1
|
Bachman NP, Ketelhut NB, Blomquist M, Terwoord JD. Rho-kinase inhibition reduces systolic blood pressure and forearm vascular resistance in healthy older adults: a double-blind, randomized, placebo-controlled pilot study. GeroScience 2024; 46:6317-6329. [PMID: 38888876 PMCID: PMC11494619 DOI: 10.1007/s11357-024-01240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Rho-kinase has been implicated in the development of hypertension in preclinical studies and may contribute to age-related blood pressure elevation. This study tested the hypothesis that Rho-kinase contributes to elevated systolic blood pressure (SBP) in healthy older adults. Young (18-30 years, 6F/6M) and older (60-80 years, 7F/6M) adults were enrolled in a double-blind, placebo-controlled crossover study using intravenous fasudil infusion to inhibit Rho-kinase. Fasudil lowered SBP in older adults compared to placebo (saline) (2-h post-infusion: 125 ± 4 vs. 133 ± 4 mmHg, P < 0.05), whereas fasudil had no impact on SBP in young adults. Immediately following fasudil infusion, there was a transient reduction in mean arterial pressure (MAP) in young adults that was no longer evident 1-h post-infusion. In older adults, MAP remained lower throughout the fasudil visit compared to placebo (2-h post-infusion: 93 ± 3 vs. 100 ± 3 mmHg, P < 0.05) such that age-related differences in SBP and MAP were abolished. Aortic stiffness (carotid-femoral pulse wave velocity) was not altered by fasudil when central MAP was included as a covariate in analyses. Fasudil reduced forearm vascular resistance in older (2-h post-infusion: 3.3 ± 0.4 vs. 4.8 ± 0.6 mmHg/ml/min, P < 0.05) but not young (4.0 ± 0.6 vs. 3.8 ± 0.5 mmHg/ml/min) adults, which was accompanied by an increase in brachial artery diameter only in older adults. Brachial artery flow-mediated dilation was not affected by fasudil in either group. These findings indicate that Rho-kinase inhibition reduces SBP in healthy older but not young adults, which is associated with a concomitant reduction in forearm vascular resistance.
Collapse
Affiliation(s)
- Nate P Bachman
- Department of Kinesiology, Colorado Mesa University, Grand Junction, CO, USA
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Michael Blomquist
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Biomedical Sciences Department, Rocky Vista University, 255 E. Center St., Ivins, UT, 84738, USA
| | - Janée D Terwoord
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
- Biomedical Sciences Department, Rocky Vista University, 255 E. Center St., Ivins, UT, 84738, USA.
| |
Collapse
|
2
|
Lamb FS, Choi H, Miller MR, Stark RJ. Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels. Hypertension 2024; 81:752-763. [PMID: 38174563 PMCID: PMC10954410 DOI: 10.1161/hypertensionaha.123.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Collapse
Affiliation(s)
- Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
Nishimiya K, Takahashi J, Oyama K, Matsumoto Y, Yasuda S, Shimokawa H. Mechanisms of Coronary Artery Spasm. Eur Cardiol 2023; 18:e39. [PMID: 37456775 PMCID: PMC10345984 DOI: 10.15420/ecr.2022.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 07/18/2023] Open
Abstract
Recent clinical trials have highlighted that percutaneous coronary intervention in patients with stable angina provides limited additional benefits on top of optimal medical therapy. This has led to much more attention being paid to coronary vasomotion abnormalities regardless of obstructive or non-obstructive arterial segments. Coronary vasomotion is regulated by multiple mechanisms that include the endothelium, vascular smooth muscle cells (VSMCs), myocardial metabolic demand, autonomic nervous system and inflammation. Over the years, several animal models have been developed to explore the central mechanism of coronary artery spasm. This review summarises the landmark studies on the mechanisms of coronary vasospasm demonstrating the central role of Rho-kinase as a molecular switch of VSMC hypercontraction and the important role of coronary adventitial inflammation for Rho-kinase upregulation in VSMCs.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Kazuma Oyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
4
|
Moreno-Domínguez A, Colinas O, Smani T, Ureña J, López-Barneo J. Acute oxygen sensing by vascular smooth muscle cells. Front Physiol 2023; 14:1142354. [PMID: 36935756 PMCID: PMC10020353 DOI: 10.3389/fphys.2023.1142354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
An adequate supply of oxygen (O2) is essential for most life forms on earth, making the delivery of appropriate levels of O2 to tissues a fundamental physiological challenge. When O2 levels in the alveoli and/or blood are low, compensatory adaptive reflexes are produced that increase the uptake of O2 and its distribution to tissues within a few seconds. This paper analyzes the most important acute vasomotor responses to lack of O2 (hypoxia): hypoxic pulmonary vasoconstriction (HPV) and hypoxic vasodilation (HVD). HPV affects distal pulmonary (resistance) arteries, with its homeostatic role being to divert blood to well ventilated alveoli to thereby optimize the ventilation/perfusion ratio. HVD is produced in most systemic arteries, in particular in the skeletal muscle, coronary, and cerebral circulations, to increase blood supply to poorly oxygenated tissues. Although vasomotor responses to hypoxia are modulated by endothelial factors and autonomic innervation, it is well established that arterial smooth muscle cells contain an acute O2 sensing system capable of detecting changes in O2 tension and to signal membrane ion channels, which in turn regulate cytosolic Ca2+ levels and myocyte contraction. Here, we summarize current knowledge on the nature of O2 sensing and signaling systems underlying acute vasomotor responses to hypoxia. We also discuss similarities and differences existing in O2 sensors and effectors in the various arterial territories.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olaia Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Tarik Smani
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- *Correspondence: José López-Barneo,
| |
Collapse
|
5
|
TNF-α Plus IL-1β Induces Opposite Regulation of Cx43 Hemichannels and Gap Junctions in Mesangial Cells through a RhoA/ROCK-Dependent Pathway. Int J Mol Sci 2022; 23:ijms231710097. [PMID: 36077498 PMCID: PMC9456118 DOI: 10.3390/ijms231710097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Connexin 43 (Cx43) is expressed in kidney tissue where it forms hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analysis of ethidium uptake and thiobarbituric acid reactive species revealed that treatment with TNF-α plus IL-1β increases Cx43 hemichannel activity and oxidative stress in MES-13 cells (a cell line derived from mesangial cells), and in primary mesangial cells. The latter was also accompanied by a reduction in gap junctional communication, whereas Western blotting assays showed a progressive increase in phosphorylated MYPT (a target of RhoA/ROCK) and Cx43 upon TNF-α/IL-1β treatment. Additionally, inhibition of RhoA/ROCK strongly antagonized the TNF-α/IL-1β-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell-cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.
Collapse
|
6
|
Terada Y, Yayama K. Angiotensin II-Induced Vasoconstriction via Rho Kinase Activation in Pressure-Overloaded Rat Thoracic Aortas. Biomolecules 2021; 11:biom11081076. [PMID: 34439742 PMCID: PMC8391281 DOI: 10.3390/biom11081076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 01/25/2023] Open
Abstract
Angiotensin II (Ang II) induces vasoconstriction through myosin light chain (MLC) kinase activation and MLC phosphatase inactivation via phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) by Rho kinase. However, the detailed mechanism underlying Rho kinase activation by Ang II is still unknown. We investigated the mechanism of Ang II-induced vasoconstriction mediated by Rho kinase in pressure-overloaded rat thoracic aortas. Pressure-overloaded rats were produced by coarctation of the suprarenal abdominal aorta in four-week-old male Wistar rats. The contractile response to Ang II was significantly enhanced in the pressure-overloaded rats. Ang II-induced vasoconstriction was attenuated by inhibitors of Rho kinase, extracellular signal-regulated kinase 1 and 2 (Erk1/2), and epidermal growth factor receptor (EGFR) in both the sham-operated and pressure-overloaded rats. The Ang II-induced vasoconstriction was attenuated by a Janus kinase 2 (JAK2) inhibitor in only the pressure-overloaded rats. The protein levels of MYPT1 and JAK2 increased only in the pressure-overloaded rat thoracic aortas. These results suggested that Ang II-induced contraction is mediated by Rho kinase activation via EGFR, Erk1/2, and JAK2 in pressure-overloaded rat thoracic aortas. Moreover, Ang II-induced contraction was enhanced in pressure-overloaded rats probably because the protein levels of MYPT1 and JAK2 increased in the thoracic aortas.
