
|
Roy A, Sharma AK, Nellore K, Narkar VA, Kumar A. TAK1 preserves skeletal muscle mass and mitochondrial function through redox homeostasis. FASEB Bioadv 2020; 2:538-553. [PMID: 32923988 PMCID: PMC7475301 DOI: 10.1096/fba.2020-00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/01/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle atrophy is debilitating consequence of a large number of chronic disease states, aging, and disuse conditions. Skeletal muscle mass is regulated through coordinated activation of a number of signaling cascades. Transforming growth factor-β activated kinase 1 (TAK1) is a central kinase that mediates the activation of multiple signaling pathways in response to various growth factors, cytokines, and microbial products. Accumulating evidence suggests that TAK1 promotes skeletal muscle growth and essential for the maintenance of muscle mass in adults. Targeted inactivation of TAK1 leads to severe muscle wasting and kyphosis in mice. However, the mechanisms by which TAK1 prevents loss of muscle mass remain poorly understood. Through generation of inducible skeletal muscle-specific Tak1-knockout mice, we demonstrate that targeted ablation of TAK1 disrupts redox signaling leading to the accumulation of reactive oxygen species and loss of skeletal muscle mass and contractile function. Suppression of oxidative stress using Trolox improves muscle contractile function and inhibits the activation of catabolic signaling pathways in Tak1-deficient muscle. Moreover, Trolox inhibits the activation of ubiquitin-proteasome system and autophagy markers in skeletal muscle of Tak1-deficient mice. Furthermore, inhibition of oxidative stress using Trolox prevents the slow-to-fast type fiber transition and improves mitochondrial respiration in skeletal muscle of Tak1-deficient mice. Overall, our results demonstrate that TAK1 maintains skeletal muscle mass and health through redox homeostasis.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| | - Aditya K. Sharma
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| | - Kushal Nellore
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Vihang A Narkar
- Center for Metabolic and Degenerative DiseasesInstitute of Molecular MedicineThe University of Texas McGovern Medical SchoolHoustonTXUSA
| | - Ashok Kumar
- Department of Anatomical Sciences and NeurobiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacological and Pharmaceutical SciencesUniversity of Houston College of PharmacyHoustonTXUSA
| |
Collapse
|
20
|
Biswas AK, Acharyya S. Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.
Collapse
Affiliation(s)
- Anup K. Biswas
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
21
|
Marceca GP, Londhe P, Calore F. Management of Cancer Cachexia: Attempting to Develop New Pharmacological Agents for New Effective Therapeutic Options. Front Oncol 2020; 10:298. [PMID: 32195193 PMCID: PMC7064558 DOI: 10.3389/fonc.2020.00298] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia (CC) is a multifactorial syndrome characterized by systemic inflammation, uncontrolled weight loss and dramatic metabolic alterations. This includes myofibrillar protein breakdown, increased lipolysis, insulin resistance, elevated energy expediture, and reduced food intake, hence impairing the patient's response to anti-cancer therapies and quality of life. While a decade ago the syndrome was considered incurable, over the most recent years much efforts have been put into the study of such disease, leading to the development of potential therapeutic strategies. Several important improvements have been reached in the management of CC from both the diagnostic-prognostic and the pharmacological viewpoint. However, given the heterogeneity of the disease, it is impossible to rely only on single variables to properly treat patients presenting this metabolic syndrome. Moreover, the cachexia symptoms are strictly dependent on the type of tumor, stage and the specific patient's response to cancer therapy. Thus, the attempt to translate experimentally effective therapies into the clinical practice results in a great challenge. For this reason, it is of crucial importance to further improve our understanding on the interplay of molecular mechanisms implicated in the onset and progression of CC, giving the opportunity to develop new effective, safe pharmacological treatments. In this review we outline the recent knowledge regarding cachexia mediators and pathways involved in skeletal muscle (SM) and adipose tissue (AT) loss, mainly from the experimental cachexia standpoint, then retracing the unimodal treatment options that have been developed to the present day.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
22
|
Cachexia induced by Yoshida ascites hepatoma in Wistar rats is not associated with inflammatory response in the spleen or brain. J Neuroimmunol 2019; 337:577068. [PMID: 31606594 DOI: 10.1016/j.jneuroim.2019.577068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Recent data indicate that peripheral, as well as hypothalamic pro-inflammatory cytokines play an important role in the development of cancer cachexia. However, there are only a few studies simultaneously investigating the expression of inflammatory molecules in both the periphery and hypothalamic structures in animal models of cancer cachexia. Therefore, using the Yoshida ascites hepatoma rat's model of cancer cachexia we investigated the gene expression of inflammatory markers in the spleen along with the paraventricular and arcuate nuclei, two hypothalamic structures that are involved in regulating energy balance. In addition, we investigated the effect of intracerebroventricular administration of PS-1145 dihydrochloride (an Ikβ inhibitor) on the expression of selected inflammatory molecules in these hypothalamic nuclei and spleen. We observed significantly reduced food intake in tumor-bearing rats. Moreover, we found significantly decreased expression of IL-6 in the spleen as well as decreased NF-κB in the paraventricular nucleus of rats with Yoshida ascites hepatoma. Similarly, expression of TNF-α, IL-1β, NF-κB, and COX-2 in the arcuate nucleus was significantly reduced in tumor-bearing rats. Administration of PS-1145 dihydrochloride reduced only the gene expression of COX-2 in the hypothalamus. Based on our findings, we suggest that the growing Yoshida ascites hepatoma decreased food intake by mechanical compression of the gut and therefore this model is not suitable for investigation of the inflammation-related mechanisms of cancer cachexia development.
