1
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
Mami W, Znaidi-Marzouki S, Doghri R, Ben Ahmed M, Znaidi S, Messadi E. Inflammatory Bowel Disease Increases the Severity of Myocardial Infarction after Acute Ischemia-Reperfusion Injury in Mice. Biomedicines 2023; 11:2945. [PMID: 38001946 PMCID: PMC10669621 DOI: 10.3390/biomedicines11112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Increased risk of myocardial infarction (MI) has been linked to several inflammatory conditions, including inflammatory bowel disease (IBD). However, the relationship between IBD and MI remains unclear. Here, we implemented an original mouse model combining IBD and MI to determine IBD's impact on MI severity and the link between the two diseases. (2) Methods: An IBD model was established by dextran sulfate sodium (DSS) administration in drinking water, alone or with oral C. albicans (Ca) gavage. IBD severity was assessed by clinical/histological scores and intestinal/systemic inflammatory biomarker measurement. Mice were subjected to myocardial ischemia-reperfusion (IR), and MI severity was assessed by quantifying infarct size (IS) and serum cardiac troponin I (cTnI) levels. (3) Results: IBD mice exhibited elevated fecal lipocalin 2 (Lcn2) and IL-6 levels. DSS mice exhibited almost two-fold increase in IS compared to controls, with serum cTnI levels strongly correlated with IS. Ca inoculation tended to worsen DSS-induced systemic inflammation and IR injury, an observation which is not statistically significant. (4) Conclusions: This is the first proof-of-concept study demonstrating the impact of IBD on MI severity and suggesting mechanistic aspects involved in the IBD-MI connection. Our findings could pave the way for MI therapeutic approaches based on identified IBD-induced inflammatory mediators.
Collapse
Affiliation(s)
- Wael Mami
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
| | - Soumaya Znaidi-Marzouki
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR16IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (S.Z.-M.); (M.B.A.)
| | - Raoudha Doghri
- Département d’Anatomie et Cytologie Pathologiques, Institut Salah-Azaeiz, Université El-Manar, Tunis 1006, Tunisia;
| | - Melika Ben Ahmed
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR16IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (S.Z.-M.); (M.B.A.)
| | - Sadri Znaidi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
- Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Institut Pasteur, INRA, 75015 Paris, France
| | - Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
| |
Collapse
|
3
|
Messadi E. Snake Venom Components as Therapeutic Drugs in Ischemic Heart Disease. Biomolecules 2023; 13:1539. [PMID: 37892221 PMCID: PMC10605524 DOI: 10.3390/biom13101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore, identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake venoms contain biologically active proteins and peptides that are of major interest for pharmacological applications in the cardiovascular system (CVS). This has led to their use for the development and design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril, developed from a peptide present in Bothrops jararaca snake venom. This review discusses the potential usefulness of snake venom toxins for developing effective treatments against IHD and related diseases such as hypertension and atherosclerosis. It describes their biological effects at the molecular scale, their mechanisms of action according to their different pharmacological properties, as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here have either been approved for human medical use and are currently available on the drug market or are still in the clinical or preclinical developmental stages. The information summarized here may be useful in providing insights into the development of future snake venom-derived drugs.
Collapse
Affiliation(s)
- Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
4
|
Shen M, Yu M, Qiu C, Zhang G, Li J, Fang W, Wang Q. Myocardial angiogenesis induced by exercise training involves a regulatory mechanism mediated by kinin receptors. Clin Exp Hypertens 2021; 43:408-415. [PMID: 33687297 DOI: 10.1080/10641963.2021.1896725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To demonstrate that the kallikrein-kinin system (KKS) is upstream of angiogenic signaling pathway, and to determine the role of the kinin B1 and B2 receptors in myocardial angiogenesis induced by exercise training. METHODS Forty Wistar rats were randomly assigned to an exercise control (EC) group, a B1 receptor antagonist (B1Ant) group, a B2 receptor antagonist (B2Ant) group, and a double receptor antagonist ((B1+ B2)Ant) group. A myocardial infarction model was employed. Animals in all groups received 30 min of exercise training for 4 weeks. The expression of VEGF and eNOS, capillary supply, and apoptosis rate were evaluated. RESULTS The mRNA and protein expression of VEGF and eNOS showed similar trends in all groups, and were lowest in the (B1+ B2) Ant group, and highest in the EC group. Levels of VEGF and eNOS mRNA were significantly lower in the B1Ant group than in the B2Ant group (p< .001 and p< .05, respectively). VEGF and eNOS protein in the B1Ant group was also significantly lower (p< .01 and p< .05, respectively) than in the B2Ant group. The capillary numbers in the (B1+ B2) Ant group were significantly lower than in the EC group (395.8 ± 105 vs. 1127.9 ± 192.98, respectively). The apoptosis rate of cardiomyocytes was highest in the (B1+ B2) Ant group. CONCLUSION KKS may act as an upstream signal transduction pathway for angiogenic factors in myocardial angiogenesis. The B1 and B2 receptors exert additive effects, and the B1 receptor has the most prominent role in mediating KKS-induced myocardial angiogenesis.
Collapse
MESH Headings
- Animals
- Capillaries/metabolism
- Kinins/metabolism
- Male
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Neovascularization, Physiologic
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Physical Conditioning, Animal
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Wistar
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Rats
Collapse
Affiliation(s)
- Mei Shen
- Department of Rehabilitation Medicin, The People's Hospital of Longhua District, Shenzhen, Guangdong Province, China
| | - Min Yu
- Department of Rehabilitation Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Chengxiu Qiu
- Department of Rehabilitation Medicin, The People's Hospital of Longhua District, Shenzhen, Guangdong Province, China
| | - Ge Zhang
- Department of Electrocardiogram, The People's Hospital of Longhua District, Shenzhen, Guangdong Province, China
| | - Jingya Li
- Department of Rehabilitation Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Wei Fang
- Department of Nursing, The People's Hospital of Longhua District, Shenzhen, Guangdong Province, China
| | - Qiwen Wang
- Department of Rehabilitation Medicin, The People's Hospital of Longhua District, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Kinins and Kinin Receptors in Cardiovascular and Renal Diseases. Pharmaceuticals (Basel) 2021; 14:ph14030240. [PMID: 33800422 PMCID: PMC8000381 DOI: 10.3390/ph14030240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses the physiological role of the kallikrein–kinin system in arteries, heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R), distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular and renal diseases are discussed. This discussion addresses either the activation or inhibition of these receptors, based on recent clinical and experimental studies.
Collapse
|
6
|
A Robust Bioassay of the Human Bradykinin B 2 Receptor that Extends Molecular and Cellular Studies: The Isolated Umbilical Vein. Pharmaceuticals (Basel) 2021; 14:ph14030177. [PMID: 33668382 PMCID: PMC7996148 DOI: 10.3390/ph14030177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Bradykinin (BK) has various physiological and pathological roles. Medicinal chemistry efforts targeted toward the widely expressed BK B2 receptor (B2R), a G-protein-coupled receptor, were primarily aimed at developing antagonists. The only B2R antagonist in clinical use is the peptide icatibant, approved to abort attacks of hereditary angioedema. However, the anti-inflammatory applications of B2R antagonists are potentially wider. Furthermore, the B2R antagonists notoriously exhibit species-specific pharmacological profiles. Classical smooth muscle contractility assays are exploited over a time scale of several hours and support determining potency, competitiveness, residual agonist activity, specificity, and reversibility of pharmacological agents. The contractility assay based on the isolated human umbilical vein, expressing B2R at physiological density, was introduced when investigating the first non-peptide B2R antagonist (WIN 64338). Small ligand molecules characterized using the assay include the exquisitely potent competitive antagonist, Pharvaris Compound 3 or the partial agonist Fujisawa Compound 47a. The umbilical vein assay is also useful to verify pharmacologic properties of special peptide B2R ligands, such as the carboxypeptidase-activated latent agonists and fluorescent probes. Furthermore, the proposed agonist effect of tissue kallikrein on the B2R has been disproved using the vein. This assay stands in between cellular and molecular pharmacology and in vivo studies.
