1
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2024. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Kim JH, Choi MS, Auger C, Lee KW, Schini-Kerth VB. Polyphenol-rich Aronia melanocarpa juice sustains eNOS activation through phosphorylation and expression via redox-sensitive pathways in endothelial cells. Food Sci Biotechnol 2024; 33:2865-2875. [PMID: 39184991 PMCID: PMC11339019 DOI: 10.1007/s10068-024-01546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 08/27/2024] Open
Abstract
A sustained formation of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) is crucial to safeguard the vascular system against the development of cardiovascular diseases. This study investigated the prolonged phosphorylation and expression of eNOS induced by polyphenol-rich Aronia melanocarpa juice (AMJ), along with its underlying mechanisms. The findings revealed that AMJ triggered concentration- and time-dependent increases in eNOS phosphorylation and expression, leading to sustained NO production for 15 h. Investigations with various enzymes and inhibitors revealed that the effect of AMJ was associated with redox sensitivity, activating the PI3-kinase/Akt, JNK, and p38 MAPK pathways. These pathways led to the inactivation of transcription factors FoxO1 and FoxO3a through phosphorylation, relieving their repression on eNOS expression. Therefore, the capability of AMJ to consistently trigger prolonged eNOS phosphorylation and expression via complex redox-sensitive pathways highlights its potential for maintaining vascular health and preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Jong Hun Kim
- Department of Food Science and Biotechnology and Institute for Basic Sciences, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| | - Min Sik Choi
- Lab of Pharmacology, College of Pharmacy, Dongduk Women’s University, Seoul, 02748 Republic of Korea
| | - Cyril Auger
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Biomodulation Major, Seoul National University, Seoul, 08826 Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229 Republic of Korea
| | | |
Collapse
|
3
|
Khateeb S, Taha EFS. Comparative study of the anti-inflammatory activity of etoricoxib and Matcha green tea against acute kidney injury induced by gamma radiation in rats. Int J Radiat Biol 2024; 100:940-964. [PMID: 38647648 DOI: 10.1080/09553002.2024.2338515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The primary objective of this study was to conduct a comparative analysis of the anti-inflammatory activity between Etoricoxib (ETO) and Matcha green tea (MG) in the context of acute kidney injury (AKI) induced by ionizing gamma radiation (IR) in female rats. Furthermore, the potential impact of whole body IR exposure on the intestinal system and serum estradiol levels was investigated. Additionally, it was acknowledged that the ETO and MG treatments might have exerted favorable effects on the intestinal and hormonal responses. MATERIALS AND METHODS Six groups of rats were assigned to different treatments: control, ETO, MG, irradiation (IRR), ETO + IRR, and MG + IRR. The evaluation included measuring the total phenolic and flavonoid contents of ETO and MG, as well as assessing their antioxidant activity, radical scavenging capacity, reducing power, and total antioxidant capacity. Kidney function was assessed through serum creatinine and urea levels. Oxidative stress markers, including superoxide dismutase, glutathione, malondialdehyde, and catalase, were measured to evaluate the antioxidant effects of ETO and MG. The anti-inflammatory potential of the treatments was evaluated by measuring STAT-3 and interleukins (IL-6, IL-23, and IL-17) using an ELISA assay. Prostaglandin E2 receptor (PGE-2) mRNA expression, histopathological examination, and immunohistochemistry for NF-κB inhibitors were performed to investigate the underlying mechanisms in kidney tissue homogenates. Histopathological changes and DNA fragmentation in the intestinal tissues were determined, and the characterization of Matcha green tea was performed using liquid chromatography-mass spectrometry (LC-MS). This allowed for the identification and quantification of various compounds present in Matcha green tea. Furthermore, the study assessed the effect of IR and treatments on estrogen levels in female rats. RESULTS Data showed that both ETO and MG had the potential to mitigate the adverse effects of AKI induced by IR. Notably, MG exhibited greater efficacy in attenuating oxidative stress and inflammation associated with renal injury. These findings revealed and compared the effects of ETO and MG in alleviating AKI caused by IR. MG demonstrated greater anti-inflammatory and antioxidant properties, highlighting its potential as a natural therapeutic agent. CONCLUSIONS These results contribute to the growing evidence supporting the use of MG in managing IR-induced renal complications. Future studies should focus on elucidating the molecular mechanisms and optimizing the application of MG in clinical settings.
Collapse
Affiliation(s)
- Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
- Department of Biochemistry, Faculty of Science, University of Tabuk, Saudi Arabia
| | - Eman F S Taha
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
4
|
Iqbal I, Wilairatana P, Saqib F, Nasir B, Wahid M, Latif MF, Iqbal A, Naz R, Mubarak MS. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023; 28:6403. [PMID: 37687232 PMCID: PMC10490098 DOI: 10.3390/molecules28176403] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites which may be considered non-essential nutrients but have medicinal importance. These dietary phytochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphenols modulate the tone of the endothelium of vessels by releasing nitric oxide (NO) and reducing low-density lipoprotein (LDL) oxidation to prevent atherosclerosis. In cardiomyocytes, polyphenols suppress the expression of inflammatory markers and inhibit the production of inflammation markers to exert an anti-inflammatory response. Consequently, heart diseases such as strokes, hypertension, heart failure, and ischemic heart disease could be prevented by dietary polyphenols.
Collapse
Affiliation(s)
- Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Fatima Saqib
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Bushra Nasir
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | - Ahmar Iqbal
- Department of General Surgery, Shanxi Medical University, Jinzhong 030600, China;
| | - Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (I.I.); (M.W.); (M.F.L.); (R.N.)
| | | |
Collapse
|
5
|
Taguchi K, Okudaira K, Matsumoto T, Kobayashi T. Ginkgolide B caused the activation of the Akt/eNOS pathway through the antioxidant effect of SOD1 in the diabetic aorta. Pflugers Arch 2023; 475:453-463. [PMID: 36715760 DOI: 10.1007/s00424-023-02790-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Ginkgo biloba extract (GBE) helps lower cardiovascular disease risk. Diabetes mellitus (DM)-induced endothelial dysfunction is a critical and initiating factor in the beginning of diabetic vascular complications. It was reported that GBE causes an endothelial-dependent relaxation. This study was designed to figure out the molecular basis on which GBE protects from endothelial dysfunction in diabetes because the underlying mechanisms are unclear. Studies were performed in a normal control group and streptozotocin/nicotinamide-induced DM group. In aortas, notably diabetic aortas, GBE, and ginkgolide B (GB), a constituent of GBE, produced a dose-dependent relaxation. The relaxation by GB was abolished by prior incubation with L-NNA (an endothelial nitric oxide synthase (NOS) inhibitor), LY294002 (a phosphoinositide 3-kinase (PI3K) inhibitor), and Akt inhibitor, confirming the essential role of PI3K/Akt/eNOS signaling pathway. We also demonstrated that GB induced the phosphorylation of Akt and eNOS in aortas. The superoxide dismutase1 (SOD1) expression level decreased in DM aortas, but GB stimulation increased SOD activity and SOD1 expression in DM aortas. Our novel findings suggest that in DM aortas, endothelial-dependent relaxation induced by GB was mediated by activation of SOD1, resulting in activation of the Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Kanami Okudaira
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
6
|
Hounguè U, Villette C, Tokoudagba JM, Chaker AB, Remila L, Auger C, Heintz D, Gbaguidi FA, Schini-Kerth VB. Carissa edulis Vahl (Apocynaceae) extract, a medicinal plant of Benin pharmacopoeia, induces potent endothelium-dependent relaxation of coronary artery rings involving nitric oxide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154370. [PMID: 35977457 DOI: 10.1016/j.phymed.2022.154370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hypertension is a major cardiovascular risk factor that affects most countries including those of Africa. Although Carissa edulis Vahl, Diodia scandens Sw. and Cleome gynandra L. are traditionally used in Benin as antihypertensive treatments with some efficacy mentioned by the local population, their biological activity on the cardiovascular system remains poorly studied. AIM The study investigated the vasoreactivity of the plants and assessed the underlying mechanisms using isolated arteries. STUDY DESIGN Aqueous-ethanolic extracts of aerial parts of C. edulis, D. scandens and C. gynandra were prepared by maceration before being subjected to multi-step liquid-liquid fractionation with solvents of increasing polarity. The vasoreactivity of the extracts and fractions were assessed on isolated porcine coronary artery and rat aorta using organ chambers, the role of nitric oxide (NO) using NG-nitro-L-arginine (NO synthase inhibitor), prostanoids using indomethacin (cyclooxygenases inhibitor) and endothelium-dependent hyperpolarization using TRAM-34 plus UCL 1684 (inhibitors of calcium-dependent K+ channels), and the vascular uptake of polyphenols using Neu reagent. RESULTS The aqueous-ethanolic crude extract of C. edulis (CECE) induced potent relaxations that were exclusively endothelium-dependent and more pronounced than those to D. scandens and C. gynandra. The n-butanolic fraction of C. edulis (CEBF) was more active than the cyclohexane, dichloromethane, and ethyl acetate fractions. The relaxation induced by CECE and CEBF were inhibited by NG-nitro-L-arginine and affected neither by TRAM-34 plus UCL 1684 nor by indomethacin. CEBF induced sustained endothelium-dependent relaxations for at least 60 min, and inhibited, in a concentration-dependent manner, contractions to KCl, CaCl2, U46619 and serotonin in rings with endothelium. Analysis of CEBF by LCHRMS indicated the presence of polyphenols, terpenes, and alkaloids. Exposure of coronary artery and aorta rings to CEBF caused the accumulation of polyphenols predominantly in the endothelium. CONCLUSION C. edulis leaf extract induced pronounced endothelium-dependent relaxations and inhibited contractile responses by stimulating the endothelial formation of NO. LCHRMS analysis of the most active fraction, the butanolic fraction, revealed the presence of numerous compounds including polyphenols, terpenes, and alkaloids. The polyphenols of CEBF accumulated preferentially in the endothelium of the arterial wall. Thus, these observations support the folkloric use of C. edulis in hypertension.