Collapse
|
23
|
Sin TK, Zhang G, Zhang Z, Gao S, Li M, Li YP. Cancer Takes a Toll on Skeletal Muscle by Releasing Heat Shock Proteins-An Emerging Mechanism of Cancer-Induced Cachexia. Cancers (Basel) 2019; 11:cancers11091272. [PMID: 31480237 PMCID: PMC6770863 DOI: 10.3390/cancers11091272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Cancer-associated cachexia (cancer cachexia) is a major contributor to the modality and mortality of a wide variety of solid tumors. It is estimated that cachexia inflicts approximately ~60% of all cancer patients and is the immediate cause of ~30% of all cancer-related death. However, there is no established treatment of this disorder due to the poor understanding of its underlying etiology. The key manifestations of cancer cachexia are systemic inflammation and progressive loss of skeletal muscle mass and function (muscle wasting). A number of inflammatory cytokines and members of the TGFβ superfamily that promote muscle protein degradation have been implicated as mediators of muscle wasting. However, clinical trials targeting some of the identified mediators have not yielded satisfactory results. Thus, the root cause of the muscle wasting associated with cancer cachexia remains to be identified. This review focuses on recent progress of laboratory studies in the understanding of the molecular mechanisms of cancer cachexia that centers on the role of systemic activation of Toll-like receptor 4 (TLR4) by cancer-released Hsp70 and Hsp90 in the development and progression of muscle wasting, and the downstream signaling pathways that activate muscle protein degradation through the ubiquitin-proteasome and the autophagy-lysosome pathways in response to TLR4 activation. Verification of these findings in humans could lead to etiology-based therapies of cancer cachexia by targeting multiple steps in this signaling cascade.
Collapse
Affiliation(s)
- Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Zicheng Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Song Gao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Min Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yi-Ping Li
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Patel DI, Wallace D, Abuchowski K, Rivas P, Gallegos A, Musi N, Kumar AP. Nexrutine ® preserves muscle mass similar to exercise in prostate cancer mouse model. Physiol Rep 2019; 7:e14217. [PMID: 31456341 PMCID: PMC6712237 DOI: 10.14814/phy2.14217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
Muscle loss is a debilitating side effect to prostate cancer (PCa) experienced by nearly 60% of men. The purpose of this study was to test the hypothesis that Nexrutine® , a bark extract from the Phellodendrum amurense, can protect against prostate cancer induced muscle loss in a similar manner as exercise, using the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Forty-five, 8- to 10-week old TRAMP mice were randomized to either control, Nexrutine® (600 mg/kg pelleted in chow) or exercise (voluntary wheel running). Mice were serially sacrificed at weeks 4, 8, 12, and 20, at which time either the left or right gastrocnemius muscle was harvested, weighted, and frozen. Proteolysis inducing factor (PIF), ubiquitin, and NF-κB concentrations were quantified using ELISA kits. Nexrutine® and exercise were equally able to protect TRAMP mice against PCa-induced muscle loss (P = 0.04). Both interventions decreased intramuscular PIF concentrations at 20 weeks compared to control (P < 0.05). A treatment effect was also observed when all time points were combined with exercise significantly lowering PIF concentrations (P < 0.01). Exercise significantly lowered intramuscular ubiquitin concentrations in weeks 4, 8, and 20 compared to control mice (P < 0.001). A treatment effect was also observed with exercise significantly lowering ubiquitin compared to control mice (P < 0.001). No significant changes were observed for NF-κB. The results of this investigation demonstrate that PCa-induced muscle loss can be attenuated with the herbal supplement Nexrutine® . This investigation provides preliminary evidence to support continued research into Nexrutine® as a potential exercise analog in protecting against muscle loss.
Collapse
Affiliation(s)
- Darpan I. Patel
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- Barshop Institute for AgingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- Mays Cancer Center at UT Health San AntonioSan AntonioTexas
| | - Derek Wallace
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Kira Abuchowski
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Paul Rivas
- Department of Urology, School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Amber Gallegos
- School of NursingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Nicolas Musi
- Barshop Institute for AgingUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Addanki Pratap. Kumar
- Mays Cancer Center at UT Health San AntonioSan AntonioTexas
- Department of Urology, School of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| |
Collapse
|
25
|
McMahon G, Morse CI, Winwood K, Burden A, Onambélé GL. Circulating Tumor Necrosis Factor Alpha May Modulate the Short-Term Detraining Induced Muscle Mass Loss Following Prolonged Resistance Training. Front Physiol 2019; 10:527. [PMID: 31130871 PMCID: PMC6509206 DOI: 10.3389/fphys.2019.00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Introduction Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that has been shown to modulate muscle mass, and is responsive to exercise training. The effects of resistance training (RT) followed by a short period of detraining on muscle size, architecture and function in combination with circulating TNFα levels have not been previously investigated in a young, healthy population. Methods Sixteen participants (8 males and 8 females) were randomly assigned to a training group (TRA; age 20 ± 3 years, mass 76 ± 7 kg), whilst fourteen participants (7 males and 7 females) age 22 ± 2 years, mass 77 ± 6 kg were assigned to a control group (CON). Measures of vastus lateralis (VL) muscle size (normalized physiological cross-sectional area allometrically scaled to body mass; npCSA), architecture (fascicle length; LF, pennation angle Pθ), strength (knee extensor maximal voluntary contraction; KE MVC), specific force, subcutaneous fat (SF) and circulating TNFα were assessed at baseline (BL), post 8 weeks RT (PT), and at two (DT1) and four (DT2) weeks of detraining. Results Pooled BL TNFα was 0.87 ± 0.28 pg/mL with no differences between groups. BL TNFα tended to be correlated with npCSA (p = 0.055) and KEMVC (p = 0.085) but not specific force (p = 0.671) or SF (p = 0.995). There were significant (p < 0.05) increases in npCSA compared to BL and CON in TRA at PT, DT1, and DT2, despite significant (p < 0.05) decreases in npCSA compared to PT at DT1 and DT2. There were significant (p < 0.05) increases in LF, Pθ and KE MVC at PT but only LF and torque at DT1. There were no significant (p > 0.05) changes in SF, specific force or TNFα at any time points. There was a significant correlation (p = 0.022, r = 0.57) between the relative changes in TNFα and npCSA at DT2 compared to PT. Discussion Neither RT nor a period of short term detraining altered the quality of muscle (i.e., specific force) despite changes in morphology and function. TNFα does not appear to have any impact on RT-induced gains in muscle size or function, however, TNFα may play a role in inflammatory-status mediated muscle mass loss during subsequent detraining in healthy adults.