Collapse
|
7
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Wei X, Lan T, Zhou Y, Cheng J, Li P, Zeng X, Yang Y. Mechanism of α1-Adrenergic Receptor-Induced Increased Contraction of Rat Mesenteric Artery in Aging Hypertension Rats. Gerontology 2021; 67:323-337. [PMID: 33752204 DOI: 10.1159/000511911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Vasoconstriction is triggered by an increase in intracellular-free calcium concentration. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase (ROCK), protein kinase C (PKC), and so on. In this study, we studied the changes of vascular reactivity as well as the underlying signaling pathways in aging spontaneously hypertensive rats (SHRs). METHODS The artery tension induced by α1-adrenergic receptor activator (α1-AR) phenylephrine (PE) was measured in the absence or presence of myosin light chain kinase (MLCK), PKC, and ROCK inhibitors. The α1-AR, PKC, ROCK, phosphorylation of myosin light chain (MLC), and PKC-potentiated phosphatase inhibitors of 17 kDa (CPI-17) of rat mesenteric arteries were analyzed at the mRNA level or protein level. RESULTS The vascular tension measurements showed that there was a significant increase in the mesenteric artery contraction induced by PE in old SHR. MLCK inhibitor ML-7 can similarly inhibit PE-induced vasoconstriction. PKC inhibitor GF109203X has the weakest inhibitory effect on PE-induced contraction in old SHR. At the presence of ROCK inhibitor H1152, PE-induced contraction was significantly reduced in young Wistar-Kyoto (WKY) rats, but this phenomenon disappeared in other rats. Furthermore, in old SHR the protein expression of α1-AR decreased and phosphorylation of MLC and CPI-17 were upregulated and MLC phosphatase (MLCP) activity was significantly lower. The expressions of PKC were upregulated in SHR and old rats. In addition, the expression of ROCK-1 was decreased and ROCK-2 was significantly upregulated with age in SHR. CONCLUSION In aging hypertension, the expression/activity of PKC or ROCK-2/CPI-17 excessively increased, MLCP activity decreased and MLC phosphorylation enhanced, leading to increased α1-AR-induced vasoconstriction.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ting Lan
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yuanqun Zhou
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jun Cheng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Pengyun Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaorong Zeng
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China,
| |
Collapse
|
9
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
10
|
Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2019; 114:529-539. [PMID: 29394331 PMCID: PMC5852517 DOI: 10.1093/cvr/cvy023] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia, and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex-interacting systems such as the renin-angiotensin-aldosterone system, sympathetic nervous system, immune activation, and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin–myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase, protein Kinase C and mitogen-activated protein kinase signalling, reactive oxygen species, and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and non-coding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signalling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here, we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Livia L Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Augusto C Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
11
|
Davani-Davari D, Karimzadeh I, Khalili H. The potential effects of anabolic-androgenic steroids and growth hormone as commonly used sport supplements on the kidney: a systematic review. BMC Nephrol 2019; 20:198. [PMID: 31151420 PMCID: PMC6545019 DOI: 10.1186/s12882-019-1384-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anabolic-androgenic steroids and growth hormone are among the most commonly used supplements by sportsmen and sportswomen. The aim of this systematic review is to collect and report available data about renal safety of anabolic-androgenic steroids and growth hormone (GH). METHODS The search strategy was in accordance with the PRISMA guideline. Seven databases such as Scopus, Medline, Embase, and ISI Web of Knowledge were searched using keywords, such as "growth hormone", "anabolic-androgenic steroids", and "kidney injury". Articles published from 1950 to December 2017 were considered. Randomized clinical trials, prospective or retrospective human studies, case series as well as case reports, and experimental (in vivo) studies were included. Twenty one clinical and experimental articles were selected (12 for anabolic-androgenic steroids and 9 for GH). RESULTS Anabolic-androgenic steroids can affect the kidney in different aspects. They can induce or aggravate acute kidney injury, chronic kidney disease, and glomerular toxicity. These adverse effects are mediated through pathways such as stimulating renin-angiotensin-aldosterone system, enhancing the production of endothelin, producing reactive oxygen species, over-expression of pro-fibrotic and pro-apoptotic mediators (e.g., TGF-β1), as well as inflammatory cytokines (e.g., TNF-α, IL-1b, and IL-6). Although GH may affect the kidney in different aspects, such as size, glomerular filtration rate, and tubule functions, either directly or indirectly, there is no conclusive clinical evidence about its detrimental effects on the kidney in athletes and body builders. CONCLUSION Evidence regarding effects of anabolic-androgenic steroids exists; However, GH's exact effect on the kidney at doses used by athletes and body builders has not yet been clarified. Cohort clinical studies with long-term follow-up are warranted in this regard.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Karafarin street, P O Box: 7146864685, Shiraz, Iran
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Karafarin street, P O Box: 7146864685, Shiraz, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S, Zaidi SK, Abdulaal WH, Shamsi A, Khan W, Bano B. An Update on the Association of Protein Kinases with Cardiovascular Diseases. Curr Pharm Des 2019; 25:174-183. [DOI: 10.2174/1381612825666190312115140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Background:
Protein kinases are the enzymes involved in phosphorylation of different proteins which
leads to functional changes in those proteins. They belong to serine-threonine kinases family and are classified
into the AGC (Protein kinase A/ Protein kinase G/ Protein kinase C) families of protein and Rho-associated
kinase protein (ROCK). The AGC family of kinases are involved in G-protein stimuli, muscle contraction, platelet
biology and lipid signaling. On the other hand, ROCK regulates actin cytoskeleton which is involved in the
development of stress fibres. Inflammation is the main signal in all ROCK-mediated disease. It triggers the cascade
of a reaction involving various proinflammatory cytokine molecules.
Methods:
Two ROCK isoforms are found in mammals and invertebrates. The first isoforms are present mainly in
the kidney, lung, spleen, liver, and testis. The second one is mainly distributed in the brain and heart.
Results:
ROCK proteins are ubiquitously present in all tissues and are involved in many ailments that include
hypertension, stroke, atherosclerosis, pulmonary hypertension, vasospasm, ischemia-reperfusion injury and heart
failure. Several ROCK inhibitors have shown positive results in the treatment of various disease including cardiovascular
diseases.
Conclusion:
ROCK inhibitors, fasudil and Y27632, have been reported for significant efficiency in dropping
vascular smooth muscle cell hyper-contraction, vascular inflammatory cell recruitment, cardiac remodelling and
endothelial dysfunction which highlight ROCK role in cardiovascular diseases.
Collapse
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | | | - Mohd Shahnwaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Wajihullah Khan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| |
Collapse
|
13
|
Fimasartan for Remodeling after Myocardial Infarction. J Clin Med 2019; 8:jcm8030366. [PMID: 30875971 PMCID: PMC6463200 DOI: 10.3390/jcm8030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
An angiotensin receptor blocker (ARB) mitigates cardiac remodeling after myocardial infarction (MI). Here, we investigated the effect of fimasartan, a new ARB, on cardiac remodeling after MI. Sprague–Dawley rats were assigned into 3 groups: surgery only (sham group, n = 7), MI without (MI-only group, n = 13), and MI with fimasartan treatment (MI + Fima group, n = 16). MI was induced by the permanent ligation of the left anterior descending artery. Treatment with fimasartan (10 mg/kg) was initiated 24 h after MI and continued for 7 weeks. Rats in the MI + Fima group had a higher mean ejection fraction (66.3 ± 12.5% vs. 51.3 ± 14.8%, P = 0.002) and lower left ventricular end-diastolic diameter (9.14 ± 1.11 mm vs. 9.91 ± 1.43 mm, P = 0.045) than those in the MI-only group at 7 weeks after MI. The infarct size was lower in the MI + Fima than in the MI group (P < 0.05). A microarray analysis revealed that the expression of genes related to the lipid metabolism and mitochondrial membrane ion transporters were upregulated, and those involved in fibrosis and inflammation were downregulated by fimasartan. Fimasartan attenuates cardiac remodeling and dysfunction in rats after MI and may prevent the progression to heart failure after MI.
Collapse
|
14
|
Li LX, Li YJ, He JX. Long noncoding RNA PAGBC contributes to nitric oxide (NO) production by sponging miR-511 in airway hyperresponsiveness upon intubation. J Cell Biochem 2019; 120:2058-2069. [PMID: 30246300 DOI: 10.1002/jcb.27513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/26/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES In this study, we aimed to study the molecular mechanisms underlying the symptoms of hyperresponsiveness during intubation. METHOD The value of circulating long noncoding RNA (lncRNA)-prognosis-associated gallbladder cancer (PAGBC) in the prediction of hyperresponsiveness upon intubation during general anesthesia was evaluated via the receiver operating characteristic analyses of serum miR-511, serum PAGBC, and serum nitric oxide (NO). In addition, the possible association between lncRNA-PAGBC/NOS1 messenger RNA (mRNA) and miR-511 was further validated via real-time quantitative polymerase chain reaction, immunohistochemistry assay, computational analysis, and luciferase assay. Enzyme-linked immunosorbent assay and Western blot analysis were also conducted to establish the regulatory relationship among PAGBC, miR-511, and NO synthase 1 (NOS1). RESULTS Compared with circulating miR-511 and serum NO, circulating PAGBC was associated with a higher predictive value. In addition, a negative correlation was found between serum miR-511 and serum PAGBC (multicorrelation coefficient: -0.5) as well as between serum miR-511 and serum NO (multicorrelation coefficient: -0.6). In addition, both lncRNA-PAGBC and NO were decreased in patients with hyperresponsiveness, whereas the levels of miR-511 and NOS1 in these patients were similar to those in normal patients. Furthermore, our computational analyses and luciferase assays validated the direct binding between miR-511 and lncRNA-PAGBC, whereas NOS1 mRNA was identified as a virtual target gene of miR-511. Moreover, in the presence of lncRNA-PAGBC, we also observed an evident increase in the levels of NOS1 and NO accompanied by an obvious decrease of miR-511 expression. CONCLUSION LncRNA-PAGBC downregulated the expression of miR-511, which in turn upregulated the expression of NOS1 mRNA and led to the increase in NOS1 expression, thus leading to the inhibited responsiveness (normal-responsiveness rather than hyperresponsiveness) to intubation in patients.
