1
|
Fry H, Mazidi M, Kartsonaki C, Clarke R, Walters RG, Chen Z, Millwood IY. The Role of Furin and Its Therapeutic Potential in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9237. [PMID: 39273186 PMCID: PMC11394739 DOI: 10.3390/ijms25179237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Furin is an important proteolytic enzyme, converting several proteins from inactive precursors to their active forms. Recently, proteo-genomic analyses in European and East Asian populations suggested a causal association of furin with ischaemic heart disease, and there is growing interest in its role in cardiovascular disease (CVD) aetiology. In this narrative review, we present a critical appraisal of evidence from population studies to assess furin's role in CVD risk and potential as a drug target for CVD. Whilst most observational studies report positive associations between furin expression and CVD risk, some studies report opposing effects, which may reflect the complex biological roles of furin and its substrates. Genetic variation in FURIN is also associated with CVD and its risk factors. We found no evidence of current clinical development of furin as a drug target for CVD, although several phase 1 and 2 clinical trials of furin inhibitors as a type of cancer immunotherapy have been completed. The growing field of proteo-genomics in large-scale population studies may inform the future development of furin and other potential drug targets to improve the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Hannah Fry
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Mohsen Mazidi
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | | | - Robert Clarke
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
2
|
Teitelman G. A Controversy Regarding the Identity of the Enzyme That Mediates Glucagon-Like Peptide 1 Synthesis in Human Alpha Cells. J Histochem Cytochem 2024; 72:545-550. [PMID: 39248433 PMCID: PMC11425746 DOI: 10.1369/00221554241274879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 09/10/2024] Open
Abstract
Processing of proglucagon into glucagon-like peptide-1 (GLP-1) and GLP-2 in intestinal L cells is mediated by the prohormone convertase 1/3 (PC1/3) while PC2 is responsible for the synthesis of glucagon in pancreatic alpha cells. While GLP-1 is also produced by alpha cells, the identity of the convertase involved in its synthesis is still unsettled. It also remains to be determined whether all alpha cells produce the incretin. The aims of this study were first, to elucidate the identity of the proconvertase responsible for GLP-1 production in human alpha cells, and second, to ascertain whether the number of glucagon cells expressing GLP-1 increase during diabetes. To answer these questions, sections of pancreas from donors' non-diabetic controls, type 1 and type 2 diabetes were processed for double-labelled immunostaining of glucagon and GLP-1 and of each hormone and either PC1 or PC2. Stained sections were examined by confocal microscopy. It was found that all alpha cells of islets from those three groups expressed GLP-1 and PC2 but not PC1/3. This observation supports the view that PC2 is the convertase involved in GLP-1 synthesis in all human glucagon cells and suggests that the regulation of its activity may have important clinical application in diabetes.
Collapse
|
3
|
Xie S, Xie X, Tang J, Luo B, Chen J, Wen Q, Zhou J, Chen G. Cerebral furin deficiency causes hydrocephalus in mice. Genes Dis 2024; 11:101009. [PMID: 38292192 PMCID: PMC10825277 DOI: 10.1016/j.gendis.2023.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 02/01/2024] Open
Abstract
Furin is a pro-protein convertase that moves between the trans-Golgi network and cell surface in the secretory pathway. We have previously reported that cerebral overexpression of furin promotes cognitive functions in mice. Here, by generating the brain-specific furin conditional knockout (cKO) mice, we investigated the role of furin in brain development. We found that furin deficiency caused early death and growth retardation. Magnetic resonance imaging showed severe hydrocephalus. In the brain of furin cKO mice, impaired ciliogenesis and the derangement of microtubule structures appeared along with the down-regulated expression of RAB28, a ciliary vesicle protein. In line with the widespread neuronal loss, ependymal cell layers were damaged. Further proteomics analysis revealed that cell adhesion molecules including astrocyte-enriched ITGB8 and BCAR1 were altered in furin cKO mice; and astrocyte overgrowth was accompanied by the reduced expression of SOX9, indicating a disrupted differentiation into ependymal cells. Together, whereas alteration of RAB28 expression correlated with the role of vesicle trafficking in ciliogenesis, dysfunctional astrocytes might be involved in ependymal damage contributing to hydrocephalus in furin cKO mice. The structural and molecular alterations provided a clue for further studying the potential mechanisms of furin.
Collapse
Affiliation(s)
- Shiqi Xie
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Qixin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Jianrong Zhou
- Nursing College, Chongqing Medical University, Chongqing 400016, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
4
|
Rizk SK, Alhosary A, Zahran ES, Awad S, Khalil M. Identification of potential biomarkers for SLE through mRNA expression profiling. J Immunoassay Immunochem 2024; 45:20-37. [PMID: 37807897 DOI: 10.1080/15321819.2023.2266013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease that influences numerous body systems. Furin, tristetraprolin (TTP), and NOD, LRR, and pyrin domain-containing protein 3 (NLRP3) contribute in developing autoimmune illnesses. AIM Understandthe role of furin, TTP, and NLRP3 mRNA gene expression in SLE pathogenesis and prognosis. Methods: Total 210 individuals were enrolled, divided in two group: cases and control; 105 participants in each group. Real-time quantitative PCR for furin, TTP,and NLRP3 mRNA gene expression were determined for each subject. RESULTS SLE patients showed significantly higher serum furin [median 20.10 (0.0-162.88) in comparison with control group [median 1.10 (0.33-8.64)] with significant pvalue (p < 0.001), for NLRP3 expression [median 7.03 (0.0-282.97) compared to control group [median 1.0 (0.44-9.48)] with significant p value (p = 0.006)but lower TTP [median 2.37 (0.0-30.13)] in comparison with control group [median 7.90 (1.0-29.29)] with significant p value (p < 0.001) . Elevated levels of Furin and NLRP3 and low levels of TTP were linked to increased illness activity. CONCLUSION Furin and NLRP increase in SLE and higher with illness activity. TTP is lowerin SLE and negatively correlates with disease activity.
Collapse
Affiliation(s)
- Sara Kamal Rizk
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Amal Alhosary
- Clinical Pathology, National Liver Institute, Menoufia University, Shebin Elkom, Egypt
| | - Enas S Zahran
- Internal Medicine Department, Immunology and Rheumatology Unit, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Samah Awad
- Microbiology and Immunology, Clinical Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin Elkom, Egypt
| | - Marwa Khalil
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
5
|
Kato S, Iwata O, Kato H, Fukaya S, Imai Y, Saitoh S. Furin Regulates the Alveolarization of Neonatal Lungs in a Mouse Model of Hyperoxic Lung Injury. Biomolecules 2023; 13:1656. [PMID: 38002338 PMCID: PMC10669361 DOI: 10.3390/biom13111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Despite advances in treatment options, such as corticosteroid administration and less invasive respiratory support, bronchopulmonary dysplasia (BPD) remains an important prognostic factor in preterm infants. We previously reported that furin regulates changes in lung smooth muscle cell phenotypes, suggesting that it plays a critical role in BPD pathogenesis. Therefore, in this study, we aimed to evaluate whether it regulates the alveolarization of immature lungs through activating alveolarization-driving proteins. We first examined furin expression levels, and its functions, using an established hyperoxia-induced BPD mouse model. Thereafter, we treated mice pups, as well as primary myofibroblast cell cultures, with furin inhibitors. Finally, we administered the hyperoxia-exposed mice pups with recombinant furin. Immunofluorescence revealed the co-expression of furin with alpha-smooth muscle actin. Hyperoxia exposure for 10 d decreased alveolar formation, as well as the expression of furin and its target, IGF-1R. Hexa-D-arginine administration also significantly inhibited alveolar formation. Another furin inhibitor, decanoyl-RVKR-chloromethylketone, accumulated pro-IGF-1R, and decreased IGF-1R phosphorylation in myofibroblast primary cultures. Finally, recombinant furin treatment significantly improved alveolarization in hyperoxia-exposed mice pups. Furin regulates alveolarization in immature lungs. Therefore, this study provides novel insights regarding the involvement of furin in BPD pathogenesis, and highlights a potential treatment target for ameliorating the impact of BPD.
Collapse
Affiliation(s)
- Shin Kato
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya 467-8601, Japan; (O.I.); (S.F.); (S.S.)
| | - Osuke Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya 467-8601, Japan; (O.I.); (S.F.); (S.S.)
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | - Satoko Fukaya
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya 467-8601, Japan; (O.I.); (S.F.); (S.S.)
| | - Yukari Imai
- Department of Pharmacy, Kinjo Gakuin University, Nagoya 463-8521, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya 467-8601, Japan; (O.I.); (S.F.); (S.S.)
| |
Collapse
|
6
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
7
|
Douglas LEJ, Reihill JA, Montgomery BM, Martin SL. Furin as a therapeutic target in cystic fibrosis airways disease. Eur Respir Rev 2023; 32:32/168/220256. [PMID: 37137509 PMCID: PMC10155048 DOI: 10.1183/16000617.0256-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/22/2023] [Indexed: 05/05/2023] Open
Abstract
Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-β, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.