Collapse
Affiliation(s)
- Ursula Hounguè
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France; Medicinal Organic Chemistry Laboratory, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin.
| | - Claire Villette
- CNRS, Plant Imaging and Mass Spectrometry (PIMS), IBMP, University of Strasbourg, Strasbourg, France.
| | - Jean-Marie Tokoudagba
- Medicinal Organic Chemistry Laboratory, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Ahmed B Chaker
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Lamia Remila
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.
| | - Dimitri Heintz
- CNRS, Plant Imaging and Mass Spectrometry (PIMS), IBMP, University of Strasbourg, Strasbourg, France.
| | - Fernand A Gbaguidi
- Medicinal Organic Chemistry Laboratory, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Valérie B Schini-Kerth
- INSERM UMR 1260, Regenerative Nanomedicine, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Beneficial Effects of Caffeic Acid Phenethyl Ester on Wound Healing in a Diabetic Mouse: Role of VEGF and NO. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cutaneous wound healing is delayed in patients with diabetes. Caffeic acid phenethyl ester (CAPE) has been identified as an effective constituent of propolis with improved wound healing abilities via an oxidative stress decrease. However, its impact on wound healing in diabetic models and its underlying mechanisms remain unclear. Determining the vascular endothelial growth factor (VEGF) contents in a human vascular smooth muscle cell (VSMC)-conditioned medium was assessed using human VEGF immunoassay and vascular reactivity using porcine coronary artery rings. Later, C57BL/6 or db/db mice were anesthetized, after which a 6-mm biopsy punch was manipulated for perforation via the back skin. Subsequently, CAPE was applied to the wound and changed daily. Furthermore, the injury in each mouse was digitally photographed, and the wound area was quantified. We observed that CAPE increased VEGF levels in human VSMC-conditioned medium, improved endothelium-dependent nitric oxide (NO)-mediated vasorelaxation, inhibited U46619-induced vasoconstriction porcine coronary artery, and enhanced cutaneous wound healing in the diabetic mouse model. Hence, we propose that CAPE improves wound healing in diabetic mice, which is aided by increased VEGF and NO expression.
Collapse
|
8
|
Desideri E, Ciccarone F, Ciriolo MR, Fratantonio D. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic Biol Med 2021; 172:508-520. [PMID: 34214634 DOI: 10.1016/j.freeradbiomed.2021.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released from most cell types that play a key role in cell-to-cell communication by carrying DNA, non-coding RNAs, proteins and lipids out of cells. The composition of EVs depends on the cell or tissue of origin and changes according to their pathophysiological conditions, making EVs a potential circulating biomarker of disease. Additionally, the natural tropism of EVs for specific organs and cells has raised the interest in their use as delivery vehicles. In this review, we provide an overview of EV biogenesis, isolation and characterization. We also discuss EVs in the context of endothelial pathophysiology, summarizing the current knowledge about their role in cell communication in quiescent and activated endothelial cells. In the last part, we describe the potential use of EVs as delivery vehicles of bioactive compounds and the current strategies to load exogenous cargo and to functionalize EVs to drive them to a specific tissue.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome; IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| | - Deborah Fratantonio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
9
|
Park SH, Belcastro E, Hasan H, Matsushita K, Marchandot B, Abbas M, Toti F, Auger C, Jesel L, Ohlmann P, Morel O, Schini-Kerth VB. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc Diabetol 2021; 20:65. [PMID: 33726768 PMCID: PMC7967961 DOI: 10.1186/s12933-021-01252-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduced cardiovascular risk in type 2 diabetes patients independently of glycemic control. Although angiotensin II (Ang II) and blood-derived microparticles are major mediators of cardiovascular disease, their impact on SGLT1 and 2 expression and function in endothelial cells (ECs) and isolated arteries remains unclear. METHODS ECs were isolated from porcine coronary arteries, and arterial segments from rats. The protein expression level was assessed by Western blot analysis and immunofluorescence staining, mRNA levels by RT-PCR, oxidative stress using dihydroethidium, nitric oxide using DAF-FM diacetate, senescence by senescence-associated beta-galactosidase activity, and platelet aggregation by aggregometer. Microparticles were collected from blood of patients with coronary artery disease (CAD-MPs). RESULTS Ang II up-regulated SGLT1 and 2 protein levels in ECs, and caused a sustained extracellular glucose- and Na+-dependent pro-oxidant response that was inhibited by the NADPH oxidase inhibitor VAS-2780, the AT1R antagonist losartan, sotagliflozin (Sota, SGLT1 and SGLT2 inhibitor), and empagliflozin (Empa, SGLT2 inhibitor). Ang II increased senescence-associated beta-galactosidase activity and markers, VCAM-1, MCP-1, tissue factor, ACE, and AT1R, and down-regulated eNOS and NO formation, which were inhibited by Sota and Empa. Increased SGLT1 and SGLT2 protein levels were observed in the rat aortic arch, and Ang II- and eNOS inhibitor-treated thoracic aorta segments, and were associated with enhanced levels of oxidative stress and prevented by VAS-2780, losartan, Sota and Empa. CAD-MPs promoted increased levels of SGLT1, SGLT2 and VCAM-1, and decreased eNOS and NO formation in ECs, which were inhibited by VAS-2780, losartan, Sota and Empa. CONCLUSIONS Ang II up-regulates SGLT1 and 2 protein expression in ECs and arterial segments to promote sustained oxidative stress, senescence and dysfunction. Such a sequence contributes to CAD-MPs-induced endothelial dysfunction. Since AT1R/NADPH oxidase/SGLT1 and 2 pathways promote endothelial dysfunction, inhibition of SGLT1 and/or 2 appears as an attractive strategy to enhance the protective endothelial function.
Collapse
Affiliation(s)
- Sin-Hee Park
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Eugenia Belcastro
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Hira Hasan
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Kensuke Matsushita
- Service de Cardiologie, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Benjamin Marchandot
- Service de Cardiologie, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Malak Abbas
- Service de Cardiologie, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Florence Toti
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Laurence Jesel
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
- Service de Cardiologie, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Patrick Ohlmann
- Service de Cardiologie, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Olivier Morel
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France.
- Service de Cardiologie, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
10
|
Belcastro E, Rehman AU, Remila L, Park SH, Gong DS, Anton N, Auger C, Lefebvre O, Goetz JG, Collot M, Klymchenko AS, Vandamme TF, Schini-Kerth VB. Fluorescent nanocarriers targeting VCAM-1 for early detection of senescent endothelial cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102379. [PMID: 33713860 DOI: 10.1016/j.nano.2021.102379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Endothelial senescence has been identified as an early event in the development of endothelial dysfunction, a hallmark of cardiovascular disease. This study developed theranostic nanocarriers (NC) decorated with VCAM-1 antibodies (NC-VCAM-1) in order to target cell surface VCAM-1, which is overexpressed in senescent endothelial cells (ECs) for diagnostic and therapeutic purposes. Incubation of Ang II-induced premature senescent ECs or replicative senescent ECs with NC-VCAM-1 loaded with lipophilic fluorescent dyes showed higher fluorescence signals than healthy EC, which was dependent on the NC size and VCAM-1 antibodies concentration, and not observed following masking of VCAM-1. NC loaded with omega 3 polyunsaturated fatty acid (NC-EPA:DHA6:1) were more effective than native EPA:DHA 6:1 to prevent Ang II-induced VCAM-1 and p53 upregulation, and SA-β-galactosidase activity in coronary artery segments. These theranostic NC might be of interest to evaluate the extent and localization of endothelial senescence and to prevent pro-senescent endothelial responses.
