1
|
Yehorova D, Alansson N, Shen R, Denson JM, Robinson M, Risso VA, Molina NR, Loria JP, Gaucher EA, Sanchez-Ruiz JM, Hengge AC, Johnson SJ, Kamerlin SCL. Conformational Dynamics and Catalytic Backups in a Hyper-Thermostable Engineered Archaeal Protein Tyrosine Phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645524. [PMID: 40196513 PMCID: PMC11974932 DOI: 10.1101/2025.03.26.645524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes that play important roles in regulating cellular signaling pathways. The activity of these enzymes is regulated by the motion of a catalytic loop that places a critical conserved aspartic acid side chain into the active site for acid-base catalysis upon loop closure. These enzymes also have a conserved phosphate binding loop that is typically highly rigid and forms a well-defined anion binding nest. The intimate links between loop dynamics and chemistry in these enzymes make PTPs an excellent model system for understanding the role of loop dynamics in protein function and evolution. In this context, archaeal PTPs, which have evolved in extremophilic organisms, are highly understudied, despite their unusual biophysical properties. We present here an engineered chimeric PTP (ShufPTP) generated by shuffling the amino acid sequence of five extant hyperthermophilic archaeal PTPs. Despite ShufPTP's high sequence similarity to its natural counterparts, ShufPTP presents a suite of unique properties, including high flexibility of the phosphate binding P-loop, facile oxidation of the active site cysteine, mechanistic promiscuity, and most notably, hyperthermostability, with a denaturation temperature likely >130 °C (>8°C higher than the highest recorded growth temperature of any archaeal strain). Our combined structural, biochemical, biophysical and computational analysis provides insight both into how small steps in evolutionary space can radically modulate the biophysical properties of an enzyme, and showcase the tremendous potential of archaeal enzymes for biotechnology, to generate novel enzymes capable of operating under extreme conditions.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Nikolas Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ruidan Shen
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Joshua M Denson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Michael Robinson
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, 18071, Spain
| | - Nuria Ramirez Molina
- Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - J Patrick Loria
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT, 06520-8107
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Eric A Gaucher
- Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, 18071, Spain
| | - Alvan C Hengge
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
- Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
2
|
Liu ZS, Mao L, Huang CH, Tang TS, Chen J, Wang ZH, Chen SY, Zhang HZ, Xie LN, Sheng ZG, Zhu BZ. Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1942-1956. [PMID: 39865867 DOI: 10.1021/acs.est.3c10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
It is well known that hydroxyl radical (·OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/H2O2 organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that ·OH can be unequivocally generated by incubation of H2O2 and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products. More interestingly, among all the products, MTZ-SOH was found to be the critical one directly responsible for the ·OH formation. Not only MTZ, but also its derivatives can activate H2O2 to produce ·OH. Taken together, we found an unexpected sulfenic acid-dependent ·OH production from activation of H2O2 by heterocyclic thiol compounds, which may provide a new free radical perspective to further explore the environmental and biological behaviors of these widely used thiol compounds.
Collapse
Affiliation(s)
- Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Han Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shi-Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao-Zhe Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Cosse M, Rehders T, Eirich J, Finkemeier I, Selinski J. Cysteine oxidation as a regulatory mechanism of Arabidopsis plastidial NAD-dependent malate dehydrogenase. PHYSIOLOGIA PLANTARUM 2024; 176:e14340. [PMID: 38741259 DOI: 10.1111/ppl.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.
Collapse
Affiliation(s)
- Maike Cosse
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| | - Tanja Rehders
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jennifer Selinski
- Plant Cell Biology, Botanical Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
4
|
Li J, Chang Y. Ozone oxidation of cysteine in optically trapped aqueous micro‐droplets. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Cardozo G, Mastrogiovanni M, Zeida A, Viera N, Radi R, Reyes AM, Trujillo M. Mitochondrial Peroxiredoxin 3 Is Rapidly Oxidized and Hyperoxidized by Fatty Acid Hydroperoxides. Antioxidants (Basel) 2023; 12:antiox12020408. [PMID: 36829967 PMCID: PMC9952270 DOI: 10.3390/antiox12020408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023] Open
Abstract
Human peroxiredoxin 3 (HsPrx3) is a thiol-based peroxidase responsible for the reduction of most hydrogen peroxide and peroxynitrite formed in mitochondria. Mitochondrial disfunction can lead to membrane lipoperoxidation, resulting in the formation of lipid-bound fatty acid hydroperoxides (LFA-OOHs) which can be released to become free fatty acid hydroperoxides (fFA-OOHs). Herein, we report that HsPrx3 is oxidized and hyperoxidized by fFA-OOHs including those derived from arachidonic acid and eicosapentaenoic acid peroxidation at position 15 with remarkably high rate constants of oxidation (>3.5 × 107 M-1s-1) and hyperoxidation (~2 × 107 M-1s-1). The endoperoxide-hydroperoxide PGG2, an intermediate in prostanoid synthesis, oxidized HsPrx3 with a similar rate constant, but was less effective in causing hyperoxidation. Biophysical methodologies suggest that HsPrx3 can bind hydrophobic structures. Indeed, molecular dynamic simulations allowed the identification of a hydrophobic patch near the enzyme active site that can allocate the hydroperoxide group of fFA-OOHs in close proximity to the thiolate in the peroxidatic cysteine. Simulations performed using available and herein reported kinetic data indicate that HsPrx3 should be considered a main target for mitochondrial fFA-OOHs. Finally, kinetic simulation analysis support that mitochondrial fFA-OOHs formation fluxes in the range of nM/s are expected to contribute to HsPrx3 hyperoxidation, a modification that has been detected in vivo under physiological and pathological conditions.