Collapse
|
7
|
Ginkgetin Alleviates Inflammation, Oxidative Stress, and Apoptosis Induced by Hypoxia/Reoxygenation in H9C2 Cells via Caspase-3 Dependent Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1928410. [PMID: 33204684 PMCID: PMC7661124 DOI: 10.1155/2020/1928410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022]
Abstract
Ginkgetin, the extract of Ginkgo biloba leaves, has been reported to exert preventive and therapeutic effects on cardiovascular disease. However, little is known about its role in myocardial ischemia-reperfusion injury (MIRI). The present study aimed to unveil the function of ginkgetin in cardiomyocytes subjected to hypoxia/reoxygenation (H/R) injury. Cell Counting Kit-8 (CCK-8) was employed to evaluate the impact of ginkgetin on cell viability in the absence or presence of H/R. Proinflammatory cytokines and malondialdehyde (MDA), reactive oxygen species (SOD), and lactate dehydrogenase (LDH) were determined via corresponding kits. In addition, flow cytometry was performed to detect apoptotic level. Western blot analysis was utilized to estimate caspase-3 and cytochrome C. Ginkgetin had no significant effect on cell viability; however, it could enhance viability of H9C2 cells exposed to H/R. Inflammation and oxidative stress induced by H/R injury were relieved via pretreatment with ginkgetin. Preconditioning of ginkgetin also decreased apoptotic rate and the protein levels of caspase-3, cytochrome C under H/R condition. Furthermore, 2-HBA, an inducer of caspase-3, was used for the activation of caspase-3 signaling pathway. It was found that induction of caspase-3 eliminated the protective effect of ginkgetin on H9C2 cells exposed to H/R. These results indicated that ginkgetin attenuated inflammation, oxidative stress, and apoptosis. These protective roles of ginkgetin may attribute to caspase-3 dependent pathway.
Collapse
|
8
|
Autocrine Bradykinin Release Promotes Ischemic Preconditioning-Induced Cytoprotection in Bovine Aortic Endothelial Cells. Int J Mol Sci 2020; 21:ijms21082965. [PMID: 32340102 PMCID: PMC7215376 DOI: 10.3390/ijms21082965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022] Open
Abstract
The aims of this study were to assess whether ischemic preconditioning (PC) induces bradykinin (Bk) synthesis in bovine aortic endothelial cells (bAECs) and, if so, to explore the molecular mechanisms by which this peptide provides cytoprotection against hypoxia. PC was induced by exposing bAECs to three cycles of 15 min of hypoxia followed by 15 min of reoxygenation. Bk synthesis peaked in correspondence to the early and late phases of PC (10−12 M and 10−11 M, respectively) and was abolished by a selective tissue kallikrein inhibitor, aprotinin. Stimulation with exogenous Bk at concentrations of 10−12 M and 10−11 M reduced the cell death induced by 12 h of hypoxia by 50%. Pretreatment with HOE−140, a Bk receptor 2 (BKR2) inhibitor, in bAECs exposed to 12 h of hypoxia, abrogated the cytoprotective effect of early and late PC, whereas des-Arg-HOE-140, a Bk receptor 1 (BKR1) inhibitor, affected only the late PC. In addition, we found that PC evoked endocytosis and the recycling of BKR2 during both the early and late phases, and that inhibition of these pathways affected PC-mediated cytoprotection. Finally, we evaluated the activation of PKA and Akt in the presence or absence of BKR2 inhibitor. HOE-140 abrogated PKA and Akt activation during both early and late PC. Consistently, BKR2 inhibition abolished cross-talk between PKA and Akt in PC. In bAECs, Bk-synthesis evoked by PC mediates the protection against both apoptotic and necrotic hypoxia-induced cell death in an autocrine manner, by both BKR2- and BKR1-dependent mechanisms.
Collapse
|
9
|
Jiang L, Zeng H, Ni L, Qi L, Xu Y, Xia L, Yu Y, Liu B, Yang H, Hao H, Li P. HIF-1α Preconditioning Potentiates Antioxidant Activity in Ischemic Injury: The Role of Sequential Administration of Dihydrotanshinone I and Protocatechuic Aldehyde in Cardioprotection. Antioxid Redox Signal 2019; 31:227-242. [PMID: 30799630 DOI: 10.1089/ars.2018.7624] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aims: The management of myocardial ischemia has been challenged by reperfusion injury. Reactive oxygen species (ROS) production is the critical cause of reperfusion injury, but antioxidant treatment failed to gain satisfactory effects. We hypothesized that improvement of redox homeostasis by preconditioning regulation should potentiate the ability of antioxidants to protect the heart from reperfusion injury. Results: By phenotype-based screening, we identified that dihydrotanshinone I (DT) and protocatechuic aldehyde (PCA) potently protected cardiomyocytes through preconditioning regulation and antioxidant activity, respectively. DT induced transient ROS generation via reversible inhibition of mitochondrial respiratory complex I and thereby stabilizing HIF-1α, while PCA elevated the levels of reduced glutathione (GSH) by providing reducing equivalents to scavenge ROS. HIF-1α, stabilized by DT, transcriptionally upregulated Nrf2 and thereby activated antioxidant enzymes, potentiating PCA to protect cardiomyocytes from reperfusion injury by strengthening intrinsic ROS scavenging capacity. In rat ischemia/reperfusion (I/R) model, sequential administration of DT and PCA, but not in reverse, additively protected the heart from I/R injury, manifested by reduced infarct size and improved cardiac function. These results were further supported by sequential administration of metformin and vitamin E in the rat and porcine I/R models. Innovation and Conclusion: Our work demonstrates that preconditioning regulation of redox state is essential for antioxidants to protect the heart from I/R injury, providing a new direction for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Lifeng Jiang
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zeng
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lihong Ni
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lifengrong Qi
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanmin Xu
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ludan Xia
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yinghua Yu
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baolin Liu
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- 2 State Key Laboratory of Natural Medicines, Department of Pharmacokinetics, College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- 1 State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Alhenc-Gelas F, Bouby N, Girolami JP. Kallikrein/K1, Kinins, and ACE/Kininase II in Homeostasis and in Disease Insight From Human and Experimental Genetic Studies, Therapeutic Implication. Front Med (Lausanne) 2019; 6:136. [PMID: 31316987 PMCID: PMC6610447 DOI: 10.3389/fmed.2019.00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023] Open
Abstract
Kallikrein-K1 is the main kinin-forming enzyme in organs in resting condition and in several pathological situations whereas angiotensin I-converting enzyme/kininase II (ACE) is the main kinin-inactivating enzyme in the circulation. Both ACE and K1 activity levels are genetic traits in man. Recent research based mainly on human genetic studies and study of genetically modified mice has documented the physiological role of K1 in the circulation, and also refined understanding of the role of ACE. Kallikrein-K1 is synthesized in arteries and involved in flow-induced vasodilatation. Endothelial ACE synthesis displays strong vessel and organ specificity modulating bioavailability of angiotensins and kinins locally. In pathological situations resulting from hemodynamic, ischemic, or metabolic insult to the cardiovascular system and the kidney K1 and kinins exert critical end-organ protective action and K1 deficiency results in severe worsening of the conditions, at least in the mouse. On the opposite, genetically high ACE level is associated with increased risk of developing ischemic and diabetic cardiac or renal diseases and worsened prognosis of these diseases. The association has been well-documented clinically while causality was established by ACE gene titration in mice. Studies suggest that reduced bioavailability of kinins is prominently involved in the detrimental effect of K1 deficiency or high ACE activity in diseases. Kinins are involved in the therapeutic effect of both ACE inhibitors and angiotensin II AT1 receptor blockers. Based on these findings, a new therapeutic hypothesis focused on selective pharmacological activation of kinin receptors has been launched. Proof of concept was obtained by using prototypic agonists in experimental ischemic and diabetic diseases in mice.
Collapse
Affiliation(s)
- Francois Alhenc-Gelas
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | - Nadine Bouby
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | | |
Collapse
|
11
|
Bachelard H, Charest-Morin X, Marceau F. D-Arg 0-Bradykinin-Arg-Arg, a Latent Vasoactive Bradykinin B 2 Receptor Agonist Metabolically Activated by Carboxypeptidases. Front Pharmacol 2018; 9:273. [PMID: 29636689 PMCID: PMC5880945 DOI: 10.3389/fphar.2018.00273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
We previously reported hypotensive and vasodilator effects from C-terminally extended bradykinin (BK) sequences that behave as B2 receptor (B2R) agonists activated by vascular or plasma peptidases. D-Arg0-BK-Arg-Arg (r-BK-RR) is a novel prodrug peptide hypothetically activated by two catalytic cycles of Arg-carboxypeptidases (CPs) to release the direct agonist D-Arg0-BK. N-terminally extending the BK sequence with D-Arg0 in the latter peptide was meant to block the second kinin inactivation pathway in importance, aminopeptidase P. The affinity of r-BK and r-BK-RR for recombinant B2R was assessed using a [3H]BK binding displacement assay. Their pharmacology was evaluated in human isolated umbilical vein, a contractile bioassay for the B2R, in a morphological assay involving the endocytosis of B2R-green fusion protein (GFP) and in anesthetized rats instrumented to record hemodynamic responses to bolus intravenous injection of both peptides. r-BK exhibited an affinity equal to that of BK for the rat B2R, while r-BK-RR was 61-fold less potent. In the vein and the B2R-GFP internalization assay, r-BK was a direct agonist unaffected by the blockade of angiotensin converting enzyme (ACE) with enalaprilat, or Arg-CPs with Plummer’s inhibitor. However, the in vitro effects of r-BK-RR were reduced by these inhibitors, more so by enalaprilat. In anesthetized rats, r-BK and r-BK-RR were equipotent hypotensive agents and their effects were inhibited by icatibant (a B2R antagonist). The hypotensive effects of r-BK were potentiated by enalaprilat, but not influenced by the Arg-CPs inhibitor, which is consistent with a minor role of Arg-CPs in the metabolism of r-BK. However, in rats pretreated with both enalaprilat and Plummer’s inhibitor, the hypotensive responses and the duration of the hypotensive episode to r-BK were significantly potentiated. The hypotensive responses to r-BK-RR were not affected by enalaprilat, but were reduced by pre-treatment with the Arg-CPs inhibitor alone or combined with enalaprilat. Therefore, in vivo, Arg-CPs activity is dominant over ACE to regenerate the B2R agonist r-BK from r-BK-RR, a prodrug activator of the B2R. A B2R agonist activated only at the level of the microcirculation by resident peptidases could be developed as an intravenously infused drug for ischemic diseases.