Collapse
Affiliation(s)
- Lisa E J Douglas
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
8
|
François A, Descarpentrie J, Badiola I, Siegfried G, Evrard S, Pernot S, Khatib AM. Reprogramming immune cells activity by furin-like enzymes as emerging strategy for enhanced immunotherapy in cancer. Br J Cancer 2023; 128:1189-1195. [PMID: 36522477 PMCID: PMC10050397 DOI: 10.1038/s41416-022-02073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy is becoming an advanced clinical management for various cancers. Rebuilding of aberrant immune surveillance on cancers has achieved notable progress in the past years by either in vivo or ex vivo engineering of efficient immune cells. Immune cells can be programmed with several strategies that improves their therapeutic influence and specificity. It has become noticeable that effective immunotherapy must consider the complete complexity of the immune cell function. However, today, almost all immune cells can be transiently or stably reprogrammed against various cancer cells. As a consequence, investigations have interrogated strategies to improve the efficacy of cancer immunotherapies by enhancing T-cell infiltration into tumour tissues. Here, we review the emerging role of furin-like enzymes work related to T-cell reprogramming, their tumour infiltration and cytotoxic function.
Collapse
Affiliation(s)
- Alexia François
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Jean Descarpentrie
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Géraldine Siegfried
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Serge Evrard
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Simon Pernot
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Abdel-Majid Khatib
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France.
- Institut Bergonié, 33000, Bordeaux, France.
| |
Collapse
|
9
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
10
|
Mehranzadeh E, Crende O, Badiola I, Garcia-Gallastegi P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022; 10:biomedicines10123292. [PMID: 36552048 PMCID: PMC9776400 DOI: 10.3390/biomedicines10123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.
Collapse
Affiliation(s)
- Elham Mehranzadeh
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Iker Badiola
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Nanokide Therapeutics SL, Ed. ZITEK, Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Correspondence:
| |
Collapse
|
11
|
Ke X, Duan L, Gong F, Zhang Y, Deng K, Yao Y, Wang L, Feng F, Xing B, Pan H, Zhu H. A study on serum pro-neurotensin (PNT), furin, and zinc alpha-2-glycoprotein (ZAG) levels in patients with acromegaly. J Endocrinol Invest 2022; 45:1945-1954. [PMID: 35670958 DOI: 10.1007/s40618-022-01827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Acromegaly caused by growth hormone cell adenoma is commonly associated with abnormal glucolipid metabolism, which may result from changes in adipocytokine secretion. This study aims to investigate serum adipokine levels, including pro-neurotensin (PNT), furin, and zinc alpha-2-glycoprotein (ZAG), in acromegalic patients and the correlation between the levels of these three adipokines and GH levels and glucolipid metabolism indices. METHODS Sixty-eight acromegalic patients and 121 controls were included, and their clinical data were recorded from electronic medical record system. Serum PNT, furin and ZAG levels were measured by ELISA. RESULTS Serum PNT levels in acromegalic patients were significantly higher than controls (66.60 ± 12.36 vs. 46.68 ± 20.54 pg/ml, P < 0.001), and acromegaly was an independent influencing factor of PNT levels (P < 0.001). Moreover, subjects with the highest tertile of PNT levels had a close correlation with acromegaly (OR = 22.200, 95% CI 7.156 ~ 68.875, P < 0.001), even in Model 1 adjusted for gender and age and Model 2 adjusted for gender, age and BMI. Additionally, serum PNT levels were positively correlated with BMI (r = 0.220, P = 0.002) and triglycerides (TGs, r = 0.295, P < 0.001), and TGs were an independent influencing factor of serum PNT levels in acromegalic subjects (P < 0.001). Furthermore, serum PNT levels in obese acromegalic patients were significantly higher than those with normal BMI (P < 0.05). However, serum furin levels were lower in acromegalic patients than controls (0.184 ± 0.036 vs. 0.204 ± 0.061 ng/ml, P < 0.001). CONCLUSION This study is the first to demonstrate that acromegalic patients have increased serum PNT levels. Moreover, serum PNT plays a potential role in abnormal lipid metabolism of acromegalic patients.
Collapse
Affiliation(s)
- X Ke
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - L Duan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - F Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Y Zhang
- Central Research Laboratory, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - K Deng
- Department of Neurosurgery, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Y Yao
- Department of Neurosurgery, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - L Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - F Feng
- Department of Radiology, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - B Xing
- Department of Neurosurgery, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - H Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China
| | - H Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
12
|
Charbe NB, Lagos CF, Ortiz CAV, Tambuwala M, Palakurthi SS, Zacconi FC. PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: A proof-of-concept study. Biomed Pharmacother 2022; 153:113428. [PMID: 36076548 DOI: 10.1016/j.biopha.2022.113428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
|
13
|
Proteins and Proteases of Prader-Willi Syndrome: A Comprehensive Review and Perspectives. Biosci Rep 2022; 42:231361. [PMID: 35621394 PMCID: PMC9208313 DOI: 10.1042/bsr20220610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Prader–Willi Syndrome (PWS) is a rare complex genetic disease that is associated with pathological disorders that include endocrine disruption, developmental, neurological, and physical problems as well as intellectual, and behavioral dysfunction. In early stage, PWS is characterized by respiratory distress, hypotonia, and poor sucking ability, causing feeding concern and poor weight gain. Additional features of the disease evolve over time. These include hyperphagia, obesity, developmental, cognitive delay, skin picking, high pain threshold, short stature, growth hormone deficiency, hypogonadism, strabismus, scoliosis, joint laxity, or hip dysplasia. The disease is associated with a shortened life expectancy. There is no cure for PWS, although interventions are available for symptoms management. PWS is caused by genetic defects in chromosome 15q11.2-q13, and categorized into three groups, namely Paternal deletion, Maternal uniparental disomy, and Imprinting defect. PWS is confirmed through genetic testing and DNA-methylation analysis. Studies revealed that at least two key proteins namely MAGEL-2 and NECDIN along with two proteases PCSK1 and PCSK2 are linked to PWS. Herein, we summarize our current understanding and knowledge about the role of these proteins and enzymes in various biological processes associated with PWS. The review also describes how loss and/or impairment of functional activity of these macromolecules can lead to hormonal disbalance by promoting degradation of secretory granules and via inhibition of proteolytic maturation of precursor-proteins. The present review will draw attention of researchers, scientists, and academicians engaged in PWS study and will help to identify potential targets and molecular pathways for PWS intervention and treatment.
Collapse
|
14
|
Pernot S, Evrard S, Khatib AM. The Give-and-Take Interaction Between the Tumor Microenvironment and Immune Cells Regulating Tumor Progression and Repression. Front Immunol 2022; 13:850856. [PMID: 35493456 PMCID: PMC9043524 DOI: 10.3389/fimmu.2022.850856] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
A fundamental concern of the majority of cancer scientists is related to the identification of mechanisms involved in the evolution of neoplastic cells at the cellular and molecular level and how these processes are able to control cancer cells appearance and death. In addition to the genome contribution, such mechanisms involve reciprocal interactions between tumor cells and stromal cells within the tumor microenvironment (TME). Indeed, tumor cells survival and growth rely on dynamic properties controlling pro and anti-tumorigenic processes. The anti-tumorigenic function of the TME is mainly regulated by immune cells such as dendritic cells, natural killer cells, cytotoxic T cells and macrophages and normal fibroblasts. The pro-tumorigenic function is also mediated by other immune cells such as myeloid-derived suppressor cells, M2-tumor-associated macrophages (TAMs) and regulatory T (Treg) cells, as well as carcinoma-associated fibroblasts (CAFs), adipocytes (CAA) and endothelial cells. Several of these cells can show both, pro- and antitumorigenic activity. Here we highlight the importance of the reciprocal interactions between tumor cells and stromal cells in the self-centered behavior of cancer cells and how these complex cellular interactions control tumor progression and repression.
Collapse
Affiliation(s)
- Simon Pernot
- Reprograming Tumor Activity and Associated Microenvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-Unité Mixte de Recherche (UMR) 1312 Inserm, Pessac, France
| | | | - Abdel-Majid Khatib
- Reprograming Tumor Activity and Associated Microenvironment (RYTME), Bordeaux Institute of Oncology (BRIC)-Unité Mixte de Recherche (UMR) 1312 Inserm, Pessac, France.,Institut Bergonié, Bordeaux, France
| |
Collapse
|
15
|
Rhoades R, Solomon S, Johnson C, Teng S. Impact of SARS-CoV-2 on Host Factors Involved in Mental Disorders. Front Microbiol 2022; 13:845559. [PMID: 35444632 PMCID: PMC9014212 DOI: 10.3389/fmicb.2022.845559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a systemic illness due to its multiorgan effects in patients. The disease has a detrimental impact on respiratory and cardiovascular systems. One early symptom of infection is anosmia or lack of smell; this implicates the involvement of the olfactory bulb in COVID-19 disease and provides a route into the central nervous system. However, little is known about how SARS-CoV-2 affects neurological or psychological symptoms. SARS-CoV-2 exploits host receptors that converge on pathways that impact psychological symptoms. This systemic review discusses the ways involved by coronavirus infection and their impact on mental health disorders. We begin by briefly introducing the history of coronaviruses, followed by an overview of the essential proteins to viral entry. Then, we discuss the downstream effects of viral entry on host proteins. Finally, we review the literature on host factors that are known to play critical roles in neuropsychiatric symptoms and mental diseases and discuss how COVID-19 could impact mental health globally. Our review details the host factors and pathways involved in the cellular mechanisms, such as systemic inflammation, that play a significant role in the development of neuropsychological symptoms stemming from COVID-19 infection.