Collapse
Affiliation(s)
- Giuliana Cardozo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Nicolás Viera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
| | - Aníbal M. Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (A.M.R.); (M.T.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (A.M.R.); (M.T.)
| |
Collapse
|
6
|
Netto LES, Machado LESF. Preferential redox regulation of cysteine‐based protein tyrosine phosphatases: structural and biochemical diversity. FEBS J 2022; 289:5480-5504. [DOI: 10.1111/febs.16466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Luís Eduardo S. Netto
- Departamento de Genética e Biologia Evolutiva Instituto de Biociências Universidade de São Paulo Brazil
| | | |
Collapse
|
7
|
Perkins A, Tudorica DA, Teixeira RD, Schirmer T, Zumwalt L, Ogba OM, Cassidy CK, Stansfeld PJ, Guillemin K. A Bacterial Inflammation Sensor Regulates c-di-GMP Signaling, Adhesion, and Biofilm Formation. mBio 2021; 12:e0017321. [PMID: 34154415 PMCID: PMC8262984 DOI: 10.1128/mbio.00173-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria that colonize animals must overcome, or coexist, with the reactive oxygen species products of inflammation, a front-line defense of innate immunity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a potent antimicrobial that plays a primary role in killing bacteria through nonspecific oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing HOCl levels, Escherichia coli regulates biofilm production via activation of the diguanylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain. Dissection of CZB signal transduction reveals that oxidation of the conserved zinc-binding cysteine controls CZB Zn2+ occupancy, which in turn regulates the catalysis of c-di-GMP by the associated GGDEF domain. We find DgcZ-dependent biofilm formation and HOCl sensing to be regulated in vivo by the conserved zinc-coordinating cysteine. Additionally, point mutants that mimic oxidized CZB states increase total biofilm. A survey of bacterial genomes reveals that many pathogenic bacteria that manipulate host inflammation as part of their colonization strategy possess CZB-regulated diguanylate cyclases and chemoreceptors. Our findings suggest that CZB domains are zinc-sensitive regulators that allow host-associated bacteria to perceive host inflammation through reactivity with HOCl. IMPORTANCE Immune cells are well equipped to eliminate invading bacteria, and one of their primary tools is the synthesis of bleach, hypochlorous acid (HOCl), the same chemical used as a household disinfectant. In this work, we present findings showing that many host-associated bacteria possess a bleach-sensing protein that allows them to adapt to the presence of this chemical in their environment. We find that the bacterium Escherichia coli responds to bleach by hunkering down and producing a sticky matrix known as biofilm, which helps it aggregate and adhere to surfaces. This behavior may play an important role in pathogenicity for E. coli and other bacteria, as it allows the bacteria to detect and adapt to the weapons of the host immune system.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | - Lindsay Zumwalt
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - O. Maduka Ogba
- Department of Chemistry and Biochemistry Program, Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - C. Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Phillip J. Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Karuppasamy P, Thiruppathi D, Ganesan M, Rajendran T, Rajagopal S, Sivasubramanian VK, Rajapandian V. Electrocatalytic Oxidation of L-Cysteine, L-Methionine, and Methionine–Glycine Using [Oxoiron(IV)–Salen] Ion Immobilized Glassy Carbon Electrode. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00652-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Choi DW, Roh YJ, Kim S, Lee HM, Kim M, Shin D, Park JH, Cho Y, Park HH, Ok YS, Kang D, Kim JH, Tarrago L, Danial NN, Gladyshev VN, Min PK, Lee BC. Development of a novel fluorescent biosensor for dynamic monitoring of metabolic methionine redox status in cells and tissues. Biosens Bioelectron 2021; 178:113031. [PMID: 33571808 DOI: 10.1016/j.bios.2021.113031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Aberrant production of reactive oxygen species (ROS) leads to tissue damage accumulation, which is associated with a myriad of human pathologies. Although several sensors have been developed for ROS quantification, their applications for ROS-related human physiologies and pathologies still remain problematic due to the unstable nature of ROS. Herein, we developed Trx1-cpYFP-fRMsr (TYfR), a genetically-encoded fluorescent biosensor with the remarkable specificity and sensitivity toward fMetRO (free Methionine-R-sulfoxide), allowing for dynamic quantification of physiological levels of fMetRO, a novel indicator of ROS and methionine redox status in vitro and in vivo. Moreover, using the sensor, we observed a significant fMetRO enrichment in serum from patients with acute coronary syndrome, one of the most severe cardiovascular diseases, which becomes more evident following percutaneous coronary intervention. Collectively, this study proposes that fMetRO is a novel biomarker of tissue damage accumulation in ROS-associated human pathologies, and that TYfR is a promising tool for quantifying fMetRO with potentials in versatile applications.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Yeon Jin Roh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seahyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hae Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Minseo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Donghyuk Shin
- Department of Systems Biology, Yonsei University, Seoul, 03722, South Korea
| | - Jong Ho Park
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yongmin Cho
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Donghyun Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Lionel Tarrago
- INRAE, Aix Marseille University, BBF, F-13009, Marseille, France
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pil-Ki Min
- Cardiology Division, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06229, Republic of Korea.
| | - Byung Cheon Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Xu J, Jiang M, Song L, Liu J. A New Approach for the Synthesis of Perfluoroalkanesulfenic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia‐Hong Xu
- Department of Chemistry School of Science Shanghai University 99 Shangda Road Shanghai 200436 China
| | - Min Jiang
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| | - Li‐Ping Song
- Department of Chemistry School of Science Shanghai University 99 Shangda Road Shanghai 200436 China
| | - Jin‐Tao Liu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
11
|
The challenge of detecting modifications on proteins. Essays Biochem 2020; 64:135-153. [PMID: 31957791 DOI: 10.1042/ebc20190055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.
Collapse
|
12
|
Hagras MA, Bellucci MA, Gobbo G, Marek RA, Trout BL. Computational Modeling of the Disulfide Cross-Linking Reaction. J Phys Chem B 2020; 124:9840-9851. [PMID: 33111518 DOI: 10.1021/acs.jpcb.0c07510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Disulfide cross-linking is one of the fundamental covalent bonds that exist prevalently in many biological molecules that is involved in versatile functional activities such as antibody stability, viral assembly, and protein folding. Additionally, it is a crucial factor in various industrial applications. Therefore, a fundamental understanding of its reaction mechanism would help gain insight into its different functional activities. Computational simulation of the disulfide cross-linking reaction with hydrogen peroxide (H2O2) was performed at the integrated quantum mechanical/molecular mechanical (QM/MM) level of theory in a water box under periodic boundary conditions. A benchmarking study for the barrier height of the disulfide formation step was performed on a model system between methanethiol and methane sulfenic acid to determine, for the QM system, the best-fit density functional theory (DFT) functional/basis set combination that produces comparable results to a higher-level theory of the coupled-cluster method. Computational results show that the disulfide cross-linking reaction with H2O2 reagent can proceed through a one-step or a two-step pathway for the high pKa cysteines or two different pathways for the low pKa cysteines to ultimately produce the sulfenic acid/sulfenate intermediate complex. Subsequently, those intermediates react with another neutral/anionic cysteine residue to form the cysteine product. In addition, the solvent-assisted proton-exchange/proton-transfer effects were examined on the energetic barriers for the different transition states, and the molecular contributions of the chemically involved water molecules were studied in detail.