Collapse
Affiliation(s)
- Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Asad Ur Rehman
- University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Lamia Remila
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Dal Seong Gong
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | - Nicolas Anton
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy
| | | | | | - Mayeul Collot
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratory of Biophotonics and Pharmacology, University of Strasbourg, Strasbourg, France
| | - Thierry F Vandamme
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy; University of Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Faculty of Pharmacy.
| |
Collapse
|
11
|
Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, Guo Q, Xu H, Song X, Cao L. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. Int J Biol Sci 2021; 17:89-96. [PMID: 33390835 PMCID: PMC7757024 DOI: 10.7150/ijbs.52619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Wendong Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fei Yi
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tingting Zhou
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoman Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Yanling Feng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Hongde Xu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
12
|
Sato A, Nishioka S, Kiuchi M, Imada Y, Makino K, Nakagawa K, Tanaka R, Matsumura Y, Ohkita M. Grape Extract from Chardonnay Seeds Restores Deoxycorticosterone Acetate-Salt-Induced Endothelial Dysfunction and Hypertension in Rats. Biol Pharm Bull 2020; 43:59-67. [PMID: 31902933 DOI: 10.1248/bpb.b19-00540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Grape extract (GE), which contains various polyphenolic compounds, exerts protective effects against lifestyle-related diseases, such as diabetes and hypertension. We pharmacologically investigated whether dietary supplements with an extract from Chardonnay exerted antihypertensive effects in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats. GE increased nitric oxide (NO) production by activating the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in cultured endothelial cells and induced vasorelaxation in the aorta and mesenteric artery via the same pathway. The development and progression of hypertension by the DOCA-salt treatment was significantly inhibited in GE-fed rats. Reduced vasoreactive responses to acetylcholine in the aorta of DOCA-salt rats were significantly ameliorated by the GE diet. Dietary GE supplements slightly diminished vascular superoxide anion production induced by the DOCA-salt treatment. On the other hand, dietary GE supplements had no effect on the progression of hypertension in rats in which NO synthase was pharmacologically and chronically suppressed. In addition, the oral administration of GE for 5 d in healthy rats enhanced endothelial NO synthase (eNOS) gene expression and vascular reactivity to acetylcholine in the aorta. Thus, GE has endothelium-dependent vasorelaxant properties that are mediated by the activation of endothelial NO synthase via the PI3K/Akt pathway, and this mechanism is conducive to the antihypertensive effects of GE observed in DOCA-salt-treated rats.
Collapse
Affiliation(s)
- Akihiro Sato
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Satoshi Nishioka
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Mika Kiuchi
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Yuki Imada
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Kotaro Makino
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Keisuke Nakagawa
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Ryosuke Tanaka
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Yasuo Matsumura
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| | - Mamoru Ohkita
- Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
13
|
Tropea T, Renshall LJ, Nihlen C, Weitzberg E, Lundberg JO, David AL, Tsatsaris V, Stuckey DJ, Wareing M, Greenwood SL, Sibley CP, Cottrell EC. Beetroot juice lowers blood pressure and improves endothelial function in pregnant eNOS -/- mice: importance of nitrate-independent effects. J Physiol 2020; 598:4079-4092. [PMID: 32368787 DOI: 10.1113/jp279655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Maternal hypertension is associated with increased rates of pregnancy pathologies, including fetal growth restriction, due at least in part to reductions in nitric oxide (NO) bioavailability and associated vascular dysfunction. Dietary nitrate supplementation, from beetroot juice (BRJ), has been shown to increase NO bioavailability and improve cardiovascular function in both preclinical and clinical studies. This study is the first to investigate effects of dietary nitrate supplementation in a pregnant animal model. Importantly, the effects of nitrate-containing BRJ were compared with both 'placebo' (nitrate-depleted) BRJ as well as water to control for potential nitrate-independent effects. Our data show novel, nitrate-independent effects of BRJ to lower blood pressure and improve vascular function in endothelial nitric oxide synthase knockout (eNOS-/- ) mice. These findings suggest potential beneficial effects of BRJ supplementation in pregnancy, and emphasize the importance of accounting for nitrate-independent effects of BRJ in study design and interpretation. ABSTRACT Maternal hypertension is associated with adverse pregnancy outcomes, including fetal growth restriction (FGR), due in part to reductions in nitric oxide (NO) bioavailability. We hypothesized that maternal dietary nitrate administration would increase NO bioavailability to reduce systolic blood pressure (SBP), improve vascular function and increase fetal growth in pregnant endothelial NO synthase knockout (eNOS-/- ) mice, which exhibit hypertension, endothelial dysfunction and FGR. Pregnant wildtype (WT) and eNOS-/- mice were supplemented with nitrate-containing beetroot juice (BRJ+) from gestational day (GD) 12.5. Control mice received an equivalent dose of nitrate-depleted BRJ (BRJ-) or normal drinking water. At GD17.5, maternal SBP was measured; at GD18.5, maternal nitrate/nitrite concentrations, uterine artery (UtA) blood flow and endothelial function were assessed, and pregnancy outcomes were determined. Plasma nitrate concentrations were increased in both WT and eNOS-/- mice supplemented with BRJ+ (P < 0.001), whereas nitrite concentrations were increased only in eNOS-/- mice (P < 0.001). BRJ- did not alter nitrate/nitrite concentrations. SBP was lowered and UtA endothelial function was enhanced in eNOS-/- mice supplemented with either BRJ+ or BRJ-, indicating nitrate-independent effects of BRJ. Improvements in endothelial function in eNOS-/- mice were abrogated in the presence of 25 mm KCl, implicating enhanced EDH signalling in BRJ- treated animals. At GD18.5, eNOS-/- fetuses were significantly smaller than WT animals (P < 0.001), but BRJ supplementation did not affect fetal weight. BRJ may be a beneficial intervention in pregnancies associated with hypertension, endothelial dysfunction and reduced NO bioavailability. Our data showing biological effects of non-nitrate components of BRJ have implications for both interpretation of previous findings and in the design of future clinical trials.
Collapse
Affiliation(s)
- Teresa Tropea
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, UK
| | - Lewis J Renshall
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, UK
| | - Carina Nihlen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, SE-171 77, Sweden
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Vassilis Tsatsaris
- Obstetrics and Gynecology Unit, Maternité Port-Royal, APHP, Paris V, Paris, France
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, UK
| | - Colin P Sibley
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, UK
| | - Elizabeth C Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, UK
| |
Collapse
|
14
|
Yamagata K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Curr Pharm Des 2020; 25:2443-2458. [PMID: 31333108 DOI: 10.2174/1381612825666190722100504] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have shown that intake of polyphenols through the consumption of vegetables and fruits reduces the risk of Cardiovascular Disease (CVD) by potentially influencing endothelial cell function. OBJECTIVE In this review, the effects and molecular mechanisms of plant polyphenols, particularly resveratrol, epigallocatechin gallate (EGCG), and quercetin, on endothelial functions, and their putative protective effects against CVD are described. METHODS Epidemiologic studies examined the effect of the CVD risk of vegetables and the fruit. Furthermore, studies within vitro models investigated the underlying molecular mechanisms of the action of the flavonoid class of polyphenols. These findings help elucidate the effect of polyphenols on endothelial function and CVD risk reduction. RESULTS Epidemiologic and in vitro studies have demonstrated that the consumption of vegetables and fruits decreases the incidence of CVDs. Furthermore, it has also been indicated that dietary polyphenols are inversely related to the risk of CVD. Resveratrol, EGCG, and quercetin prevent oxidative stress by regulating the expression of oxidase and the antioxidant enzyme genes, contributing to the prevention of stroke, hypertension, heart failure, and ischemic heart disease. CONCLUSION High intake of dietary polyphenols may help prevent CVD. Polyphenols inhibit endothelial dysfunction and induce vascular endothelium-dependent vascular relaxation viz. redox regulation and nitric oxide production. The polyphenol-induced healthy endothelial cell function may be related to CVD prevention.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health Science of Food, Department of Food Science & Technology, Nihon University (NUBS), 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| |
Collapse
|
15
|
Davies S, Contri RV, Guterres SS, Pohlmann AR, Guerreiro ICK. Simultaneous nanoencapsulation of lipoic acid and resveratrol with improved antioxidant properties for the skin. Colloids Surf B Biointerfaces 2020; 192:111023. [PMID: 32361374 DOI: 10.1016/j.colsurfb.2020.111023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
Cutaneous aging is intimately related to redox imbalance, which is mainly caused by ultraviolet radiation exposure. The aim of the present investigation was to develop lipid-core nanocapsules for the co-nanoencapsulation of resveratrol and lipoic acid aiming to improve the chemical stability and photostability of the compounds, as well as their antioxidant properties. Lipid-core nanocapsules were developed and characterized according to their mean size, size distribution, zeta potential, pH value, drug content, encapsulation efficiency, release profile, stability under storage, photostability and skin permeation profile. In vitro antioxidant activity was analyzed by lipid peroxidation method and the in vitro cytotoxicity by MTT assay and cellular count, using BALB/c-3T3 fibroblasts. It was possible to co-nanoencapsulate resveratrol and lipoic acid into particles of average diameter close to 200 nm, low polydispersity index and encapsulation efficiencies around 90 %. Nanoencapsulation increased the substances stability under storage and photostability under UVA light exposure, besides controlling substances release. The actives were able to permeate a skin model membrane when nanoencapsulated, with a faster permeation of lipoic acid. The antioxidant activity was potentiated by the co-nanoencapsulation of resveratrol and lipoic acid, without signs of cytotoxicity to fibroblasts. Therefore, the co-nanoencapsulation of resveratrol and lipoic acid is promising for application in topical formulations aiming antioxidant effects.