Collapse
Affiliation(s)
- Ling-Xia Li
- Anesthesia Department, Yanan University Affiliated Hospital, Yanan, Shaanxi, China
| | - Yuan-Jun Li
- Anesthesia Department, Yanan University Affiliated Hospital, Yanan, Shaanxi, China
| | - Jia-Xuan He
- Respiratory Medicine Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Exaggerated blood pressure response to fasudil or nifedipine in hypertensive Ren-2 transgenic rats: role of altered baroreflex. Hypertens Res 2018; 42:145-154. [PMID: 30518983 DOI: 10.1038/s41440-018-0146-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/25/2018] [Indexed: 11/08/2022]
Abstract
Basal calcium sensitization is decreased in spontaneously hypertensive rats, although their blood pressure (BP) response to acute Rho-kinase inhibition is enhanced. Using fasudil (Rho-kinase inhibitor) or nifedipine (L-VDCC blocker), we evaluated the contribution of calcium sensitization and calcium entry to BP maintenance in hypertensive transgenic Ren-2 rats (TGR) focusing on the influence of major vasoactive systems and/or baroreflex efficiency on BP responses to these two drugs. Homozygous TGR and normotensive Hannover Sprague-Dawley (HanSD) control rats aged 5, 11, or 22 weeks were used. The acute BP-lowering effects of fasudil or nifedipine were studied in intact rats, nitric oxide-deficient L-NAME-pretreated rats and rats subjected to combined blockade of the renin-angiotensin system (RAS), sympathetic nervous system (SNS) and nitric oxide synthase (NOS). Fasudil- or nifedipine-induced BP reduction increased during hypertension development in TGR. By contrast, the nifedipine-induced BP response decreased, whereas the fasudil-induced BP response increased with age in HanSD controls. Our data indicated a major contribution of nifedipine-sensitive calcium entry and relative attenuation of calcium sensitization in hypertensive rats compared with normotensive controls. The BP responses to fasudil or nifedipine were enhanced by NOS inhibition and combined blockade in normotensive HanSD rats but not in hypertensive TGR. In conclusion, calcium sensitization is attenuated by endogenous nitric oxide in normotensive HanSD rats but not in hypertensive TGR. Moreover, BP reduction elicited by acute Rho-kinase inhibition is partially compensated by enhanced sympathetic vasoconstriction. The decreased compensation in hypertensive rats with impaired baroreflex efficiency explains their greater BP response to fasudil than in normotensive animals.
Collapse
|
16
|
Chen J, Kou L, Kong L. Anti-nerve growth factor antibody improves airway hyperresponsiveness by down-regulating RhoA. J Asthma 2018; 55:1079-1085. [PMID: 29611766 DOI: 10.1080/02770903.2017.1396467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The pathogenesis of asthma is complex and continues to be considered as a challenging subject. Some studies have shown that nerve growth factor (NGF) participates in the pathogenesis of asthma, but the mechanism of airway contraction caused by NGF is still unclear. OBJECTIVE Our aim was to discuss the effect of anti-NGF antibody on RhoA expression, and further explore the role of NGF in airway hyperresponsiveness (AHR). METHODS Thirty female BALB/c mice were divided into three groups randomly: control group (group C, n = 10), asthma group (group A, n = 10) and anti-NGF antibody intervention group (group N, n = 10). The asthmatic mice were stimulated by OVA suspension, the intervention mice were given nasal instillation of anti-NGF antibody before the stimulation. Airway responsiveness, eosinophils, IL-13, IFN-γ were measured. The protein expression and mRNA level of NGF and RhoA were detected by immunohistochemical and Real Time-PCR (RT-PCR) analyses. RESULTS Airway responsiveness, eosinophils and IL-13 levels in group A were significantly increased compare with the other groups, and significantly decreased in group N than those in group A. IFN-γ level was significantly reduced in group A and increased in group N. Immunohistochemistry and RT-PCR analyses showed that the protein expression and mRNA level of NGF and RhoA were significantly increased in group A and significantly decreased in group N. CONCLUSION NGF participates in the pathogenesis of asthma in mice. Anti-NGF antibody can inhibit airway inflammation and alleviate AHR by down-regulating the protein expression and mRNA level of RhoA.
Collapse
Affiliation(s)
- Jingying Chen
- a Institute of Respiratory Diseases, The First Hospital of China Medical University , Shenyang , China.,b Department of ICU , Peking University Shenzhen Hospital , Shenzhen , China
| | - Lijie Kou
- a Institute of Respiratory Diseases, The First Hospital of China Medical University , Shenyang , China
| | - Lingfei Kong
- a Institute of Respiratory Diseases, The First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
17
|
Lin S, Brozovich FV. MYPT1 isoforms expressed in HEK293T cells are differentially phosphorylated after GTPγS treatment. J Smooth Muscle Res 2017; 52:66-77. [PMID: 27725371 PMCID: PMC5321854 DOI: 10.1540/jsmr.52.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Agonist stimulation of smooth muscle is known to activate RhoA/Rho kinase signaling, and
Rho kinase phosphorylates the myosin targeting subunit (MYPT1) of myosin light chain (MLC)
phosphatase at Thr696 and Thr853, which inhibits the activity of MLC phosphatase to
produce a Ca2+ independent increase in MLC phosphorylation and force (Ca2+ sensitization).
Alternative mRNA splicing produces four MYPT1 isoforms, which differ by the presence or
absence of a central insert (CI) and leucine zipper (LZ). This study was designed to
determine if Rho kinase differentially phosphorylates MYPT1 isoforms. In HEK293T cells
expressing each of the four MYPT1 isoforms, we could not detect a change in Thr853 MYPT1
phosphorylation following GTPγS treatment. However, there is differential phosphorylation
of MYPT1 isoforms at Thr696; GTPγS treatment increases MYPT1 phosphorylation for the
CI+LZ- and CI-LZ- MYPT1 isoforms, but not the CI+LZ+ or CI-LZ+ MYPT1 isoforms. These data
could suggest that in smooth muscle Rho kinase differentially phosphorylates MYPT1
isoforms.
Collapse
Affiliation(s)
- Simon Lin
- Mayo Medical School, Department of Cardiovascular Disease, Rochester, MN 55905, USA
| | | |
Collapse
|
18
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
19
|
Meekins LC, Rosado-Adames N, Maddala R, Zhao JJ, Rao PV, Afshari NA. Corneal Endothelial Cell Migration and Proliferation Enhanced by Rho Kinase (ROCK) Inhibitors in In Vitro and In Vivo Models. Invest Ophthalmol Vis Sci 2017; 57:6731-6738. [PMID: 27951595 PMCID: PMC6018452 DOI: 10.1167/iovs.16-20414] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the role of Rho-associated kinases (ROCK) in corneal physiology and regeneration, and the effects of suppressing its activity in stimulating corneal endothelial cell proliferation and migration in vitro and in vivo. Methods Immunohistochemistry was performed to detect RhoA and ROCK-1 and ROCK-2 in human corneal tissue. Adult porcine corneal endothelial cells (CECs) were isolated, grown to confluence, and further characterized. Under the treatment of ROCK inhibitors, changes in the cellular distribution profile of ZO-1 and F-actin were examined by immunofluorescence staining. Corneal endothelial cells migration was evaluated by scratch assay and analyzed with Axiovision software. Cell proliferation was quantified using Click-iT EdU HCS Assay. In vivo, the corneal endothelia of rabbits were surgically injured and H-1152 was topically applied for 10 days. Progress of wound healing was evaluated daily by monitoring corneal edema, inflammation, and thickness using slit-lamp examination, photography, and pachymetry. Rabbits were euthanized and enucleated for further evaluation. Results H-1152 exhibited significant stimulatory effect on CEC migration and proliferation in vitro compared with both untreated and Y-27632–treated cells. Furthermore, topical administration of H-1152 led to marked reduction in corneal edema and formation of multinucleate CECs in vivo suggestive of proliferation associated with healing. Conclusions H-1152 exhibited a better stimulatory effect on CEC migration and proliferation in vitro than Y-27632. Our findings suggest that topical administration of H-1152 promotes healing of injured corneal endothelium in vivo. These results demonstrate the efficacy of ROCK inhibitors as a potential topical therapy for patients with corneal endothelial disease.
Collapse
Affiliation(s)
- Landon C Meekins
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Noel Rosado-Adames
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Rupalatha Maddala
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Jiagang J Zhao
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Ponugoti V Rao
- Duke University Eye Center, Duke University Medical Center, Durham, North Carolina, United States
| | - Natalie A Afshari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
20
|
Alp H. Akciğerde Rhoa/Rho-Kinaz Sinyalizasyon Yolu Üzerine Sigara İçmenin Etkisi. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2017. [DOI: 10.17944/mkutfd.323343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Changes in cardiac Na +/K +-ATPase expression and activity in female rats fed a high-fat diet. Mol Cell Biochem 2017; 436:49-58. [PMID: 28567564 DOI: 10.1007/s11010-017-3077-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate whether the presence of endogenous estradiol alters the effects of a high-fat (HF) diet on activity/expression of the cardiac Na+/K+-ATPase, via PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar rats (8 weeks old, 150-200 g) were fed a standard diet or a HF diet (balanced diet for laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet exhibited a decrease in phosphorylation of the α1 subunit of Na+/K+-ATPase by 30% (p < 0.05), expression of total α1 subunit of Na+/K+-ATPase by 31% (p < 0.05), and association of IRS1 with p85 subunit of PI3K by 42% (p < 0.05), while the levels of cardiac RhoA and ROCK2 were significantly increased by 84% (p < 0.01) and 62% (p < 0.05), respectively. Our results suggest that a HF diet alters cardiac Na+/K+-ATPase expression via molecular mechanisms involving RhoA/ROCK and IRS-1/PI3K signalling in female rats.
Collapse
|
22
|
Basal and Activated Calcium Sensitization Mediated by RhoA/Rho Kinase Pathway in Rats with Genetic and Salt Hypertension. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8029728. [PMID: 28197417 PMCID: PMC5288518 DOI: 10.1155/2017/8029728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/27/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022]
Abstract
Calcium sensitization mediated by RhoA/Rho kinase pathway can be evaluated either in the absence (basal calcium sensitization) or in the presence of endogenous vasoconstrictor systems (activated calcium sensitization). Our aim was to compare basal and activated calcium sensitization in three forms of experimental hypertension with increased sympathetic tone and enhanced calcium entry—spontaneously hypertensive rats (SHR), heterozygous Ren-2 transgenic rats (TGR), and salt hypertensive Dahl rats. Activated calcium sensitization was determined as blood pressure reduction induced by acute administration of Rho kinase inhibitor fasudil in conscious rats with intact sympathetic nervous system (SNS) and renin-angiotensin system (RAS). Basal calcium sensitization was studied as fasudil-dependent difference in blood pressure response to calcium channel opener BAY K8644 in rats subjected to RAS and SNS blockade. Calcium sensitization was also estimated from reduced development of isolated artery contraction by Rho kinase inhibitor Y-27632. Activated calcium sensitization was enhanced in all three hypertensive models (due to the hyperactivity of vasoconstrictor systems). In contrast, basal calcium sensitization was reduced in SHR and TGR relative to their controls, whereas it was augmented in salt-sensitive Dahl rats relative to their salt-resistant controls. Similar differences in calcium sensitization were seen in femoral arteries of SHR and Dahl rats.