Collapse
Affiliation(s)
- Gerard McMahon
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, United Kingdom.,Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Crewe, United Kingdom
| | - Christopher I Morse
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Crewe, United Kingdom
| | - Keith Winwood
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Crewe, United Kingdom
| | - Adrian Burden
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Crewe, United Kingdom
| | - Gladys L Onambélé
- Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Crewe, United Kingdom
| |
Collapse
|
26
|
Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8219283. [PMID: 31089418 PMCID: PMC6476063 DOI: 10.1155/2019/8219283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023]
Abstract
Chronic kidney disease (CKD) is accompanied by a disturbed redox homeostasis, especially in end-stage patients, which is associated with pathological complications such as anemia, atherosclerosis, and muscle atrophy. However, limited evidence exists about redox disturbances before the end stage of CKD. Moreover, the available redox literature has not yet provided clear associations between circulating and tissue-specific (muscle) oxidative stress levels. The aim of the study was to evaluate commonly used redox status indices in the blood and in two different types of skeletal muscle (psoas, soleus) in the predialysis stages of CKD, using an animal model of renal insufficiency, and to investigate whether blood redox status indices could be reflecting the skeletal muscle redox status. Indices evaluated included reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), catalase (CAT), total antioxidant capacity (TAC), protein carbonyls (PC), and thiobarbituric acid reactive substances (TBARS). Results showed that blood GSH was higher in the uremic group compared to the control (17.50 ± 1.73 vs. 12.43 ± 1.01, p = 0.033). In both muscle types, PC levels were higher in the uremic group compared to the control (psoas: 1.086 ± 0.294 vs. 0.596 ± 0.372, soleus: 2.52 ± 0.29 vs. 0.929 ± 0.41, p < 0.05). The soleus had higher levels of TBARS, PC, GSH, CAT, and GR and lower TAC compared to the psoas in both groups. No significant correlations in redox status indices between the blood and skeletal muscles were found. However, in the uremic group, significant correlations between the psoas and soleus muscles in PC, GSSG, and CAT levels emerged, not present in the control. Even in the early stages of CKD, a disturbance in redox homeostasis was observed, which seemed to be muscle type-specific, while blood levels of redox indices did not seem to reflect the intramuscular condition. The above results highlight the need for further research in order to identify the key mechanisms driving the onset and progression of oxidative stress and its detrimental effects on CKD patients.
Collapse
|
27
|
Bin Y, Xiao Y, Huang D, Ma Z, Liang Y, Bai J, Zhang W, Liang Q, Zhang J, Zhong X, He Z. Theophylline inhibits cigarette smoke-induced inflammation in skeletal muscle by upregulating HDAC2 expression and decreasing NF-κB activation. Am J Physiol Lung Cell Mol Physiol 2019; 316:L197-L205. [PMID: 30358442 DOI: 10.1152/ajplung.00005.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammation is associated with skeletal muscle dysfunction and atrophy in patients with chronic obstructive pulmonary disease (COPD). Theophylline has an anti-inflammatory role in COPD. However, the effects of theophylline on inflammation in skeletal muscle in COPD have rarely been reported. The aims of this study were to explore whether theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema and to investigate the molecular mechanism underlying this effect. In mice, cigarette smoke (CS) exposure for 28 wk resulted in atrophy of the gastrocnemius muscle. Histone deacetylase 2 (HDAC2) and nuclear factor-κBp65 (NF-κBp65) mRNA and protein levels were significantly decreased and increased, respectively, in gastrocnemius muscle. This effect was revered by aminophylline. The exposure of murine skeletal muscle C2C12 cells to CS extract (CSE) significantly increased IL-8 and TNF-α levels as well as NF-κBp65 mRNA and protein levels and NF-κBp65 activity. This effect was reversed by theophylline. HDAC2 knockdown enhanced the activity of NF-κBp65 and increased IL-8 and TNF-α levels in C2C12 cells. CSE significantly increased the interaction of HDAC2 with NF-κBp65 in C2C12 cells. These data suggest that theophylline has an anti-inflammatory effect on skeletal muscle in a mouse model of emphysema by upregulating HDAC2 expression and decreasing NF-κBp65 activation.
Collapse
Affiliation(s)
- Yanfei Bin
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Xiao
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongmei Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiying Ma
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenlu Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiuli Liang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
29
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
Wang Y, Welc SS, Wehling-Henricks M, Tidball JG. Myeloid cell-derived tumor necrosis factor-alpha promotes sarcopenia and regulates muscle cell fusion with aging muscle fibers. Aging Cell 2018; 17:e12828. [PMID: 30256507 PMCID: PMC6260911 DOI: 10.1111/acel.12828] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
Sarcopenia is age‐related muscle wasting that lacks effective therapeutic interventions. We found that systemic ablation of tumor necrosis factor‐α (TNF‐α) prevented sarcopenia and prevented age‐related change in muscle fiber phenotype. Furthermore, TNF‐α ablation reduced the number of satellite cells in aging muscle and promoted muscle cell fusion in vivo and in vitro. Because CD68+ macrophages are important sources of TNF‐α and the number of CD68+ macrophages increases in aging muscle, we tested whether macrophage‐derived TNF‐α affects myogenesis. Media conditioned by TNF‐α‐null macrophages increased muscle cell fusion in vitro, compared to media conditioned by wild‐type macrophages. In addition, transplantation of bone marrow cells from wild‐type mice into TNF‐α‐null recipients increased satellite cell numbers and reduced numbers of centrally nucleated myofibers, indicating that myeloid cell‐secreted TNF‐α reduces muscle cell fusion. Transplanting bone marrow cells from wild‐type mice into TNF‐α‐null recipients also increased sarcopenia, although transplantation did not restore the age‐related change in muscle fiber phenotype. Collectively, we show that myeloid cell‐derived TNF‐α contributes to muscle aging by affecting sarcopenia and muscle cell fusion with aging muscle fibers. Our findings also show that TNF‐α that is intrinsic to muscle and TNF‐α secreted by immune cells work together to influence muscle aging.