Collapse
Affiliation(s)
- Samuel Davies
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Renata Vidor Contri
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Silvia Stanisçuaski Guterres
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Irene Clemes Kulkamp Guerreiro
- Programa de Pós Graduação em Ciências farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Programa de Pós Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Effect of resveratrol combined with atorvastatin on re-endothelialization after drug-eluting stents implantation and the underlying mechanism. Life Sci 2020; 245:117349. [PMID: 31981632 DOI: 10.1016/j.lfs.2020.117349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/20/2022]
Abstract
AIMS To explore whether the combination of atorvastatins and resveratrol is superior to each individual drug alone regarding re-endothelialization after drug-eluting stents (DESs) implantation. MATERIALS AND METHODS Ninety-four rabbits were randomized into control, atorvastatin, resveratrol, and combined medication groups. Abdominal aorta injury was induced via ballooning, followed by DES implantation. Neointimal formation and re-endothelialization after stent implantation were assessed via optical coherence tomography and scanning electron microscopy. The effects of resveratrol and atorvastatin on bone marrow-derived mesenchymal derived stem cells (BMSCs) were assessed. KEY FINDINGS Compared with the findings in the resveratrol and atorvastatin groups, the neointimal area and mean neointimal thickness were greater in the combined medication group, which also exhibited improved re-endothelialization. Compared with the effects of monotherapy, combined treatment further protected BMSCs against rapamycin-induced apoptosis and improved cell migration. Combined medication significantly upregulated Akt, p-Akt, eNOS, p-eNOS, and CXCR4 expression in BMSCs compared with the effects of monotherapy, and these effects were abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. SIGNIFICANCE The combination of atorvastatin and resveratrol has the potential of accelerating re-endothelialization after stent implantation, reducing the risk of thrombosis and improving the safety of DESs.
Collapse
|
17
|
Triggle CR, Ding H, Marei I, Anderson TJ, Hollenberg MD. Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Can J Physiol Pharmacol 2020; 98:415-430. [PMID: 32150686 DOI: 10.1139/cjpp-2019-0677] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 66 years, our knowledge of the role of the endothelium in the regulation of cardiovascular function and dysfunction has advanced from the assumption that it is a single layer of cells that serves as a barrier between the blood stream and vascular smooth muscle to an understanding of its role as an essential endocrine-like organ. In terms of historical contributions, we pay particular credit to (1) the Canadian scientist Dr. Rudolf Altschul who, based on pathological changes in the appearance of the endothelium, advanced the argument in 1954 that "one is only as old as one's endothelium" and (2) the American scientist Dr. Robert Furchgott, a 1998 Nobel Prize winner in Physiology or Medicine, who identified the importance of the endothelium in the regulation of blood flow. This review provides a brief history of how our knowledge of endothelial function has advanced and now recognize that the endothelium produces a plethora of signaling molecules possessing paracrine, autocrine, and, arguably, systemic hormone functions. In addition, the endothelium is a therapeutic target for the anti-diabetic drugs metformin, glucagon-like peptide I (GLP-1) receptor agonists, and inhibitors of the sodium-glucose cotransporter 2 (SGLT2) that offset the vascular disease associated with diabetes.
Collapse
Affiliation(s)
- Chris R Triggle
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Hong Ding
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Isra Marei
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College, Doha, Qatar
| | - Todd J Anderson
- Department of Cardiac Sciences and Libin Cardiovascular Institute, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Morley D Hollenberg
- Inflammation Research Network, Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada.,Department of Physiology and Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
18
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.,IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
19
|
The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients 2019; 11:nu11112833. [PMID: 31752333 PMCID: PMC6893438 DOI: 10.3390/nu11112833] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
A growing interest has emerged in the beneficial effects of plant-based diets for the prevention of cardiovascular disease, diabetes and obesity. The Mediterranean diet, one of the most widely evaluated dietary patterns in scientific literature, includes in its nutrients two fluid foods: olive oil, as the main source of fats, and a low-to-moderate consumption of wine, mainly red, particularly during meals. Current mechanisms underlying the beneficial effects of the Mediterranean diet include a reduction in inflammatory and oxidative stress markers, improvement in lipid profile, insulin sensitivity and endothelial function, as well as antithrombotic properties. Most of these effects are attributable to bioactive ingredients including polyphenols, mono- and poly-unsaturated fatty acids. Polyphenols are a heterogeneous group of phytochemicals containing phenol rings. The principal classes of red wine polyphenols include flavonols (quercetin and myricetin), flavanols (catechin and epicatechin), anthocyanin and stilbenes (resveratrol). Olive oil has at least 30 phenolic compounds. Among them, the main are simple phenols (tyrosol and hydroxytyrosol), secoroids and lignans. The present narrative review focuses on phenols, part of red wine and virgin olive oil, discussing the evidence of their effects on lipids, blood pressure, atheromatous plaque and glucose metabolism.
Collapse
|
20
|
The Postprandial Appearance of Features of Cardiometabolic Risk: Acute Induction and Prevention by Nutrients and Other Dietary Substances. Nutrients 2019; 11:nu11091963. [PMID: 31438565 PMCID: PMC6770341 DOI: 10.3390/nu11091963] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
The purpose of this review is to provide an overview of diets, food, and food components that affect postprandial inflammation, endothelial function, and oxidative stress, which are related to cardiometabolic risk. A high-energy meal, rich in saturated fat and sugars, induces the transient appearance of a series of metabolic, signaling and physiological dysregulations or dysfunctions, including oxidative stress, low-grade inflammation, and endothelial dysfunction, which are directly related to the amplitude of postprandial plasma triglycerides and glucose. Low-grade inflammation and endothelial dysfunction are also known to cluster together with insulin resistance, a third risk factor for cardiovascular diseases (CVD) and type-II diabetes, thus making a considerable contribution to cardiometabolic risk. Because of the marked relevance of the postprandial model to nutritional pathophysiology, many studies have investigated whether adding various nutrients and other substances to such a challenge meal might mitigate the onset of these adverse effects. Some foods (e.g., nuts, berries, and citrus), nutrients (e.g., l-arginine), and other substances (various polyphenols) have been widely studied. Reports of favorable effects in the postprandial state have concerned plasma markers for systemic or vascular pro-inflammatory conditions, the activation of inflammatory pathways in plasma monocytes, vascular endothelial function (mostly assessed using physiological criteria), and postprandial oxidative stress. Although the literature is fragmented, this topic warrants further study using multiple endpoints and markers to investigate whether the interesting candidates identified might prevent or limit the postprandial appearance of critical features of cardiometabolic risk.
Collapse
|
21
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
22
|
Dey A, Chattopadhyay S, Jana S, Giri MK, Khatun S, Dash M, Perveen H, Maity M. Restoration of uterine redox-balance by methanolic extract of Camellia sinensis in arsenicated rats. ACTA ACUST UNITED AC 2018. [DOI: 10.14232/abs.2018.1.7-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arsenic, an environmental and industrial pollutant causes female reproductive disturbances and female infertility. Several researchers found that the use of Camellia sinensis (CS) (green tea) is effective as an alternative therapeutic strategy in the management of several health ailments. This study explores the role of CS extract against arsenic-induced rat uterine tissue damage. Methanolic extract of CS (10 mg/kg BW) was tested concomitantly in arsenic-treated (10 mg/kg BW) rats for a duration of two-oestrous cycle length (8 days). CS effectively attenuated arsenic-induced antioxidantdepletion and necrosis in uterine tissue. Rats treated with sodium arsenite showed significantlyreduced activities of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in uterine tissue as evidenced by the results of spectrophotometric and electrozymographic analysis. Co-administration of CS significantly reversed the above oxidative stress markers in uterine tissue along with the histopathological changes in ovarian and uterine tissue. Moreover, an increase in the level of transcription factor NF-κB in the uterine tissue in association with reduced serum levels of vitamin B12 and folic acid were mitigated in arsenic fed rats following CS co-administration.
