1
|
Mena S, Cruikshank A, Best J, Nijhout HF, Reed MC, Hashemi P. Modulation of serotonin transporter expression by escitalopram under inflammation. Commun Biol 2024; 7:710. [PMID: 38851804 PMCID: PMC11162477 DOI: 10.1038/s42003-024-06240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/24/2024] [Indexed: 06/10/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used for depression based on the monoamine deficiency hypothesis. However, the clinical use of these agents is controversial, in part because of their variable clinical efficacy and in part because of their delayed onset of action. Because of the complexities involved in replicating human disease and clinical dosing in animal models, the scientific community has not reached a consensus on the reasons for these phenomena. In this work, we create a theoretical hippocampal model incorporating escitalopram's pharmacokinetics, pharmacodynamics (competitive and non-competitive inhibition, and serotonin transporter (SERT) internalization), inflammation, and receptor dynamics. With this model, we simulate chronic oral escitalopram in mice showing that days to weeks are needed for serotonin levels to reach steady-state. We show escitalopram's chemical efficacy is diminished under inflammation. Our model thus offers mechanisms for how chronic escitalopram affects brain serotonin, emphasizing the importance of optimized dose and time for future antidepressant discoveries.
Collapse
Affiliation(s)
- Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - H F Nijhout
- Department of Biology, Duke University, Durham, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Parastoo Hashemi
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Li X, Feng D, Ma S, Li M, Zhao S, Tang M. Ventral hippocampus is more sensitive to fluoxetine-induced changes in extracellular 5-HT concentration, membrane 5-HT transporter level and immobility times. Neuropharmacology 2024; 242:109766. [PMID: 37858884 DOI: 10.1016/j.neuropharm.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Hippocampal responses to selective 5-HT reuptake inhibitor (SSRI) have long been studied. However, its sub-regional involvements in mediating SSRI's pharmacological effects have not been fully addressed. The current study sought to investigate neurochemical, neurobiological and neurobehavioral changes in response to direct fluoxetine perfusion into the ventral and dorsal sub-regions of the hippocampus in C57BL/6 mice. Following fluoxetine perfusion, time courses of dialysate 5-HT, 5-HT transporter (5-HTT) protein (total, membrane and cytoplasmic fractions), locomotion, and immobility times in the forced swim test (FST) and tail suspension test (TST) were determined. At baseline, 5-HT uptake efficiency assessed by the no-net-flux microdialysis, and 5-HTT protein were measured as well. Results show that fluoxetine dose-dependently increased dialysate 5-HT, lowered membrane 5-HTT protein and increased cytoplasmic fraction without changing the total level, decreased immobility times in both the FST and TST, with greater responses all detected in the ventral sub-region compared to the dorsal sub-region. Fluoxetine didn't affect locomotor activity, ruling out the possibility that fluoxetine's effects on immobility maybe due to alteration in locomotion. Besides, lower 5-HT uptake efficiency and lower membrane 5-HTT protein level were found in the ventral sub-region at baseline. Together, the sub-regional differences at baseline and in responses to fluoxetine added powerful evidence to support the existence of two distinct 5-HT sub-systems in the hippocampus, with greater changes to fluoxetine detected in the ventral sub-system.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Dan Feng
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shenglu Ma
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Mingxing Li
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Man Tang
- Department of Clinical Pharmacology, College of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
Witt CE, Mena S, Holmes J, Hersey M, Buchanan AM, Parke B, Saylor R, Honan LE, Berger SN, Lumbreras S, Nijhout FH, Reed MC, Best J, Fadel J, Schloss P, Lau T, Hashemi P. Serotonin is a common thread linking different classes of antidepressants. Cell Chem Biol 2023; 30:1557-1570.e6. [PMID: 37992715 DOI: 10.1016/j.chembiol.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/24/2023]
Abstract
Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).
Collapse
Affiliation(s)
- Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, UK
| | - Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Brenna Parke
- Department of Bioengineering, Imperial College London, London, UK
| | - Rachel Saylor
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lauren E Honan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Janet Best
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - James Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Patrick Schloss
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty, Mannheim, Heidelberg University, Mannheim, Germany; Department of Neuroanatomy, Mannheim Centre for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
4
|
Koban F, Freissmuth M. The cell cycle protein MAD2 facilitates endocytosis of the serotonin transporter in the neuronal soma. EMBO Rep 2023; 24:e53408. [PMID: 37530743 PMCID: PMC10561363 DOI: 10.15252/embr.202153408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
Monoamine transporters retrieve serotonin (SERT), dopamine (DAT), and norepinephrine (NET) from the synaptic cleft. Transporter internalization contributes to the regulation of their surface expression. Clathrin-mediated endocytosis of plasma membrane proteins requires adaptor protein-2 (AP2), which recruits cargo to the nascent clathrin cage. However, the intracellular portions of monoamine transporters are devoid of a conventional AP2-binding site. Here, we identify a MAD2 (mitotic arrest deficient-2) interaction motif in the C-terminus of SERT, which binds the closed conformation of MAD2 and allows for the recruitment of two additional mitotic spindle assembly checkpoint (SAC) proteins, BubR1 and p31comet , and of AP2. We visualize MAD2, BubR1, and p31comet in dorsal raphe neurons, and depletion of MAD2 in primary serotonergic rat neurons decreases SERT endocytosis in the soma. Our findings do not only provide mechanistic insights into transporter internalization but also allow for rationalizing why SAC proteins are present in post-mitotic neurons.