Collapse
Affiliation(s)
- Hélène Bachelard
- Division of Endocrinology and Nephrology, Centre Hospitalier Universitaire de Québec Research Center-CHUL, Laval University, Quebec, QC, Canada
| | - Xavier Charest-Morin
- Division of Infectious Diseases and Immunity, Centre Hospitalier Universitaire de Québec Research Center-CHUL, Laval University, Quebec, QC, Canada
| | - François Marceau
- Division of Infectious Diseases and Immunity, Centre Hospitalier Universitaire de Québec Research Center-CHUL, Laval University, Quebec, QC, Canada
| |
Collapse
|
12
|
Shen M, Yu M, Li J, Ma L. Effects of exercise training on kinin receptors expression in rats with myocardial infarction. Arch Physiol Biochem 2017; 123:206-211. [PMID: 28330378 DOI: 10.1080/13813455.2017.1302962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The objective of this study is to determine the role of kinin B1 and B2 receptors in exercise-induced cardiac muscle angiogenesis. METHOD Thirty Wistar rats were randomly assigned to the control group, the myocardial infarction group and the exercise training group (myocardial infarction model was made and received 30 min exercise training on a treadmill). After 4 weeks of experiment, cardiac muscle was harvested. RESULTS B1 and B2 receptor mRNA and protein levels in the exercise-training group were significantly higher than those in the myocardial infarction group, which were higher than those in the control group. Capillary number in the cardiac muscle also showed the same tendency. There was a correlation between capillary number and B1 receptor protein (not B2 receptor protein) in the all groups. CONCLUSION Kinin B1 and B2 receptors play roles in exercise-induced cardiac muscle angiogenesis. However, the B1 receptor appears to have a more prominent role.
Collapse
Affiliation(s)
- Mei Shen
- a Department of Rehabilitation Medicine , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Min Yu
- a Department of Rehabilitation Medicine , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Jingya Li
- a Department of Rehabilitation Medicine , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Li Ma
- a Department of Rehabilitation Medicine , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| |
Collapse
|
13
|
Desposito D, Zadigue G, Taveau C, Adam C, Alhenc-Gelas F, Bouby N, Roussel R. Neuroprotective effect of kinin B1 receptor activation in acute cerebral ischemia in diabetic mice. Sci Rep 2017; 7:9410. [PMID: 28842604 PMCID: PMC5572700 DOI: 10.1038/s41598-017-09721-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
Activation of the kallikrein-kinin system enhances cardiac and renal tolerance to ischemia. Here we investigated the effects of selective agonists of kinin B1 or B2 receptor (R) in brain ischemia-reperfusion in diabetic and non-diabetic mice. The role of endogenous kinins was assessed in tissue kallikrein deficient mice (TK−/−). Mice underwent 60min-middle cerebral artery occlusion (MCAO), eight weeks after type 1-diabetes induction. Treatment with B1R-, B2R-agonist or saline was started at reperfusion. Neurological deficit (ND), infarct size (IS), brain water content (BWC) were measured at day 0, 1 and 2 after injury. MCAO induced exaggerated ND, mortality and IS in diabetic mice. B2R-agonist increased ND and mortality to 60% and 80% in non-diabetic and diabetic mice respectively, by mechanisms involving hemodynamic failure and renal insufficiency. TK−/− mice displayed reduced ND and IS compared to wild-type littermate, consistent with suppression of B2R activity. B1R mRNA level increased in ischemic brain but B1R-agonist had no effect on ND, mortality or IS in non-diabetic mice. In contrast, in diabetic mice, B1R-agonist tested at two doses significantly reduced ND by 42–52% and IS by 66–71%, without effect on BWC or renal function. This suggests potential therapeutic interest of B1R agonism for cerebral protection in diabetes.
Collapse
Affiliation(s)
- Dorinne Desposito
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | | | - Christopher Taveau
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Clovis Adam
- Anatomopathology Department, Kremlin-Bicêtre Hospital, Paris, France
| | - François Alhenc-Gelas
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Nadine Bouby
- INSERM U 1138, Cordeliers Research Center, Paris, France. .,Paris Descartes University, Paris, France. .,Pierre et Marie Curie University, Paris, France.
| | - Ronan Roussel
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Denis Diderot University, Paris, France.,Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Bichat Hospital, AP-HP, Paris, France
| |
Collapse
|
14
|
Desposito D, Waeckel L, Potier L, Richer C, Roussel R, Bouby N, Alhenc-Gelas F. Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications. Biol Chem 2017; 397:1217-1222. [PMID: 27622831 DOI: 10.1515/hsz-2016-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/19/2016] [Indexed: 11/15/2022]
Abstract
Genetic and pharmacological studies, clinical and experimental, focused on kallikrein-K1, kinin receptors and ACE/kininase II suggest that kinin release in the settings of ischemia or diabetes reduces organ damage, especially in the heart and kidney. Kinin bioavailability may be a limiting factor for efficacy of current kinin-potentiating drugs, like ACE inhibitors. Primary activation of kinin receptors by prototypic pharmacological agonists, peptidase-resistant, selective B1 or B2, displays therapeutic efficacy in experimental cardiac and peripheral ischemic and diabetic diseases. B1R agonism was especially efficient in diabetic animals and had no unwanted effects. Clinical development of kinin receptor agonists may be warranted.
Collapse
|
15
|
Campbell DJ. Therapeutic modulation of tissue kallikrein expression. Biol Chem 2016; 397:1293-1297. [PMID: 27533118 DOI: 10.1515/hsz-2016-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/10/2016] [Indexed: 11/15/2022]
Abstract
The kallikrein kinin system has cardioprotective actions and mediates in part the cardioprotection produced by angiotensin converting enzyme inhibitors and angiotensin type 1 receptor blockers. Additional approaches to exploit the cardioprotective effects of the kallikrein kinin system include the administration of tissue kallikrein and kinin receptor agonists. The renin inhibitor aliskiren was recently shown to increase cardiac tissue kallikrein expression and bradykinin levels, and to reduce myocardial ischemia-reperfusion injury by bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanisms. Thus, aliskiren represents a prototype drug for the modulation of tissue kallikrein expression for therapeutic benefit.
Collapse
|
16
|
Jean M, Gera L, Charest-Morin X, Marceau F, Bachelard H. In Vivo Effects of Bradykinin B2 Receptor Agonists with Varying Susceptibility to Peptidases. Front Pharmacol 2016; 6:306. [PMID: 26793104 PMCID: PMC4709452 DOI: 10.3389/fphar.2015.00306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
We reported evidence of bradykinin (BK) regeneration from C-terminal extended BK sequences that behave as peptidase-activated B2 receptor (B2R) agonists. Further to these in vitro studies, we carried out in vivo experiments to verify hemodynamic effects of BK analogs exhibiting variable susceptibility toward vascular and blood plasma peptidases. Rats were anesthetized and instrumented to record blood pressure and heart rate responses to bolus intravenous (i.v.) injection of increasing doses of BK, B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-BK), BK-Arg, BK-His-Leu or BK-Ala-Pro, in the absence or presence of specific inhibitors. In some experiments, pulsed Doppler flow probes measured hindquarter Doppler shift in response to i.v. injections of kinins. BK caused rapid, transient and dose-related hypotensive effects. These effects were potentiated ∼15-fold by the angiotensin converting enzyme (ACE) inhibitor, enalaprilat, but extensively inhibited by icatibant (a B2R antagonist) and not influenced by the Arg-carboxypeptidase (CP) inhibitor (Plummer's inhibitor). The hypotensive responses elicited by the peptidase-resistant B2R agonist, B-9972, were not affected by enalaprilat, but were inhibited by icatibant. The hypotensive responses to BK-Arg were abolished by pre-treatment with either the Arg-CP inhibitor or icatibant, pharmacologically evidencing BK regeneration. The hypotensive effects of BK-His-Leu and BK-Ala-Pro, previously reported as ACE-activated substrates, were abolished by icatibant, but not by enalaprilat. In vivo regeneration of BK from these two C-terminally extended analogs with no affinity for the B2R must follow alternative cleavage rules involving unidentified carboxypeptidase(s) when ACE is blocked. The transient hypotensive responses to BK and three tested analogs coincided with concomitant vasodilation (increased Doppler shift signal). Together, these results provide in vivo evidence that interesting hypotensive and vasodilator effects can be extracted from prodrug peptides that behave as peptidase-activated B2R agonists.