Collapse
|
23
|
Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic Biol Med 2018; 122:161-170. [PMID: 29548794 DOI: 10.1016/j.freeradbiomed.2018.03.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of such polyphenol-rich products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Hyun-Ho Lee
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
24
|
Li JH, Jia JJ, Shen W, Chen SS, Jiang L, Xie HY, Zhou L, Zheng SS. Optimized postconditioning algorithm protects liver graft after liver transplantation in rats. Hepatobiliary Pancreat Dis Int 2018; 17:32-38. [PMID: 29428101 DOI: 10.1016/j.hbpd.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) causes postoperative complications and influences the outcome of the patients undergoing liver surgery and transplantation. Postconditioning (PostC) is a known manual conditioning to decrease the hepatic IRI. Here we aimed to optimize the applicable PostC protocols and investigate the potential protective mechanism. METHODS Thirty Sprague-Dawley rats were randomly divided into 3 groups: the sham group (n = 5), standard orthotopic liver transplantation group (OLT, n = 5), PostC group (OLT followed by clamping and re-opening the portal vein for different time intervals, n = 20). PostC group was then subdivided into 4 groups according to the different time intervals: (10 s × 3, 10 s × 6, 30 s × 3, 60 s × 3, n = 5 in each subgroup). Liver function, histopathology, malondialdehyde (MDA), myeloperoxidase (MPO), expressions of p-Akt and endoplasmic reticulum stress (ERS) related genes were evaluated. RESULTS Compared to the OLT group, the grafts subjected to PostC algorithm (without significant prolonging the total ischemic time) especially with short stimulus and more cycles (10 s × 6) showed significant alleviation of morphological damage and graft function. Besides, the production of reactive oxidative agents (MDA) and neutrophil infiltration (MPO) were significantly depressed by PostC algorithm. Most of ERS related genes were down-regulated by PostC (10 s × 6), especially ATF4, Casp12, hspa4, ATF6 and ELF2, while p-Akt was up-regulated. CONCLUSIONS PostC algorithm, especially 10 s × 6 algorithm, showed to be effective against rat liver graft IRI. These protective effects may be associated with its antioxidant, inhibition of ERS and activation of p-Akt expression of reperfusion injury salvage kinase pathway.
Collapse
Affiliation(s)
- Jian-Hui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wen Shen
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Sha-Sha Chen
- Department of Anesthesia, First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China
| | - Li Jiang
- NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hai-Yang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital, Zhejiang Univeristy School of Medicine, Hangzhou 310003, China; NHFPC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
25
|
Solanki N, Salvi A, Patki G, Salim S. Modulating Oxidative Stress Relieves Stress-Induced Behavioral and Cognitive Impairments in Rats. Int J Neuropsychopharmacol 2017; 20:550-561. [PMID: 28339814 PMCID: PMC5492781 DOI: 10.1093/ijnp/pyx017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background Persistent psychological stress often leads to anxiety disorders and depression. Benzodiazepines and selective serotonin reuptake inhibitors are popular treatment options but have limited efficacy, supporting the need for alternative treatment. Based on our recent preclinical work suggesting a causal link between neurobehavioral deficits and elevated oxidative stress, we hypothesized that interventions that mitigate oxidative stress can attenuate/overcome neurobehavioral deficits. Methods Here, we employed the rat social defeat model of psychological stress to determine whether increasing antioxidant levels using grape powder would prevent and/or reverse social defeat-induced behavioral and cognitive deficits. Furthermore, a hippocampal-derived HT22 cell culture model of oxidative stress was employed to identify the individual beneficial constituent(s) of grape powder and the underlying mechanism(s) of action. Results Grape powder treatment prevented and reversed social defeat-induced behavioral and cognitive deficits and also decreased social defeat-induced increase in plasma corticosterone and 8-isoprostane (systemic and oxidative stress markers, respectively). And grape powder treatment replenished social defeat-induced depleted pool of key antioxidant enzymes glyoxalase-1, glutathione reducatse-1, and superoxide dismutase. Grape powder constituents, quercetin and resveratrol, were most effective in preventing oxidative stress-induced decreased cellular antioxidant capacity. Grape powder protected oxidative stress-induced cell death by preventing calcium influx, mitochondrial dysfunction, and release of cytochrome c. Conclusions Grape powder treatment by increasing antioxidant pool and preventing cell damage and death prevented and reversed social defeat-induced behavioral and cognitive deficits in rats. Quercetin and resveratrol are the major contributors towards beneficial effects of grape powder.
Collapse
Affiliation(s)
- Naimesh Solanki
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Ankita Salvi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Gaurav Patki
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| |
Collapse
|
26
|
Diniz C, Suliburska J, Ferreira IMPLVO. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols. Mol Nutr Food Res 2017; 61. [PMID: 27981783 DOI: 10.1002/mnfr.201600912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals.
Collapse
Affiliation(s)
- Carmen Diniz
- LAQV/REQUIMTE-Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE-Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Adenylate Cyclase Type III Is Not a Ubiquitous Marker for All Primary Cilia during Development. PLoS One 2017; 12:e0170756. [PMID: 28122017 PMCID: PMC5266283 DOI: 10.1371/journal.pone.0170756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/23/2016] [Indexed: 12/17/2022] Open
Abstract
Adenylate cyclase type III (AC3) is localized in plasma membrane of neuronal primary cilium and can be used as a marker of this cilium. AC3 has also been detected in some other primary cilia such as those of fibroblasts, synoviocytes or astrocytes. Despite the presence of a cilium in almost all cell types, we show that AC3 is not a common marker of all primary cilia of different human and mouse tissues during development. In peripheral organs, AC3 is present mainly in primary cilia in cells of the mesenchymal lineage (fibroblasts, chondroblasts, osteoblasts-osteocytes, odontoblasts, muscle cells and endothelial cells). In epithelia, the apical cilium of renal and pancreatic tubules and of ductal plate in liver is AC3-negative whereas the cilium of basal cells of stratified epithelia is AC3-positive. Using fibroblasts cell culture, we show that AC3 appears at the plasma membrane of the primary cilium as soon as this organelle develops. The functional significance of AC3 localization at the cilium membrane in some cells but not others has to be investigated in relationship with cell physiology and expression at the cilium plasma membrane of specific upstream receptors.
Collapse
|
28
|
Forte M, Conti V, Damato A, Ambrosio M, Puca AA, Sciarretta S, Frati G, Vecchione C, Carrizzo A. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7364138. [PMID: 27651855 PMCID: PMC5019908 DOI: 10.1155/2016/7364138] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.
Collapse
Affiliation(s)
- Maurizio Forte
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | - Valeria Conti
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Antonio Damato
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| | | | - Annibale A. Puca
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
- IRCCS Multimedica, Milan, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Carmine Vecchione
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
- Università degli Studi di Salerno, Medicine, Surgery and Dentistry, Baronissi, Italy
| | - Albino Carrizzo
- IRCCS Neuromed, Vascular Physiopathology Unit, Pozzilli, Italy
| |
Collapse
|
29
|
Spigoni V, Mena P, Cito M, Fantuzzi F, Bonadonna RC, Brighenti F, Dei Cas A, Del Rio D. Effects on Nitric Oxide Production of Urolithins, Gut-Derived Ellagitannin Metabolites, in Human Aortic Endothelial Cells. Molecules 2016; 21:molecules21081009. [PMID: 27490528 PMCID: PMC6274502 DOI: 10.3390/molecules21081009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/19/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022] Open
Abstract
The consumption of foodstuffs yielding circulating compounds able to maintain endothelial function by improving nitric oxide (NO) bioavailability can be considered as an effective strategy for cardiovascular disease prevention. This work assessed the in vitro effects of urolithin A, urolithin B, and urolithin B-glucuronide, ellagitannin-derived metabolites of colonic origin, on NO release and endothelial NO synthase (eNOS) activation in primary human aortic endothelial cells (HAECs). Urolithins were tested both individually at 15 μM and as a mixture of 5 μM each, at different time points. The biotransformation of these molecules in cell media due to cell metabolism was also evaluated by UHPLC-MSn. The mix of urolithins at 5 μM significantly increased nitrite/nitrate levels following 24 h of incubation, while single urolithins at 15 μM did not modify NO bioavailability. Both the mix of urolithins at 5 μM and urolithin B-glucuronide at 15 μM activated eNOS expression. All urolithins underwent metabolic reactions, but these were limited to conjugation with sulfate moieties. This study represents a step forward in the understanding of cardiovascular health benefits of ellagitannin-rich foodstuffs and backs the idea that peripheral cells may contribute to urolithin metabolism.
Collapse
Affiliation(s)
- Valentina Spigoni
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Pedro Mena
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Monia Cito
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
| | - Federica Fantuzzi
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Riccardo C Bonadonna
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Furio Brighenti
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| | - Alessandra Dei Cas
- Endocrinology and Metabolism, Department of Clinical and Experimental Medicine, University of Parma, Parma 43126, Italy.
- Division of Endocrinology, Azienda Ospedaliero-Universitaria of Parma, Parma 43126, Italy.