Collapse
Affiliation(s)
- Muhammad A Hagras
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael A Bellucci
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,XtalPi Inc., 245 Main Street, 11th Floor, Cambridge Massachusetts 02142, United States
| | - Gianpaolo Gobbo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,XtalPi Inc., 245 Main Street, 11th Floor, Cambridge Massachusetts 02142, United States
| | - Ryan A Marek
- MMD, Merck & Co Inc., West Point, Pennsylvania 19486, United States
| | - Bernhardt L Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Qin Z, Hou GL, Yang Z, Valiev M, Wang XB. Distonic radical anion species in cysteine oxidation processes. Phys Chem Chem Phys 2020; 22:17554-17558. [PMID: 32716467 DOI: 10.1039/d0cp02165b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oxidation of cysteine residues constitutes an important regulatory mechanism in the function of biological systems. Much of this behavior is controlled by the specific chemical properties of the thiol side-chain group, where reactions with reactive oxygen species take place. Herein, we investigated the entire cysteine oxidation cycle Cys-SH → Cys-SOnH (n = 1, 2, and 3) using cryogenic negative ion photoelectron spectroscopy and quantum-chemical calculations. The conventional view of the first reversible oxidation step (n = 1) is associated with sulfenate species. Yet our results indicate that an alternative option exists in the form of a novel distonic radical anion, ˙OS-CH2CH(NH2)-COO-, with an unpaired electron on the thiol group and excess negative charge on the carboxylate group. Higher order oxidation states (n = 2 and 3) are thought to be associated with irreversible oxidative damage, and our results show that excess negative charge in those cases migrates to the -SOn- group. Furthermore, these species are stable towards 1e oxidation, as opposed to the n = 1 case that undergoes intra-molecular proton transfer. The molecular level insights reported in this work provide direct spectroscopic evidence of the unique chemical versatility of Cys-sulfenic acid (Cys-SOH) in post-translational modifications of protein systems.
Collapse
Affiliation(s)
- Zhengbo Qin
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Anhui Normal University, Wuhu, 241000, China.
| | | | | | | | | |
Collapse
|
14
|
Khorobrykh S, Havurinne V, Mattila H, Tyystjärvi E. Oxygen and ROS in Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E91. [PMID: 31936893 PMCID: PMC7020446 DOI: 10.3390/plants9010091] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Oxygen is a natural acceptor of electrons in the respiratory pathway of aerobic organisms and in many other biochemical reactions. Aerobic metabolism is always associated with the formation of reactive oxygen species (ROS). ROS may damage biomolecules but are also involved in regulatory functions of photosynthetic organisms. This review presents the main properties of ROS, the formation of ROS in the photosynthetic electron transport chain and in the stroma of chloroplasts, and ROS scavenging systems of thylakoid membrane and stroma. Effects of ROS on the photosynthetic apparatus and their roles in redox signaling are discussed.
Collapse
Affiliation(s)
| | | | | | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland or (S.K.); (V.H.); (H.M.)
| |
Collapse
|
15
|
Xu Y, Andrade J, Ueberheide B, Neel BG. Activated Thiol Sepharose-based proteomic approach to quantify reversible protein oxidation. FASEB J 2019; 33:12336-12347. [PMID: 31451050 PMCID: PMC6902679 DOI: 10.1096/fj.201900693r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/23/2019] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) can act as second messengers in various signaling pathways, and abnormal oxidation contributes to multiple diseases, including cancer. Detecting and quantifying protein oxidation is crucial for a detailed understanding of reduction-oxidation reaction (redox) signaling. We developed an Activated Thiol Sepharose-based proteomic (ATSP) approach to quantify reversible protein oxidation. ATSP can enrich H2O2-sensitive thiol peptides, which are more likely to contain reactive cysteines involved in redox signaling. We applied our approach to analyze hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a type of kidney cancer that harbors fumarate hydratase (FH)-inactivating mutations and has elevated ROS levels. Multiple proteins were oxidized in FH-deficient cells, including many metabolic proteins such as the pyruvate kinase M2 isoform (PKM2). Treatment of HLRCC cells with dimethyl fumarate or PKM2 activators altered PKM2 oxidation levels. Finally, we found that ATSP could detect Src homology region 2 domain-containing phosphatase-2 and PKM2 oxidation in cells stimulated with platelet-derived growth factor. This newly developed redox proteomics workflow can detect reversible oxidation of reactive cysteines and can be employed to analyze multiple physiologic and pathologic conditions.-Xu, Y., Andrade, J., Ueberheide, B., Neel, B. G. Activated Thiol Sepharose-based proteomic approach to quantify reversible protein oxidation.