Collapse
Affiliation(s)
- Mélissa Jean
- Axe Endocrinologie et Néphrologie, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Québec QC, Canada
| | - Lajos Gera
- Department of Biochemistry, University of Colorado Denver, Denver CO, USA
| | - Xavier Charest-Morin
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Québec QC, Canada
| | - François Marceau
- Axe Maladies Infectieuses et Immunitaires, Centre de recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Québec QC, Canada
| | - Hélène Bachelard
- Axe Endocrinologie et Néphrologie, Centre de Recherche, Centre Hospitalier Universitaire de Québec, Québec QC, Canada
| |
Collapse
|
17
|
Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond) 2015; 130:45-56. [PMID: 26443866 DOI: 10.1042/cs20150295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/06/2015] [Indexed: 01/11/2023]
Abstract
Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.
Collapse
|
18
|
Figueiredo EL, Magalhães CA, Belli KC, Mandil A, Garcia JCF, Araújo RA, Figueiredo AFDS, Pellanda LC. Human Tissue Kallikrein Activity in Angiographically Documented Chronic Stable Coronary Artery Disease. Arq Bras Cardiol 2015; 105:457-565. [PMID: 26351984 PMCID: PMC4651403 DOI: 10.5935/abc.20150109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/15/2015] [Indexed: 01/22/2023] Open
Abstract
Background Human tissue kallikrein (hK1) is a key enzyme in the kallikrein–kinin system
(KKS). hK1-specific amidase activity is reduced in urine samples from hypertensive
and heart failure (HF) patients. The pathophysiologic role of hK1 in coronary
artery disease (CAD) remains unclear. Objective To evaluate hK1-specific amidase activity in the urine of CAD patients Methods Sixty-five individuals (18–75 years) who underwent cardiac catheterism (CATH) were
included. Random midstream urine samples were collected immediately before CATH.
Patients were classified in two groups according to the presence of coronary
lesions: CAD (43 patients) and non-CAD (22 patients). hK1 amidase activity was
estimated using the chromogenic substrate D-Val-Leu-Arg-Nan. Creatinine was
determined using Jaffé’s method. Urinary hK1-specific amidase activity was
expressed as µM/(min · mg creatinine) to correct for differences
in urine flow rates. Results Urinary hK1-specific amidase activity levels were similar between CAD [0.146
µM/(min ·mg creatinine)] and non-CAD [0.189
µM/(min . mg creatinine)] patients (p = 0.803) and remained
similar to values previously reported for hypertensive patients [0.210
µM/(min . mg creatinine)] and HF patients [0.104
µM/(min . mg creatinine)]. CAD severity and hypertension were
not observed to significantly affect urinary hK1-specific amidase activity. Conclusion CAD patients had low levels of urinary hK1-specific amidase activity, suggesting
that renal KKS activity may be reduced in patients with this disease.
Collapse
Affiliation(s)
| | - Carolina Antunes Magalhães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karlyse Claudino Belli
- Divisão de Cardiologia, Laboratório de Pesquisa de Patofisiologia do Exercício, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ari Mandil
- Departamento de Hemodinâmica, Hospital Lifecenter, Belo Horizonte, MG, Brazil
| | | | | | | | - Lucia Campos Pellanda
- Programa de Pós-Graduação em Cardiologia, Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Youcef G, Belaidi E, Waeckel L, Fazal L, Clemessy M, Vincent MP, Zadigue G, Richer C, Alhenc-Gelas F, Ovize M, Pizard A. Tissue kallikrein is required for the cardioprotective effect of cyclosporin A in myocardial ischemia in the mouse. Biochem Pharmacol 2015; 94:22-9. [PMID: 25623731 DOI: 10.1016/j.bcp.2015.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/08/2015] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
Clinical and experimental studies suggest that pharmacological postconditioning with Cyclosporin A (CsA) reduces infarct size in cardiac ischemia and reperfusion. CsA interacts with Cyclophilin D (CypD) preventing opening of the mitochondrial permeability transition pore (mPTP). Tissue kallikrein (TK) and its products kinins are involved in cardioprotection in ischemia. CypD knockout mice are resistant to the cardioprotective effects of both CsA and kinins suggesting common mechanisms of action. Using TK gene knockout mice, we investigated whether the kallikrein-kinin system is involved in the cardioprotective effect of CsA. Homozygote and heterozygote TK deficient mice (TK(-/-), TK(+/-)) and wild type littermates (TK(+/+)) were subjected to cardiac ischemia-reperfusion with and without CsA postconditioning. CsA reduced infarct size in TK(+/+) mice but had no effect in TK(+/-) and TK(-/-) mice. Cardiac mitochondria isolated from TK(-/-) mice had indistinguishable basal oxidative phosphorylation and calcium retention capacity compared to TK(+/+) mice but were resistant to CsA inhibition of mPTP opening. TK activity was documented in mouse heart and rat cardiomyoblasts mitochondria. By proximity ligation assay TK was found in close proximity to the mitochondrial membrane proteins VDAC and Tom22, and CypD. Thus, partial or total deficiency in TK induces resistance to the infarct size reducing effect of CsA in cardiac ischemia in mice, suggesting that TK level is a critical factor for cardioprotection by CsA. TK is required for the mitochondrial action of CsA and may interact with CypD. Genetic variability in TK activity has been documented in man and may influence the cardioprotective effect of CsA.
Collapse
Affiliation(s)
- G Youcef
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France; Université de Lorraine, Nancy, France
| | - E Belaidi
- Inserm U 1060-CarMeN & Service d'Explorations Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - L Waeckel
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - L Fazal
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - M Clemessy
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - M P Vincent
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - G Zadigue
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - C Richer
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - F Alhenc-Gelas
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - M Ovize
- Inserm U 1060-CarMeN & Service d'Explorations Fonctionnelles Cardiovasculaires, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - A Pizard
- Inserm UMR 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Paris, France; Université Pierre et Marie Curie, Paris, France; Université de Lorraine, Nancy, France; Inserm UMRS 1116, faculté de médecine de Nancy-Brabois, Vandoeuvre-lès-Nancy, France; Inserm CIC-1433, Institut du Cœur et des Vaisseaux Louis Mathieu, Vandoeuvre-lès-Nancy, France; CHRU Nancy Brabois, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
20
|
Potier L, Waeckel L, Fumeron F, Bodin S, Fysekidis M, Chollet C, Bellili N, Bonnet F, Gusto G, Velho G, Marre M, Alhenc-Gelas F, Roussel R, Bouby N. Tissue kallikrein deficiency, insulin resistance, and diabetes in mouse and man. J Endocrinol 2014; 221:297-308. [PMID: 24599937 DOI: 10.1530/joe-13-0529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The kallikrein-kinin system has been suggested to participate in the control of glucose metabolism. Its role and the role of angiotensin-I-converting enzyme, a major kinin-inactivating enzyme, are however the subject of debate. We have evaluated the consequence of deficiency in tissue kallikrein (TK), the main kinin-forming enzyme, on the development of insulin resistance and diabetes in mice and man. Mice with inactivation of the TK gene were fed a high-fat diet (HFD) for 3 months, or crossed with obese, leptin-deficient (ob/ob) mice to generate double ob/ob-TK-deficient mutants. In man, a loss-of-function polymorphism of the TK gene (R53H) was studied in a large general population cohort tested for insulin resistance, the DESIR study (4843 participants, 9 year follow-up). Mice deficient in TK gained less weight on the HFD than their WT littermates. Fasting glucose level was increased and responses to glucose (GTT) and insulin (ITT) tolerance tests were altered at 10 and 16 weeks on the HFD compared with standard on the diet, but TK deficiency had no influence on these parameters. Likewise, ob-TK⁻/⁻ mice had similar GTT and ITT responses to those of ob-TK⁺/⁺ mice. TK deficiency had no effect on blood pressure in either model. In humans, changes over time in BMI, fasting plasma glucose, insulinemia, and blood pressure were not influenced by the defective 53H-coding TK allele. The incidence of diabetes was not influenced by this allele. These data do not support a role for the TK-kinin system, protective or deleterious, in the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Louis Potier