Collapse
|
23
|
Lu W, Kang J, Hu K, Tang S, Zhou X, Xu L, Li Y, Yu S. The role of the Nox4-derived ROS-mediated RhoA/Rho kinase pathway in rat hypertension induced by chronic intermittent hypoxia. Sleep Breath 2017; 21:667-677. [PMID: 28078487 DOI: 10.1007/s11325-016-1449-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/23/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Obstructive sleep apnea syndrome, which is a risk factor for resistant hypertension, is characterized by chronic intermittent hypoxia (CIH) and is associated with many cardiovascular diseases. CIH elicits systemic oxidative stress and sympathetic hyperactivity, which lead to hypertension. Rho kinases (ROCKs) are considered to be major effectors of the small GTPase RhoA and have been extensively studied in the cardiovascular field. Upregulation of the RhoA/ROCK signaling cascade is observed in various cardiovascular disorders, such as atherosclerosis, pulmonary hypertension, and stroke. However, the exact molecular function of RhoA/ROCK in CIH remains unclear and requires further study. OBJECTIVE This study aimed to investigate the role of the NADPH oxidase 4 (Nox4)-induced ROS/RhoA/ROCK pathway in CIH-induced hypertension in rats. METHODS Male Sprague-Dawley rats were exposed to CIH for 21 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 h/day). We randomly assigned 56 male rats to groups of normoxia (RA) or vertically implemented CIH together with vehicle (CIH-V), GKT137831 (CIH-G), N-acetyl cysteine (NAC) (CIH-N), or Y27632 (CIH-Y). The rats in the RA group were continuously exposed to room air, whereas the rats in the other groups were exposed to CIH. Systolic blood pressure (BP) was monitored at the beginning of each week. After the experiment, renal sympathetic nerve activity (RSNA) was recorded, and serum and renal tissues were subjected to molecular biological and biochemical analyses. RESULTS Compared with the BP of RA rats, the BP of CIH-V rats started to increase 2 weeks after the beginning of the experiment, subsequently stabilizing at a high level at the end of the third week. CIH increased both RSNA and oxidative stress. This response was attenuated by treatment of the rats with GKT137831 or NAC. Inhibiting Nox4 activity or ROS production reduced RhoA/ROCK expression. Treatment with Y27632 reduced both BP and RSNA in rats exposed to CIH. CONCLUSION Hypertension can be induced by CIH in SD rats. The CIH-induced elevation of BP is at least partially mediated via the Nox4-induced ROS/RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Wen Lu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Jing Kang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Hu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Si Tang
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Xiufang Zhou
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Lifang Xu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yuanyuan Li
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Shuhui Yu
- Division of Respiratory Disease, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, China
| |
Collapse
|
24
|
Szasz T, Webb RC. Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:303-322. [PMID: 28212799 DOI: 10.1016/bs.apha.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular smooth muscle contraction is an important physiological process contributing to cardiovascular homeostasis. The principal determinant of smooth muscle contraction is the intracellular free Ca2+ concentration, and phosphorylation of myosin light chain (MLC) by activated myosin light chain kinase (MLCK) in response to increased Ca2+ is the main pathway by which vasoconstrictor stimuli induce crossbridge cycling of myosin and actin filaments. A secondary pathway for vascular smooth muscle contraction that is not directly dependent on Ca2+ concentration, but rather mediating Ca2+ sensitization, is the RhoA/Rho kinase pathway. In response to contractile stimuli, the small GTPase RhoA activates its downstream effector Rho kinase which, in turn, promotes contraction via myosin light chain phosphatase (MLCP) inhibition. RhoA/Rho kinase-mediated MLCP inhibition occurs mainly by phosphorylation and inhibition of MYPT1, the regulatory subunit of MLCP, or by CPI-17-mediated inhibition of the catalytic subunit of MLCP. In this review, we describe the molecular mechanisms underlying the pivotal role exerted by Rho kinase on vascular smooth muscle contraction and discuss the main regulatory pathways for its activity.
Collapse
Affiliation(s)
- T Szasz
- Augusta University, Augusta, GA, United States.
| | - R C Webb
- Augusta University, Augusta, GA, United States
| |
Collapse
|
25
|
Sun Z, Wu X, Li W, Peng H, Shen X, Ma L, Liu H, Li H. RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels. BMC Cardiovasc Disord 2016; 16:193. [PMID: 27724862 PMCID: PMC5057502 DOI: 10.1186/s12872-016-0372-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Background Diabetes-induced vascular dysfunction may arise from reduced nitric oxide (NO) availability, following interaction with superoxide to form peroxynitrite. Peroxynitrite can induce formation of 3-nitrotyrosine-modified proteins. RhoA/ROCK signaling is also involved in diabetes-induced vascular dysfunction. The study aimed to investigate possible links between Rho/ROCK signaling, hyperglycemia, and peroxynitrite in small coronary arteries. Methods Rat small coronary arteries were exposed to normal (NG; 5.5 mM) or high (HG; 23 mM) D-glucose. Vascular ring constriction to 3 mM 4-aminopyridine and dilation to 1 μM forskolin were measured. Protein expression (immunohistochemistry and western blot), mRNA expression (real-time PCR), and protein activity (luminescence-based G-LISA and kinase activity spectroscopy assays) of RhoA, ROCK1, and ROCK2 were determined. Results Vascular ring constriction and dilation were smaller in the HG group than in the NG group (P < 0.05); inhibition of RhoA or ROCK partially reversed the effects of HG. Peroxynitrite impaired vascular ring constriction/dilation; this was partially reversed by inhibition of RhoA or ROCK. Protein and mRNA expressions of RhoA, ROCK1, and ROCK2 were higher under HG than NG (P < 0.05). This HG-induced upregulation was attenuated by inhibition of RhoA or ROCK (P < 0.05). HG increased RhoA, ROCK1, and ROCK2 activity (P < 0.05). Peroxynitrite also enhanced RhoA, ROCK1, and ROCK2 activity; these actions were partially inhibited by 100 μM urate (peroxynitrite scavenger). Exogenous peroxynitrite had no effect on the expression of the voltage-dependent K+ channels 1.2 and 1.5. Conclusions Peroxynitrite-induced coronary vascular dysfunction may be mediated, at least in part, through increased expressions and activities of RhoA, ROCK1, and ROCK2.
Collapse
Affiliation(s)
- Zhijun Sun
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xing Wu
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Weiping Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Hui Peng
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xuhua Shen
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Lu Ma
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Huirong Liu
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Hongwei Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China.
| |
Collapse
|
26
|
De Silva TM, Kinzenbaw DA, Modrick ML, Reinhardt LD, Faraci FM. Heterogeneous Impact of ROCK2 on Carotid and Cerebrovascular Function. Hypertension 2016; 68:809-17. [PMID: 27432870 PMCID: PMC4982851 DOI: 10.1161/hypertensionaha.116.07430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/11/2016] [Indexed: 01/05/2023]
Abstract
Rho kinase (ROCK) has been implicated in physiological and pathophysiological processes, including regulation of vascular function. ROCK signaling is thought to be a critical contributor to cardiovascular disease, including hypertension and effects of angiotensin II (Ang II). Two isoforms of ROCK (1 and 2) have been identified and are expressed in vascular cells. In this study, we examined the importance of ROCK2 in relation to vessel function using several models and a novel inhibitor of ROCK2. First, incubation of carotid arteries with the direct RhoA activator CN-03 or Ang II impaired endothelium-dependent relaxation by ≈40% to 50% (P<0.05) without altering endothelium-independent relaxation. Both CN-03- and Ang II-induced endothelial dysfunction was prevented by Y-27632 (an inhibitor of both ROCK isoforms) or the selective ROCK2 inhibitor SLX-2119. In contrast, SLX-2119 had little effect on contraction of carotid arteries to receptor-mediated agonists (serotonin, phenylephrine, vasopressin, or U46619). Second, in basilar arteries, SLX-2119 inhibited constriction to Ang II by ≈90% without significantly affecting responses to serotonin or KCl. Third, in isolated pressurized brain parenchymal arterioles, SLX-2119 inhibited myogenic tone in a concentration-dependent manner (eg, 1 μmol/L SLX-2119 dilated by 79±4%). Finally, SLX-2119 dilated small pial arterioles in vivo, an effect that was augmented by inhibition of nitric oxide synthase. These findings suggest that ROCK2 has major, but heterogeneous, effects on function of endothelium and vascular muscle. The data support the concept that aberrant ROCK2 signaling may be a key contributor to select aspects of large and small vessel disease, including Ang II-induced endothelial dysfunction.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Dale A Kinzenbaw
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Lindsey D Reinhardt
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.).