Collapse
Affiliation(s)
- Yang Xu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| | - Joshua Andrade
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University (NYU) Langone Health, New York, New York, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University (NYU) Langone Health, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Health, New York, New York, USA
| | - Benjamin G. Neel
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
16
|
Hu J, Tian J, Wang K, Deng J, Luo G. Continuous synthesis of tetraethyl thiuram disulfide with CO2 as acid agent in a gas-liquid microdispersion system. J Flow Chem 2019. [DOI: 10.1007/s41981-019-00046-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Kosmachevskaya OV, Shumaev KB, Topunov AF. Electrophilic Signaling: The Role of Reactive Carbonyl Compounds. BIOCHEMISTRY (MOSCOW) 2019; 84:S206-S224. [PMID: 31213203 DOI: 10.1134/s0006297919140128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive carbonyl compounds (RCC) are a group of compounds with clearly pronounced electrophilic properties that facilitate their spontaneous reactions with numerous nucleophilic reaction sites in proteins, lipids, and nucleic acids. The biological functions of RCC are determined by their concentration and governed by the hormesis (biphasic reaction) principle. At low concentrations, RCC act as signaling molecules activating defense systems against xenobiotics and oxidizers, and at high concentrations, they exhibit the cytotoxic effect. RCC participate in the formation of cell adaptive response via intracellular signaling pathways involving regulation of gene expression and cytoplasmic mechanisms related to the structure-functional rearrangements of proteins. Special attention in this review is given to the functioning of electrophiles as mediators of cell general adaption syndrome manifested as the biphasic response. The hypothesis is proposed that electrophilic signaling can be a proto-signaling system.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - K B Shumaev
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - A F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
18
|
Sedláček V, Kučera I. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Mol Microbiol 2019; 112:166-183. [PMID: 30977245 DOI: 10.1111/mmi.14260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2019] [Indexed: 01/25/2023]
Abstract
Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation. Kinetic analysis of a fusion protein suggested a sequential mechanism in which FMN binds first, followed by NADH. The affinity of flavin toward the protein decreased only slightly upon reduction. The observed strong viscosity dependence of kcat demonstrated that reduced FMN formed tends to remain bound to the enzyme where it can be re-oxidized by oxygen or, less efficiently, by various artificial electron acceptors. Stopped flow data were consistent with the enzyme-FMN complex being a functional oxidase that conducts the reduction of oxygen by NADH. Hydrogen peroxide was identified as the main product. As shown by isotope effects, hydride transfer occurs from the pro-S C4 position of the nicotinamide ring and partially limits the overall turnover rate. Collectively, our results point to a role for the Pden_5119 protein in maintaining the cellular redox state.
Collapse
Affiliation(s)
- Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
19
|
Wang J. Crystallographic identification of spontaneous oxidation intermediates and products of protein sulfhydryl groups. Protein Sci 2019; 28:472-477. [PMID: 30592103 PMCID: PMC6371210 DOI: 10.1002/pro.3568] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 11/12/2022]
Abstract
In the absence of protective reducing agents, Cys residues in purified proteins can be oxidized spontaneously by oxygen in the air, as frequently observed in protein crystal structures. However, the formation of an O-bridge via dehydration mechanism between a peroxidized Cys side chain and a primary amine of Lys side chain in proteins has not yet been reported. When an electron density feature was observed for an extra group or an extra atom between side chains of Cys-245 and Lys-158 in the crystal structure of histidinol phosphate phosphatase, mass spectrometric analysis was carried out for its chemical identification. That analysis led to a conclusion that this extra density corresponded to a methylene group. It was then proposed that these two residues were able to absorb CO2 and reduced it to CH2 spontaneously. Further examination of other protein structures in the PDB showed that the formation of this cross-linking species was a widespread phenomenon. This claim is examined in this study using methods recently developed for quantification of electrons around nucleus as the means for direct chemical identification. It is found that an O-bridge is actually formed between Cys and Lys side chains, instead of a CH2 -bridge.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenConnecticut06520
| |
Collapse
|
20
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
Affiliation(s)
| | - Dana Boyd
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
21
|
Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018; 29:1660-1690. [PMID: 29113454 PMCID: PMC6207163 DOI: 10.1089/ars.2017.7423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies against epidermal growth factor receptor are used in definitive or palliative treatment. Recent Advances: Emerging targeted therapies against other proteins of interest as well as programmed cell death protein 1 and programmed death-ligand 1 immunotherapies are being explored in clinical trials. CRITICAL ISSUES The disease heterogeneity, invasiveness, and resistance to standard of care RT or chemoradiation therapy continue to constitute significant roadblocks for treatment and patients' quality of life (QOL) despite improvements in treatment modality and the emergence of new therapies over the past two decades. FUTURE DIRECTIONS As reviewed here, alterations in redox metabolism occur at all stages of HNSCC management, providing opportunities for improved prevention, early detection, response to therapies, and QOL. Bioinformatics and computational systems biology approaches are key to integrate redox effects with multiomics data from cells and clinical specimens and to identify redox modifiers or modifiable target proteins to achieve improved clinical outcomes. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiumei Huang
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Naveen Singh
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Edward Motea
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | | | - Muhammad Beg
- Department of Internal Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David A. Boothman
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
22
|
Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol Chem 2017; 398:1267-1293. [DOI: 10.1515/hsz-2017-0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
AbstractDecades of chemical, biochemical and pathophysiological research have established the relevance of post-translational protein modifications induced by processes related to oxidative stress, with critical reflections on cellular signal transduction pathways. A great deal of the so-called ‘redox regulation’ of cell function is in fact mediated through reactions promoted by reactive oxygen and nitrogen species on more or less specific aminoacid residues in proteins, at various levels within the cell machinery. Modifications involving cysteine residues have received most attention, due to the critical roles they play in determining the structure/function correlates in proteins. The peculiar reactivity of these residues results in two major classes of modifications, with incorporation of NO moieties (S-nitrosation, leading to formation of proteinS-nitrosothiols) or binding of low molecular weight thiols (S-thionylation, i.e. in particularS-glutathionylation,S-cysteinylglycinylation andS-cysteinylation). A wide array of proteins have been thus analyzed in detail as far as their susceptibility to either modification or both, and the resulting functional changes have been described in a number of experimental settings. The present review aims to provide an update of available knowledge in the field, with a special focus on the respective (sometimes competing and antagonistic) roles played by proteinS-nitrosations andS-thionylations in biochemical and cellular processes specifically pertaining to pathogenesis of cardiovascular diseases.
Collapse
|
23
|
Cilibrizzi A, Fedorova M, Collins J, Leatherbarrow R, Woscholski R, Vilar R. A tri-functional vanadium(iv) complex to detect cysteine oxidation. Dalton Trans 2017; 46:6994-7004. [PMID: 28513686 DOI: 10.1039/c7dt00076f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of effective molecular probes to detect and image the levels of oxidative stress in cells remains a challenge. Herein we report the design, synthesis and preliminary biological evaluation of a novel optical probe to monitor oxidation of thiol groups in cysteine-based phosphatases (CBPs). Following orthogonal protecting approaches we synthesised a new vanadyl complex designed to bind to CBPs. This complex is functionalised with a well-known dimedone derivative (to covalently trap sulfenic acids, SOHs) and a coumarin-based fluorophore for optical visualization. We show that this new probe efficiently binds to a range of phosphatases in vitro with nanomolar affinity. Moreover, preliminary flow cytometry and microscopy studies in live HCT116 cells show that this probe can successfully image cellular levels of sulfenic acids - one of the species resulting from protein oxidative damage.