- INSERM U1138, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France University Paris Descartes, Paris, France University Pierre and Marie Curie, Paris, France Diabetology, Endocrinology and Nutrition Department, AP-HP, Bichat-Claude Bernard Hospital, Paris, France INSERM U695, Paris, France Paris Diderot University, Paris 7, Paris, France Department of Endocrinology, CHU Rennes, Univ Rennes 1, Inserm UMR 991, Rennes, France Institut inter Régional Pour la Santé, Irsa, La Riche, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Q, Ran X, Wang DW. Relation of plasma tissue kallikrein levels to presence and severity of coronary artery disease in a Chinese population. PLoS One 2014; 9:e91780. [PMID: 24626253 PMCID: PMC3953537 DOI: 10.1371/journal.pone.0091780] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
Objectives Tissue kallikrein (TK) has been shown to provide cardiovascular and cerebrovascular protective effects in animal models. The aim of this study was to investigate the relationship of plasma TK levels with the presence and severity of coronary artery disease (CAD) in the Chinese. Methods The study involved 898 consecutive CAD patients and 905 ethnically and geographically matched controls. CAD was angiographically confirmed in all the patients, and the severity of CAD was expressed by the number of affected vessel and coronary artery stenosis scores. Plasma TK levels were measured using an enzyme-linked immunosorbent assay. Results Plasma TK levels were significantly higher in CAD patients than controls (0.347±.082 vs. 0.256±0.087 mg/L, P<0.001), and elevated plasma TK levels were directly associated with a higher risk of CAD (OR = 3.49, 95% CI 2.90–4.19). One-way ANOVA and multivariable stepwise linear regression analysis demonstrated that TK levels were negatively associated with the severity of CAD according to vessel scores (P<0.001) and stenosis scores (r = −0.211, p<0.001). Conclusions Our findings suggest that higher levels of TK in plasma are associated with the presence of CAD and are a predictor of mild coronary arteriosclerosis.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ran
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
22
|
Cardioprotective Effect of VEGF and Venom VEGF-like Protein in Acute Myocardial Ischemia in Mice. J Cardiovasc Pharmacol 2014; 63:274-81. [DOI: 10.1097/fjc.0000000000000045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Chao J, Bledsoe G, Chao L. Tissue kallikrein-kinin therapy in hypertension and organ damage. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:37-57. [PMID: 25130039 DOI: 10.1007/978-3-319-06683-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tissue kallikrein is a serine proteinase that cleaves low molecular weight kininogen to produce kinin peptides, which in turn activate kinin receptors to trigger multiple biological functions. In addition to its kinin-releasing activity, tissue kallikrein directly interacts with the kinin B2 receptor, protease-activated receptor-1, and gamma-epithelial Na channel. The tissue kallikrein-kinin system (KKS) elicits a wide spectrum of biological activities, including reducing hypertension, cardiac and renal damage, restenosis, ischemic stroke, and skin wound injury. Both loss-of-function and gain-of-function studies have shown that the KKS plays an important endogenous role in the protection against health pathologies. Tissue kallikrein/kinin treatment attenuates cardiovascular, renal, and brain injury by inhibiting oxidative stress, apoptosis, inflammation, hypertrophy, and fibrosis and promoting angiogenesis and neurogenesis. Approaches that augment tissue kallikrein-kinin activity might provide an effective strategy for the treatment of hypertension and associated organ damage.
Collapse
|
24
|
Girolami JP, Blaes N, Bouby N, Alhenc-Gelas F. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:145-196. [PMID: 25130042 DOI: 10.1007/978-3-319-06683-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.
Collapse
|
25
|
Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol 2013; 1:971-93. [PMID: 23737209 DOI: 10.1002/cphy.c100053] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardio-vascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (tPA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoid-salt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body's adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension.
Collapse
Affiliation(s)
- Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | |
Collapse
|
26
|
Potier L, Waeckel L, Vincent MP, Chollet C, Gobeil F, Marre M, Bruneval P, Richer C, Roussel R, Alhenc-Gelas F, Bouby N. Selective Kinin Receptor Agonists as Cardioprotective Agents in Myocardial Ischemia and Diabetes. J Pharmacol Exp Ther 2013; 346:23-30. [DOI: 10.1124/jpet.113.203927] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
27
|
Waeckel L, Potier L, Richer C, Roussel R, Bouby N, Alhenc-Gelas F. Pathophysiology of genetic deficiency in tissue kallikrein activity in mouse and man. Thromb Haemost 2013; 110:476-83. [PMID: 23572029 DOI: 10.1160/th12-12-0937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
Abstract
Study of mice rendered deficient in tissue kallikrein (TK) by gene inactivation and human subjects partially deficient in TK activity as consequence of an active site mutation has allowed recognising the physiological role of TK and its peptide products kinins in arterial function and in vasodilatation, in both species. TK appears as the major kinin forming enzyme in arteries, heart and kidney. Non-kinin mediated actions of TK may occur in epithelial cells in the renal tubule. In basal condition, TK deficiency induces mild defective phenotypes in the cardiovascular system and the kidney. However, in pathological situations where TK synthesis is typically increased and kinins are produced, TK deficiency has major, deleterious consequences. This has been well documented experimentally for cardiac ischaemia, diabetes renal disease, peripheral ischaemia and aldosterone-salt induced hypertension. These conditions are all aggravated by TK deficiency. The beneficial effect of ACE/kininase II inhibitors or angiotensin II AT1 receptor antagonists in cardiac ischaemia is abolished in TK-deficient mice, suggesting a prominent role for TK and kinins in the cardioprotective action of these drugs. Based on findings made in TK-deficient mice and additional evidence obtained by pharmacological or genetic inactivation of kinin receptors, development of novel therapeutic approaches relying on kinin receptor agonism may be warranted.
Collapse
Affiliation(s)
- L Waeckel
- Francois Alhenc-Gelas, INSERM U872, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine 75006 Paris, France, E-mail:
| | | | | | | | | | | |
Collapse
|
28
|
Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Ther 2012; 135:94-111. [DOI: 10.1016/j.pharmthera.2012.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/24/2022]
|
29
|
Yao Y, Sheng Z, Li Y, Yan F, Fu C, Li Y, Ma G, Liu N, Chao J, Chao L. Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity. Hum Gene Ther 2012; 23:859-70. [PMID: 22435954 DOI: 10.1089/hum.2011.123] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue kallikrein (TK) has been demonstrated to improve neovasculogenesis after myocardial infarction (MI). In the present study, we examined the role and underlying mechanisms of TK in peripheral endothelial progenitor cell (EPC) function. Peripheral blood-derived mononuclear cells containing EPCs were isolated from rat. The in vitro effects of TK on EPC differentiation, apoptosis, migration, and vascular tube formation capacity were studied in the presence or absence of TK, kinin B(2) receptor antagonist (icatibant), and phosphatidylinositol-3 kinase inhibitor (LY294002). Apoptosis was evaluated by flow-cytometry analysis using Annexin V-FITC/PI staining, as well as western-blot analysis of Akt phosphorylation and cleaved caspase-3. Using an MI mouse model, we then examined the in vivo effects of human TK gene adenoviral vector (Ad.hTK) administration on the number of CD34(+)Flk-1(+) progenitors in the peripheral circulation, heart tissue, extent of vasculogenesis, and heart function. Administration of TK significantly increased the number of Dil-LDL/UEA-lectin double-positive early EPCs, as well as their migration and tube formation properties in vitro. Transduction of TK in cultured EPCs attenuated apoptosis induced by hypoxia and led to an increase in Akt phosphorylation and a decrease in cleaved caspase-3 levels. The beneficial effects of TK were blocked by pretreatment with icatibant and LY294002. The expression of recombinant human TK in the ischemic mouse heart significantly improved cardiac contractility and reduced infarct size 7 days after gene delivery. Compared with the Ad.Null group, Ad.hTK reduced mortality and preserved left ventricular function by increasing the number of CD34(+)Flk-1(+) EPCs and promoting the growth of capillaries and arterioles in the peri-infarct myocardium. These data provide direct evidence that TK promotes vessel growth by increasing the number of EPCs and enhancing their functional properties through the kinin B(2) receptor-Akt signaling pathway.