Collapse
Affiliation(s)
- Ying Wang
- Molecular, Cellular and Integrative Physiology Program; University of California; Los Angeles California
| | - Steven S. Welc
- Department of Integrative Biology and Physiology; University of California; Los Angeles California
| | | | - James G. Tidball
- Molecular, Cellular and Integrative Physiology Program; University of California; Los Angeles California
- Department of Integrative Biology and Physiology; University of California; Los Angeles California
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA; University of California; Los Angeles California
| |
Collapse
|
31
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
32
|
Kim D, Park Y. Association between the Dietary Inflammatory Index and Risk of Frailty in Older Individuals with Poor Nutritional Status. Nutrients 2018; 10:nu10101363. [PMID: 30249038 PMCID: PMC6213380 DOI: 10.3390/nu10101363] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Both inflammation and poor nutritional status are major risk factors of frailty, and the dietary inflammatory index (DII) has been suggested as being associated with the risk of frailty. The present study aimed to investigate whether DII scores were positively associated with the risk of frailty in older individuals, particularly those with poor nutritional status. In total, 321 community-dwelling older individuals aged 70–85 years were recruited and categorized as non-frail, pre-frail, and frail according to the Cardiovascular Health Study index. DII scores were calculated based on 24-h dietary recall, and nutritional status was assessed using the Mini Nutritional Assessment. Multinomial logistic regression analysis showed that DII scores were positively associated with the risk of frailty in older individuals (odds ratio, OR 1.64, 95% confidence interval, 95% CI 1.25–2.17), particularly those with poor nutritional status (OR 1.68, 95% CI 1.21–2.34). Among the frailty criteria, weight loss (OR 1.29, 95% CI 1.03–1.60), low walking speed (OR 1.33, 95% CI 1.10–1.61), and low grip strength (OR 1.34, 95% CI 1.13–1.60) were associated with DII scores. In addition, the optimal DII cut-off score for frailty was ≥0.93 (sensitivity 71%; specificity: 72%; area under the receiver operating characteristic curve, AUC = 0.792). The present study showed that a pro-inflammatory diet was associated with increased risk of frailty, particularly in older individuals with poor nutritional status. Future randomized controlled trials with a low DII diet for the prevention of frailty are needed to confirm our finding.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| |
Collapse
|
33
|
Bak DH, Na J, Im SI, Oh CT, Kim JY, Park SK, Han HJ, Seok J, Choi SY, Ko EJ, Mun SK, Ahn SW, Kim BJ. Antioxidant effect of human placenta hydrolysate against oxidative stress on muscle atrophy. J Cell Physiol 2018; 234:1643-1658. [PMID: 30132871 DOI: 10.1002/jcp.27034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/25/2018] [Indexed: 01/07/2023]
Abstract
Sarcopenia, which refers to the muscle loss that accompanies aging, is a complex neuromuscular disorder with a clinically high prevalence and mortality. Despite many efforts to protect against muscle weakness and muscle atrophy, the incidence of sarcopenia and its related permanent disabilities continue to increase. In this study, we found that treatment with human placental hydrolysate (hPH) significantly increased the viability (approximately 15%) of H2 O2 -stimulated C2C12 cells. Additionally, while H2 O2 -stimulated cells showed irregular morphology, hPH treatment restored their morphology to that of cells cultured under normal conditions. We further showed that hPH treatment effectively inhibited H2 O2 -induced cell death. Reactive oxygen species (ROS) generation and Mstn expression induced by oxidative stress are closely associated with muscular dysfunction followed by atrophy. Exposure of C2C12 cells to H2 O2 induced abundant production of intracellular ROS, mitochondrial superoxide, and mitochondrial dysfunction as well as myostatin expression via nuclear factor-κB (NF-κB) signaling; these effects were attenuated by hPH. Additionally, hPH decreased mitochondria fission-related gene expression (Drp1 and BNIP3) and increased mitochondria biogenesis via the Sirt1/AMPK/PGC-1α pathway and autophagy regulation. In vivo studies revealed that hPH-mediated prevention of atrophy was achieved predominantly through regulation of myostatin and PGC-1α expression and autophagy. Taken together, our findings indicate that hPH is potentially protective against muscle atrophy and oxidative cell death.
Collapse
Affiliation(s)
- Dong-Ho Bak
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Song I Im
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| | - Chang Taek Oh
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Jeom-Yong Kim
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Sun-Kyu Park
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Hae Jung Han
- Research Institute, Research & Development Center, Green Cross WellBeing Corporation, Seongnam, Korea
| | - Joon Seok
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sun Young Choi
- Department of Dermatology, College of Medicine, Seoul Paik Hospital Inje University, Seoul, Korea
| | - Eun Jung Ko
- Myongji Hospital, College of Medicine, Seonam University, Goyang, Korea
| | - Seog-Kyun Mun
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Suk-Won Ahn
- Department of Neurology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Korea.,Department of Medicine, Graduate School, Chung-Ang University, Seoul, Korea
| |
Collapse
|
34
|
Wang T, Han C, Tian P, Li PF, Ma XL. Role of Teriparatide in Glucocorticoid-induced Osteoporosis through Regulating Cellular Reactive Oxygen Species. Orthop Surg 2018; 10:152-159. [PMID: 29745033 DOI: 10.1111/os.12369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/25/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To determine the signaling pathways mediated by teriparatide in MLO-Y4 cell lines based on the evaluation of reactive oxygen species (ROS) through AKT pathways, which regulate apoptosis of bone cells. METHODS We performed the DCFH-DA assay to investigate the role of ROS in MLO-Y4 cells caused by dexamethasone (Dex). Four groups were included: Dex group, Dex+NAC, Dex+ teriparatide group and control group (without any dispose). Real-time reverse transcriptase polymerase chain reaction was used to test the SOD2 and Cat mRNA expression. Western blot (WB) was used to investigate the AKT and caspase-3 protein expression. A Cell Counting Kit-8 (CCK-8) assay test was conducted to explore the cell viability, and we also studied the apoptosis through western blot assay. A glucocorticoid-induced osteoporosis (GIOP) model was used to confirm the anti-ROS and anti-apoptosis ability of teriparatide. RESULTS The CCK-8 assay revealed that Dex reduced the proliferative capability of cells significantly, whereas incubation with teriparatide resulted in a remarkable increase in the proliferation of osteocytes. In addition, teriparatide can rescue the effect of inhibiting cell proliferation due to Dex treatment. Immunofluorescence analysis showed that ROS levels increased in Dex-treated MLO-Y4 cells when compared with control groups. However, the Dex+Teriparatide group showed less ROS when