Collapse
|
24
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
25
|
Reyes AM, Vazquez DS, Zeida A, Hugo M, Piñeyro MD, De Armas MI, Estrin D, Radi R, Santos J, Trujillo M. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase. Free Radic Biol Med 2016; 101:249-260. [PMID: 27751911 DOI: 10.1016/j.freeradbiomed.2016.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/16/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the intracellular bacterium responsible for tuberculosis disease (TD). Inside the phagosomes of activated macrophages, M. tuberculosis is exposed to cytotoxic hydroperoxides such as hydrogen peroxide, fatty acid hydroperoxides and peroxynitrite. Thus, the characterization of the bacterial antioxidant systems could facilitate novel drug developments. In this work, we characterized the product of the gene Rv1608c from M. tuberculosis, which according to sequence homology had been annotated as a putative peroxiredoxin of the peroxiredoxin Q subfamily (PrxQ B from M. tuberculosis or MtPrxQ B). The protein has been reported to be essential for M. tuberculosis growth in cholesterol-rich medium. We demonstrated the M. tuberculosis thioredoxin B/C-dependent peroxidase activity of MtPrxQ B, which acted as a two-cysteine peroxiredoxin that could function, although less efficiently, using a one-cysteine mechanism. Through steady-state and competition kinetic analysis, we proved that the net forward rate constant of MtPrxQ B reaction was 3 orders of magnitude faster for fatty acid hydroperoxides than for hydrogen peroxide (3×106vs 6×103M-1s-1, respectively), while the rate constant of peroxynitrite reduction was (0.6-1.4) ×106M-1s-1 at pH 7.4. The enzyme lacked activity towards cholesterol hydroperoxides solubilized in sodium deoxycholate. Both thioredoxin B and C rapidly reduced the oxidized form of MtPrxQ B, with rates constants of 0.5×106 and 1×106M-1s-1, respectively. Our data indicated that MtPrxQ B is monomeric in solution both under reduced and oxidized states. In spite of the similar hydrodynamic behavior the reduced and oxidized forms of the protein showed important structural differences that were reflected in the protein circular dichroism spectra.
Collapse
Affiliation(s)
- Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Diego S Vazquez
- Instituto de Química y Físicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ari Zeida
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Hugo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - M Dolores Piñeyro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Unidad de Biología Molecular-Institut Pasteur Montevideo, Montevideo, Uruguay
| | - María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Darío Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Javier Santos
- Instituto de Química y Físicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Universidad de Buenos Aires and CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
26
|
Radi R, Trujillo M. Special issue on "Free Radical and Redox Biochemistry of Thiols". Free Radic Res 2016; 50:123-5. [PMID: 26797473 DOI: 10.3109/10715762.2015.1121254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rafael Radi
- a Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina, Universidad de la República, Montevideo , Uruguay
| | - Madia Trujillo
- a Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina, Universidad de la República, Montevideo , Uruguay
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is not only a key mediator of oxidative stress but also one of the most important cellular second messengers. This small short-lived molecule is involved in the regulation of a wide range of different biological processes, including regulation of cellular signaling pathways. Studying the role of H2O2 in living systems would be challenging without modern approaches. A genetically encoded fluorescent biosensor, HyPer, is one of the most effective tools for this purpose. RECENT ADVANCES HyPer has been used by many investigators of redox signaling in various models of different scales: from cytoplasmic subcompartments and single cells to tissues of whole organisms. In many studies, the results obtained using HyPer have enabled a better understanding of the roles of H2O2 in these biological processes. However, much remains to be learned. CRITICAL ISSUES In this review, we focus on the uses of HyPer. We provide a general description of HyPer and its improved versions. Separate chapters are devoted to the results obtained by various groups who have used this biosensor for their experiments in living cells and organisms. FUTURE DIRECTIONS HyPer is an effective tool for H2O2 imaging in living systems as indicated by the increasing numbers of publications each year since its development. However, this biosensor requires further improvements. In particular, much brighter and more pH-stable versions of HyPer are necessary for imaging in mammalian tissues. Antioxid. Redox Signal. 24, 731-751.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia
| | | |
Collapse
|
28
|
Abstract
S-Sulfenylation is a post-translational modification with a crucial role in regulating protein function. However, its analysis has remained challenging due to the lack of facile sulfenic acid models. We report the first photocaged cysteine sulfenic acid with efficient photodeprotection and demonstrate its utility by generating sulfenic acid in a thiol peroxidase after illumination in vitro. These caged sulfoxides should be promising for site-specific incorporation of Cys sulfenic acid in living cells via genetic code expansion.
Collapse
Affiliation(s)
- Jia Pan
- The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | - Kate S. Carroll
- The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
29
|
Trujillo M, Alvarez B, Radi R. One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic Res 2015; 50:150-71. [PMID: 26329537 DOI: 10.3109/10715762.2015.1089988] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oxidation of biothiols participates not only in the defense against oxidative damage but also in enzymatic catalytic mechanisms and signal transduction processes. Thiols are versatile reductants that react with oxidizing species by one- and two-electron mechanisms, leading to thiyl radicals and sulfenic acids, respectively. These intermediates, depending on the conditions, participate in further reactions that converge on different stable products. Through this review, we will describe the biologically relevant species that are able to perform these oxidations and we will analyze the mechanisms and kinetics of the one- and two-electron reactions. The processes undergone by typical low-molecular-weight thiols as well as the particularities of specific thiol proteins will be described, including the molecular determinants proposed to account for the extraordinary reactivities of peroxidatic thiols. Finally, the main fates of the thiyl radical and sulfenic acid intermediates will be summarized.