Collapse
Affiliation(s)
- Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Jerry G. Webb
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
31
|
Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and Valsartan Reduce Myocardial AT1 Receptor Expression and Limit Myocardial Infarct Size in Diabetic Mice. Cardiovasc Drugs Ther 2011; 25:505-15. [DOI: 10.1007/s10557-011-6339-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Additive renoprotective effects of B2-kinin receptor blocker and PPAR-γ agonist in uninephrectomized db/db mice. J Transl Med 2011; 91:1351-62. [PMID: 21537328 DOI: 10.1038/labinvest.2011.81] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We recently showed that the bradykinin B2 receptor (B2R) blocker icatibant (Icat) and the peroxisome proliferator-activated receptor-γ agonist rosiglitazone (Ros) exerted anti-inflammatory effects in renal tubular cells exposed to a diabetic milieu. This study aims to explore whether these effects can be translated to an experimental model of type 2 diabetic nephropathy (DN). db/db mice and their nondiabetic db/m littermates underwent sham operation or uninephrectomy (Unx) at 10 weeks and received vehicle (Veh), metformin (Met), Icat, Ros, or Icat plus Ros for 8 weeks before killing. Among the db/db group with Unx, mice that received Icat or Ros had significantly lower serum creatinine and albuminuria, which was further reduced when Icat and Ros were given in combination. These beneficial effects were not observed in the Met group that achieved similar glycemic control as Ros-treated animals. Likewise, the severity of reactive glomerular and proximal tubular hypertrophy, glomerulosclerosis, interstitial injury, cortical F4/80 and α-smooth muscle actin immunostaining, and CCL-2, ICAM-1 and TGF-β overexpression were all attenuated by Icat and Ros, and these effects were enhanced when both agents were combined. Immunohistochemical staining confirmed the proximal tubular expression of CCL-2 (inflammation) and TGF-β (fibrosis). Treatment with Icat was associated with decreased B2R, but increased, B1R expression, which was exaggerated in Unx animals. At the signaling level, Icat and Ros reduced extracellular signal-regulated kinase 1/2 and STAT1 activation, respectively. Our results suggest a deleterious role of the kallikrein-kinin system in murine-accelerated DN, which can be ameliorated by the B2R blocker Icat and enhanced by the addition of Ros. This calls for further evaluation of this novel therapeutic approach in more animal models of diabetic nephropathy.
Collapse
|
33
|
Lahm T. Bradykinin and the heart: left, right, or both? J Surg Res 2011; 167:216-9. [PMID: 20691989 DOI: 10.1016/j.jss.2010.05.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Affiliation(s)
- Tim Lahm
- Department of Medicine, Richard L. Roudebush VA Medical Center and Indiana University School of Medicine, 1481 W. 10th St., VA 111P-IU, Indianapolis, IN 46202, USA.
| |
Collapse
|
34
|
Messadi E, Vincent MP, Griol-Charhbili V, Mandet C, Colucci J, Krege JH, Bruneval P, Bouby N, Smithies O, Alhenc-Gelas F, Richer C. Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia. FASEB J 2010. [PMID: 20667972 DOI: 10.1096/fj.10.165902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene and displaying an ACE level range similar to humans. Infarct size in ACE1c was 29% lower than in ACE2c (P<0.05). Pretreatment with a kinin B2 receptor antagonist suppressed this reduction. In ACE3c, infarct size was the same as in ACE2c. But ischemic preconditioning, which reduced infarct size in ACE2c (-63%, P<0.001) and ACE1c (-52%, P<0.05), was not efficient in ACE3c (-2%, NS, P<0.01 vs. ACE2c). In ACE3c, ischemic preconditioning did not decrease myocardial inflammation or cardiomyocyte apoptosis. Pretreatment with a renin inhibitor had no cardioprotective effect in ACE2c, but in ACE3c partially restored (38%) the cardioprotection of ischemic preconditioning. Thus, a modest genetic increase in ACE impairs myocardial tolerance to ischemia. ACE level plays a critical role in cardiac ischemia, through both kinin and angiotensin mediated mechanisms.
Collapse
Affiliation(s)
- Erij Messadi
- INSERM U872, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Messadi E, Vincent MP, Griol-Charhbili V, Mandet C, Colucci J, Krege JH, Bruneval P, Bouby N, Smithies O, Alhenc-Gelas F, Richer C. Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia. FASEB J 2010; 24:4691-700. [PMID: 20667972 DOI: 10.1096/fj.10-165902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene and displaying an ACE level range similar to humans. Infarct size in ACE1c was 29% lower than in ACE2c (P<0.05). Pretreatment with a kinin B2 receptor antagonist suppressed this reduction. In ACE3c, infarct size was the same as in ACE2c. But ischemic preconditioning, which reduced infarct size in ACE2c (-63%, P<0.001) and ACE1c (-52%, P<0.05), was not efficient in ACE3c (-2%, NS, P<0.01 vs. ACE2c). In ACE3c, ischemic preconditioning did not decrease myocardial inflammation or cardiomyocyte apoptosis. Pretreatment with a renin inhibitor had no cardioprotective effect in ACE2c, but in ACE3c partially restored (38%) the cardioprotection of ischemic preconditioning. Thus, a modest genetic increase in ACE impairs myocardial tolerance to ischemia. ACE level plays a critical role in cardiac ischemia, through both kinin and angiotensin mediated mechanisms.
Collapse
Affiliation(s)
- Erij Messadi
- INSERM U872, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jiang S, Hsu YH, Venners SA, Zhang Y, Xing H, Wang X, Xu X. Effects of protein coding polymorphisms in the kallikrein 1 gene on baseline blood pressure and antihypertensive response to irbesartan in Chinese hypertensive patients. J Hum Hypertens 2010; 25:327-33. [PMID: 20613781 DOI: 10.1038/jhh.2010.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to determine the association between coding variants in the human tissue kallikrein 1 (KLK1) gene and baseline blood pressure (BP) and antihypertensive response to irbesartan treatment in Chinese hypertensive patients. A total of 1061 hypertensives were recruited and received daily oral dosage of 150 mg irbesartan for 4 weeks. Predose BPs, BPs and blood irbesartan concentrations at postdose on the 28th day were all measured. Common functional single-nucleotide polymorphisms (SNPs) in the KLK1 gene were genotyped. On the basis of the HapMap data of Han Chinese in the Beijing population, two non-synonymous polymorphisms with minor allele frequency>0.1, SNP rs5517 (Glu162Lys) and rs5516 (Gln121Glu), were selected. Those with GG genotype in the rs5516 locus had higher average baseline systolic BP (SBP) than CC subjects (β±s.e.: 5.0±2.3, P=0.033); and no associations of rs5517 with baseline BP (diastolic BP (DBP) and SBP) and BP responses, or rs5516 with baseline DBP and BP response were observed. In a haplotype-based association test for the KLK1 gene, the Haplo-special score analyses identified that haplotype AG was marginally associated with SBP response (specific score: 1.75 for P=0.08), but not with DBP response. We did not find any associations between haplotypes (GC and AC) and BP responses. The Haplo-GLM analyses showed that, compared with haplotype GC subjects, the subjects with haplotype AG had a marginally greater SBP response (adjusted β±s.e.: 1.81±0.97, P=0.06), but DBP response did not differ. This study suggests that rs5516 in the KLK1 gene may be involved in the development of essential hypertension and in the regulation of SBP-lowering response to irbesartan in Chinese hypertensives.
Collapse
Affiliation(s)
- S Jiang
- School of Life Sciences, Anhui University, Hefei, China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Katori M, Majima M. A Novel Category of Anti-Hypertensive Drugs for Treating Salt-Sensitive Hypertension on the Basis of a New Development Concept. Pharmaceuticals (Basel) 2010; 3:59-109. [PMID: 27713243 PMCID: PMC3991021 DOI: 10.3390/ph3010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 12/20/2022] Open
Abstract
Terrestrial animals must conserve water and NaCl to survive dry environments. The kidney reabsorbs 95% of the sodium filtered from the glomeruli before sodium reaches the distal connecting tubules. Excess sodium intake requires the renal kallikrein-kinin system for additional excretion. Renal kallikrein is secreted from the distal connecting tubule cells of the kidney, and its substrates, low molecular kininogen, from the principal cells of the cortical collecting ducts (CD). Formed kinins inhibit reabsorption of NaCl through bradykinin (BK)-B₂ receptors, localized along the CD. Degradation pathway of BK by kinin-destroying enzymes in urine differs completely from that in plasma, so that ACE inhibitors are ineffective. Urinary BK is destroyed mainly by a carboxypeptidase-Y-like exopeptidase (CPY) and partly by a neutral endopeptidase (NEP). Inhibitors of CPY and NEP, ebelactone B and poststatin, respectively, were found. Renal kallikrein secretion is accelerated by potassium and ATP-sensitive potassium (KATP) channel blockers, such as PNU-37883A. Ebelactone B prevents DOCA-salt hypertension in rats. Only high salt intake causes hypertension in animals deficient in BK-B2 receptors, tissue kallikrein, or kininogen. Hypertensive patients, and spontaneously hypertensive rats, excrete less kallikrein than normal subjects, irrespective of races, and become salt-sensitive. Ebelactone B, poststatin, and KATP channel blockers could become novel antihypertensive drugs by increase in urinary kinin levels. Roles of kinin in cardiovascular diseases were discussed.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan.