compared with the Dex group. The expression of Sod2 and Cat, two antioxidant enzymes crucial for ROS elimination, was decreased in the Dex group, indicating a defect of the enzymatic antioxidant system. Compared to the Dex group, incubation with teriparatide resulted in a significant decrease in caspase-3 level; when compared with the control group, the caspase-3 level was not significantly different, indicating that teriparatide can rescue apoptosis during Dex exposure. Moreover, teriparatide promotes the expression of AKT, and rescues the apoptosis effect caused by Dex. The results of immunofluorescence also showed that Akt was highly expressed in the teriparatide group when compared with the Dex group. The microstructural parameters Tb.Th, BV/TV, and Tb.N in the methylprednisolone (MPS) group were markedly reduced compared with the control group, but additional treatment with teriparatide could remarkably reverse the methylprednisolone-induced reduction of these parameters. Moreover, the parameter Tb.Sp was significantly increased in the methylprednisolone group compared to the control group, and this increase could be inhibited by teriparatide. CONCLUSIONS Teriparatide can reduce the cellular ROS level caused by glucocorticoids to facilitate the proliferation of osteocytes through activating the AKT pathway. Meanwhile, the activated AKT can inhibit the activity of proteolytic enzyme caspase-3 and prevent the activation of apoptosis cascade.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Chao Han
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Tian
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng-Fei Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin-Long Ma
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
35
|
Bielecka-Dabrowa A, Fabis J, Mikhailidis DP, von Haehling S, Sahebkar A, Rysz J, Banach M. Prosarcopenic Effects of Statins May Limit Their Effectiveness in Patients with Heart Failure. Trends Pharmacol Sci 2018; 39:331-353. [DOI: 10.1016/j.tips.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
|
36
|
S-allyl cysteine inhibits TNFα-induced skeletal muscle wasting through suppressing proteolysis and expression of inflammatory molecules. Biochim Biophys Acta Gen Subj 2018; 1862:895-906. [DOI: 10.1016/j.bbagen.2017.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
|
37
|
Baker LA, Martin NRW, Kimber MC, Pritchard GJ, Lindley MR, Lewis MP. Resolvin E1 (R
v
E
1
) attenuates LPS induced inflammation and subsequent atrophy in C2C12 myotubes. J Cell Biochem 2018; 119:6094-6103. [DOI: 10.1002/jcb.26807] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/23/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Luke A. Baker
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| | - Neil R. W. Martin
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| | - Marc C. Kimber
- Translational Chemical Biology Research GroupDepartment of Chemistry, School of ScienceLoughborough UniversityLoughboroughUnited Kingdom
| | - Gareth J. Pritchard
- Translational Chemical Biology Research GroupDepartment of Chemistry, School of ScienceLoughborough UniversityLoughboroughUnited Kingdom
| | - Martin R. Lindley
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| | - Mark P. Lewis
- Translational Chemical Biology Research GroupSchool of Sport Exercise and Health SciencesLoughborough UniversityLoughboroughUnited Kingdom
| |
Collapse
|
38
|
Elattar S, Dimri M, Satyanarayana A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J 2018; 32:4727-4743. [PMID: 29570397 DOI: 10.1096/fj.201701465rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cachexia is a complex tissue-wasting syndrome characterized by inflammation, hypermetabolism, increased energy expenditure, and anorexia. Browning of white adipose tissue (WAT) is one of the significant factors that contribute to energy wasting in cachexia. By utilizing a cell implantation model, we demonstrate here that the lipid mobilizing factor zinc-α2-glycoprotein (ZAG) induces WAT browning in mice. Increased circulating levels of ZAG not only induced lipolysis in adipose tissues but also caused robust browning in WAT. Stimulating WAT progenitors with ZAG recombinant protein or expression of ZAG in mouse embryonic fibroblasts (MEFs) strongly enhanced brown-like differentiation. At the molecular level, ZAG stimulated peroxisome proliferator-activated receptor γ (PPARγ) and early B cell factor 2 expression and promoted their recruitment to the PR/SET domain 16 (Prdm16) promoter, leading to enhanced expression of Prdm16, which determines brown cell fate. In brown adipose tissue, ZAG stimulated the expression of PPARγ and PPARγ coactivator 1α and promoted recruitment of PPARγ to the uncoupling protein 1 (Ucp1) promoter, leading to increased expression of Ucp1. Overall, our results reveal a novel function of ZAG in WAT browning and highlight the targeting of ZAG as a potential therapeutic application in humans with cachexia.-Elattar, S., Dimri, M., Satyanarayana, A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.
Collapse
Affiliation(s)
- Sawsan Elattar
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Manali Dimri
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Ande Satyanarayana
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
39
|
Masuda S, Tanaka M, Inoue T, Ohue-Kitano R, Yamakage H, Muranaka K, Kusakabe T, Shimatsu A, Hasegawa K, Satoh-Asahara N. Chemokine (C-X-C motif) ligand 1 is a myokine induced by palmitate and is required for myogenesis in mouse satellite cells. Acta Physiol (Oxf) 2018; 222. [PMID: 28960786 DOI: 10.1111/apha.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/20/2023]
Abstract
AIM The functional significance of the myokines, cytokines and peptides produced and released by muscle cells has not been fully elucidated. The purpose of this study was to identify a myokine with increased secretion levels in muscle cells due to saturated fatty acids and to examine the role of the identified myokine in the regulation of myogenesis. METHODS Human primary myotubes and mouse C2C12 myotubes were used to identify the myokine; its secretion was stimulated by palmitate loading. The role of the identified myokine in the regulation of the activation, proliferation, differentiation and self-renewal was examined in mouse satellite cells (skeletal muscle stem cells). RESULTS Palmitate loading promoted the secretion of chemokine (C-X-C motif) ligand 1 (CXCL1) in human primary myotubes, and it also increased CXCL1 gene expression level in C2C12 myotubes in a dose- and time-dependent manner. Palmitate loading increased the production of reactive oxygen species along with the activation of nuclear factor-kappa B (NF-κB) signalling. Pharmacological inhibition of NF-κB signalling attenuated the increase in CXCL1 gene expression induced by palmitate and hydrogen peroxide. Palmitate loading significantly increased CXC receptor 2 gene expression in undifferentiated cells. CXCL1 knockdown attenuated proliferation and myotube formation by satellite cells, with reduced self-renewal. CXCL1 knockdown also significantly decreased the Notch intracellular domain protein level. CONCLUSION These results suggest that secretion of the myokine CXCL1 is stimulated by saturated fatty acids and that CXCL1 promotes myogenesis from satellite cells to maintain skeletal muscle homeostasis.