Collapse
Affiliation(s)
- Raina Rhoades
- Department of Biology, Howard University, Washington, DC, United States
| | - Sarah Solomon
- Department of Biology, Howard University, Washington, DC, United States
| | - Christina Johnson
- Department of Biology, Howard University, Washington, DC, United States
| | | |
Collapse
|
16
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
17
|
Therapeutic anti-glioma effect of the combined action of PCSK inhibitor with the anti-tumoral factors secreted by Poly (I:C)-stimulated macrophages. Cancer Gene Ther 2022; 29:22-36. [PMID: 33402730 PMCID: PMC8761570 DOI: 10.1038/s41417-020-00286-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023]
Abstract
Macrophages plasticity is a key feature in cancer progression. Neoplastic cells can alter their immune functions and orient them into a pro-tumoral phenotype. In this context, we developed a new therapeutic strategy to switch macrophages phenotype and reactivate their anti-tumoral functions. We showed a dual activity of a proprotein convertases inhibitor as anti-glioma drug and anti-tumoral macrophages' reactivation drug. Proprotein convertases are proteases that cleave proteins into functional proteins. Several of their substrates are involved in tumorigenesis and immunosuppression. We combine here proprotein convertases inhibitor with Poly (I:C), a TLR3 ligand, to increase the anti-tumoral activity of macrophages. With mass spectrometry-based proteomics, system biology, combined with biological assays, we established that a stimulation of macrophages with Poly (I:C) increased their secretion of pro-inflammatory cytokines and anti-tumoral factors. 3D invasion assay showed the efficacy of these anti-tumoral factors against mixed glioma cells and macrophages spheroids. Besides, immunofluorescence and proliferation assays showed an additive effect of the proprotein convertases inhibitor and the anti-tumoral factors secreted by Poly (I:C)-treated macrophages on both anti-glioma activity and macrophages anti-tumoral orientation directly in tumor microenvironment, leading to an innovative glioma therapy.
Collapse
|
18
|
Furuhashi M, Kataoka Y, Nishikawa R, Koyama M, Sakai A, Higashiura Y, Tanaka M, Saitoh S, Shimamoto K, Ohnishi H. Circulating PCSK7 Level is Independently Associated with Obesity, Triglycerides Level and Fatty Liver Index in a General Population without Medication. J Atheroscler Thromb 2021; 29:1275-1284. [PMID: 34565765 PMCID: PMC9444688 DOI: 10.5551/jat.63159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Dyslipidemia and altered iron metabolism are typical features of non-alcoholic fatty liver disease (NAFLD). Proprotein convertase subtilisin/kexin type 7 (PCSK7), a transmembrane-anchored endonuclease, is associated with triglycerides level and processing of transferrin receptor 1. However, the significance of circulating PCSK7 has not been fully addressed, though prosegment PCSK7 is secreted from cells. We investigated the associations of plasma PCSK7 level with several parameters. METHODS Plasma PCSK7 concentration was measured in 282 subjects (male/female: 126/156) without medication of the Tanno-Sobetsu Study, a population-based cohort study. RESULTS There was no significant sex difference in PCSK7 level. Current smoking habit, but not alcohol drinking habit, was associated with increased PCSK7 level. PCSK7 concentration was negatively correlated with age and blood urea nitrogen and was positively correlated with body mass index (BMI) and levels of γ-glutamyl transpeptidase (γGTP), triglycerides and fatty liver index (FLI), which is calculated by BMI, waist circumference and levels of γGTP and triglycerides, as a noninvasive and simple predictor of NAFLD. There were no significant correlations of PCSK7 level with levels of iron and plasma PCSK9, a secreted PCSK family member and a regulator of low-density lipoprotein cholesterol level. Multivariable regression analyses after adjustment of age, sex and current smoking habit showed that PCSK7 concentration was independently associated with BMI (β=0.130, P=0.035), triglycerides (β=0.141, P=0.027) or FLI (β=0.139, P=0.030). CONCLUSIONS Plasma PCSK7 concentration is independently associated with chronic liver disease including obesity and elevated triglycerides level in a general population of individuals who had not regularly taken any medications.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Ryo Nishikawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Public Health, Sapporo Medical University School of Medicine
| | - Akiko Sakai
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences
| | | | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine.,Department of Public Health, Sapporo Medical University School of Medicine
| |
Collapse
|
19
|
Williams L, Layton T, Yang N, Feldmann M, Nanchahal J. Collagen VI as a driver and disease biomarker in human fibrosis. FEBS J 2021; 289:3603-3629. [PMID: 34109754 DOI: 10.1111/febs.16039] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Fibrosis of visceral organs such as the lungs, heart, kidneys and liver remains a major cause of morbidity and mortality and is also associated with many other disorders, including cancer and metabolic disease. In this review, we focus upon the microfibrillar collagen VI, which is present in the extracellular matrix (ECM) of most tissues. However, expression is elevated in numerous fibrotic conditions, such as idiopathic pulmonary disease (IPF), and chronic liver and kidney diseases. Collagen VI is composed of three subunits α1, α2 and α3, which can be replaced with alternate chains of α4, α5 or α6. The C-terminal globular domain (C5) of collagen VI α3 can be proteolytically cleaved to form a biologically active fragment termed endotrophin, which has been shown to actively drive fibrosis, inflammation and insulin resistance. Tissue biopsies have long been considered the gold standard for diagnosis and monitoring of progression of fibrotic disease. The identification of neoantigens from enzymatically processed collagen chains have revolutionised the biomarker field, allowing rapid diagnosis and evaluation of prognosis of numerous fibrotic conditions, as well as providing valuable clinical trial endpoint determinants. Collagen VI chain fragments such as endotrophin (PRO-C6), C6M and C6Mα3 are emerging as important biomarkers for fibrotic conditions.
Collapse
Affiliation(s)
- Lynn Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Thomas Layton
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Nan Yang
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Marc Feldmann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| | - Jagdeep Nanchahal
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Science, University of Oxford, UK
| |
Collapse
|
20
|
Maligłówka M, Bułdak Ł, Okopień B, Bołdys A. The consequences of PCSK9 inhibition in selected tissues. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of nine members of the proprotein
convertase family. These serine proteases play a pivotal role in the post-translational
modification of proteins and the activation of hormones, enzymes, transcription factors and
growth factors. As a result, they participate in many physiological processes like embryogenesis,
activity of central nervous system and lipid metabolism. Scientific studies show
that the family of convertases is also involved in the pathogenesis of viral and bacterial
infections, osteoporosis, hyperglycaemia, cardiovascular diseases, neurodegenerative disorders
and cancer. The inhibition of PCSK9 by two currently approved for use monoclonal
antibodies (alirocumab, evolocumab) slows down the degradation of low-density lipoprotein
cholesterol receptors (LDLRs). This leads to increased density of LDLRs on the surface
of hepatocytes, resulting in decreased level of low-density lipoprotein cholesterol (LDL-C)
in the bloodstream, which is connected with the reduction of cardiovascular risk. PCSK9 inhibitors (PCSK9i) were created for the patients who could not achieve appropriate level
of LDL-C using current statin and ezetimibe therapy. It seems that high therapeutic efficacy
of PCSK9i will make them more common in the clinical use. The pleiotropic effects
of previously mentioned lipid-lowering therapies were the reasons for literature review of
possible positive and negative effects of PCSK9 inhibition beyond cholesterol metabolism.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Łukasz Bułdak
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Bogusław Okopień
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Aleksandra Bołdys
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| |
Collapse
|
21
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Hasan A, Paray BA, Hussain A, Qadir FA, Attar F, Aziz FM, Sharifi M, Derakhshankhah H, Rasti B, Mehrabi M, Shahpasand K, Saboury AA, Falahati M. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn 2021; 39:3025-3033. [PMID: 32274964 PMCID: PMC7189411 DOI: 10.1080/07391102.2020.1754293] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The widespread antigenic changes lead to the emergence of a new type of coronavirus (CoV) called as severe acute respiratory syndrome (SARS)-CoV-2 that is immunologically different from the previous circulating species. Angiotensin-converting enzyme-2 (ACE-2) is one of the most important receptors on the cell membrane of the host cells (HCs) which its interaction with spike protein (SP) with a furin-cleavage site results in the SARS-CoV-2 invasion. Hence, in this review, we presented an overview on the interaction of ACE-2 and furin with SP. As several kinds of CoVs, from various genera, have at their S1/S2 binding site a preserved site, we further surveyed the role of furin cleavage site (FCS) on the life cycle of the CoV. Furthermore, we discussed that the small molecular inhibitors can limit the interaction of ACE-2 and furin with SP and can be used as potential therapeutic platforms to combat the spreading CoV epidemic. Finally, some ongoing challenges and future prospects for the development of potential drugs to promote targeting specific activities of the CoV were reviewed. In conclusion, this review may pave the way for providing useful information about different compounds involved in improving the effectiveness of CoV vaccine or drugs with minimum toxicity against human health.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Fikry Ali Qadir
- Department of Biology, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Farnoosh Attar
- Faculty of Food Industry and Agriculture, Department of Biology, Standard Research Institute (SRI), Karaj, Iran
| | | | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran;
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Masoumeh Mehrabi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran;
| |
Collapse
|
23
|
Rose M, Duhamel M, Rodet F, Salzet M. The Role of Proprotein Convertases in the Regulation of the Function of Immune Cells in the Oncoimmune Response. Front Immunol 2021; 12:667850. [PMID: 33995401 PMCID: PMC8117212 DOI: 10.3389/fimmu.2021.667850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Proprotein convertases (PC) are a family of 9 serine proteases involved in the processing of cellular pro-proteins. They trigger the activation, inactivation or functional changes of many hormones, neuropeptides, growth factors and receptors. Therefore, these enzymes are essential for cellular homeostasis in health and disease. Nine PC subtilisin/kexin genes (PCSK1 to PCSK9) encoding for PC1/3, PC2, furin, PC4, PC5/6, PACE4, PC7, SKI-1/S1P and PCSK9 are known. The expression of PC1/3, PC2, PC5/6, Furin and PC7 in lymphoid organs such as lymph nodes, thymus and spleen has suggested a role for these enzymes in immunity. In fact, knock-out of Furin in T cells was associated with high secretion of pro-inflammatory cytokines and autoantibody production in mice. This suggested a key role for this enzyme in immune tolerance. Moreover, Furin through its proteolytic activity, regulates the suppressive functions of Treg and thus prevents chronic inflammation and autoimmune diseases. In macrophages, Furin is also involved in the regulation of their inflammatory phenotype. Similarly, PC1/3 inhibition combined with TLR4 stimulation triggers the activation of the NF-κB signaling pathway with an increased secretion of pro-inflammatory cytokines. Factors secreted by PC1/3 KD macrophages stimulated with LPS exert a chemoattractive effect on naive auxiliary T lymphocytes (Th0) and anti-tumoral activities. The link between TLR and PCs is thus very important in inflammatory response regulation. Furin regulates TL7 and TLR8 processing and trafficking whereas PC1/3 controls TLR4 and TLR9 trafficking. Since PC1/3 and Furin are key regulators of both the innate and adaptive immune responses their inhibition may play a major role in oncoimmune therapy. The role of PCs in the oncoimmune response and therapeutic strategies based on PCs inhibition are proposed in the present review.