| | - Masataka Majima
- Department of Pharmacology, School of Medicine, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
| |
Collapse
|
38
|
Bodin S, Chollet C, Goncalves-Mendes N, Gardes J, Pean F, Heudes D, Bruneval P, Marre M, Alhenc-Gelas F, Bouby N. Kallikrein protects against microalbuminuria in experimental type I diabetes. Kidney Int 2009; 76:395-403. [DOI: 10.1038/ki.2009.208] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 2009; 75:1019-30. [PMID: 19190676 DOI: 10.1038/ki.2008.647] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since kallikrein was discovered as a vasodilatory substance in human urine, the kallikrein-kinin system (KKS) has been considered to play a physiological role in controlling blood pressure. Gene targeting experiments in mice in which the KKS has been inactivated to varying degrees have, however, questioned this role, because basal blood pressures are not altered. Rather, these experiments have shown that the KKS has a different and important role in preventing changes associated with normal senescence in mice, and in reducing the nephropathy and accelerated senescence-associated phenotypes induced in mice by diabetes. Other experiments have shown that the KKS suppresses mitochondrial respiration, partly by nitric oxide and prostaglandins, and that this suppression may be a key to understanding how the KKS influences senescence-related diseases. Here we review the logical progression and experimental data leading to these conclusions, and discuss their relevance to human conditions.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
40
|
Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener EP. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension 2009; 53:175-81. [PMID: 19124682 DOI: 10.1161/hypertensionaha.108.117663] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertension is a leading risk factor for the development and progression of diabetic retinopathy and contributes to a variety of other retinal diseases in the absence of diabetes mellitus. Inhibition of the renin-angiotensin system has been shown to provide beneficial effects against diabetic retinopathy, both in the absence and presence of hypertension, suggesting that angiotensin II (Ang II) and the Ang II type 1 receptor may contribute to retinal vascular dysfunction. We investigated the effects of the Ang II type 1 receptor antagonist candesartan on retinal vascular permeability (RVP) in normotensive rats with streptozotocin-induced diabetes mellitus and in rats with Ang II-induced hypertension. We showed that candesartan treatment decreased diabetes mellitus- and Ang II-stimulated RVP by 58% (P<0.05) and 79% (P<0.05), respectively, compared with untreated controls, suggesting that activation of the Ang II type 1 receptor contributes to blood-retinal barrier dysfunction. We found that plasma kallikrein levels are increased in the retina of rats with Ang II-stimulated hypertension and that intravitreal injection of either plasma kallikrein or bradykinin is sufficient to increase RVP. We showed that a novel small molecule inhibitor of plasma kallikrein, 1-benzyl-1H-pyrazole-4-carboxylic acid 4-carbamimidoyl-benzylamide, delivered systemically via a subcutaneous pump, decreased Ang II-stimulated RVP by 70% (P<0.05) and ameliorates Ang II-induced hypertension, measured from the carotid artery by telemetry, but did not reduce Ang II-induced retinal leukostasis. These findings demonstrate that activation of the Ang II type 1 receptor increases RVP and suggest that systemic plasma kallikrein inhibition may provide a new therapeutic approach for ameliorating blood-retinal barrier dysfunction induced by hypertension.
Collapse
Affiliation(s)
- Joanna A Phipps
- Department of Medicine, Harvard Medical School, Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
41
|
Pizard A, Richer C, Bouby N, Picard N, Meneton P, Azizi M, Alhenc-Gelas F. Genetic deficiency in tissue kallikrein activity in mouse and man: effect on arteries, heart and kidney. Biol Chem 2008; 389:701-6. [PMID: 18627303 DOI: 10.1515/bc.2008.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tissue kallikrein (KLK1) is a kinin-forming serine protease synthesized in many organs including arteries and kidney. Study of the physiological role of KLK1 has benefited from the availability of mouse and human genetic models of KLK1 deficiency, through engineering of KLK1 mouse mutants and discovery of a major polymorphism in the human KLK1 gene that induces a loss of enzyme activity. Studies in KLK1-deficient mice and human subjects partially deficient in KLK1 have documented its critical role in arterial function in both species. KLK1 is also involved in the control of ionic transport in the renal tubule, an action that may not be kinin-mediated. Studies of experimental diseases in KLK1-deficient mice have revealed cardio- and nephro-protective effects of KLK1 and kinins in acute cardiac ischemia, post-ischemic heart failure, and diabetes. Potential clinical and therapeutic developments are discussed.
Collapse
Affiliation(s)
- Anne Pizard
- INSERM U652/U872, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, F-75006 Paris, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Messadi-Laribi E, Griol-Charhbili V, Gaies E, Vincent MP, Heudes D, Meneton P, Alhenc-Gelas F, Richer C. Cardioprotection and kallikrein-kinin system in acute myocardial ischaemia in mice. Clin Exp Pharmacol Physiol 2008; 35:489-93. [PMID: 18307747 DOI: 10.1111/j.1440-1681.2008.04902.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Acute myocardial ischaemia and reperfusion trigger cardioprotective mechanisms that tend to limit myocardial injury. These cardioprotective mechanisms remain for a large part unknown, but can be potentiated by performing ischaemic preconditioning or by administering drugs such as angiotensin-I-converting enzyme (kininase II) inhibitors (ACEI). 2. This brief review summarizes the findings concerning the role of tissue kallikrein (TK), a major kinin-forming enzyme, kinins and kinin receptors in the cardioprotection afforded by ischaemic preconditioning (IPC) or by pharmacological postconditioning by drugs originally targeted at the renin-angiotensin system, ACEI and type 1 angiotensin-II receptor blockers (ARB) in acute myocardial ischaemia. Myocardial ischaemia was induced by left coronary occlusion and was followed after 30 min by a 3 h reperfusion period (IR), performed in vivo in mice. The role of the kallikrein-kinin system (KKS) was studied by using genetically engineered mice deficient in TK gene and their wild-type littermates, or by blocking B1 or B2 bradykinin receptors in wild-type mice using selective pharmacological antagonists. 3. Ischaemic preconditioning (three cycles: 3 min occlusion/5 min reperfusion) enhances the ability of the heart of wild-type mice to tolerate IR. Tissue kallikrein plays a major role in the cardioprotective effect afforded by IPC, which is largely reduced in TK-deficient mice. The B2 receptor is the main kinin receptor involved in the cardioprotective effect of IPC. 4. Tissue kallikrein is also required for the cardioprotective effects of pharmacological postconditioning with ACEI (ramiprilat) or ARB (losartan), which are abolished for both classes of drugs in TK-deficient mice. The B2 receptor mediates the cardioprotective effects of these drugs. Activation of angiotensin-II type 2 (AT2) receptor is involved in the cardioprotective effects of losartan, suggesting a functional coupling between AT2 receptor and TK during angiotensin-II type 1 (AT1) receptor blockade. 5. The demonstration of a cardioprotective effect of the KKS in acute myocardial ischaemia involving TK and the B2 receptor and playing a major role in IPC or pharmacological postconditioning by ACEI or ARB, suggests a potential therapeutic approach based on pharmacological activation of the B2 receptor.
Collapse
|
43
|
Tissue kallikrein deficiency aggravates cardiac remodelling and decreases survival after myocardial infarction in mice. Eur J Heart Fail 2008; 10:343-51. [PMID: 18343196 DOI: 10.1016/j.ejheart.2008.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 11/30/2007] [Accepted: 02/04/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Tissue kallikrein (TK) is a major kinin-releasing enzyme present in arteries. TK is involved in cardioprotection in the setting of acute myocardial ischaemia but its role in post-ischaemic heart failure (HF), a major cause of delayed mortality after myocardial infarction (MI), is unknown. AIM To determine whether TK deficiency in the mouse influences survival and cardiac remodelling after MI. METHODS MI was induced in 10 week-old male TK-deficient mice and wild-type littermates. Survival was assessed up to 14 months. Cardiac morphological and functional parameters were serially measured by echocardiography. In another experiment, myocardial capillary density and NOS content were evaluated at 3 months. RESULTS Infarct size was similar in both genotypes. MI resulted in severe cardiac dysfunction. Up to 12 months after MI, TK(-/-) mice displayed an increased mortality rate (P<0.05, relative risk of death=3.41) and aggravation of left ventricular hypertrophy and dilatation by comparison with TK(+/+) (+18% and +27% respectively, both P<0.05). NOS1 and NOS3 were abnormally regulated in the heart of TK(-/-) mice after MI. CONCLUSIONS TK exerts a protective role in HF in mice. Coronary effects are probably involved. As partial genetic deficiency in TK activity occurs in humans, TK-deficient subjects may be at increased risk of mortality in HF.