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma 43125, Italy.
| |
Collapse
|
30
|
Auger C, Said A, Nguyen PN, Chabert P, Idris-Khodja N, Schini-Kerth VB. Potential of Food and Natural Products to Promote Endothelial and Vascular Health. J Cardiovasc Pharmacol 2016; 68:11-8. [PMID: 26974893 DOI: 10.1097/fjc.0000000000000382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
31
|
Waltenberger B, Mocan A, Šmejkal K, Heiss EH, Atanasov AG. Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders. Molecules 2016; 21:807. [PMID: 27338339 PMCID: PMC4928700 DOI: 10.3390/molecules21060807] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Collapse
Affiliation(s)
- Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic;
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria;
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| |
Collapse
|
32
|
Davinelli S, Scapagnini G. Polyphenols: a Promising Nutritional Approach to Prevent or Reduce the Progression of Prehypertension. High Blood Press Cardiovasc Prev 2016; 23:197-202. [PMID: 27115149 DOI: 10.1007/s40292-016-0149-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/13/2016] [Indexed: 02/05/2023] Open
Abstract
Diet plays a crucial role in maintaining healthy blood pressure. Functional foods are increasingly popular among health-conscious consumers to reduce cardiovascular risk factors and improve vascular health. In particular, dietary polyphenols represent an extraordinary inventory of structurally different compounds that may represent promising candidate chemical entities to prevent or delay the onset of hypertension. In recent years, it has been recognized that prehypertension may be a predictor of clinical hypertension and consequently of cardiovascular risk. Moreover, prehypertension status is associated with increased levels of several inflammatory markers and it is also characterized by structural changes, including endothelial dysfunction and arteriolar hypertrophy. Despite the low bioavailability of polyphenols and the lack of clinical data from nutritional intervention studies, the antihypertensive role of polyphenols to control blood pressure and reduce inflammation and endothelial dysfunction has been subject of recent debate. The purpose of this article is to discuss the potential benefits of dietary polyphenols as a promising and effective nutritional strategy for the management of prehypertension.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis snc, 86100, Campobasso, Italy.
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis snc, 86100, Campobasso, Italy
| |
Collapse
|
33
|
Ribeiro TP, Oliveira AC, Mendes-Junior LG, França KC, Nakao LS, Schini-Kerth VB, Medeiros IA. Cardiovascular effects induced by northeastern Brazilian red wine: Role of nitric oxide and redox sensitive pathways. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
34
|
Nanoparticles based on quaternary ammonium–chitosan conjugate: A vehicle for oral administration of antioxidants contained in red grapes. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Khemais-Benkhiat S, Idris-Khodja N, Ribeiro TP, Silva GC, Abbas M, Kheloufi M, Lee JO, Toti F, Auger C, Schini-Kerth VB. The Redox-sensitive Induction of the Local Angiotensin System Promotes Both Premature and Replicative Endothelial Senescence: Preventive Effect of a Standardized Crataegus Extract. J Gerontol A Biol Sci Med Sci 2015; 71:1581-1590. [PMID: 26672612 DOI: 10.1093/gerona/glv213] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
Endothelial senescence, characterized by an irreversible cell cycle arrest, oxidative stress, and downregulation of endothelial nitric oxide synthase (eNOS), has been shown to promote endothelial dysfunction leading to the development of age-related vascular disorders. This study has assessed the possibility that the local angiotensin system promotes endothelial senescence in coronary artery endothelial cells and also the protective effect of the Crataegus extract WS1442, a quantified hawthorn extract. Serial passaging from P1 to P4 (replicative senescence) and treatment of P1 endothelial cells with the eNOS inhibitor L-NAME (premature senescence) promoted acquisition of markers of senescence, enhanced ROS formation, decreased eNOS expression, and upregulation of angiotensin-converting enzyme (ACE) and AT1 receptors. Increased SA-β-gal activity and the upregulation of ACE and AT1R in senescent cells were prevented by antioxidants, an ACE inhibitor, and by an AT1 receptor blocker. WS1442 prevented SA-β-gal activity, the downregulation of eNOS, and oxidative stress in P3 cells. These findings indicate that the impairment of eNOS-derived nitric oxide formation favors a pro-oxidant response triggering the local angiotensin system, which, in turn, promotes endothelial senescence. Such a sequence of events can be effectively inhibited by a standardized polyphenol-rich extract mainly by targeting the oxidative stress.
Collapse
Affiliation(s)
- Sonia Khemais-Benkhiat
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Noureddine Idris-Khodja
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Thais Porto Ribeiro
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Grazielle Caroline Silva
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.,EA 7293 Stress Vasculaire et Tissulaire en Transplantation, Faculté de Pharmacie, Université de Strasbourg. Illkirch, France
| | - Marouane Kheloufi
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Jung-Ok Lee
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Florence Toti
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Valérie B Schini-Kerth
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
36
|
Varela CE, Fromentin E, Roller M, Villarreal F, Ramirez-Sanchez I. Effects of a natural extract of Aronia Melanocarpa berry on endothelial cell nitric oxide production. J Food Biochem 2015; 40:404-410. [PMID: 27616799 DOI: 10.1111/jfbc.12226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of acute and chronic treatment with Aronia extracts on NO production and endothelial nitric oxide synthase (eNOS) phosphorylation in bovine coronary artery endothelial cells were investigated. Acute time-course and concentration-response experiments were performed to determine the time and concentration at which Aronia induced maximal NO synthesis and eNOS phosphorylation. The findings indicate that relatively low concentrations (0.1 μg/mL) of Aronia extract significantly induced NO synthesis and eNOS phosphorylation after 10 min of treatment. Increased sensitivity of eNOS and a significant increase in NO synthesis resulted from longer-term stimulation with Aronia (48 hr) and an acute re-treatment of the cells (10 min). PRACTICAL APPLICATIONS These in vitro results may be translated into potential future clinical applications where Aronia extracts may be used for prevention and coadjuvant treatment of cardiovascular diseases via increases in endothelial NO synthesis and related improvements in vascular functions. Given the dose-response effect of Aronia extract in vitro and metabolism of polyphenols that occurs in humans, dose-response studies would be necessary to define the optimal daily amount to be consumed.
Collapse
Affiliation(s)
| | | | | | | | - Israel Ramirez-Sanchez
- School of Medicine, University of California San Diego, La Jolla, CA,U.S.A; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, D.F., Mexico
| |
Collapse
|
37
|
Vascular Protective Effect of an Ethanol Extract of Camellia japonica Fruit: Endothelium-Dependent Relaxation of Coronary Artery and Reduction of Smooth Muscle Cell Migration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:6309565. [PMID: 26697138 PMCID: PMC4677229 DOI: 10.1155/2016/6309565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/24/2015] [Indexed: 11/17/2022]
Abstract
Camellia japonica is a popular garden plant in Asia and widely used as cosmetic sources and traditional medicine. However, the possibility that C. japonica affects cardiovascular system remains unclear. The aim of the present study was to evaluate vascular effects of an extract of C. japonica. Vascular reactivity was assessed in organ baths using porcine coronary arteries and inhibition of proliferation and migration were assessed using human vascular smooth muscle cells (VSMCs). All four different parts, leaf, stem, flower, and fruits, caused concentration-dependent relaxations and C. japonica fruit (CJF) extract showed the strongest vasorelaxation and its effect was endothelium dependent. Relaxations to CJF were markedly reduced by inhibitor of endothelial nitric oxide synthase (eNOS) and inhibitor of PI3-kinase, but not affected by inhibitor of cyclooxygenase and endothelium-derived hyperpolarizing factor-mediated response. CJF induced activated a time- and concentration-dependent phosphorylation of eNOS in endothelial cells. Altogether, these studies have demonstrated that CJF is a potent endothelium-dependent vasodilator and this effect was involved in, at least in part, PI3K-eNOS-NO pathway. Moreover, CJF attenuated TNF-α induced proliferation and PDGF-BB induced migration of VSMCs. The present findings indicate that CJF could be a valuable candidate of herbal medicine for cardiovascular diseases associated with endothelial dysfunction and atherosclerosis.
Collapse
|
38
|
Cardiac and Vascular Synergic Protective Effect of Olea europea L. Leaves and Hibiscus sabdariffa L. Flower Extracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:318125. [PMID: 26180582 PMCID: PMC4477181 DOI: 10.1155/2015/318125] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023]
Abstract
This study was aimed at investigating the cardiovascular effects of an Olea europea L. leaf extract (OEE), of a Hibiscus sabdariffa L. flower extract (HSE), and of their 13 : 2 w/w mixture in order to assess their cardiac and vascular activity. Both extracts were fully characterized in their bioactive compounds by HPLC-MS/MS analysis. The study was performed using primary vascular endothelial cells (HUVECs) to investigate the antioxidant and cytoprotective effect of the extracts and their mixture and isolated guinea-pig left and right atria and aorta to evaluate the inotropic and chronotropic activities and vasorelaxant properties. In cultured HUVECs, OEE and HSE reduced intracellular reactive oxygen species formation and improved cell viability, following oxidative stress in dose-dependent manner. OEE and HSE exerted negative inotropic and vasorelaxant effects without any chronotropic property. Interestingly, the mixture exerted higher cytoprotective effects and antioxidant activities. Moreover, the mixture exerted an inotropic effect similar to each single extract, while it revealed an intrinsic negative chronotropic activity different from the single extract; its relaxant activity was higher than that of each single extract. In conclusion OEE and HSE mixture has a good potential for pharmaceutical and nutraceutical application, thanks to the synergistic effects of the single phytochemicals.