Collapse
Affiliation(s)
- Mélanie Rose
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Franck Rodet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| |
Collapse
|
24
|
Lewandowska-Goch MA, Kwiatkowska A, Łepek T, Ly K, Navals P, Gagnon H, Dory YL, Prahl A, Day R. Design and Structure-Activity Relationship of a Potent Furin Inhibitor Derived from Influenza Hemagglutinin. ACS Med Chem Lett 2021; 12:365-372. [PMID: 33738063 DOI: 10.1021/acsmedchemlett.0c00386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Furin plays an important role in various pathological states, especially in bacterial and viral infections. A detailed understanding of the structural requirements for inhibitors targeting this enzyme is crucial to develop new therapeutic strategies in infectious diseases, including an urgent unmet need for SARS-CoV-2 infection. Previously, we have identified a potent furin inhibitor, peptide Ac-RARRRKKRT-NH 2 (CF1), based on the highly pathogenic avian influenza hemagglutinin. The goal of this study was to determine how its N-terminal part (the P8-P5 positions) affects its activity profile. To do so, the positional-scanning libraries of individual peptides modified at the selected positions with natural amino acids were generated. Subsequently, the best substitutions were combined together and/or replaced by unnatural residues to expand our investigations. The results reveal that the affinity of CF1 can be improved (2-2.5-fold) by substituting its P5 position with the small hydrophobic residues (Ile or Val) or a basic Lys.
Collapse
Affiliation(s)
- Monika A. Lewandowska-Goch
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chirurgie/Urologie, Faculté de Médecine et Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Teresa Łepek
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Kévin Ly
- PhenoSwitch Bioscience Inc., 975 rue Léon-Trépanier, Sherbrooke, Quebec J1G 5J6, Canada
| | - Pauline Navals
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chirurgie/Urologie, Faculté de Médecine et Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Hugo Gagnon
- PhenoSwitch Bioscience Inc., 975 rue Léon-Trépanier, Sherbrooke, Quebec J1G 5J6, Canada
| | - Yves L. Dory
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
- Département de Chirurgie/Urologie, Faculté de Médecine et Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
25
|
Ortutay Z, Grönholm A, Laitinen M, Keresztes-Andrei M, Hermelo I, Pesu M. Identification of Novel Genetic Regulatory Region for Proprotein Convertase FURIN and Interferon Gamma in T Cells. Front Immunol 2021; 12:630389. [PMID: 33679774 PMCID: PMC7930619 DOI: 10.3389/fimmu.2021.630389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
The proprotein convertase enzyme FURIN promotes the proteolytic maturation of pro-proteins and thereby it serves as an important factor for maintaining cellular homeostasis. In T cells, FURIN is critical for maintaining the T regulatory cell dependent peripheral immune tolerance and intact T helper cell polarization. The enzymatic activity of FURIN is directly associated with its expression levels, but genetic determinants for cell-type specific Furin gene regulation have remained elusive. By exploring the histone acetyltransferase p300 binding patterns in T helper cells, a putative regulatory region at ca. 20kB upstream of Furin gene was identified. When this region was deleted with CRISPR/Cas9 the production of Furin mRNA was significantly reduced in activated mouse T cells. Genome-wide RNA profiling by sequencing revealed that the novel Furin regulator region also impacted the expression of several genes that have previously been associated with the Th1 type hall mark cytokine IFNγ regulation or function. Finally, Furin genetic regulatory region was found to specifically promote the secretion of IFNγ by activated T cells. In sum, our data unravels the presence of Furin expression regulatory region in T cells that has characteristics of a super-enhancer for Th1 cell fate.
Collapse
Affiliation(s)
- Zsuzsanna Ortutay
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Grönholm
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Melina Laitinen
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Melinda Keresztes-Andrei
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Ismail Hermelo
- Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marko Pesu
- Immunoregulation, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
26
|
Li X, Zhang Y, Zhang M, Wang Y. GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice. Sci Rep 2020; 10:16168. [PMID: 32999434 PMCID: PMC7527996 DOI: 10.1038/s41598-020-73388-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 01/23/2023] Open
Abstract
Angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of lipoprotein lipase and endothelial lipase that plays critical roles in lipoprotein metabolism. It specifically expresses in the liver and undergoes proprotein convertase-mediated cleavage during secretion, which generates an N-terminal coiled-coil domain and C-terminal fibrinogen-like domain that has been considered as the activation step for its function. Previous studies have reported that the polypeptide GalNAc-transferase GALNT2 mediates the O-glycosylation of the ANGPTL3 near the cleavage site, which inhibits the proprotein convertase (PC)-mediated cleavage in vitro and in cultured cells. However, loss-of-function mutation for GALNT2 has no effect on ANGPTL3 cleavage in human. Thus whether GALNT2 regulates the cleavage of ANGPTL3 in vivo is unclear. In present study, we systematically characterized the cleavage of Angptl3 in cultured cells and in vivo of mice. We found that endogenous Angptl3 is cleaved in primary hepatocytes and in vivo of mice, and this cleavage can be blocked by Galnt2 overexpression or PC inhibition. Moreover, suppressing galnt2 expression increases the cleavage of Angptl3 in mice dramatically. Thus, our results support the conclusion that Galnt2 is a key endogenous regulator for Angptl3 cleavage both in vitro and in vivo.
Collapse
Affiliation(s)
- Xuedan Li
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Minzhu Zhang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
27
|
Cao R, Zhang Y, Du J, Chen S, Wang N, Ying H, Shen B. Increased FURIN expression in rheumatoid arthritis patients and its anti-inflammatory effect. J Clin Lab Anal 2020; 34:e23530. [PMID: 32840921 PMCID: PMC7755791 DOI: 10.1002/jcla.23530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background FURIN belongs to the proprotein convertase family that processes proproteins and is involved in many diseases. However, the role of FURIN in rheumatoid arthritis (RA) remains unknown. In this study, we investigated the association between circulating FURIN and disease activity in patients with RA and the effect of FURIN in THP‐1‐derived macrophages. Methods A total of 108 RA patients and 39 healthy controls participants were included in this study. RA patients were divided into four disease activity groups determined by the Disease Activity Score of 28 joints (DAS28). FURIN expression in peripheral blood mononuclear cells (PBMCs) and serum was detected by using quantitative real‐time polymerase chain reaction (qRT‐PCR) and enzyme‐linked immunosorbent assay (ELISA), respectively. Western blotting and qRT‐PCR were used to detect cytokines level after interfering FURIN expressed in THP‐1‐derived macrophages. Results Both FURIN mRNA and protein levels were significantly higher in RA patients than in healthy controls participants (P < .001). No significant difference in FURIN expression was observed among the four RA groups (P > .05). Spearman correlation revealed that FURIN positively correlated with transforming growth factor‐β1(TGF‐β1), rheumatoid factor (RF), and anti‐cyclic citrullinated peptide (anti‐CCP). Moreover, the inhibition of FURIN in THP‐1‐derived macrophages promoted the caspase‐1 and IL‐1β expression (P < .05). Conclusion FURIN levels were significantly increased in the peripheral blood of RA patients and were not associated with disease activity. The inhibition of FURIN in THP‐1‐derived macrophages with elevated IL‐1β levels shows that FURIN may have an anti‐inflammatory effect.