Collapse
|
44
|
Westermann D, Schultheiss HP, Tschöpe C. New perspective on the tissue kallikrein–kinin system in myocardial infarction: Role of angiogenesis and cardiac regeneration. Int Immunopharmacol 2008; 8:148-54. [DOI: 10.1016/j.intimp.2007.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 07/19/2007] [Accepted: 07/23/2007] [Indexed: 11/17/2022]
|
45
|
Isbell DC, Voros S, Yang Z, DiMaria JM, Berr SS, French BA, Epstein FH, Bishop SP, Wang H, Roy RJ, Kemp BA, Matsubara H, Carey RM, Kramer CM. Interaction between bradykinin subtype 2 and angiotensin II type 2 receptors during post-MI left ventricular remodeling. Am J Physiol Heart Circ Physiol 2007; 293:H3372-8. [DOI: 10.1152/ajpheart.00997.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II type 2 receptor (AT2R) overexpression (AT2TG) attenuates left ventricular remodeling in a mouse model of anterior myocardial infarction (MI). We hypothesized that the beneficial effects of cardiac AT2TG are mediated via the bradykinin subtype 2 receptor (B2R). Fourteen transgenic mice overexpressing the AT2R (AT2TG mice), 10 mice with a B2R deletion (B2KO mice), 13 AT2TG mice with B2R deletion (AT2TG/B2KO mice), and 11 wild-type (WT) mice were studied. All mice were on a C57BL/6 background. Mice were studied by cardiac magnetic resonance imaging at baseline and days 1, 7, and 28 after MI induced by 1 h of occlusion of the left anterior descending artery followed by reperfusion. Short-axis images from apex to base were used to compare ventricular volumes and ejection fraction (EF). At baseline, end-diastolic volume index (EDVI) and end-systolic volume index (ESVI) were lower and EF higher in AT2TG mice compared with the other three strains. Infarct size was similar between groups. No differences were observed in global remodeling parameters at day 28 between AT2TG and AT2TG/B2KO mice; however, EDVI and ESVI were lower and EF higher in both transgenic groups than in WT or B2KO mice. Both strains lacking B2R demonstrated increased collagen content and less hypertrophy in adjacent noninfarcted regions at day 28. Attenuation of postinfarct remodeling by overexpression of AT2R is not directly mediated via a B2R pathway. However, B2R does appear to have a role in the smaller cavity size and hyperdynamic function observed at baseline in AT2TG mice and in limiting collagen deposition during postinfarct remodeling.
Collapse
|
46
|
Messadi-Laribi E, Griol-Charhbili V, Pizard A, Vincent MP, Heudes D, Meneton P, Alhenc-Gelas F, Richer C. Tissue Kallikrein Is Involved in the Cardioprotective Effect of AT1-Receptor Blockade in Acute Myocardial Ischemia. J Pharmacol Exp Ther 2007; 323:210-6. [PMID: 17636004 DOI: 10.1124/jpet.107.124859] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors limit infarct size in animal models of myocardial ischemia reperfusion injury. This effect has been shown to be due to inhibition of bradykinin degradation rather than inhibition of angiotensin II formation. The purpose of this study was to determine whether angiotensin AT1 receptor blockade by losartan or its active metabolite EXP3174 protects against myocardial ischemia-reperfusion injury in mice and whether this protection is mediated by the kallikrein kinin system. We subjected anesthetized mice to 30 min of coronary artery occlusion followed by 3 h of reperfusion and evaluated infarct size immediately after reperfusion. Losartan (Los) or EXP3174 [2-n-butyl-4-chloro-1-[(2'-(1H-tetrazol-5-yl)biphenyl-4-yI)methyl]imidazole-5-carboxylic acid] were administered 5 min before starting reperfusion at dosages determined by preliminary studies of blood pressure effect and inhibition of angiotensin pressor response. Compared with saline, both drugs significantly reduced myocardial infarct size by roughly 40% (P < 0.001). Pretreatment of mice with the selective AT2 receptor antagonist PD123,319 [S-(+)-1-([4-(dimethylamino)-3-methylphenyl]methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5-c)pyridine-6-carboxylic acid] did not affect infarct size in the absence of losartan but abolished the reduction in infarct size provided by losartan. In tissue kallikrein gene-deficient mice (TK-/-), losartan no longer reduced infarct size. Pretreatment of wild-type mice with the B2 receptor antagonist icatibant reproduced the effect of TK deficiency. We conclude that AT1 receptor blockade provides cardioprotection against myocardial ischemia-reperfusion injury through stimulation of AT2 receptors. Kallikrein and B2 receptor are major determinants of this cardioprotective effect of losartan. Our results support the hypothesis of a coupling between AT2 receptors and kallikrein during AT1 receptor blockade, which plays a major role in cardioprotection.
Collapse
|
47
|
Yin H, Chao J, Bader M, Chao L. Differential role of kinin B1 and B2 receptors in ischemia-induced apoptosis and ventricular remodeling. Peptides 2007; 28:1383-9. [PMID: 17644219 PMCID: PMC2067250 DOI: 10.1016/j.peptides.2007.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 11/17/2022]
Abstract
We investigated the role of kinin receptors in cardiac remodeling after ischemia/reperfusion (I/R). Bradykinin injection improved cardiac contractility, diastolic function, reduced infarct size and prevented left ventricular thinning after I/R, whereas des-Arg(9)-BK injection had no protective effects. Bradykinin, but not des-Arg(9)-BK, reduced cardiomyocyte apoptosis and increased Akt and GSK-3beta phosphorylation. Furthermore, myocardial infarct size was similar between wild type and B2 knockout mice after I/R, but significantly reduced in kinin B1 receptor knockout mice. These results indicate that the kinin B2 receptor, but not the B1 receptor, protects against I/R-induced cardiac dysfunction by inhibiting apoptosis and limiting ventricular remodeling.
Collapse
Affiliation(s)
- Hang Yin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425-2211, USA
| | | | | | | |
Collapse
|
48
|
Kakoki M, McGarrah RW, Kim HS, Smithies O. Bradykinin B1 and B2 receptors both have protective roles in renal ischemia/reperfusion injury. Proc Natl Acad Sci U S A 2007; 104:7576-81. [PMID: 17452647 PMCID: PMC1855073 DOI: 10.1073/pnas.0701617104] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To explore the role of the kallikrein-kinin system in relation to ischemia/reperfusion injury in the kidney, we generated mice lacking both the bradykinin B1 and B2 receptor genes (B1RB2R-null, Bdkrb1-/-/Bdkrb2-/-) by deleting the genomic region encoding the two receptors. In 4-month-old mice, blood pressures were not significantly different among B1RB2R-null, B2R-null (Bdkrb2-/-), and WT mice. After 30 min of bilateral renal artery occlusion and 24 h of reperfusion, mortality rates, renal histological and functional changes, 8-hydroxy-2'-deoxyguanosine levels in total DNA, mtDNA deletions, and the number of TUNEL-positive cells in the kidneys increased progressively in the following order (from lowest to highest): WT, B2R-null, and B1RB2R-null mice. Increases in mRNA levels of TGF-beta1, connective tissue growth factor, and endothelin-1 after ischemia/reperfusion injury were also exaggerated in the same order (from lowest to highest): WT, B2R-null, and B1RB2R-null. Thus, both the B1 and B2 bradykinin receptors play an important role in reducing DNA damage, apoptosis, morphological and functional kidney changes, and mortality during renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
- *To whom correspondence should be addressed. E-mail: or
| | - Robert W. McGarrah
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Hyung-Suk Kim
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
| | - Oliver Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525
- *To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
49
|
Madeddu P, Emanueli C, El-Dahr S. Mechanisms of Disease: the tissue kallikrein–kinin system in hypertension and vascular remodeling. ACTA ACUST UNITED AC 2007; 3:208-21. [PMID: 17389890 DOI: 10.1038/ncpneph0444] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 01/16/2007] [Indexed: 11/09/2022]
Abstract
The pathogenesis of arterial hypertension often involves a rise in systemic vascular resistance (vasoconstriction and vascular remodeling) and impairment of salt excretion in the kidney (inappropriate salt retention despite elevated blood pressure). Experimental and clinical evidence implicate an imbalance between endogenous vasoconstrictor and vasodilator systems in the development and maintenance of hypertension. Kinins (bradykinin and lys-bradykinin) are endogenous vasodilators and natriuretic peptides known best for their ability to antagonize angiotensin-induced vasoconstriction and sodium retention. In humans, angiotensin-converting enzyme inhibitors, a potent class of antihypertensive agents, lower blood pressure at least partially by favoring enhanced kinin accumulation in plasma and target tissues. The beneficial actions of kinins in renal and cardiovascular disease are largely mediated by nitric oxide and prostaglandins, and extend beyond their recognized role in lowering blood pressure to include cardioprotection and nephroprotection. This article is a review of exciting, recently generated genetic, biochemical and clinical data from studies that have examined the importance of the tissue kallikrein-kinin system in protection from hypertension, vascular remodeling and renal fibrosis. Development of novel therapeutic approaches to bolster kinin activity in the vascular wall and in specific compartments in the kidney might be a highly effective strategy for the treatment of hypertension and its complications, including cardiac hypertrophy and renal failure.
Collapse
Affiliation(s)
- Paolo Madeddu
- Experimental Cardiovascular Medicine, Bristol Heart Institute, Bristol University, Bristol, UK.
| | | | | |
Collapse
|
50
|
ACE Inhibition in Heart Failure and Ischaemic Heart Disease. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7122740 DOI: 10.1007/978-1-4020-6372-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|