Collapse
|
39
|
Khan NQ, Patel B, Kang SS, Dhariwal SK, Husain F, Wood EG, Pothecary MR, Corder R. Regulation of vascular endothelial function by red wine procyanidins: implications for cardiovascular health. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.10.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Jia J, Li J, Jiang L, Zhang J, Chen S, Wang L, Zhou Y, Xie H, Zhou L, Zheng S. Protective effect of remote limb ischemic perconditioning on the liver grafts of rats with a novel model. PLoS One 2015; 10:e0121972. [PMID: 25785455 PMCID: PMC4364967 DOI: 10.1371/journal.pone.0121972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/05/2015] [Indexed: 12/16/2022] Open
Abstract
Background Remote ischemic conditioning (RIC) is a known manual conditioning to decrease ischemic reperfusion injury (IRI) but not increase ischemic time. Here we tried to establish a rat RIC model of liver transplantation (LT), optimize the applicable protocols and investigate the protective mechanism. Methods The RIC model was developed by a standard tourniquet. Sprague-Dawley rats were assigned randomly to the sham operated control (N), standard rat liver transplantation (OLT) and RIC groups. According to the different protocols, RIC group was divided into 3 subgroups (10min×3, n = 6; 5min×3, n = 6; 1min×3, n = 6)respectively. Serum transaminases (ALT, AST), creatine kinase (CK), histopathologic changes, malondialdehyde (MDA), myeloperoxidase (MPO) and expressions of p-Akt were evaluated. Results Compared with the OLT group, the grafts subjected to RIC 5min*3 algorithm showed significant reduction of morphological damage and improved the graft function. Also, production of reactive oxygen species (MDA) and neutrophil accumulation (MPO) were markedly depressed and p-Akt was upregulated. Conclusion In conclusion, we successfully established a novel model of RIC in rat LT, the optimal RIC 5min*3 algorithm seemed to be more efficient to alleviate IRI of the liver graft in both functional and morphological categories, which due to its antioxidative, anti-inflammation activities and activating PI3K Akt pathway.
Collapse
Affiliation(s)
- Junjun Jia
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhui Li
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jiang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shasha Chen
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfei Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
41
|
van Breda SGJ, Wilms LC, Gaj S, Jennen DGJ, Briedé JJ, Kleinjans JCS, de Kok TMCM. The exposome concept in a human nutrigenomics study: evaluating the impact of exposure to a complex mixture of phytochemicals using transcriptomics signatures. Mutagenesis 2015; 30:723-31. [PMID: 25711498 DOI: 10.1093/mutage/gev008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The application of transcriptome analyses in molecular epidemiology studies has become a promising tool in order to evaluate the impact of environmental exposures. These analyses have a great value in establishing the exposome, the totality of human exposures, both by identifying the chemical nature of the exposures and the induced molecular responses. Transcriptomic signatures can be regarded as biomarker of exposure as well as markers of effect which reflect the interaction between individual genetic background and exposure levels. However, the biological interpretation of modulated gene expression profiles is a challenging task and translating affected molecular pathways into risk assessment, for instance in terms of cancer promoting or disease preventing responses, is a far from standardised process. Here, we describe the in-depth analyses of the gene expression responses in a human dietary intervention in which the interaction between genotype and exposure to a blueberry-apple juice containing a complex mixture of phytochemicals is investigated. We also describe how data on differences in genetic background combined with different effect markers can provide a better understanding of gene-environment interactions. Pathway analyses of differentially expressed genes in combination with gene were used to identify complex but strong changes in several biological processes like immune response, cell adhesion, lipid metabolism and apoptosis. These observed changes may lead to upgraded growth control, induced immunity, reduced platelet aggregation and activation, diminished production of reactive oxidative species by platelets, blood glucose homeostasis, regulation of blood lipid levels and increased apoptosis. Our findings demonstrate that applying transcriptomics to well-controlled human dietary intervention studies can provide insight into mechanistic pathways involved in disease prevention by dietary factors.
Collapse
Affiliation(s)
- Simone G J van Breda
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Lonneke C Wilms
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Stan Gaj
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jacob J Briedé
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Theo M C M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
42
|
Tellone E, De Rosa MC, Pirolli D, Russo A, Giardina B, Galtieri A, Ficarra S. Molecular interactions of hemoglobin with resveratrol: potential protective antioxidant role and metabolic adaptations of the erythrocyte. Biol Chem 2015; 395:347-54. [PMID: 24150206 DOI: 10.1515/hsz-2013-0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/17/2013] [Indexed: 12/31/2022]
Abstract
This article reports the role of resveratrol in the erythrocyte as a result of its interaction with hemoglobin and describes the effect of this interaction on the metabolism, the redox state, and the release of ATP. The drug crosses the erythrocyte membrane and binds to hemoglobin, altering its modulation and the release of ATP. Our study correlates the variation of the phosphorylation balance induced by resveratrol with the change in the intracellular concentration of ATP and with the decrease in ATP release from red blood cell and the consequent paracrine alteration on the vascular epithelium. Molecular docking calculations indicate larger specificity of binding for oxy-hemoglobin that correlates well with the stabilization of the R-quaternary structure and with the functional modulation of resveratrol on the protein. Finally, we locate a putative binding site at the central cavity of hemoglobin and characterize its key interacting residues with the drug. Computational results support the assumption that resveratrol may act as a protector agent against oxidative protein damage by interacting with hemoglobin.
Collapse
|
43
|
Luzak B, Boncler M, Rywaniak J, Dudzinska D, Rozalski M, Krajewska U, Balcerczak E, Podsedek A, Redzynia M, Watala C. Extract from Ribes nigrum leaves in vitro activates nitric oxide synthase (eNOS) and increases CD39 expression in human endothelial cells. J Physiol Biochem 2014; 70:1007-19. [PMID: 25407137 PMCID: PMC4254183 DOI: 10.1007/s13105-014-0370-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 11/10/2014] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to evaluate whether blackcurrant leaf extract (BLE) modulates endothelium antithrombotic function, namely increases the expression/activity of ADPase (CD39) and augments the production of nitric oxide in human umbilical vein endothelial cells (HUVEC). It was found that BLE with proanthocyanidins (60 % of the total polyphenol content) increased the CD39-positive endothelial cell fraction (up to 10 % for 2.5 μg/ml, and up to 33 % for 15 μg/ml, p < 0.05 or less) in a concentration-dependent manner, and enhanced endothelial nitric oxide synthase (eNOS) activation (T495 phosphorylation decreased by 31 ± 6 % for 2.5 μg/ml and 48 ± 6 % for 15 μg/ml; S1177 phosphorylation increased by 13 ± 3 % for 2.5 μg/ml and 18 ± 7 % for 15 μg/ml, compared to untreated cells, p < 0.05 or less). Additionally, incubation for 24 or 48 h with BLE at a lower range of polyphenol concentrations, significantly increased cell viability with a maximal effect at 2.5 μg/ml (viability increased by 24.8 ± 1.0 % for 24 h and by 32.5 ± 2.7 % for 48-h time incubation, p < 0.0001). The increased CD39 expression and the increased eNOS activation in HUVEC can be regarded as the beneficial markers of the improvement of antiplatelet action of endothelial cells. Unexpectedly, these assumptions were not confirmed in the experimental model of platelet-endothelial cell interactions. These observations lead to the conclusion that BLE may improve endothelial cell viability at low physiological concentrations without affecting the antiplatelet action of endothelium.
Collapse
Affiliation(s)
- Boguslawa Luzak
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu H, Ren J, Chen H, Huang Y, Li H, Zhang Z, Wang J. Resveratrol protects against cigarette smoke-induced oxidative damage and pulmonary inflammation. J Biochem Mol Toxicol 2014; 28:465-71. [PMID: 24957013 DOI: 10.1002/jbt.21586] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022]
Abstract
This study was carried out to investigate the effects of resveratrol on cigarette smoke (CS)-induced lung injury. Experimental mice were administrated with 1 mg/kg or 3 mg/ kg resveratrol orally, 1 h prior to CS exposure (five cigarettes a day for 3 consecutive days). Airway inflammation and gene expression changes were assessed. CS exposure increased the number of pulmonary inflammatory cells, coupled with elevated production of tumor necrosis factor α and interleukin-6 in bronchoalveolar lavage fluids. Resveratrol treatment decreased CS-induced lung inflammation. Resveratrol restored the activities of superoxide dismutase, GSH peroxidase, and catalase in CS-treated mice. CS significantly enhanced the nuclear translocation of nuclear factor κB (NF-κB) and NF-κB DNA binding activity, which was impaired by resveratrol pretreatment. In addition, resveratrol promoted CS-induced heme oxygenase-1 (HO-1) expression and activation. Our results collectively indicate that resveratrol attenuates CS-induced lung oxidative injury, which involves decreased NF-κB activity and the elevated HO-1 expression and activity.
Collapse
Affiliation(s)
- Hong Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Zgheel F, Alhosin M, Rashid S, Burban M, Auger C, Schini-Kerth VB. Redox-sensitive induction of Src/PI3-kinase/Akt and MAPKs pathways activate eNOS in response to EPA:DHA 6:1. PLoS One 2014; 9:e105102. [PMID: 25133540 PMCID: PMC4136823 DOI: 10.1371/journal.pone.0105102] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 07/21/2014] [Indexed: 02/07/2023] Open
Abstract
Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.