Collapse
Affiliation(s)
- S. Masuda
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - M. Tanaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Inoue
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - R. Ohue-Kitano
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - H. Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Muranaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Kusakabe
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - A. Shimatsu
- Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Hasegawa
- Department of Translational Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - N. Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| |
Collapse
|
40
|
Santos CP, Aguiar AF, Giometti IC, Mariano TB, de Freitas CEA, Nai GA, de Freitas SZ, Pai-Silva MD, Pacagnelli FL. High final energy of gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats. Lasers Med Sci 2018; 33:843-850. [PMID: 29333581 DOI: 10.1007/s10103-018-2439-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
Abstract
The aim of this study was to determine the effects of gallium arsenide (GaAs) laser on IGF-I, MyoD, MAFbx, and TNF-α gene expression during the intermediate phase of muscle regeneration after cryoinjury 21 Wistar rats were divided into three groups (n = 7 per group): untreated with no injury (control group), cryoinjury without GaAs (injured group), and cryoinjury with GaAs (GaAs-injured group). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The region injured was irradiated once a day during 14 days using GaAs laser (904 nm; spot size 0.035 cm2, output power 50 mW; energy density 69 J cm-2; exposure time 4 s per point; final energy 4.8 J). Twenty-four hours after the last application, the right and left TA muscles were collected for histological (collagen content) and molecular (gene expression of IGF-I, MyoD, MAFbx, and TNF-α) analyses, respectively. Data were analyzed using one-way ANOVA at P < 0.05. There were no significant (P > 0.05) differences in collagen density and IGF-I gene expression in all experimental groups. There were similar (P < 0.05) decreases in MAFbx and TNF-α gene expression in the injured and GaAs-injured groups, compared to control group. The MyoD gene expression increased (P = 0.008) in the GaAs-injured group, but not in the injured group (P = 0.338), compared to control group. GaAs laser therapy had a positive effect on MyoD gene expression, but not IGF-I, MAFbx, and TNF-α, during intermediary phases (14 days post-injury) of muscle repair.
Collapse
Affiliation(s)
- Caroline Pereira Santos
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Andreo Fernando Aguiar
- Center of Research in Health Science, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, 86041-120, Brazil.
| | - Ines Cristina Giometti
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Thaoan Bruno Mariano
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | - Gisele Alborghetti Nai
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Selma Zambelli de Freitas
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Maeli Dal Pai-Silva
- Department of Morphology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Francis Lopes Pacagnelli
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
41
|
NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:267-279. [PMID: 30390256 DOI: 10.1007/978-981-13-1435-3_12] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atrophy is a classical hallmark of an array of disorders that affect skeletal muscle, ranging from inherited dystrophies, acquired inflammatory myopathies, ageing (sarcopenia) and critical illness (sepsis). The loss of muscle mass and function in these instances is associated with disability, poor quality of life and in some cases mortality. The mechanisms which underpin muscle atrophy are complex; however, significant research has demonstrated an important role for inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α), mediated by the generation of reactive oxygen species (ROS) in muscle wasting. Moreover, activation of the transcription factor nuclear factor kappa B (NF-κB) is a key lynchpin in the overall processes that mediate muscle atrophy. The significance of NF-κB as a key regulator of muscle atrophy has been emphasised by several in vivo studies, which have demonstrated that NF-κB-targeted therapies can abrogate muscle atrophy. In this chapter, we will summarise current knowledge on the role of cytokines (TNF-α) and NF-κB in the loss of muscle mass and function and highlight perspectives towards future research and potential therapies to combat muscle atrophy.
Collapse
|
42
|
Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2063179. [PMID: 29785242 PMCID: PMC5896211 DOI: 10.1155/2018/2063179] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.
Collapse
Affiliation(s)
- Johanna Ábrigo
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A. Elorza
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
- 3Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Cristian Vilos
- 4Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
- 5Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Daniel Cabrera
- 6Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- 7Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Lisbell Estrada
- 8Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
43
|
Krüger K, Seimetz M, Ringseis R, Wilhelm J, Pichl A, Couturier A, Eder K, Weissmann N, Mooren FC. Exercise training reverses inflammation and muscle wasting after tobacco smoke exposure. Am J Physiol Regul Integr Comp Physiol 2017; 314:R366-R376. [PMID: 29092860 DOI: 10.1152/ajpregu.00316.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term cigarette smoking induces inflammatory processes in the pulmonary system that are suggested to "spill over" into systemic inflammation. Regular exercise has been shown to have anti-inflammatory properties. The aim of the study was to investigate the effects of therapeutic exercise on inflammation and muscle wasting in smoke-exposed mice. C57BL/6J mice ( n = 30) were separated into three groups to receive either 1) no specific treatment (control group), 2) 8-mo exposure to cigarette smoke [smoke-exposed (SE) group], or 3) 8 mo of cigarette smoke combined with exercise training during the last 2 mo (SEex group). The inflammatory status was analyzed by quantifying levels of various plasma proteins using multiplex ELISA and detection of lymphocyte surface markers by flow cytometry. Muscle tissue was analyzed by histological techniques and measurements of RNA/protein expression. SE led to decreased maximal O2 uptake (V̇o2max) and maximal running speed ( Vmax), which was reversed by exercise ( P < 0.05). Expression of ICAM-1, VCAM-1, and CD62L on T cells increased and was reversed by exercise ( P < 0.05). Similarly, SE induced an increase of various inflammatory cytokines, which were downregulated by exercise. In muscle, exercise improved the structure, oxidative capacity, and metabolism by reducing ubiquitin proteasome system activation, stimulating insulin-like growth factor 1 expression, and the SE-induced inhibition of mammalian target of rapamycin signaling pathway ( P < 0.05). Exercise training reverses smoke-induced decline in exercise capacity, systemic inflammation, and muscle wasting by addressing immune-regulating, anabolic, and metabolic pathways.