| |
Collapse
|
27
|
Hsieh SC, Wu CC, Hsu SL, Feng CH, Yen JH. Gallic acid attenuates TGF-β1-stimulated collagen gel contraction via suppression of RhoA/Rho-kinase pathway in hypertrophic scar fibroblasts. Life Sci 2016; 161:19-26. [DOI: 10.1016/j.lfs.2016.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/24/2023]
|
28
|
Chen YC, Yuan TY, Zhang HF, Wang DS, Niu ZR, Li L, Fang LH, Du GH. Fasudil evokes vasodilatation of rat mesenteric vascular bed via Ca(2+) channels and Rho/ROCK pathway. Eur J Pharmacol 2016; 788:226-233. [PMID: 27346833 DOI: 10.1016/j.ejphar.2016.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
Abstract
As a Rho kinase (ROCK) inhibitor, fasudil has been used in clinical trials of several cardiovascular diseases. This study was to investigate the vasorelaxant effect of fasudil on resistance arterial rings including mesenteric, renal, ventral tail and basilar artery. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings. A DMT multiwire myograph system was used to test the tension of isolated small arteries. K(+) channel blockers, NO-cGMP pathway blockers and Ca(2+)-free physiological salt solution (PSS) were employed to verify the underlying mechanisms. Fasudil (10(-7)-10(-4)M) relaxed four types of small artery rings pre-contracted by 60mmol/l KCl (pEC50: 6.01±0.09, 5.47±0.03, 5.54±0.04, and 5.72±0.10 for mesenteric, renal, ventral tail and basilar artery rings, respectively). Pre-incubation with fasudil (1, 3, or 10μmol/l) attenuated KCl (10-60mmol/l) and angiotensin II (Ang II; 1μmol/l)-induced vasoconstriction in mesenteric artery rings. Fasudil at the concentration of 10(-6)mol/l showed different relaxant potency in endothelium intact (pEC50:6.01±0.09) or denued (5.75±0.06) mesenteric artery. The influx and release of Ca(2+) were inhibited by fasudil. In addition, fasudil could block the increased phosphorylation level of myosin light chain (MLC) and myosin-binding subunit of myosin phosphatase (MYPT1) induced by Ang II. However, pretreatment with various K(+) channel blockers did not affect the relaxant effects of fasudil remarkably. The present results demonstrate that fasudil has a vasorelaxant effect on isolated rat resistance arteries, including mesenteric, renal, ventral tail and basilar artery, and may exert its action through the endothelium, Ca(2+) channels, and the Rho/ROCK pathway.
Collapse
Affiliation(s)
- Yu-Cai Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Tian-Yi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Hui-Fang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Dan-Shu Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Zi-Ran Niu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lian-Hua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
29
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
30
|
Han J, Jiang DM, Ye Y, Du CQ, Yang J, Hu SJ. Farnesyl pyrophosphate synthase inhibitor, ibandronate, improves endothelial function in spontaneously hypertensive rats. Mol Med Rep 2016; 13:3787-96. [PMID: 27035426 PMCID: PMC4838142 DOI: 10.3892/mmr.2016.5025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species (ROS), originating predominantly from vascular smooth muscle cells (VSMCs), lead to vascular damage and endothelial dysfunction in rats with hypertension. The downstream signaling pathways of farnesyl pyrophosphate (FPP) synthase, Ras-related C3 botulinum toxin substrate 1 (Rac1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mediate the generation of ROS. The present study investigated the effect of the FPP synthase inhibitor, ibandronate, on ROS production, the possible beneficial effect on endothelial dysfunction and the underlying mechanisms in spontaneously hypertensive rats (SHRs). The SHRs were treated with ibandronate for 30 days. Endothelium‑dependent and independent vasorelaxation were measured in isolated aortic rings. Additionally, VSMCs from the SHRs and Wistar‑Kyoto (WKY) rats were cultured. The production of ROS and activation of NADPH oxidase were determined using fluorescence and chemiluminescence, respectively, in vivo and in vitro. Angiotensin II (Ang II) increased ROS production in the cultured VSMCs from the WKY rats and SHRs, in a concentration‑dependent manner. The Ang II‑induced responses were more marked in the SHR VSMCs, compare with those in the WKY VSMCs, however, the response decreased significantly following ibandronate pretreatment. Treatment with ibandronate significantly decreased the production of ROS, translocation of NADPH oxidase subunit p47phox, and activities of NADPH oxidase and Rac1 in the aorta and VSMCs, and improved the impaired endothelium‑dependent vasodilation in the SHRs. Adding geranylgeraniol, but not farnesol or mevalonate, reversed the inhibitory effects of ibandronate. In addition, inhibiting geranylgeranyl-transferase mimicked the effect of ibandronate on the excess oxidative response. Ibandronate exerted cellular antioxidant effects through the Rac1/NADPH oxidase pathway. These effects may have contributed to the vasoprotective effects on the impaired endothelium in SHRs.
Collapse
Affiliation(s)
- Jie Han
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dong-Mei Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yang Ye
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chang-Qing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shen-Jiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
31
|
Hartmann S, Ridley AJ, Lutz S. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease. Front Pharmacol 2015; 6:276. [PMID: 26635606 PMCID: PMC4653301 DOI: 10.3389/fphar.2015.00276] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/03/2015] [Indexed: 01/26/2023] Open
Abstract
Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases that are downstream targets of the small GTPases RhoA, RhoB, and RhoC. ROCKs are involved in diverse cellular activities including actin cytoskeleton organization, cell adhesion and motility, proliferation and apoptosis, remodeling of the extracellular matrix and smooth muscle cell contraction. The role of ROCK1 and ROCK2 has long been considered to be similar; however, it is now clear that they do not always have the same functions. Moreover, depending on their subcellular localization, activation, and other environmental factors, ROCK signaling can have different effects on cellular function. With respect to the heart, findings in isoform-specific knockout mice argue for a role of ROCK1 and ROCK2 in the pathogenesis of cardiac fibrosis and cardiac hypertrophy, respectively. Increased ROCK activity could play a pivotal role in processes leading to cardiovascular diseases such as hypertension, pulmonary hypertension, angina pectoris, vasospastic angina, heart failure, and stroke, and thus ROCK activity is a potential new biomarker for heart disease. Pharmacological ROCK inhibition reduces the enhanced ROCK activity in patients, accompanied with a measurable improvement in medical condition. In this review, we focus on recent findings regarding ROCK signaling in the pathogenesis of cardiovascular disease, with a special focus on differences between ROCK1 and ROCK2 function.
Collapse
Affiliation(s)
- Svenja Hartmann
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| | - Susanne Lutz
- Institute of Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research, Göttingen, Germany
| |
Collapse
|
32
|
Yu X, Jiang B, Xun C, Yao Q. Interaction between fasudil hydrochloride and bovine serum albumin: spectroscopic study. LUMINESCENCE 2015; 31:986-91. [PMID: 26554343 DOI: 10.1002/bio.3062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 11/11/2022]
Abstract
The interaction between fasudil hydrochloride (FSD) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy under imitated physiological conditions. The Stern-Volmer quenching model has been successfully applied and the results revealed that FSD could quench the intrinsic fluorescence of BSA effectively via static quenching. The binding constants and binding sites for the BSA-FSD system were evaluated. The corresponding thermodynamic parameters obtained at different temperatures indicated that hydrophobic force played a major role in the interaction of FSD and BSA. The distance between the donor (BSA) and the acceptor (FSD) was obtained according to fluorescence resonance energy transfer (FRET). Synchronous fluorescence spectroscopy and FT-IR spectra showed that the conformation of BSA was changed in the presence of FSD. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.,Key Laboratory of Computational Physical Sciences, Fudan University, Ministry of Education, Shanghai, People's Republic of China
| | - Bingfei Jiang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Caifang Xun
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Qing Yao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
33
|
Holmström F, Shimizu S, Shimizu T, Higashi Y, Martin DT, Honda M, Saito M. Protective effect of hydroxyfasudil, a Rho kinase inhibitor, on ventral prostatic hyperplasia in the spontaneously hypertensive rat. Prostate 2015; 75:1774-82. [PMID: 26286428 DOI: 10.1002/pros.23063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rho kinase (ROCK) pathway is associated with various cellular functions, such as smooth muscle contraction, inflammatory response, and cell proliferation. The spontaneously hypertensive rat (SHR) is commonly used genetically hypertensive rat model which develops hyperplastic morphological abnormalities in the ventral prostate. We investigated whether administration of hydroxyfasudil, a ROCK inhibitor, could reduce the levels of growth factors, inflammatory markers, and morphological abnormalities in the ventral prostate of the SHR. METHODS Twelve-week-old SHRs were treated with hydroxyfasudil (1 mg/kg/day, i.p.) or vehicle once daily for another 6 weeks. Wistar Kyoto (WKY) rats treated with vehicle were used as normotensive controls. At 18 weeks of age, blood pressure and heart rate were measured by the tail cuff method. Then the rats were sacrificed, and the ventral prostates were removed. The levels of ROCK activity, growth factors (TGF-β1 and bFGF), a smooth muscle differentiation marker (α-SMA) and an inflammatory cytokine (IL-6) in the ventral prostate were measured by ELISA and western blot. A histological evaluation in each group was also performed. RESULTS There were significant increases in blood pressure, prostate weight, prostate body weight ratio, and tissue levels of ROCK activity, TGF-β1, bFGF, α-SMA, and IL-6 in the SHR compared to the WKY rat. Histological examination of the ventral prostate showed morphological abnormalities such as a higher degree of proliferation in the glandular epithelial and stromal area in the SHR compared to the WKY rat. Treatment with hydroxyfasudil reduced the elevated ROCK activity, TGF-β1, bFGF, α-SMA, and IL-6 found in the ventral prostate of the SHR. Moreover, treatment with hydroxyfasudil decreased the morphological abnormalies in the SHR ventral prostate. CONCLUSIONS Treatment with hydroxyfasudil decreased the growth factors, an inflammatory cytokine, and morphological abnormalies in the SHR ventral prostate. These results suggest that chronic treatment with hydroxyfasudil may inhibit the progression of prostatic hyperplasia in the SHR.