Collapse
Affiliation(s)
- Faraj Zgheel
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Mahmoud Alhosin
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Sherzad Rashid
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Mélanie Burban
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Cyril Auger
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Valérie B. Schini-Kerth
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
- * E-mail:
| |
Collapse
|
46
|
Li X, Xing W, Wang Y, Mi C, Zhang Z, Ma H, Zhang H, Gao F. Upregulation of caveolin-1 contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in type 1 diabetic rats. Life Sci 2014; 113:31-9. [PMID: 25086377 DOI: 10.1016/j.lfs.2014.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 01/03/2023]
Abstract
AIMS Endothelial dysfunction and hypertension is more common in individuals with diabetes than in the general population. This study was aimed to investigate the underlying mechanisms responsible for endothelial dysfunction of type 1 diabetic rats fed with high-salt diet. MAIN METHODS Type 1 diabetes (DM) was induced by intraperitoneal injection of streptozotocin (70 mg·kg(-1)). Normal or diabetic rats were randomly fed high-salt food (HS, 8% NaCl) or standard food (CON) for 6 weeks. KEY FINDINGS Both HS (143±10 mmHg) and DM+HS (169±11 mmHg) groups displayed significantly higher systolic blood pressure than those in the CON group (112±12 mmHg, P<0.01). DM+HS rats exhibited more pronounced impairment of vasorelaxation to acetylcholine and insulin compared with either DM or HS. Akt/endothelial nitric oxide synthase (eNOS) phosphorylation levels and nitric oxide (NO) concentration in DM+HS were significantly lower than in DM. The levels of caveolin-1 (cav-1) in DM+HS were significantly higher than that in DM and HS. Co-immunoprecipitation results showed increased interaction between cav-1 and eNOS in the DM+HS group. In the presence of cav-1 small interfering RNA (siRNA), eNOS phosphorylations in human umbilical vein endothelial cells (HUVEC) were significantly increased compared with control siRNA. Cav-1 was slightly but not significantly lower in HUVEC cultured with high glucose and high-salt buffer solution and pretreated with wortmannin or l-nitro-arginine methyl ester. SIGNIFICANCE Impaired endothelial Akt activation and increased cav-1 expression and resultant decreased eNOS activation contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in DM rats.
Collapse
Affiliation(s)
- Xu Li
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China; Department of Physiology, Renji College, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Wang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Chunjuan Mi
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhengrui Zhang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Heng Ma
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
47
|
Currò M, Trovato-Salinaro A, Gugliandolo A, Koverech G, Lodato F, Caccamo D, Calabrese V, Ientile R. Resveratrol protects against homocysteine-induced cell damage via cell stress response in neuroblastoma cells. J Neurosci Res 2014; 93:149-56. [PMID: 25042273 DOI: 10.1002/jnr.23453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/07/2022]
Abstract
Recent findings underscore that some natural compounds are responsible for specific biochemical effects, i.e., the activation of redox-sensitive intracellular pathways and modulation of different stress proteins, such as heat shock proteins and sirtuins. Resveratrol, a natural polyphenol widely present in plants, has been shown to display various beneficial effects, including neuroprotection, in several pathological conditions. In the present study, by using differentiated SH-SY5Y neuroblastoma cells, we investigated the potential protective effects of resveratrol against homocysteine-induced neurotoxicity. We observed that homocysteine (100 µM) decreased cell viability while at the same time significantly increasing intracellular reactive oxygen species and DNA fragmentation. Cell pretreatment with resveratrol concentrations ranging from 1 to 5 µM elicited protective effects through the reduction of oxidative stress and genotoxic damage. In addition, we observed that resveratrol produced significant changes in the expression of both Hsp70 and sirtuin 1 (SIRT1). After homocysteine treatment in the presence of resveratrol, SIRT1 protein was found abundantly not only in the cytosol but also in the nucleus, as demonstrated by confocal laser scanning microscopy. The results of this study suggest that resveratrol is a potential protective agent against homocysteine-induced neurotoxicity and that beneficial effects are accompanied by changes in cell stress response. Taken together, these features contribute to our knowledge of underlying mechanisms involved in resveratrol-induced cell survival.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dehydroabietic acid isolated from Commiphora opobalsamum causes endothelium-dependent relaxation of pulmonary artery via PI3K/Akt-eNOS signaling pathway. Molecules 2014; 19:8503-17. [PMID: 24959678 PMCID: PMC6271577 DOI: 10.3390/molecules19068503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
Commiphora opobalsamum is a Traditional Chinese Medicine used to treat traumatic injury, mainly by relaxing blood vessels. In this study, two diterpenes, dehydroabietic acid (DA) and sandaracopimaric acid (SA) were obtained from it by a bioassay-guided approach using isolated rat pulmonary artery rings. The structures of the two compounds were elucidated by spectroscopic methods (IR, 1H- and 13C-NMR, HR-ESI-MS). Both DA and SA reduced the contraction of phenylephrine-induced pulmonary arteries in a concentration-dependent manner, and endothelium contributed greatly to the vasodilatory effect of DA. This effect of DA was attenuated by NG-Nitro-L-arginine methyl ester (L-NAME, an eNOS inhibitor). Meanwhile, DA increased nitric oxide (NO) production, along with the increase of phosphorylation level of eNOS and Akt in endothelial cells. LY294002 (a PI3K inhibitor) could reverse this effect, which suggested the endothelial PI3K/Akt pathway involved in the mechanism underlying DA-induced relaxation of pulmonary artery. This work provided evidence of vasorelaxant substances in Commiphora opobalsamum and validated that PI3K/Akt-eNOS pathway was associated with DA-induced pulmonary artery vasodilation.
Collapse
|
49
|
Yamagata K, Tagami M, Yamori Y. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease. Nutrition 2014; 31:28-37. [PMID: 25466651 DOI: 10.1016/j.nut.2014.04.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/09/2014] [Accepted: 04/08/2014] [Indexed: 12/20/2022]
Abstract
Vascular endothelial cell (EC) dysfunction strongly induces development of cardiovascular and cerebrovascular diseases. Epidemiologic studies demonstrated a preventative effect of dietary polyphenols toward cardiovascular disease. In studies using cultured vascular ECs, polyphenols were recognized to regulate nitric oxide and endothelin-1 (ET-1) production. Furthermore, epigallocatechin-3-gallate inhibited the expression of adhesion molecules by a signaling pathway that is similar to that of high-density lipoprotein and involves induction of Ca(2+)/calmodulin-dependent kinase II, liver kinase B, and phosphatidylinositol 3-kinase expression. The effects of polyphenols on ECs include antioxidant activity and enhancement of the expression of several protective proteins, including endothelial nitric oxide synthase and paraoxonase 1. However, the observed effects of dietary polyphenols in vitro do not always translate to an in vivo setting. As such, there are many questions concerning their physiological mode of action. In this review, we discuss research on the effect of dietary polyphenols on cardiovascular disease and their protective effect on EC dysfunction.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience and Biotechnology, College of Bioresource Science, Nihon University, Fujisawa, Japan; Advance Research Center on Food Function, College of Bioresource Science, Nihon University, Fujisawa, Japan.
| | - Motoki Tagami
- Department of Internal Medicine, Sanraku Hospital, Lifestyle Disease Clinic, Chiyoda-Ku, Tokyo, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
50
|
Ziberna L, Kim JH, Auger C, Passamonti S, Schini-Kerth V. Role of endothelial cell membrane transport in red wine polyphenols-induced coronary vasorelaxation: involvement of bilitranslocase. Food Funct 2014; 4:1452-6. [PMID: 23963285 DOI: 10.1039/c3fo60160a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Red wine polyphenols (RWP) induce nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-mediated coronary vasodilatation involving the redox-sensitive PI3-kinase/Akt-dependent pathway in the endothelium. However, there is a gap of knowledge in explaining how bioactive polyphenols initialize their signalling pathway in endothelial cells. Here, we investigated the hypothesis that flavonoids act subsequently to their entry into the endothelium via the flavonoid membrane transporter bilitranslocase (TC 2.A.65.1.1). Thus, vascular reactivity studies were performed using isolated porcine coronary artery rings. We separately determined the NO- and EDH-mediated components of the relaxation in the presence of specific inhibitors. In either case, bilitranslocase antibodies significantly reduced the relaxations of coronary artery rings induced by RWP. Furthermore, bilitranslocase antibodies significantly reduced RWP-induced phosphorylation levels of Akt and eNOS, assessed in cultured endothelial cells from porcine coronary arteries by Western blot analysis. The present findings indicate that bilitranslocase-mediated membrane transport substantially contributes to the initial step of RWP-induced coronary vasodilatation.
Collapse
Affiliation(s)
- Lovro Ziberna
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy.
| | | | | | | | | |
Collapse
|