Collapse
Affiliation(s)
- Rong Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Shuaishuai Chen
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Na Wang
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Haijian Ying
- Department of Clinical Laboratory, Taizhou Enze Medical Center (Group), Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Bo Shen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Soulet F, Bodineau C, Hooks KB, Descarpentrie J, Alves I, Dubreuil M, Mouchard A, Eugenie M, Hoepffner JL, López JJ, Rosado JA, Soubeyran I, Tomé M, Durán RV, Nikolski M, Villoutreix BO, Evrard S, Siegfried G, Khatib AM. ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation. JCI Insight 2020; 5:129070. [PMID: 32516140 DOI: 10.1172/jci.insight.129070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/05/2020] [Indexed: 01/15/2023] Open
Abstract
Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.
Collapse
Affiliation(s)
- Fabienne Soulet
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Clement Bodineau
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | | | - Jean Descarpentrie
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | | | - Marielle Dubreuil
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Amandine Mouchard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Malaurie Eugenie
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France
| | | | - Jose J López
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | - Mercedes Tomé
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Raúl V Durán
- Institut Européen de Chimie et Biologie, INSERM U1218, University of Bordeaux, Pessac, France.,Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Macha Nikolski
- LaBRI, CNRS UMR 5800, University of Bordeaux, Bordeaux, France
| | | | - Serge Evrard
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France.,Bergonié Institute, Bordeaux, France
| | - Geraldine Siegfried
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| | - Abdel-Majid Khatib
- University Bordeaux and.,INSERM, LAMC, UMR 1029, Allée Geoffroy St Hilaire, Pessac, France
| |
Collapse
|
29
|
Rose M, Duhamel M, Aboulouard S, Kobeissy F, Le Rhun E, Desmons A, Tierny D, Fournier I, Rodet F, Salzet M. The Role of a Proprotein Convertase Inhibitor in Reactivation of Tumor-Associated Macrophages and Inhibition of Glioma Growth. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:31-46. [PMID: 32300641 PMCID: PMC7152595 DOI: 10.1016/j.omto.2020.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023]
Abstract
Tumors are characterized by the presence of malignant and non-malignant cells, such as immune cells including macrophages, which are preponderant. Macrophages impact the efficacy of chemotherapy and may lead to drug resistance. In this context and based on our previous work, we investigated the ability to reactivate macrophages by using a proprotein convertases inhibitor. Proprotein convertases process immature proteins into functional proteins, with several of them having a role in immune cell activation and tumorigenesis. Macrophages were treated with a peptidomimetic inhibitor targeting furin, PC1/3, PC4, PACE4, and PC5/6. Their anti-glioma activity was analyzed by mass spectrometry-based proteomics and viability assays in 2D and 3D in vitro cultures. Comparison with temozolomide, the drug used for glioma therapy, established that the inhibitor was more efficient for the reduction of cancer cell density. The inhibitor was also able to reactivate macrophages through the secretion of several immune factors with antitumor properties. Moreover, two proteins considered as good glioma patient survival indicators were also identified in 3D cultures treated with the inhibitor. Finally, we established that the proprotein convertases inhibitor has a dual role as an anti-glioma drug and anti-tumoral macrophage reactivation drug. This strategy could be used together with chemotherapy to increase therapy efficacy in glioma.
Collapse
Affiliation(s)
- Mélanie Rose
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France.,Oncovet Clinical Research (OCR), SIRIC ONCOLille, 59650 Villeneuve d'Ascq, France
| | - Marie Duhamel
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Soulaimane Aboulouard
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Firas Kobeissy
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Emilie Le Rhun
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Annie Desmons
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Dominique Tierny
- Oncovet Clinical Research (OCR), SIRIC ONCOLille, 59650 Villeneuve d'Ascq, France
| | - Isabelle Fournier
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Franck Rodet
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| | - Michel Salzet
- Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, 59000 Lille, France
| |
Collapse
|
30
|
Siegfried G, Descarpentrie J, Evrard S, Khatib AM. Proprotein convertases: Key players in inflammation-related malignancies and metastasis. Cancer Lett 2019; 473:50-61. [PMID: 31899298 PMCID: PMC7115805 DOI: 10.1016/j.canlet.2019.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Many cancers occur from locations of inflammation due to chronic irritation and/or infection. Tumor microenvironment contains various different inflammatory cells and mediators that orchestrate diverse neoplastic processes, including proliferation, survival, adhesion and migration. In parallel, tumor cells have adapted some of the signaling molecules used by inflammatory cells, such as selectins and chemokines as well as their receptors for invasion, extravasation and subsequently metastasis. Expression and/or activation of the majority of these molecules is mediated by the proprotein convertases (PCs); proteases expressed by both tumor cells and inflammatory cells. This review analyzes the potential role of these enzymatic system in inflammation-associated cancer impacting on the malignant and metastatic potential of cancer cells, describing the possible use of PCs as a new anti-inflammatory therapeutic approach to tumor progression and metastasis. Proteins maturation by the proprotein convertases plays important role in inflammation-related cancer and metastasis. Protein precursors require the proprotein convertases for the induction of inflammation. Understanding of the molecular mechanism linking the proprotein convertases to inflammation will allow novel therapies. Inhibitors of the proprotein convertases constitute great potential for cancer treatment.
Collapse
Affiliation(s)
- Geraldine Siegfried
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| | - Jean Descarpentrie
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| | - Serge Evrard
- Univ. Bordeaux, 33000, Bordeaux, France; Institut Bergonié, 33076, Bordeaux, France.
| | - Abdel-Majid Khatib
- Univ. Bordeaux, 33000, Bordeaux, France; INSERM UMR1029, 33400, Pessac, France.
| |
Collapse
|
31
|
Tomé M, Pappalardo A, Soulet F, López JJ, Olaizola J, Leger Y, Dubreuil M, Mouchard A, Fessart D, Delom F, Pitard V, Bechade D, Fonck M, Rosado JA, Ghiringhelli F, Déchanet-Merville J, Soubeyran I, Siegfried G, Evrard S, Khatib AM. Inactivation of Proprotein Convertases in T Cells Inhibits PD-1 Expression and Creates a Favorable Immune Microenvironment in Colorectal Cancer. Cancer Res 2019; 79:5008-5021. [PMID: 31358531 DOI: 10.1158/0008-5472.can-19-0086] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/27/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022]
Abstract
Proprotein convertases (PC) activate precursor proteins that play crucial roles in various cancers. In this study, we investigated whether PC enzyme activity is required for expression of the checkpoint protein programmed cell death protein 1 (PD-1) on cytotoxic T lymphocytes (CTL) in colon cancer. Although altered expression of the PC secretory pathway was observed in human colon cancers, only furin showed highly diffuse expression throughout the tumors. Inhibition of PCs in T cells using the general protein-based inhibitor α1-PDX or the pharmacologic inhibitor Decanoyl-Arg-Val-Lys-Arg-chloromethylketone repressed PD-1 and exhausted CTLs via induction of T-cell proliferation and apoptosis inhibition, which improved CTL efficacy against microsatellite instable and microsatellite stable colon cancer cells. In vivo, inhibition of PCs enhanced CTL infiltration in colorectal tumors and increased tumor clearance in syngeneic mice compared with immunodeficient mice. Inhibition of PCs repressed PD-1 expression by blocking proteolytic maturation of the Notch precursor, inhibiting calcium/NFAT and NF-κB signaling, and enhancing ERK activation. These findings define a key role for PCs in regulating PD-1 expression and suggest targeting PCs as an adjunct approach to colorectal tumor immunotherapy. SIGNIFICANCE: Protein convertase enzymatic activity is required for PD-1 expression on T cells, and inhibition of protein convertase improves T-cell targeting of microsatellite instable and stable colorectal cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/5008/F1.large.jpg.
Collapse
Affiliation(s)
- Mercedes Tomé
- Université Bordeaux, Bordeaux, France.