Collapse
Affiliation(s)
- Felix Holmström
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Darryl T Martin
- Department of Urology, Yale University School of Medicine, New Haven, Connecticut
| | - Masashi Honda
- Department of Surgery, Division of Urology, Tottori University School of Medicine, Yonago, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
34
|
Pigati PA, Righetti RF, Possa SS, Romanholo BS, Rodrigues APD, dos Santos ASA, Xisto DG, Antunes MA, Prado CM, Leick EA, Martins MDA, Rocco PRM, Tibério IDFLC. Y-27632 is associated with corticosteroid-potentiated control of pulmonary remodeling and inflammation in guinea pigs with chronic allergic inflammation. BMC Pulm Med 2015; 15:85. [PMID: 26264367 PMCID: PMC4531528 DOI: 10.1186/s12890-015-0073-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 07/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background Previously, we showed that treatment with the Rho-kinase inhibitor Y-27632 was able to control airway responsiveness, inflammation, remodeling, and oxidative stress in an animal model of asthma, suggesting that this drug is beneficial in asthma. However, studies evaluating the effects of these inhibitors in conjunction with corticosteroids on chronic pulmonary inflammation have not been conducted. Therefore, we evaluated the effects of treatment with the Rho-kinase inhibitor Y-27632, with or without concurrent dexamethasone treatment, on airway and lung tissue mechanical responses, inflammation, extracellular matrix remodeling, and oxidative stress in guinea pigs with chronic allergic inflammation. Methods The guinea pigs were subjected to seven ovalbumin or saline inhalation exposures. Treatment with Y-27632 (1 mM) and dexamethasone (2 mg/kg) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the pulmonary mechanics were evaluated and exhaled nitric oxide (ENO) levels were determined. The lungs were removed and histological analysis was performed using morphometry. Results The treatment of guinea pigs with the Rho-kinase inhibitor and dexamethasone (ORC group) decreased ENO, the maximal mechanical responses after antigen challenge, inflammation, extracellular matrix remodeling and oxidative stress in the lungs. This therapeutic strategy reduced the levels of collagen and IFN-γ in the airway walls, as well as IL-2, IFN-γ, 8-iso-PGF2α and NF-κB in the distal parenchyma, when compared to isolated treatment with corticosteroid or Rho-kinase inhibitor (P < 0.05) and reduced the number of TIMP-1-positive cells and eosinophils in the alveolar septa compared to corticosteroid-treated animals (P < 0.05). The combined treatment with the Rho-kinase inhibitor and the corticosteroid provided maximal control over the remodeling response and inflammation in the airways and parenchyma. Conclusions Rho-kinase inhibition, alone or in combination with corticosteroids, can be considered a future pharmacological tool for the control of asthma.
Collapse
Affiliation(s)
| | - Renato Fraga Righetti
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Samantha Souza Possa
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Beatriz Saraiva Romanholo
- Department of Medicine, Laboratory of Experimental Therapeutics, LIM-20, School of Medicine, University of São Paulo, São Paulo, Brazil. .,University City of São Paulo (UNICID), São Paulo, Brazil. .,Institute of Medical Assistance to the State Public Servant of São Paulo (IAMSPE), São Paulo, Brazil.
| | | | | | - Débora Gonçalves Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Ilha do Fundão, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariana Alves Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Ilha do Fundão, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carla Máximo Prado
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Edna Aparecida Leick
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | - Patrícia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Ilha do Fundão, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
35
|
Shimokawa H, Satoh K. 2015 ATVB Plenary Lecture: translational research on rho-kinase in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2015; 35:1756-69. [PMID: 26069233 DOI: 10.1161/atvbaha.115.305353] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
Rho-kinase (ROCKs) is an important downstream effector of the small GTP-binding protein Ras homolog gene family member A. There are 2 isoforms of ROCK, ROCK1 and ROCK2, and they have different functions in several vascular components. The Ras homolog gene family member A/ROCK pathway plays an important role in various fundamental cellular functions, including contraction, motility, proliferation, and apoptosis, whereas its excessive activity is involved in the pathogenesis of cardiovascular diseases. For the past 20 years, a series of translational research studies have demonstrated the important roles of ROCK in the pathogenesis of cardiovascular diseases. At the molecular and cellular levels, ROCK upregulates several molecules related to inflammation, thrombosis, and fibrosis. In animal experiments, ROCK plays an important role in the pathogenesis of vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, and heart failure. Finally, at the human level, ROCK is substantially involved in the pathogenesis of coronary vasospasm, angina pectoris, hypertension, pulmonary hypertension, and heart failure. Furthermore, ROCK activity in circulating leukocytes is a useful biomarker for the assessment of disease severity and therapeutic responses in vasospastic angina, heart failure, and pulmonary hypertension. In addition to fasudil, many other ROCK inhibitors are currently under development for various indications. Thus, the ROCK pathway is an important novel therapeutic target in cardiovascular medicine.
Collapse
MESH Headings
- Animals
- Cardiovascular Agents/therapeutic use
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/enzymology
- Cardiovascular Diseases/pathology
- Cardiovascular Diseases/physiopathology
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Molecular Targeted Therapy
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
- Translational Research, Biomedical
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
36
|
Gurocak S, Konac E, Ure I, Senol C, Onen IH, Sozen S, Menevse A. The Impact of Gene Polymorphisms on the Success of Anticholinergic Treatment in Children with Overactive Bladder. DISEASE MARKERS 2015; 2015:732686. [PMID: 26166934 PMCID: PMC4488149 DOI: 10.1155/2015/732686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/30/2023]
Abstract
AIM To determine the impact of gene polymorphisms on detrusor contraction-relaxation harmony in children with lower urinary tract symptoms (LUTS). MATERIALS AND METHODS Toilet trained children older than 5 years of age with LUTS and normal neurological examination underwent videourodynamic study. The control group was composed of age matched children with no voiding complaints. The study group who filled out the voiding dysfunction symptom score before and after the treatment received standard oxybutynin treatment and was reevaluated 1 year after treatment. Genomic DNA was isolated from all patients and subjected to PCR for amplification. Genotyping of ARGHEF10, ROCK2, ADRB3, and CYP3A4 was carried out with Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) method. RESULTS 34 (45%) and 42 (55%) patients were enrolled in the study and control group, respectively. ARGEF10 GG, ADRB3 TC, and CYP3A4 AG genotype patients displayed insignificant difference between pre- and posttreatment voiding dysfunction symptom score and bladder volumes. CONCLUSIONS The polymorphism of genes in the cholinergic pathway did not significantly differ clinical parameters. On the other hand, polymorphic patients in the adrenergic pathway seemed to suffer from clinical disappointment. For this reason, we think that the neglected adrenergic pathway could be a new therapeutic target for the treatment of anticholinergic resistant LUTS in children.
Collapse
Affiliation(s)
- Serhat Gurocak
- Department of Urology, Gazi University School of Medicine, 06500 Ankara, Turkey
- Department of Medical Biology and Genetics, Gazi University School of Medicine, 06500 Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Gazi University School of Medicine, 06500 Ankara, Turkey
| | - Iyimser Ure
- Department of Urology, Osmangazi University School of Medicine, 26040 Eskisehir, Turkey
| | - Cem Senol
- Department of Urology, Gazi University School of Medicine, 06500 Ankara, Turkey
| | - Ilke Hacer Onen
- Department of Medical Biology and Genetics, Gazi University School of Medicine, 06500 Ankara, Turkey
| | - Sinan Sozen
- Department of Urology, Gazi University School of Medicine, 06500 Ankara, Turkey
| | - Adnan Menevse
- Department of Medical Biology and Genetics, Gazi University School of Medicine, 06500 Ankara, Turkey
| |
Collapse
|
37
|
Pires PW, Jackson WF, Dorrance AM. Regulation of myogenic tone and structure of parenchymal arterioles by hypertension and the mineralocorticoid receptor. Am J Physiol Heart Circ Physiol 2015; 309:H127-36. [PMID: 25910805 DOI: 10.1152/ajpheart.00168.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/23/2015] [Indexed: 11/22/2022]
Abstract
Proper perfusion is vital for maintenance of neuronal homeostasis and brain function. Changes in the function and structure of cerebral parenchymal arterioles (PAs) could impair blood flow regulation and increase the risk of cerebrovascular diseases, including dementia and stroke. Hypertension alters the structure and function of large cerebral arteries, but its effects on PAs remain unknown. We hypothesized that hypertension increases myogenic tone and induces inward remodeling in PAs; we further proposed that antihypertensive therapy or mineralocorticoid receptor (MR) blockade would reverse the effects of hypertension. PAs from 18-wk-old stroke-prone spontaneously hypertensive rats (SHRSP) were isolated and cannulated in a pressure myograph. At 50-mmHg intraluminal pressure, PAs from SHRSP showed higher myogenic tone (%tone: 39.1 ± 1.9 vs. 28.7 ± 2.5%, P < 0.01) and smaller resting luminal diameter (34.7 ± 1.9 vs. 46.2 ± 2.4 μm, P < 0.01) than those from normotensive Wistar-Kyoto rats, through a mechanism that seems to require Ca(2+) influx through L-type voltage-gated Ca(2+) channels. PAs from SHRSP showed inward remodeling (luminal diameter at 60 mmHg: 55.2 ± 1.4 vs. 75.7 ± 5.1 μm, P < 0.01) and a paradoxical increase in distensibility and compliance. Treatment of SHRSP for 6 wk with antihypertensive therapy reduced PAs' myogenic tone, increased their resting luminal diameter, and prevented inward remodeling. In contrast, treatment of SHRSP for 6 wk with an MR antagonist did not reduce blood pressure or myogenic tone, but prevented inward remodeling. Thus, while hypertensive remodeling of PAs may involve the MR, myogenic tone seems to be independent of MR activity.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
38
|
Huveneers S, Daemen MJAP, Hordijk PL. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ Res 2015; 116:895-908. [PMID: 25722443 DOI: 10.1161/circresaha.116.305720] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular stiffness is a mechanical property of the vessel wall that affects blood pressure, permeability, and inflammation. As a result, vascular stiffness is a key driver of (chronic) human disorders, including pulmonary arterial hypertension, kidney disease, and atherosclerosis. Responses of the endothelium to stiffening involve integration of mechanical cues from various sources, including the extracellular matrix, smooth muscle cells, and the forces that derive from shear stress of blood. This response in turn affects endothelial cell contractility, which is an important property that regulates endothelial stiffness, permeability, and leukocyte-vessel wall interactions. Moreover, endothelial stiffening reduces nitric oxide production, which promotes smooth muscle cell contraction and vasoconstriction. In fact, vessel wall stiffening, and microcirculatory endothelial dysfunction, precedes hypertension and thus underlies the development of vascular disease. Here, we review the cross talk among vessel wall stiffening, endothelial contractility, and vascular disease, which is controlled by Rho-driven actomyosin contractility and cellular mechanotransduction. In addition to discussing the various inputs and relevant molecular events in the endothelium, we address which actomyosin-regulated changes at cell adhesion complexes are genetically associated with human cardiovascular disease. Finally, we discuss recent findings that broaden therapeutic options for targeting this important mechanical signaling pathway in vascular pathogenesis.