Collapse
Affiliation(s)
- Karsten Krüger
- Institute of Sports Science, Department Exercise and Health, Leibniz University Hannover , Germany.,Department of Sports Medicine, University of Giessen , Giessen , Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring, Giessen , Germany
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Alexandra Pichl
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Aline Couturier
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring, Giessen , Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring, Giessen , Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Cente, Member of the German Center for Lung Research
| | - Frank C Mooren
- Department of Sports Medicine, University of Giessen , Giessen , Germany.,Klinik Königsfeld, Ennepetal, Germany
| |
Collapse
|
44
|
A novel puromycin decorporation method to quantify skeletal muscle protein breakdown: A proof-of-concept study. Biochem Biophys Res Commun 2017; 494:608-614. [PMID: 29054406 PMCID: PMC5697498 DOI: 10.1016/j.bbrc.2017.10.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
The precise roles that the major proteolytic pathways play in the regulation of skeletal muscle mass remain incompletely understood, in part due to technical limitations associated with current techniques used to quantify muscle protein breakdown (MPB). We aimed to develop a method to assess MPB in cells, based on loss of puromycin labelling of translated polypeptide chains. Following an initial 24 h incubation period with puromycin (1 μM), loss of puromycin labelling from murine C2C12 myotubes was assessed over 48 h, both in the presence or absence of protein synthesis inhibitor cycloheximide (CHX). To validate the method, loss of puromycin labelling was determined from cells treated with selected compounds known to influence MPB (e.g. serum starvation, Dexamethasone (Dex), tumour necrosis factor alpha (TNF-α) and MG-132)). Reported established (static) markers of MPB were measured following each treatment. Loss of puromycin labelling from cells pre-incubated with puromycin was evident over a 48 h period, both with and without CHX. Treatment with Dex (−14 ± 2% vs. Ctl; P < 0.01), TNF-α (−20 ± 4% vs. Ctl; P < 0.001) and serum starvation (−14 ± 4% vs. Ctl; P < 0.01) caused a greater loss of puromycin labelling than untreated controls, while the proteasome inhibitor MG-132 caused a relatively lower loss of puromycin labelling (+15 ± 8% vs. Ctl; P < 0.05). Thus, we have developed a novel decorporation method for measuring global changes in MPB, validated in vitro using an established muscle cell line. It is anticipated this non isotopic-tracer alternative to measuring MPB will facilitate insight into the mechanisms that regulate muscle mass/MPB both in vitro, and perhaps, in vivo. Limitations exist in the techniques used to quantify muscle protein breakdown (MPB). We developed a method for assessing MPB through loss of puromycin labelling in cells. We validated the method using selected compounds known to dynamically modulate MPB.
Collapse
|
45
|
Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children. Molecules 2017; 22:molecules22101728. [PMID: 29036910 PMCID: PMC6151441 DOI: 10.3390/molecules22101728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8–10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.
Collapse
|
46
|
Calegari L, Nunes RB, Mozzaquattro BB, Rossato DD, Dal Lago P. Exercise training improves the IL-10/TNF-α cytokine balance in the gastrocnemius of rats with heart failure. Braz J Phys Ther 2017; 22:154-160. [PMID: 28939262 PMCID: PMC5883991 DOI: 10.1016/j.bjpt.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/21/2017] [Accepted: 05/27/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE This study examined the effects of exercise training (ExT) upon concentration of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) in the gastrocnemius of rats with heart failure (HF) induced by left coronary artery ligation. METHODS Adult male Wistar rats submitted to myocardial infarction (MI) or sham surgery were randomly allocated into one of four experimental groups: trained HF (Tr-HF), sedentary HF (Sed-HF), trained sham (Tr-Sham) and sedentary sham (Sed-Sham). ExT protocol was performed on treadmill for a period of 8 weeks (60m/days, 5×/week, 16m/min), which started 6 weeks after MI. Cardiac hemodynamic evaluations of left ventricular end-diastolic pressure (LVEDP) and morphometric cardiac were used to characterize HF. The hemodynamic variables were recorded and gastrocnemius muscle was collected. TNF-α, IL-6 and IL-10 protein levels were determined by multiplex bead array. RESULTS Sed-HF group presented increase of TNF-α level when compared with the Sed-Sham group (mean difference, MD 1.3; 95% confidence interval, CI -0.04 to 2.5). ExT reduced by 59% TNF-α level in Tr-HF group (MD -1.7; 95% CI -2.9 to -0.3) and increased IL-10 (MD 15; 95% CI 11-26) when compared with the Sed-HF group. Thus, the gastrocnemius muscle IL-10/TNF-α ratio was increased in Tr-HF rats (MD 15; 95% CI -8 to 47) when compared with the Sed-HF rats. CONCLUSION These results demonstrate that ExT not only attenuates TNF-α level but also improves the IL-10 cytokine level in skeletal muscle of HF rats.
Collapse
Affiliation(s)
- Leonardo Calegari
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Faculty of Physical Education and Physical Therapy, Universidade de Passo Fundo, Passo Fundo, RS, Brazil
| | - Ramiro B Nunes
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Bruna B Mozzaquattro
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Douglas D Rossato
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro Dal Lago
- Laboratory of Physiology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Physical Therapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
47
|
The role of attenuated redox and heat shock protein responses in the age-related decline in skeletal muscle mass and function. Essays Biochem 2017; 61:339-348. [PMID: 28698308 DOI: 10.1042/ebc20160088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 05/11/2017] [Indexed: 11/17/2022]
Abstract
The loss of muscle mass and weakness that accompanies ageing is a major contributor to physical frailty and loss of independence in older people. A failure of muscle to adapt to physiological stresses such as exercise is seen with ageing and disruption of redox regulated processes and stress responses are recognized to play important roles in theses deficits. The role of redox regulation in control of specific stress responses, including the generation of heat shock proteins (HSPs) by muscle appears to be particularly important and affected by ageing. Transgenic and knockout studies in experimental models in which redox and HSP responses were modified have demonstrated the importance of these processes in maintenance of muscle mass and function during ageing. New data also indicate the potential of these processes to interact with and influence ageing in other tissues. In particular the roles of redox signalling and HSPs in regulation of inflammatory pathways appears important in their impact on organismal ageing. This review will briefly indicate the importance of this area and demonstrate how an understanding of the manner in which redox and stress responses interact and how they may be controlled offers considerable promise as an approach to ameliorate the major functional consequences of ageing of skeletal muscle (and potentially other tissues) in man.