Collapse
Affiliation(s)
- Madia Trujillo
- a Departamento de Bioquímica , Facultad de Medicina, Universidad de la República , Montevideo , Uruguay .,b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and
| | - Beatriz Alvarez
- b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and.,c Laboratorio de Enzimología, Facultad de Ciencias , Universidad de la República , Montevideo , Uruguay
| | - Rafael Radi
- a Departamento de Bioquímica , Facultad de Medicina, Universidad de la República , Montevideo , Uruguay .,b Center for Free Radical and Biomedical Research , Universidad de la República , Montevideo , Uruguay , and
| |
Collapse
|
30
|
Fan X, Zhou S, Wang B, Hom G, Guo M, Li B, Yang J, Vaysburg D, Monnier VM. Evidence of Highly Conserved β-Crystallin Disulfidome that Can be Mimicked by In Vitro Oxidation in Age-related Human Cataract and Glutathione Depleted Mouse Lens. Mol Cell Proteomics 2015; 14:3211-23. [PMID: 26453637 DOI: 10.1074/mcp.m115.050948] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Low glutathione levels are associated with crystallin oxidation in age-related nuclear cataract. To understand the role of cysteine residue oxidation, we used the novel approach of comparing human cataracts with glutathione-depleted LEGSKO mouse lenses for intra- versus intermolecular disulfide crosslinks using 2D-PAGE and proteomics, and then systematically identified in vivo and in vitro all disulfide forming sites using ICAT labeling method coupled with proteomics. Crystallins rich in intramolecular disulfides were abundant at young age in human and WT mouse lens but shifted to multimeric intermolecular disulfides at older age. The shift was ∼4x accelerated in LEGSKO lens. Most cysteine disulfides in β-crystallins (except βA4 in human) were highly conserved in mouse and human and could be generated by oxidation with H(2)O(2), whereas γ-crystallin oxidation selectively affected γC23/42/79/80/154, γD42/33, and γS83/115/130 in human cataracts, and γB79/80/110, γD19/109, γF19/79, γE19, γS83/130, and γN26/128 in mouse. Analysis based on available crystal structure suggests that conformational changes are needed to expose Cys42, Cys79/80, Cys154 in γC; Cys42, Cys33 in γD, and Cys83, Cys115, and Cys130 in γS. In conclusion, the β-crystallin disulfidome is highly conserved in age-related nuclear cataract and LEGSKO mouse, and reproducible by in vitro oxidation, whereas some of the disulfide formation sites in γ-crystallins necessitate prior conformational changes. Overall, the LEGSKO mouse model is closely reminiscent of age-related nuclear cataract.
Collapse
Affiliation(s)
| | - Sheng Zhou
- ¶State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Grant Hom
- **Fairview High School, Fairview, Ohio
| | - Minfei Guo
- ‡‡Department of Ophthalmology, the Huichang County People's Hospital, Jiangxi, China
| | - Binbin Li
- §§Department of Ophthalmology, Ganzhou City People's Hospital, Jiangxi, China
| | - Jing Yang
- ¶State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | - Vincent M Monnier
- From the ‡Department of Pathology, §Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44120;
| |
Collapse
|
31
|
Abstract
Protein S-sulfenylation is the reversible oxidative modification of cysteine thiol groups to form cysteine S-sulfenic acids. Mapping the specific sites of protein S-sulfenylation onto complex proteomes is crucial to understanding the molecular mechanisms controlling redox signaling and regulation. This protocol describes global, in situ, site-specific analysis of protein S-sulfenylation using sulfenic acid-specific chemical probes and mass spectrometry (MS)-based proteomics. The major steps in this protocol are as follows: (i) optimization of conditions for selective labeling of cysteine S-sulfenic acids in intact cells with the commercially available dimedone-based probe, DYn-2; (ii) tagging the modified cysteines with a functionalized biotin reagent containing a cleavable linker via Cu(I)-catalyzed azide-alkyne cycloaddition reaction; (iii) enrichment of the biotin-tagged tryptic peptides with streptavidin; (iv) liquid chromatography-tandem MS (LC-MS/MS)-based shotgun proteomics; and (v) computational data analysis. We also outline strategies for quantitative analysis of this modification in cells responding to redox perturbations and discuss special issues pertaining to experimental design of thiol redox studies. Our chemoproteomic platform should be broadly applicable to the investigation of other bio-orthogonal chemically engineered post-translational modifications. The entire analysis protocol takes ∼1 week to complete.
Collapse
|
32
|
Angiulli G, Lantella A, Forte E, Angelucci F, Colotti G, Ilari A, Malatesta F. Leishmania infantum trypanothione reductase is a promiscuous enzyme carrying an NADPH:O2 oxidoreductase activity shared by glutathione reductase. Biochim Biophys Acta Gen Subj 2015; 1850:1891-7. [PMID: 26033467 DOI: 10.1016/j.bbagen.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/27/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Leishmania infantum is a protozoan of the trypanosomatid family causing visceral leishmaniasis. Leishmania parasites are transmitted by the bite of phlebotomine sand flies to the human host and are phagocyted by macrophages. The parasites synthesize N1-N8-bis(glutationyl)-spermidine (trypanothione, TS2), which furnishes electrons to the tryparedoxin-tryparedoxin peroxidase couple to reduce the reactive oxygen species produced by macrophages. Trypanothione is kept reduced by trypanothione reductase (TR), a FAD-containing enzyme essential for parasite survival. METHODS The enzymatic activity has been studied by stopped-flow, absorption spectroscopy, and amperometric measurements. RESULTS The study reported here demonstrates that the steady-state parameters change as a function of the order of substrates addition to the TR-containing solution. In particular, when the reaction is carried out by adding NADPH to a solution containing the enzyme and trypanothione, the KM for NADPH decreases six times compared to the value obtained by adding TS2 as last reagent to start the reaction (1.9 vs. 12μM). More importantly, we demonstrate that TR is able to catalyze the oxidation of NADPH also in the absence of trypanothione. Thus, TR catalyzes the reduction of O2 to water through the sequential formation of C(4a)-(hydro)peroxyflavin and sulfenic acid intermediates. This NADPH:O2 oxidoreductase activity is shared by Saccharomyces cerevisiae glutathione reductase (GR). CONCLUSIONS TR and GR, in the absence of their physiological substrates, may catalyze the electron transfer reaction from NADPH to molecular oxygen to yield water. GENERAL SIGNIFICANCE TR and GR are promiscuous enzymes.