Collapse
Affiliation(s)
- Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Carbone ML, Brégeon J, Devos N, Chadeuf G, Blanchard A, Azizi M, Pacaud P, Jeunemaître X, Loirand G. Angiotensin II activates the RhoA exchange factor Arhgef1 in humans. Hypertension 2015; 65:1273-8. [PMID: 25870189 DOI: 10.1161/hypertensionaha.114.05065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/20/2015] [Indexed: 01/13/2023]
Abstract
Although a causative role for RhoA-Rho kinase has been recognized in the development of human hypertension, the molecular mechanism(s) and the RhoA guanine exchange factor(s) responsible for the overactivation of RhoA remain unknown. Arhgef1 was identified as a RhoA guanine exchange factor involved in angiotensin II (Ang II)-mediated regulation of vascular tone and hypertension in mice. The aim of this study was to determine whether Arhgef1 is activated and involved in the activation of RhoA-Rho kinase signaling by Ang II in humans. In vitro stimulation of human coronary artery smooth muscle cells and human peripheral blood mononuclear cells by Ang II (0.1 μmol/L) induced activation of Arhgef1 attested by its increased tyrosine phosphorylation. Silencing of Arhgef1 expression by siRNA inhibited Ang II-induced activation of RhoA-Rho kinase signaling. In normotensive subjects, activation of the renin-angiotensin system by a low-salt diet for 7 days increased RhoA-Rho kinase signaling and stimulated Arhgef1 activity in peripheral blood mononuclear cells. In conclusion, our results strongly suggest that Arhgef1 mediates Ang II-induced RhoA activation in humans. Moreover, they show that measurement of RhoA guanine exchange factor activity in peripheral blood mononuclear cells might be a useful method to evaluate RhoA guanine exchange factor activity in humans.
Collapse
Affiliation(s)
- Maria Luigia Carbone
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Jérémy Brégeon
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Nabila Devos
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Gilliane Chadeuf
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Anne Blanchard
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Michel Azizi
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Pierre Pacaud
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Xavier Jeunemaître
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.)
| | - Gervaise Loirand
- From Inserm UMR 1087, CNRS UMR 6291 and University of Nantes, Nantes, France (M.L.C., J.B., G.C., P.P., G.L.); CHU Nantes, l'Institut du Thorax, Nantes, France (P.P., G.L.); Inserm, UMR 970, Paris Cardiovascular Research Center, Paris, France (N.D, X.J.); Université Paris Descartes, Sorbonne Paris Cité, Paris, France (A.B., M.A., X.J.); Assistance Publique, Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France (A.B., M.A., X.J.); Inserm CIC 1418, Paris, France (A.B., M.A.); and Laboratorio di Genomica e Proteomica funzionale, Universta di Bari, Bari, Italy (M.L.C.).
| |
Collapse
|
40
|
The effect of antenatal depression and selective serotonin reuptake inhibitor treatment on nerve growth factor signaling in human placenta. PLoS One 2015; 10:e0116459. [PMID: 25611484 PMCID: PMC4303267 DOI: 10.1371/journal.pone.0116459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
Depressive symptoms during pregnancy are common and may have impact on the developing child. Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed antidepressant treatment, but unfortunately, these treatments can also negatively affect the behavioral development and health of a child during pregnancy. In addition, serotonin (5-HT) exerts neurotrophic actions with thus far not fully known effects in the offspring. The neurotrophic growth factor (NGF) is involved in neuronal cell survival and differentiation, and altered placenta levels have been found to increase the risk for pregnancy complications, similar to those found in women treated with SSRIs. We therefore investigated whether the NGF signaling pathway was altered in the placenta from women treated with SSRIs (n = 12) and compared them with placenta from depressed (n = 12) and healthy mothers (n = 12). Results from immunohistochemical stainings revealed that placental NGF protein levels of SSRI-treated women were increased in both trophoblasts and endothelial cells compared with depressed and control women. In addition, downstream of the NGF receptor TrkA, increased levels of the signaling proteins ROCK2 and phosphorylated Raf-1 were found in stromal cells and a tendency towards increased levels of ROCK2 in trophoblasts and endothelial cells in SSRI-treated women when compared to healthy controls. SSRI-treated women also displayed increased levels of phosphorylated ROCK2 in all placental cell types studied in comparison with depressed and control women. Interestingly, in placental endothelial cells from depressed women, NGF levels were significantly lower compared to control women, but ROCK2 levels were increased compared with control and SSRI-treated women. Taken together, these results show that the NGF signaling and downstream pathways in the placenta are affected by SSRI treatment and/or antenatal depression. This might lead to an altered placental function, although the clinical relevance of our findings still needs to be investigated.
Collapse
|
41
|
Bond LM, Sellers JR, McKerracher L. Rho kinase as a target for cerebral vascular disorders. Future Med Chem 2015; 7:1039-53. [PMID: 26062400 PMCID: PMC4656981 DOI: 10.4155/fmc.15.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of novel pharmaceutical treatments for disorders of the cerebral vasculature is a serious unmet medical need. These vascular disorders are typified by a disruption in the delicate Rho signaling equilibrium within the blood vessel wall. In particular, Rho kinase overactivation in the smooth muscle and endothelial layers of the vessel wall results in cytoskeletal modifications that lead to reduced vascular integrity and abnormal vascular growth. Rho kinase is thus a promising target for the treatment of cerebral vascular disorders. Indeed, preclinical studies indicate that Rho kinase inhibition may reduce the formation/growth/rupture of both intracranial aneurysms and cerebral cavernous malformations.
Collapse
Affiliation(s)
- Lisa M Bond
- BioAxone BioSciences, Inc., 10 Rogers Street, Suite 101, Kendall Square, Cambridge, MA 02142, USA
- Laboratory of Molecular Physiology, National Heart, Lung & Blood Institute, Bethesda, MD 20892, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung & Blood Institute, Bethesda, MD 20892, USA
| | - Lisa McKerracher
- BioAxone BioSciences, Inc., 10 Rogers Street, Suite 101, Kendall Square, Cambridge, MA 02142, USA
| |
Collapse
|
42
|
Loirand G, Pacaud P. Involvement of Rho GTPases and their regulators in the pathogenesis of hypertension. Small GTPases 2014; 5:1-10. [PMID: 25496262 DOI: 10.4161/sgtp.28846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proper regulation of arterial blood pressure is essential to allow permanent adjustment of nutrient and oxygen supply to organs and tissues according to their need. This is achieved through highly coordinated regulation processes controlling vascular resistance through modulation of arterial smooth muscle contraction, cardiac output, and kidney function. Members of the Rho family of small GTPases, in particular RhoA and Rac1, have been identified as key signaling molecules playing important roles in several different steps of these regulatory processes. Here, we review the current state of knowledge regarding the involvement of Rho GTPase signaling in the control of blood pressure and the pathogenesis of hypertension. We describe how knockout models in mouse, genetic, and pharmacological studies in human have been useful to address this question.
Collapse
Key Words
- AT1 receptor, type 1 Ang II receptor
- Ang II, angiotensine II
- ENaCs, epithelial Na+ channels
- Et-1, endothelin-1
- GAPs, GTPase-activating proteins
- GEFs, exchange factors
- GTPase activating proteins
- GTPases
- MLC, 20 kDa-myosin light chain
- MLCK, MLC kinase
- MLCP, MLC phosphatase
- NA, noradrenaline
- NHE3, sodium-hydrogen exchanger isoform 3.
- NO, nitric oxide
- NTS, nucleus tractus solitaries
- PDE5, type 5 phosphodiesterase
- PKG, cGMP-dependent protein kinase
- Rock, Rho-kinase
- SHR, spontaneously hypertensive rats
- SHRSP, stroke-prone SHR
- TxA2, thromboxane A2
- artery
- blood pressure
- cardiovascular
- eNOS, endothelial NO synthase
- exchange factors
- signal transduction
- small G proteins
- smooth muscle
- vasoconstriction
Collapse
|
43
|
Begum MM, Sultana Z, Ershad Ali M, Jami MSI, Khondkar P, Khan MM, Haque MM. Additive effect of lipid lowering drug (simvastatin) in combination with antidiabetic drug (glibenclamide) on alloxan induced diabetic rats with long term dyslipidemia. Indian J Clin Biochem 2014; 29:452-61. [PMID: 25298626 PMCID: PMC4175691 DOI: 10.1007/s12291-013-0393-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
High blood glucose level, elevated level of liver enzyme, necrosis and shrinkage of islets of Langerhans has been implicated in the pathogenesis of type 2 diabetes. High blood glucose cause oxidative stress, production of free radical as well as elevated SGPT and SGOT level. Both glibenclamide and simvastatin in fixed dose used as antihyperglycemic antidyslipidemic and antioxidative agents for type 2 diabetes treatment. This study therefore aimed to evaluate the antihyperglycemic, antidyslipidemic and antioxidative effect of fixed dose combination of glibenclamide (0.6 mg/70 kg body weight) and simvastatin (5 mg/70 kg body weight) on long term alloxan induced diabetic rats with cardiovascular disease using various diagnostic kits as a parameter of phamacotherapeutic and pharmacological effect. The study was carried out using 96 Swiss Albino male rats weighing about 200-220 g. Combination therapy induced a significant decrease in blood glucose level in alloxan induced diabetic rats, from 33.75 ± 1.65 to 5.80 ± 0.07 mmol/l 2 h after last dose administration, after 4 weeks treatment. In case of dyslipidemic effect, combination therapy reduced total cholesterol (45 %), triglyceride (36 %) and low density lipoprotein-cholesterol (32 %) levels significantly and increased high density lipoprotein-cholesterol level (57 %) in comparison with their respective diabetic control groups. Results of this study showed that combination therapy effectively decreased SGPT (ALAT) (55 %) and SGOT (ASAT) (51 %) in comparison with diabetic control group. It was also observed that catalase and superoxide dismutase enzyme activity was increased by 58 and 91 % respectively in comparison with diabetic control group after 4 weeks treatment with combination of both drugs. In conclusion, these findings of combination therapy (glibenclamide and simvastatin) on alloxan induced diabetes in rats are significantly better than monotherapy using single drug. The results of the present study suggest that, combination of the fixed dose of glibenclamide and simvastatin might be efficacious in patients with diabetic dyslipidemia and increased oxidative stress. Furthermore, this combination therapy offer dosage convenience to the patients and by virtue of its dual mode of action might be a useful addition to the therapeutic armamentarium for patients with diabetic dyslipidemia and oxidative stress.