Collapse
|
48
|
Denny AP, Heather AK. Are Antioxidants a Potential Therapy for FSHD? A Review of the Literature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7020295. [PMID: 28690764 PMCID: PMC5485364 DOI: 10.1155/2017/7020295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/21/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy affecting approximately 1 in 7500 individuals worldwide. It is a progressive disease characterised by skeletal muscle weakness and wasting. A genetic mutation on the 4q35 chromosome results in the expression of the double homeobox 4 gene (DUX4) which drives oxidative stress, inflammation, toxicity, and atrophy within the skeletal muscle. FSHD is characterised by oxidative stress, and there is currently no cure and a lack of therapies for the disease. Antioxidants have been researched for many years, with investigators aiming to use antioxidants therapeutically for oxidative stress-associated diseases. This has included both natural and synthetic antioxidants. The use of antioxidants in preclinical or clinical models has been largely successful with a plethora of research reporting positive results. However, when translated to clinical trials, the use of antioxidants as a therapeutic intervention for a variety of disease has been largely unsuccessful. Moreover, specifically focusing on FSHD, limited research has been conducted on the use of antioxidants as a therapy in either preclinical or clinical models. This review summarises the current state of antioxidant use in the treatment of FSHD and discusses their potential avenue for therapeutic use for FSHD patients.
Collapse
Affiliation(s)
- Adam Philip Denny
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alison Kay Heather
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
49
|
Patel HJ, Patel BM. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci 2016; 170:56-63. [PMID: 27919820 DOI: 10.1016/j.lfs.2016.11.033] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/27/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
Cancer cachexia characterized by a chronic wasting syndrome, involves skeletal muscle loss and adipose tissue loss and resistance to conventional nutritional support. Cachexia is responsible for the reduction in quality and length of life of cancer patients. It also decreases the muscle strength of the patients. The pro-inflammatory and pro-cachectic factors produced by the tumor cells have important role in genesis of cachexia. A number of pro-inflammatory cytokines, like interleukin-1 (IL-1), IL-6, tumor necrosis factor- alpha (TNF-α) may have important role in the pathological mechanisms of cachexia in cancer. Particularly, TNF-α has a direct catabolic effect on skeletal muscle and causes wasting of muscle by the induction of the ubiquitin-proteasome system (UPS). In cancer cachexia condition, there is alteration in carbohydrate, protein and fat metabolism. TNF-α is responsible for the increase in gluconeogenesis, loss of adipose tissue and proteolysis, while causing decrease in protein, lipid and glycogen synthesis. It has been associated with the formation of IL-1 and increases the uncoupling protein-2 (UCP2) and UCP3 expression in skeletal muscle in cachectic state. The main aim of the present review is to evaluate and discuss the role of TNF-α in different metabolic alterations and muscle wasting in cancer cachexia.
Collapse
|
50
|
Cauley JA, Barbour KE, Harrison SL, Cloonan YK, Danielson ME, Ensrud KE, Fink HA, Orwoll ES, Boudreau R. Inflammatory Markers and the Risk of Hip and Vertebral Fractures in Men: the Osteoporotic Fractures in Men (MrOS). J Bone Miner Res 2016; 31:2129-2138. [PMID: 27371811 PMCID: PMC5240475 DOI: 10.1002/jbmr.2905] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 01/04/2023]
Abstract
Cytokines play major roles in regulating bone remodeling, but their relationship to incident fractures in older men is uncertain. We tested the hypothesis that men with higher concentrations of pro-inflammatory markers have a higher risk of fracture. We used a case-cohort design and measured inflammatory markers in a random sample of 961 men and in men with incident fractures including 120 clinical vertebral, 117 hip, and 577 non-spine fractures; average follow-up 6.13 years (7.88 years for vertebral fractures). We measured interleukin (IL)-6, C-reactive protein (CRP), tumor necrosis factor alpha (TNFα), soluble receptors (SR) of IL-6 (IL-6SR) and TNF (TNFαSR1 and TNFαSR2), and IL-10. The risk of non-spine, hip, and clinical vertebral fracture was compared across quartiles (Q) of inflammatory markers using Cox proportional hazard models with tests for linear trend. In multivariable-adjusted models, men with the highest (Q4) TNFa cytokine concentrations and their receptors had a 2.0-4.2-fold higher risk of hip and clinical vertebral fracture than men with the lowest (Q1). Results were similar for all non-spine fractures, but associations were smaller. There was no association between CRP and IL-6SR and fracture. Men in the highest Q of IL-10 had a 49% lower risk of vertebral fracture compared with men in Q1. Among men with ≥3 inflammatory markers in the highest Q, the hazard ratio (HR) for hip fractures was 2.03 (95% confidence interval [CI] 1.11-3.71) and for vertebral fracture 3.06 (1.66-5.63). The HRs for hip fracture were attenuated by 27%, 27%, and 15%, respectively, after adjusting for appendicular lean mass (ALM), disability, and bone density, suggesting mediating roles. ALM also attenuated the HR for vertebral fractures by 10%. There was no association between inflammation and rate of hip BMD loss. We conclude that inflammation may play an important role in the etiology of fractures in older men. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jane A Cauley
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kamil E Barbour
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Yona K Cloonan
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kristine E Ensrud
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.,Center for Chronic Disease Outcomes Research, VA Health Care System, Minneapolis, MN, USA
| | - Howard A Fink
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA.,Center for Chronic Disease Outcomes Research, VA Health Care System, Minneapolis, MN, USA.,Geriatric Education and Clinical Center, VA Health Care System, Minneapolis, MN, USA
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | - Robert Boudreau
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|