Collapse
Affiliation(s)
- Gabriella Angiulli
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Antonella Lantella
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Elena Forte
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Francesco Angelucci
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, University of L'Aquila, L'Aquila, Italy
| | - Gianni Colotti
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy.
| |
Collapse
|
33
|
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F. Oxidative post-translational modifications of cysteine residues in plant signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2923-34. [PMID: 25750423 DOI: 10.1093/jxb/erv084] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, fluctuation of the redox balance by altered levels of reactive oxygen species (ROS) can affect many aspects of cellular physiology. ROS homeostasis is governed by a diversified set of antioxidant systems. Perturbation of this homeostasis leads to transient or permanent changes in the redox status and is exploited by plants in different stress signalling mechanisms. Understanding how plants sense ROS and transduce these stimuli into downstream biological responses is still a major challenge. ROS can provoke reversible and irreversible modifications to proteins that act in diverse signalling pathways. These oxidative post-translational modifications (Ox-PTMs) lead to oxidative damage and/or trigger structural alterations in these target proteins. Characterization of the effect of individual Ox-PTMs on individual proteins is the key to a better understanding of how cells interpret the oxidative signals that arise from developmental cues and stress conditions. This review focuses on ROS-mediated Ox-PTMs on cysteine (Cys) residues. The Cys side chain, with its high nucleophilic capacity, appears to be the principle target of ROS. Ox-PTMs on Cys residues participate in various signalling cascades initiated by plant stress hormones. We review the mechanistic aspects and functional consequences of Cys Ox-PTMs on specific target proteins in view of stress signalling events.
Collapse
Affiliation(s)
- Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium * Present address: Division of Plant Biology, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium
| | - Jingjing Huang
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
34
|
Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 2015; 80:148-57. [PMID: 25433365 PMCID: PMC4355186 DOI: 10.1016/j.freeradbiomed.2014.11.013] [Citation(s) in RCA: 642] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
35
|
Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol 2015; 4:381-98. [PMID: 25744690 PMCID: PMC4348434 DOI: 10.1016/j.redox.2015.02.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/01/2015] [Indexed: 12/11/2022] Open
Abstract
Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2(-•)/H2O2 production. Both ATP and O2(-•)/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2(-•) is generated by singlet electron reduction of di-oxygen (O2). O2(-•) is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2(-•)/H2O2 were once viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering over production of O2(-•)/H2O2 by mitochondria is associated with range of pathological conditions and aging. However, O2(-•)/H2O2 are only dangerous in large quantities. If produced in a controlled fashion and maintained at a low concentration, cells can benefit greatly from the redox properties of O2(-•)/H2O2. Indeed, low rates of O2(-•)/H2O2 production are required for intrinsic mitochondrial signaling (e.g. modulation of mitochondrial processes) and communication with the rest of the cell. O2(-•)/H2O2 levels are kept in check by anti-oxidant defense systems that sequester O2(-•)/H2O2 with extreme efficiency. Given the importance of O2(-•)/H2O2 in cellular function, it is imperative to consider how mitochondria produce O2(-•)/H2O2 and how O2(-•)/H2O2 genesis is regulated in conjunction with fluctuations in nutritional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria and emerging knowledge on the 11 potential sources of mitochondrial O2(-•)/H2O2 in tandem with their significance in contributing to overall O2(-•)/H2O2 emission in health and disease. The potential for classifying these different sites in isopotential groups, which is essentially defined by the redox properties of electron donator involved in O2(-•)/H2O2 production, as originally suggested by Brand and colleagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2(-•)/H2O2 genesis from these sites are discussed. Finally, the current methodologies utilized for measuring O2(-•)/H2O2 in isolated mitochondria, cell culture and in vivo are reviewed.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biology, Faculty of Sciences, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
36
|
Bak DW, Weerapana E. Cysteine-mediated redox signalling in the mitochondria. MOLECULAR BIOSYSTEMS 2015; 11:678-97. [DOI: 10.1039/c4mb00571f] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review represents a novel look at the many sources, cysteine targets, and signaling processes of ROS in the mitochondria.
Collapse
Affiliation(s)
- D. W. Bak
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| | - E. Weerapana
- Department of Chemistry
- Merkert Chemistry Center
- Boston College
- Massachusetts 02467
- USA
| |
Collapse
|
37
|
Groitl B, Jakob U. Thiol-based redox switches. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1335-43. [PMID: 24657586 PMCID: PMC4059413 DOI: 10.1016/j.bbapap.2014.03.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/04/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
Regulation of protein function through thiol-based redox switches plays an important role in the response and adaptation to local and global changes in the cellular levels of reactive oxygen species (ROS). Redox regulation is used by first responder proteins, such as ROS-specific transcriptional regulators, chaperones or metabolic enzymes to protect cells against mounting levels of oxidants, repair the damage and restore redox homeostasis. Redox regulation of phosphatases and kinases is used to control the activity of select eukaryotic signaling pathways, making reactive oxygen species important second messengers that regulate growth, development and differentiation. In this review we will compare different types of reversible protein thiol modifications, elaborate on their structural and functional consequences and discuss their role in oxidative stress response and ROS adaptation. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
Affiliation(s)
- Bastian Groitl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Bretón-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol 2014; 2:529-34. [PMID: 24634835 PMCID: PMC3953958 DOI: 10.1016/j.redox.2014.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 12/27/2022] Open
Abstract
Redox signaling is implicated in different physiological and pathological events in the vasculature. Among the different reactive oxygen species, hydrogen peroxide (H2O2) is a very good candidate to perform functions as an intracellular messenger in the regulation of several biological events. In this review, we summarize the main physiological sources of H2O2 in the endothelium and the molecular mechanisms by which it is able to act as a signaling mediator in the vasculature.
Collapse
Affiliation(s)
- Rosa Bretón-Romero
- Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus Universidad Autónoma, Nicolás Cabrera 1, Madrid E-28049, Spain
| | - Santiago Lamas
- Centro de Biología Molecular 'Severo Ochoa' CSIC-UAM, Campus Universidad Autónoma, Nicolás Cabrera 1, Madrid E-28049, Spain
| |
Collapse
|
39
|
Li XB, Xu ZF, Liu LJ, Liu JT. Synthesis and Identification of Solution-Stable Sulfenic Acids: Perfluoroalkanesulfenic Acids. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Liu CT, Benkovic SJ. Capturing a Sulfenic Acid with Arylboronic Acids and Benzoxaborole. J Am Chem Soc 2013; 135:14544-7. [DOI: 10.1021/ja407628a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- C. Tony Liu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Stephen J. Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
41
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
Abstract
Maintenance of the cellular redox balance is crucial for cell survival. An increase in reactive oxygen, nitrogen, or chlorine species can lead to oxidative stress conditions, potentially damaging DNA, lipids, and proteins. Proteins are very sensitive to oxidative modifications, particularly methionine and cysteine residues. The reversibility of some of these oxidative protein modifications makes them ideally suited to take on regulatory roles in protein function. This is especially true for disulfide bond formation, which has the potential to mediate extensive yet fully reversible structural and functional changes, rapidly adjusting the protein's activity to the prevailing oxidant levels.