- INSERM UMR1029, Pessac, France
| | - Angela Pappalardo
- ImmunoConcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | - Fabienne Soulet
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | - José Javier López
- Department of Physiology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Jone Olaizola
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | - Yannick Leger
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | | | - Amandine Mouchard
- Université Bordeaux, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Delphine Fessart
- Institut Bergonié, Bordeaux, France
- INSERM U1218, ACTION, Bordeaux, France
| | - Frédéric Delom
- Institut Bergonié, Bordeaux, France
- INSERM U1218, ACTION, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | | | | | - Juan Antonio Rosado
- Department of Physiology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | | | | | | | - Serge Evrard
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
- Institut Bergonié, Bordeaux, France
| | | |
Collapse
|
32
|
Izaguirre G, Arciniega M, Quezada AG. Specific and Selective Inhibitors of Proprotein Convertases Engineered by Transferring Serpin B8 Reactive-Site and Exosite Determinants of Reactivity to the Serpin α1PDX. Biochemistry 2019; 58:1679-1688. [PMID: 30848586 DOI: 10.1021/acs.biochem.8b01295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The molecular determinants of substrate specificity and selectivity in the proprotein convertase (PC) family of proteases are poorly understood. Here we demonstrate that the natural serpin family inhibitor, serpin B8, is a specific and selective inhibitor of furin relative to the other PCs of the constitutive protein secretion pathway, PC4, PC5, PACE4, and PC7 (PC4-PC7, respectively), and identify reactive-site (P6-P5' residues) and exosite elements of the serpin that contribute to this specificity and selectivity through studies of chimeras of serpin B8 and α1PDX, an engineered serpin inhibitor of furin. Kinetic studies revealed that the specificity and selectivity of the serpin chimeras for inhibiting PCs were determined by P6-P5 and P3-P2 residue-dependent recognition of the P4Arg-X-X-P1Arg PC consensus sequence and exosite-dependent recognition of the reactive loop P2' residue of the chimeras by the PCs. Both productive and nonproductive binding of the chimeras to PC4-PC7 but not to furin contributed to a decreased specificity for inhibiting PC4-PC7 and an increased selectivity for inhibiting furin. Molecular dynamics simulations suggested that nonproductive binding of the chimeras to the PCs was correlated with a greater conformational variability of the catalytic sites of PC4-PC7 relative to that of furin. Our findings suggest a new approach for designing selective inhibitors of PCs using α1PDX as a scaffold, as evidenced by our ability to engineer highly specific and selective inhibitors of furin and PC4-PC7.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- Department of Periodontics, College of Dentistry , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Marcelino Arciniega
- Department of Biochemistry and Structural Biology, Institute of Cellular Physiology , National Autonomous University of Mexico , Mexico City 04510 , Mexico
| | - Andrea G Quezada
- Department of Biochemistry and Structural Biology, Institute of Cellular Physiology , National Autonomous University of Mexico , Mexico City 04510 , Mexico
| |
Collapse
|
33
|
Rath B, Klameth L, Plangger A, Hochmair M, Ulsperger E, Huk I, Zeillinger R, Hamilton G. Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines. Cancers (Basel) 2019; 11:cancers11010114. [PMID: 30669448 PMCID: PMC6357007 DOI: 10.3390/cancers11010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and extravasation during tumor spread requires the activity of a number of proteases to disintegrate the stroma and vascular tissue. Generation of several permanent SCLC CTC lines allowed us to screen for the expression of 35 proteases using Western blot arrays. Cell culture supernatants of two CTC lines, namely BHGc7 and 10, were analyzed for secreted proteases, including matrix metalloproteinases (MMPs), ADAM/TS, cathepsins, kallikreins, and others, and compared to proteases expressed by SCLC cell lines (GLC14, GLC16, NCI-H526 and SCLC26A). In contrast to NCI-H526 and SCLC26A, MMP-9 was highly expressed in the two CTC lines and in GLC16 derived of a relapse. Furthermore, cathepsins (S, V, X/Z/P, A and D) were highly expressed in the CTC lines, whereas ADAM/TS and kallikreins were not detectable. In conclusion, SCLC CTCs express MMP-9 and a range of cathepsins for proteolysis and, aside from tissue degradation, these enzymes are involved in cell signaling, survival, and the chemoresistance of tumor cells.
Collapse
Affiliation(s)
- Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Lukas Klameth
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | - Ihor Huk
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecological Cancer Unit, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
34
|
Kim HS, McKnite A, Christian JL. Proteolytic Activation of Bmps: Analysis of Cleavage in Xenopus Oocytes and Embryos. Methods Mol Biol 2019; 1891:115-133. [PMID: 30414129 DOI: 10.1007/978-1-4939-8904-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Bone morphogenetic proteins (Bmps) are synthesized as inactive precursors that are cleaved to generate active ligands, along with prodomain fragments that can modulate growth factor activity. Here we provide three protocols that can be used to examine the process of proteolytic activation of Bmps. The first protocol describes how to generate radiolabeled Bmp precursor proteins in Xenopus oocytes and then analyze the time course of precursor cleavage by recombinant enzymes in vitro. The second protocol details how to analyze cleavage of radiolabeled precursor proteins in Xenopus oocytes over time using pulse-chase analysis and autoradiography. This protocol can also be used to analyze folding and cleavage of radiolabeled precursor proteins at steady state. Finally, the third protocol details methods for isolating Bmp cleavage products from the blastocoele of Xenopus embryos and then analyzing them on immunoblots.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Division of Hematology and Hematologic Malignancies, Department of Neurobiology, Anatomy and Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Autumn McKnite
- Division of Hematology and Hematologic Malignancies, Department of Neurobiology, Anatomy and Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jan L Christian
- Division of Hematology and Hematologic Malignancies, Department of Neurobiology, Anatomy and Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
35
|
GLP-1 Localisation and Proglucagon Gene Expression in Healthy and Diabetic Mouse Ileum. J Vet Res 2018; 62:237-242. [PMID: 30364894 PMCID: PMC6200298 DOI: 10.2478/jvetres-2018-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
Introduction Glucagon-like peptide-1 (GLP-1) is a polypeptide that is mainly produced by intestinal L cells and is encoded by the proglucagon gene. In this study, GLP-1 localisation was investigated in the ileum of healthy and diabetic mice by immunohistochemistry and proglucagon gene expression was assayed by reverse transcription-polymerase chain reaction. Material and Methods This study included 18 male Balb/c mice that were divided into diabetic, sham, and control groups. Mice in the diabetic group received 100 mg/kg of streptozotocin. Immunohistochemical expression of GLP-1 was determined using the avidin–biotin–peroxidase complex technique, and proglucagon gene expression was determined by RT-PCR. Results Analysis of GLP-1 immunohistochemical localisation showed that GLP-1-immunopositive cells (L cells) were present between epithelial cells in the intestinal crypts. The intensity and localisation of GLP-1 immunoreactivity were similar among the mice in all the groups. Proglucagon gene expression levels were also statistically similar among the mice in all the groups. Conclusion No difference was demonstrated among the mice in the diabetic, sham, or control groups with respect to proglucagon gene expression and GLP-1 localisation in the ileum, suggesting that diabetes does not affect proglucagon gene expression in the ileum.
Collapse
|
36
|
Transgenic overexpression of furin increases epileptic susceptibility. Cell Death Dis 2018; 9:1058. [PMID: 30333479 PMCID: PMC6193048 DOI: 10.1038/s41419-018-1076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 09/01/2018] [Accepted: 09/07/2018] [Indexed: 11/28/2022]
Abstract
The proprotein convertase Furin plays crucial roles in the pathology of many diseases. However, the specific role of furin in epilepsy remains unclear. In our study, furin protein was increased in the temporal neocortex of epileptic patients and in the hippocampus and cortex of epileptic mice. The furin transgenic (TG) mice showed increased susceptibility to epilepsy and heightened epileptic activity compared with wild-type (WT) mice. Conversely, lentivirus-mediated knockdown of furin restrained epileptic activity. Using whole-cell patch clamp, furin knockdown and overexpression influenced neuronal inhibitory by regulating postsynaptic gamma-aminobutyric acid A receptor (GABAAR)-mediated synaptic transmission. Importantly, furin influenced the expression of GABAAR β2/3 membrane and total protein in epileptic mice by changing transcription level of GABAAR β2/3, not the protein degradation. These results reveal that furin may regulate GABAAR-mediated inhibitory synaptic transmission by altering the transcription of GABAAR β2/3 subunits in epilepsy; this finding could provide new insight into epilepsy prevention and treatment.