Collapse
Affiliation(s)
- Mst. Marium Begum
- />Department of Pharmacy, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Zakia Sultana
- />Department of Pharmacy, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Md. Ershad Ali
- />Department of Chemistry, Dhaka College, Dhaka, 1000 Bangladesh
| | | | - Proma Khondkar
- />The School of Pharmacy, University of London, London, UK
| | - Md. Masuduzzaman Khan
- />Directorate General of Drug Administration, Ministry of Health & Family Welfare, Government of the People’s Republic of Bangladesh, Dhaka, 1200 Bangladesh
| | - Md. Mominul Haque
- />Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, 2109 Australia
| |
Collapse
|
44
|
Kolluru GK, Majumder S, Chatterjee S. Rho-kinase as a therapeutic target in vascular diseases: striking nitric oxide signaling. Nitric Oxide 2014; 43:45-54. [PMID: 25196952 DOI: 10.1016/j.niox.2014.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 11/27/2022]
Abstract
Rho GTPases are a globular, monomeric group of small signaling G-protein molecules. Rho-associated protein kinase/Rho-kinase (ROCK) is a downstream effector protein of the Rho GTPase. Rho-kinases are the potential therapeutic targets in the treatment of cardiovascular diseases. Here, we have primarily discussed the intriguing roles of ROCK in cardiovascular health in relation to nitric oxide signaling. Further, we highlighted the biphasic effects of Y-27632, a ROCK inhibitor under shear stress, which acts as an agonist of nitric oxide production in endothelial cells. The biphasic effects of this inhibitor raised the question of safety of the drug usage in treating cardiovascular diseases.
Collapse
Affiliation(s)
| | - Syamantak Majumder
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Suvro Chatterjee
- Department of Biotechnology, Anna University, Chennai, India; Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India.
| |
Collapse
|
45
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
46
|
Gabrielli L, Winter JL, Godoy I, McNab P, Padilla I, Cordova S, Rigotti P, Novoa U, Mora I, García L, Ocaranza MP, Jalil JE. Increased rho-kinase activity in hypertensive patients with left ventricular hypertrophy. Am J Hypertens 2014; 27:838-45. [PMID: 24363278 DOI: 10.1093/ajh/hpt234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is experimental evidence on the role of Rho-kinase (ROCK) activation in cardiac hypertrophy but no information on its role in human hypertension and left ventricular hypertrophy (LVH). We hypothesized that ROCK activity is higher in hypertensive patients with LVH compared with hypertensive patients without LVH. METHODS We conducted a cross-sectional study comparing untreated hypertensive patients with (n = 41) and without LVH (n = 46) determined by echocardiography with a healthy normotensive control group (n = 51). Measurements included LV mass, dimensions, and function and ROCK activity determined in circulating leukocytes by measuring Western blot levels of phosphorylated to total myosin light chain phosphatase 1 (MYPT1-p/t). RESULTS Compared with normotensive subjects, MYPT1-p/t was significantly increased by 4.5-fold in the hypertensive patients without LVH and by 9-fold in the hypertensive patients with LVH. Compared with the hypertension without LVH group, MYPT1-p/t was significantly increased by 2-fold in the hypertension with LVH gorup. In patients with eccentric LVH, the mean MYPT1-p/t ratio was significantly higher by 4-fold compared with hypertensive patients without eccentric LVH. Patients with an E/e' ratio ≥15 (n = 6) showed a higher MYPT1-p/t ratio (by 26%) compared with patients with a lower E/e' ratio (P ≤ 0.01). CONCLUSIONS ROCK activity is higher in hypertensive patients with LVH compared with hypertensive patients without LVH, and it is further increased when eccentric LVH is present. Thus, in hypertension, ROCK activation is related to pathological cardiac remodeling and might have a role as an LVH marker.
Collapse
Affiliation(s)
- Luigi Gabrielli
- School of Medicine, Department of Cardiovascular Diseases, Laboratories of Cardiology and Molecular Cardiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dousdampanis P, Trigka K, Fourtounas C, Bargman JM. Role of testosterone in the pathogenesis, progression, prognosis and comorbidity of men with chronic kidney disease. Ther Apher Dial 2014; 18:220-230. [PMID: 24119223 DOI: 10.1111/1744-9987.12101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Testosterone deficiency and hypogonadism are common conditions in men with chronic kidney disease (CKD). A disturbed hypothalamic-pituitary-gonadal axis due to CKD is thought to contribute to androgen deficiency. Data from experimental studies support the hypothesis that exogenous administration of testosterone may induce the activation of the renin-angiotensin system (RAS), the production of endothelin and the regulation of anti- or/and proinflammatory cytokines involved in the pathogenesis of hypertension and kidney damage. On the other hand, low testosterone levels in male patients with CKD are paradoxically associated with a higher risk of morbidity and mortality, possibly explained by anemia, osteoporosis and cardiovascular disease. In this article, we present an overview of clinical and experimental studies of the impact of testosterone on the progression and prognosis of male patients with CKD; even today, this remains a controversial issue.
Collapse
|
48
|
Sheu JJ, Lin PY, Sung PH, Chen YC, Leu S, Chen YL, Tsai TH, Chai HT, Chua S, Chang HW, Chung SY, Chen CH, Ko SF, Yip HK. Levels and values of lipoprotein-associated phospholipase A2, galectin-3, RhoA/ROCK, and endothelial progenitor cells in critical limb ischemia: pharmaco-therapeutic role of cilostazol and clopidogrel combination therapy. J Transl Med 2014; 12:101. [PMID: 24742198 PMCID: PMC4234320 DOI: 10.1186/1479-5876-12-101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/31/2014] [Indexed: 12/21/2022] Open
Abstract
Objective We tested the hypothesis that clopidogrel and cilostazol combination therapy could effectively attenuate systemic inflammatory reaction, facilitate proliferation of circulating endothelial progenitor cell (EPC), and improve the clinical outcomes of critical limb ischemia (CLI) in patients unsuitable for surgical revascularization or percutaneous transluminal angioplasty (PTA). Methods A total 55 patients (mean age, 72 years; 56% female) were consecutively enrolled. Clopidogrel and cilostazol combination therapy was administered throughout the study period. Results As compared with the baseline, circulating endothelial progenitor cell level (as shown by flow cytometry) was significantly increased (p < 0.003), whereas the CLI-related ulcers and painfulness were significantly improved (all p < 0.01) by day 90 after treatment. On the other hand, after clopidogrel and cilostazol combination therapy, galectin-3 level, lipoprotein-associated phospholipase A2 gene expression, and RhoA/ROCK-related protein expression in peripheral blood mononuclear cells were significantly suppressed (all p < 0.01). Eventually, by day 90, 5 patients (9.1%) died of other etiologies, 3 (5.5%) withdrew from the study, 6 (10.9%) required amputation, and the remaining 41 had satisfactory clinical improvement with complete wound healing in 9 (16.4%) patients. Conclusion The results of the present study highlight that clopidogrel and cilostazol combination therapy may be considered to be an alternative method for treating patients with CLI unsuitable for surgical revascularization or PTA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Sheung-Fat Ko
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | | |
Collapse
|
49
|
Huang H, Lee DH, Zabolotny JM, Kim YB. Metabolic actions of Rho-kinase in periphery and brain. Trends Endocrinol Metab 2013; 24:506-14. [PMID: 23938132 PMCID: PMC3783562 DOI: 10.1016/j.tem.2013.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 01/01/2023]
Abstract
Obesity has increased at an alarming rate in recent years and is now a worldwide public health problem. Elucidating the mechanisms behind the metabolic dysfunctions associated with obesity is of high priority. The metabolic function of Rho-kinase (Rho-associated coiled-coil-containing kinase; ROCK) has been the subject of a great deal of investigation in metabolic-related diseases. It appears that inhibition of ROCK activity is beneficial for the treatment of a wide range of cardiovascular-related diseases. However, recent studies with genetic models of ROCK demonstrate that ROCK plays a positive role in insulin and leptin signaling. Here we discuss the newly identified functions of ROCK in regulating glucose and energy metabolism, with particular emphasis on metabolic actions of insulin and leptin.
Collapse
Affiliation(s)
- Hu Huang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Dae-Ho Lee
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Korea 570-749
| | - Janice M Zabolotny
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
- Lee Gil Ya Cancer & Diabetes Institute, Graduate Schools of Medicine, Gachon University of Medicine & Science, Incheon, Korea 406-799
- Corresponding author: Young-Bum Kim, Ph.D., Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, Phone: (617) 735-3216, Fax: (617) 735-3323,
| |
Collapse
|
50
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|