Collapse
Affiliation(s)
- Claudia M Cremers
- From the Departments of Molecular, Cellular, and Developmental Biology and
| | | |
Collapse
|
43
|
Paulsen C, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013; 113:4633-79. [PMID: 23514336 PMCID: PMC4303468 DOI: 10.1021/cr300163e] [Citation(s) in RCA: 864] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Candice
E. Paulsen
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| |
Collapse
|
44
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
45
|
Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ. Large-Scale Capture of Peptides Containing Reversibly Oxidized Cysteines by Thiol-Disulfide Exchange Applied to the Myocardial Redox Proteome. Anal Chem 2013; 85:3774-80. [DOI: 10.1021/ac400166e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jana Paulech
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Nestor Solis
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Alistair V.G. Edwards
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Max Puckeridge
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Melanie Y. White
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Stuart J. Cordwell
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| |
Collapse
|
46
|
Heinecke JL, Khin C, Pereira JCM, Suárez SA, Iretskii AV, Doctorovich F, Ford PC. Nitrite reduction mediated by heme models. Routes to NO and HNO? J Am Chem Soc 2013; 135:4007-17. [PMID: 23421316 DOI: 10.1021/ja312092x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.
Collapse
Affiliation(s)
- Julie L Heinecke
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Huang X, Barnard J, Spitznagel TM, Krishnamurthy R. Protein Covalent Dimer Formation Induced by Reversed-Phase HPLC Conditions. J Pharm Sci 2013; 102:842-51. [DOI: 10.1002/jps.23431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/15/2012] [Accepted: 12/05/2012] [Indexed: 11/12/2022]
|
48
|
Yan LJ, Sumien N, Thangthaeng N, Forster MJ. Reversible inactivation of dihydrolipoamide dehydrogenase by mitochondrial hydrogen peroxide. Free Radic Res 2013; 47:123-133. [PMID: 23205777 PMCID: PMC3690130 DOI: 10.3109/10715762.2012.752078] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Under oxidative stress conditions, mitochondria are the major site for cellular production of reactive oxygen species (ROS) such as superoxide anion and H2O2 that can attack numerous mitochondrial proteins including dihydrolipoamide dehydrogenase (DLDH). While DLDH is known to be vulnerable to oxidative inactivation, the mechanisms have not been clearly elucidated. The present study was therefore designed to investigate the mechanisms of DLDH oxidative inactivation by mitochondrial reactive oxygen species (ROS). Mitochondria, isolated from rat brain, were incubated with mitochondrial respiratory substrates such as pyruvate/malate or succinate in the presence of electron transport chain inhibitors such as rotenone or antimycin A. This is followed by enzyme activity assay and gel-based proteomic analysis. The present study also examined whether ROS-induced DLDH oxidative inactivation could be reversed by reducing reagents such as DTT, cysteine, and glutathione. Results show that DLDH could only be inactivated by complex III- but not complex I-derived ROS; and the accompanying loss of activity due to the inactivation could be restored by cysteine and glutathione, indicating that DLDH oxidative inactivation by complex III-derived ROS was a reversible process. Further studies using catalase indicate that it was H2O2 instead of superoxide anion that was responsible for DLDH inactivation. Moreover, using sulfenic acid-specific labeling techniques in conjunction with two-dimensional Western blot analysis, we show that protein sulfenic acid formation (also known as sulfenation) was associated with the loss of DLDH enzymatic activity observed under our experimental conditions. Additionally, such oxidative modification was shown to be associated with preventing DLDH from further inactivation by the thiol-reactive reagent N-ethylmaleimide. Taken together, the present study provides insights into the mechanisms of DLDH oxidative inactivation by mitochondrial H2O2.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmacology and Neuroscience and Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| | | | | | | |
Collapse
|
49
|
Wu J, Cheng Z, Reddie K, Carroll K, Hammad LA, Karty JA, Bauer CE. RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid. J Biol Chem 2013; 288:4755-62. [PMID: 23306201 DOI: 10.1074/jbc.m112.413492] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RegB/RegA comprise a global redox-sensing signal transduction system utilized by a wide range of proteobacteria to sense environmental changes in oxygen tension. The conserved cysteine 265 in the sensor kinase RegB was previously reported to form an intermolecular disulfide bond under oxidizing conditions that converts RegB from an active dimer into an inactive tetramer. In this study, we demonstrate that a stable sulfenic acid (-SOH) derivative also forms at Cys-265 in vitro and in vivo when RegB is exposed to oxygen. This sulfenic acid modification is reversible and stable in the air. Autophosphorylation assay shows that reduction of the SOH at Cys-265 to a free thiol (SH) can increase RegB kinase activity in vitro. Our results suggest that a sulfenic acid modification at Cys-265 performs a regulatory role in vivo and that it may be the major oxidation state of Cys-265 under aerobic conditions. Cys-265 thus functions as a complex redox switch that can form multiple thiol modifications in response to different redox signals to control the kinase activity of RegB.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Hydrogen peroxide is generated in numerous biological processes and is implicated as the main transmitter of redox signals. Although a strong oxidant, high activation energy barriers make it unreactive with most biological molecules. It reacts directly with thiols, but for low-molecular-weight thiols and cysteine residues in most proteins, the reaction is slow. The most favored reactions of hydrogen peroxide are with transition metal centers, selenoproteins, and selected thiol proteins. These include proteins such as catalase, glutathione peroxidases, and peroxiredoxins, which, as well as providing antioxidant defense, are increasingly being considered as targets for signal transmission. This overview describes the main biological reactions of hydrogen peroxide and takes a kinetic approach to identifying likely targets in the cell. It also considers diffusion of hydrogen peroxide and constraints to its acting at localized sites.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Department of Pathology, Centre for Free Radical Research, University of Otago Christchurch, Christchurch, New Zealand.
| |
Collapse
|