Collapse
|
37
|
Salem JB, Nkambeu B, Arvanitis DN, Beaudry F. Deciphering the Role of EGL-3 for Neuropeptides Processing in Caenorhabditis elegans Using High-Resolution Quadrupole–Orbitrap Mass Spectrometry. Neurochem Res 2018; 43:2121-2131. [DOI: 10.1007/s11064-018-2636-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 01/13/2023]
|
38
|
Zhu B, Zhao L, Luo D, Xu D, Tan T, Dong Z, Tang Y, Min Z, Deng X, Sun F, Yan Z, Chen G. Furin promotes dendritic morphogenesis and learning and memory in transgenic mice. Cell Mol Life Sci 2018; 75:2473-2488. [PMID: 29302702 PMCID: PMC11105492 DOI: 10.1007/s00018-017-2742-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 01/14/2023]
Abstract
Furin is a proprotein convertase implicated in a variety of pathological processes including neurodegenerative diseases. However, the role of furin in neuronal plasticity and learning and memory remains to be elucidated. Here, we report that in brain-specific furin transgenic (Furin-Tg) mice, the dendritic spine density and proliferation of neural progenitor cells were significantly increased. These mice exhibited enhanced long-term potentiation (LTP) and spatial learning and memory performance, without alterations of miniature excitatory/inhibitory postsynaptic currents. In the cortex and hippocampus of Furin-Tg mice, the ratio of mature brain-derived neurotrophic factor (mBDNF) to pro-BDNF, and the activities of extracellular signal-related kinase (ERK) and cAMP response element-binding protein (CREB) were significantly elevated. We also found that hippocampal knockdown of CREB diminished the facilitation of LTP and cognitive function in Furin-Tg mice. Together, our results demonstrate that furin enhances dendritic morphogenesis and learning and memory in transgenic mice, which may be associated with BDNF-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Binglin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Lige Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Dong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Demei Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Tao Tan
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Lu, Chongqing, 400014, China
| | - Zhifang Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Lu, Chongqing, 400014, China
| | - Ying Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Zhuo Min
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Xiaojuan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
39
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122180 DOI: 10.1007/978-3-319-75474-1_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
40
|
Richardson JP, Mogavero S, Moyes DL, Blagojevic M, Krüger T, Verma AH, Coleman BM, De La Cruz Diaz J, Schulz D, Ponde NO, Carrano G, Kniemeyer O, Wilson D, Bader O, Enoiu SI, Ho J, Kichik N, Gaffen SL, Hube B, Naglik JR. Processing of Candida albicans Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. mBio 2018; 9:e02178-17. [PMID: 29362237 PMCID: PMC5784256 DOI: 10.1128/mbio.02178-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen responsible for superficial and life-threatening infections in humans. During mucosal infection, C. albicans undergoes a morphological transition from yeast to invasive filamentous hyphae that secrete candidalysin, a 31-amino-acid peptide toxin required for virulence. Candidalysin damages epithelial cell plasma membranes and stimulates the activating protein 1 (AP-1) transcription factor c-Fos (via p38-mitogen-activated protein kinase [MAPK]), and the MAPK phosphatase MKP1 (via extracellular signal-regulated kinases 1 and 2 [ERK1/2]-MAPK), which trigger and regulate proinflammatory cytokine responses, respectively. The candidalysin toxin resides as a discrete cryptic sequence within a larger 271-amino-acid parental preproprotein, Ece1p. Here, we demonstrate that kexin-like proteinases, but not secreted aspartyl proteinases, initiate a two-step posttranslational processing of Ece1p to produce candidalysin. Kex2p-mediated proteolysis of Ece1p after Arg61 and Arg93, but not after other processing sites within Ece1p, is required to generate immature candidalysin from Ece1p, followed by Kex1p-mediated removal of a carboxyl arginine residue to generate mature candidalysin. C. albicans strains harboring mutations of Arg61 and/or Arg93 did not secrete candidalysin, were unable to induce epithelial damage and inflammatory responses in vitro, and showed attenuated virulence in vivo in a murine model of oropharyngeal candidiasis. These observations identify enzymatic processing of C. albicans Ece1p by kexin-like proteinases as crucial steps required for candidalysin production and fungal pathogenicity.IMPORTANCECandida albicans is an opportunistic fungal pathogen that causes mucosal infection in millions of individuals worldwide. Successful infection requires the secretion of candidalysin, the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is derived from its parent protein Ece1p. Here, we identify two key amino acids within Ece1p vital for processing and production of candidalysin. Mutations of these residues render C. albicans incapable of causing epithelial damage and markedly reduce mucosal infection in vivo Importantly, candidalysin production requires two individual enzymatic events. The first involves processing of Ece1p by Kex2p, yielding immature candidalysin, which is then further processed by Kex1p to produce the mature toxin. These observations identify important steps for C. albicans pathogenicity at mucosal surfaces.
Collapse
Affiliation(s)
- Jonathan P Richardson
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Mariana Blagojevic
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacinto De La Cruz Diaz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Nicole O Ponde
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Giulia Carrano
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Simona I Enoiu
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Jemima Ho
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Nessim Kichik
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Julian R Naglik
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Vähätupa M, Cordova ZM, Barker H, Aittomäki S, Uusitalo H, Järvinen TAH, Pesu M, Uusitalo-Järvinen H. Furin deficiency in myeloid cells leads to attenuated revascularization in a mouse-model of oxygen-induced retinopathy. Exp Eye Res 2017; 166:160-167. [PMID: 29031855 DOI: 10.1016/j.exer.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/01/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathy is a vision-threatening disease associated with chronic retinal inflammation and hypoxia leading to abnormal angiogenesis. Furin, a member of the proprotein convertase family of proteins, has been implicated in the regulation of angiogenesis due to its essential role in the activation of several angiogenic growth factors, including vascular endothelial growth factor-C (VEGF-C), VEGF-D and transforming growth factor - β (TGF- β). In the present study, we evaluated expression of furin in the retina and its role in retinal angiogenesis. As both inflammation and hypoxia contribute to angiogenesis, the role of furin was evaluated using myeloid-cell specific furin knockout (KO) mice (designated LysMCre-fur(fl/fl)) both in developmental retinal angiogenesis as well as in hypoxia-driven angiogenesis using the oxygen-induced retinopathy (OIR) model. In the retina, furin expression was detected in endothelial cells, macrophages and, to some extent, in neurons. The rate of angiogenesis was not different in LysMCre-fur(fl/fl) mice when compared to their wild-type littermates during development. In the OIR model, the revascularization of retina was significantly delayed in LysMCre-fur(fl/fl) mice compared to their wild-type littermates, while there was no compensatory increase in the preretinal neovascularization in LysMCre-fur(fl/fl) mice. These results demonstrate that furin expression in myeloid cells plays a significant role in hypoxia-induced angiogenesis in retina.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Zuzet Martinez Cordova
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland; Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Saara Aittomäki
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland; Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland; Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland; Departments of Musculoskeletal Disorders, Tampere University Hospital, Tampere, Finland
| | - Marko Pesu
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland; Immunoregulation, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland; Departments of Dermatology, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland; Eye Centre, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
42
|
Willson JA, Muir CA, Evered CL, Cepeda MA, Damjanovski S. Stable expression of α1-antitrypsin Portland in MDA-MB-231 cells increased MT1-MMP and MMP-9 levels, but reduced tumour progression. J Cell Commun Signal 2017; 12:479-488. [PMID: 28849349 DOI: 10.1007/s12079-017-0407-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/16/2017] [Indexed: 11/29/2022] Open
Abstract
The membrane bound matrix metalloproteinase MT1-MMP plays roles in modulating cell movement, independent of its abilities to remodel the extracellular matrix. Unlike many MMPs, MT1-MMP is activated in the Golgi prior to secretion by a pro-protein convertase, primarily furin. Regulation of the activation of pro-MT1-MMP has been methodically investigated, as altering the level of the active protein has broad implications in both activating other pro-MMPs, including pro-MMP-2, and many subsequent remodelling events. Our previous work in MCF-7 cells has demonstrated that modest, and not extremely high, levels of active MT1-MMP manifests into altered cell morphology and movement. At this low but optimal amount of MT1-MMP protein, changes to MT1-MMP levels are always mirrored by MMP-9 and pERK levels, and always opposite to MMP-2 levels. In this study, stable expression of the furin inhibitor α1-antitrypsin Portland (α1-PDX) in MDA-MB-231 cells increased overall MT1-MMP levels, but cells maintained a 21% proportion of pro-MT1-MMP. The increase in MT1-MMP was mirrored by increases in MMP-9 and pERK, but a decrease in MMP-2. These changes were associated with increased NF-κB transcription. In vitro analysis showed that α1-PDX decreased cell protrusions and migration, and this manifested as decreased tumourigenesis when examined in vivo using a chick CAM assay.
Collapse
Affiliation(s)
- J A Willson
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - C A Muir
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - C L Evered
- Ontario Veterinary College, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - M A Cepeda
- Department of Urology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55902, USA
| | - S Damjanovski
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
43
|
Ma J, Evrard S, Badiola I, Siegfried G, Khatib AM. Regulation of the proprotein convertases expression and activity during regenerative angiogenesis: Role of hypoxia-inducible factor (HIF). Eur J Cell Biol 2017. [DOI: 10.1016/j.ejcb.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Małuch I, Levesque C, Kwiatkowska A, Couture F, Ly K, Desjardins R, Neugebauer WA, Prahl A, Day R. Positional Scanning Identifies the Molecular Determinants of a High Affinity Multi-Leucine Inhibitor for Furin and PACE4. J Med Chem 2017; 60:2732-2744. [PMID: 28287731 DOI: 10.1021/acs.jmedchem.6b01499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proprotein convertase family of enzymes includes seven endoproteases with significant redundancy in their cleavage activity. We previously described the peptide Ac-LLLLRVK-Amba that displays potent inhibitory effects on both PACE4 and prostate cancer cell lines proliferation. Herein, the molecular determinants for PACE4 and furin inhibition were investigated by positional scanning using peptide libraries that substituted its leucine core with each natural amino acid. We determined that the incorporation of basic amino acids led to analogues with improved inhibitory potency toward both enzymes, whereas negatively charged residues significantly reduced it. All the remaining amino acids were in general well tolerated, with the exemption of the P6 position. However, not all of the potent PACE4 inhibitors displayed antiproliferative activity. The best analogues were obtained by the incorporation of the Ile residue at the P5 and P6 positions. These substitutions led to inhibitors with increased PACE4 selectivity and potent antiproliferative effects.
Collapse
Affiliation(s)
- Izabela Małuch
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk , 80-308 Gdańsk, Poland
| | - Christine Levesque
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Kévin Ly
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Roxane Desjardins
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Witold A Neugebauer
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk , 80-308 Gdańsk, Poland
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| |
Collapse
|
45
|
Cao T, Yang D, Zhang X, Wang Y, Qiao Z, Gao L, Liang Y, Yu B, Zhang P. FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. Cell Biol Toxicol 2017; 33:457-466. [PMID: 28247283 DOI: 10.1007/s10565-017-9387-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/13/2017] [Indexed: 12/28/2022]
Abstract
Dysregulated glucagon secretion is a hallmark of type 2 diabetes (T2D). To date, few effective therapeutic agents target on deranged glucagon secretion. Family with sequence similarity 3 member D (FAM3D) is a novel gut-derived cytokine-like protein, and its secretion timing is contrary to that of glucagon. However, the roles of FAM3D in metabolic disorder and its biological functions are largely unknown. In the present study, we investigated whether FAM3D modulates glucagon production in mouse pancreatic alpha TC1 clone 6 (αTC1-6) cells. Glucagon secretion, prohormone convertase 2 (PC2) activity, and mitogen-activated protein kinase (MAPK) pathway were assessed. Exogenous FAM3D inhibited glucagon secretion, PC2 activity, as well as extracellular-regulated protein kinase 1/2 (ERK1/2) signaling and induced MAPK phosphatase 1 (MKP1) expression. Moreover, knockdown of MKP1 and inhibition of ERK1/2 abolished and potentiated the inhibitory effect of FAM3D on glucagon secretion, respectively. Taken together, FAM3D inhibits glucagon secretion via MKP1-dependent suppression of ERK1/2 signaling. These results provide rationale for developing the therapeutic potential of FAM3D for dysregulated glucagon secretion and T2D.
Collapse
Affiliation(s)
- Ting Cao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Dan Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiong Zhang
- Department of Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yueqian Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Zhengdong Qiao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Lili Gao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Yongjun Liang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Bo Yu
- Department of Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Peng Zhang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
- Department of Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
46
|
López M, Gómez E, Faye C, Gerentes D, Paul W, Royo J, Hueros G, Muñiz LM. zmsbt1 and zmsbt2, two new subtilisin-like serine proteases genes expressed in early maize kernel development. PLANTA 2017; 245:409-424. [PMID: 27830397 DOI: 10.1007/s00425-016-2615-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Two subtilisin-like proteases show highly specific and complementary expression patterns in developing grains. These genes label the complete surface of the filial-maternal interface, suggesting a role in filial epithelial differentiation. The cereal endosperm is the most important source of nutrition and raw materials for mankind, as well as the storage compartment enabling initial growth of the germinating plantlets. The development of the different cell types in this tissue is regulated environmentally, genetically and epigenetically, resulting in the formation of top-bottom, adaxial-abaxial and surface-central axes. However, the mechanisms governing the interactions among the different inputs are mostly unknown. We have screened a kernel cDNA library for tissue-specific transcripts as initial step to identify genes relevant in cell differentiation. We report here on the isolation of two maize subtilisin-related genes that show grain-specific, surficial expression. zmsbt1 (Zea mays Subtilisin1) is expressed at the developing aleurone in a time-regulated manner, while zmsbt2 concentrates at the pedicel in front of the endosperm basal transfer layer. We have shown that their presence, early in the maize caryopsis development, is dependent on proper initial tissue determination, and have isolated their promoters to produce transgenic reporter lines that assist in the study of their regulation.
Collapse
Affiliation(s)
- Maribel López
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Elisa Gómez
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Christian Faye
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Denise Gerentes
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Wyatt Paul
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Joaquín Royo
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Gregorio Hueros
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain.
| | - Luis M Muñiz
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
47
|
Bassi DE, Zhang J, Renner C, Klein-Szanto AJ. Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol Carcinog 2016; 56:1182-1188. [PMID: 27584082 DOI: 10.1002/mc.22550] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
Proprotein convertases (PCs) are serine proteases with an active role in the post-translational processing of numerous inactive proteins to active proteins including many substrates of paramount importance in cancer development and progression. Furin (PCSKC3), a well-studied member of this family, is overexpressed in numerous human and experimental malignancies. In the present communication, we treated two furin-overexpressing non-small cell carcinoma (NSCLC) cell lines (Calu-6 and HOP-62) with the PC inhibitor CMK (Decanoyl-Arg-Val-Lys-Arg-chloromethylketone). This resulted in a diminished IGF-1R processing and a simultaneous decrease in cell proliferation of two NSCLC lines. Similarly, growth of subcutaneous xenografts of both cell lines, were partially inhibited by an in vivo treatment with the same drug. These observations point to a potential role of PC inhibitors in cancer therapy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel E Bassi
- Department of Pathology and Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jirong Zhang
- Department of Pathology and Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Catherine Renner
- Department of Pathology and Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andres J Klein-Szanto
- Department of Pathology and Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Ranta N, Turpeinen H, Oksanen A, Hämäläinen S, Huttunen R, Uusitalo-Seppälä R, Rintala E, Aittoniemi J, Pesu M. The Plasma Level of Proprotein Convertase FURIN in Patients with Suspected Infection in the Emergency Room: A Prospective Cohort Study. Scand J Immunol 2016; 82:539-46. [PMID: 26346780 DOI: 10.1111/sji.12386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/26/2015] [Indexed: 01/26/2023]
Abstract
There is an increasing need for novel biomarkers that enable better diagnostic and prognostic stratification of patients with suspected infection. A proprotein convertase enzyme FURIN is upregulated upon immune cell activation, and it promotes infectivity by cleaving and activating pathogens. In this study, we determined FURIN levels in plasma using ELISA from 537 patients that were admitted to emergency room with suspected infection. Patients were sorted to high- and low-level FURIN groups with a cut-off level of 370 pg/ml. The study cohort included five diagnostic groups: Group 1, no systemic inflammatory response syndrome (SIRS, n = 59 patients); Group 2, bacterial infection without SIRS (n = 67); Group 3, SIRS, but no bacterial infection (n = 308); Group 4, sepsis without organ failure (n = 308); and Group 5, severe sepsis (n = 49). Statistically significant associations were not found between the plasma level of FURIN and the prevalence of sepsis (P = 0.957), diagnostic group of a patient (P = 0.737) or the bacteria in blood culture (P = 0.499). Additionally, the concentration of FURIN did not predict the severity or case fatality of the infectious disease. However, statistically significant associations were found between high plasma level of FURIN and diagnosed rheumatic disease (P < 0.001) as well as with the prevalence of non-smokers (P = 0.034). Thus, albeit the plasma level of FURIN does not predict the severity of infectious disease, it may be of use in the diagnostics of autoimmune diseases.
Collapse
Affiliation(s)
- N Ranta
- Immunoregulation, BioMediTech, University of Tampere, Tampere, Finland.,School of Medicine, University of Tampere, Tampere, Finland
| | - H Turpeinen
- Immunoregulation, BioMediTech, University of Tampere, Tampere, Finland
| | - A Oksanen
- Immunoregulation, BioMediTech, University of Tampere, Tampere, Finland
| | - S Hämäläinen
- Immunoregulation, BioMediTech, University of Tampere, Tampere, Finland
| | - R Huttunen
- Department of Infectious Diseases, Tampere University Hospital, Tampere, Finland
| | - R Uusitalo-Seppälä
- Department of Infectious Diseases, Satakunta Central Hospital, Pori, Finland
| | - E Rintala
- Department of Hospital Hygiene & Infection Control, Turku University Hospital, Turku, Finland
| | | | - M Pesu
- Immunoregulation, BioMediTech, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland.,Department of Dermatology, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
49
|
Kurano M, Tsukamoto K, Kamitsuji S, Kamatani N, Hara M, Ishikawa T, Kim BJ, Moon S, Jin Kim Y, Teramoto T. Genome-wide association study of serum lipids confirms previously reported associations as well as new associations of common SNPs within PCSK7 gene with triglyceride. J Hum Genet 2016; 61:427-33. [DOI: 10.1038/jhg.2015.170] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/23/2015] [Accepted: 12/13/2015] [Indexed: 12/31/2022]
|
50
|
Apelin: an antithrombotic factor that inhibits platelet function. Blood 2015; 127:908-20. [PMID: 26634301 DOI: 10.1182/blood-2014-05-578781] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
Apelin peptide and its receptor APJ are directly implicated in various physiological processes ranging from cardiovascular homeostasis to immune signaling. Here, we show that apelin is a key player in hemostasis with an ability to inhibit thrombin- and collagen-mediated platelet activation. Mice lacking apelin displayed a shorter bleeding time and a prothrombotic profile. Their platelets exhibited increased adhesion and a reduced occlusion time in venules, and displayed a higher aggregation rate after their activation by thrombin compared with wild-type platelets. Consequently, human and mouse platelets express apelin and its receptor APJ. Apelin directly interferes with thrombin-mediated signaling pathways and platelet activation, secretion, and aggregation, but not with ADP and thromboxane A2-mediated pathways. IV apelin administration induced excessive bleeding and prevented thrombosis in mice. Taken together, these findings suggest that apelin and/or APJ agonists could potentially be useful adducts in antiplatelet therapies and may provide a promising perspective for patients who continue to display adverse thrombotic events with current antiplatelet therapies.
Collapse
|