Collapse
Affiliation(s)
- Florian Koban
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
5
|
Brown CR, Foster JD. Palmitoylation Regulates Human Serotonin Transporter Activity, Trafficking, and Expression and Is Modulated by Escitalopram. ACS Chem Neurosci 2023; 14:3431-3443. [PMID: 37644775 DOI: 10.1021/acschemneuro.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During serotonergic transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of this process is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective serotonin reuptake inhibitors (SSRIs). S-Palmitoylation, the reversible addition of a 16-carbon fatty acid to proteins, is an increasingly recognized dynamic post-translational modification responsible for modulating protein kinetics, trafficking, and localization patterns in response to physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyltransferase inhibitor 2-bromopalmitate (2BP), we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT Vmax, without changes in Km or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal that palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and ultimately decreased cellular SERT protein levels.
Collapse
Affiliation(s)
- Christopher R Brown
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| | - James D Foster
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
6
|
Brown CR, Foster JD. Palmitoylation regulates human serotonin transporter activity, trafficking, and expression and is modulated by escitalopram. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540092. [PMID: 37214849 PMCID: PMC10197645 DOI: 10.1101/2023.05.09.540092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the central nervous system, serotonergic signaling modulates sleep, mood, and cognitive control. During neuronal transmission, the synaptic concentration of serotonin is tightly controlled in a spatial and temporal manner by the serotonin transporter (SERT). Dysregulation of serotonergic signaling is implicated in the pathogenesis of major-depressive, obsessive-compulsive, and autism-spectrum disorders, which makes SERT a primary target for prescription therapeutics, most notably selective-serotonin reuptake inhibitors (SSRIs). S-palmitoylation is an increasingly recognized dynamic post-translational modification, regulating protein kinetics, trafficking, and localization patterns upon physiologic/cellular stimuli. In this study, we reveal that human SERTs are a target for palmitoylation, and using the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP) we have identified several associated functions. Using a lower dose of 2BP in shorter time frames, inhibition of palmitoylation was associated with reductions in SERT V max , without changes in K m or surface expression. With higher doses of 2BP for longer time intervals, inhibition of palmitoylation was consistent with the loss of cell surface and total SERT protein, suggesting palmitoylation is an important mechanism in regulating SERT trafficking and maintenance of SERT protein through biogenic or anti-degradative processes. Additionally, we have identified that treatment with the SSRI escitalopram decreases SERT palmitoylation analogous to 2BP, reducing SERT surface expression and transport capacity. Ultimately, these results reveal palmitoylation is a major regulatory mechanism for SERT kinetics and trafficking and may be the mechanism responsible for escitalopram-induced internalization and loss of total SERT protein.
Collapse
|
7
|
Bartlett EA, Zanderigo F, Stanley B, Choo TH, Galfalvy HC, Pantazatos SP, Sublette ME, Miller JM, Oquendo MA, Mann JJ. In vivo serotonin transporter and 1A receptor binding potential and ecological momentary assessment (EMA) of stress in major depression and suicidal behavior. Eur Neuropsychopharmacol 2023; 70:1-13. [PMID: 36780841 PMCID: PMC10121874 DOI: 10.1016/j.euroneuro.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/13/2023]
Abstract
We examined relationships between the serotonin system and stress in major depression and suicidal behavior. Twenty-five medication-free depressed participants (13 suicide attempters) underwent same-day [11C]DASB and [11C]CUMI-101 positron emission tomography (PET) imaging. Binding potential (BPND) to the serotonin transporter (5-HTT) and serotonin 1A (5-HT1A) receptor, respectively, was quantified using the NRU 5-HT atlas, reflecting distinct spatial distributions of multiple serotonin targets. Ecological momentary assessment (EMA) measured current stress over one week proximal to imaging. EMA stress did not differ between attempters and non-attempters. In all depressed participants, 5-HTT and 5-HT1A BPND were unrelated to EMA stress. There were region-specific effects of 5-HTT (p=0.002) and 5-HT1A BPND (p=0.03) in attempters vs. nonattempters. In attempters, region-specific associations between 5-HTT (p=0.03) and 5-HT1A (p=0.005) BPND and EMA stress emerged. While no post-hoc 5-HTT BPND correlations were significant, 5-HT1A BPND correlated positively with EMA stress in attempters in 9/10 regions (p-values<0.007), including the entire cortex except the largely occipital region 5. Brodmann-based regional analyses found diminished effects for 5-HTT and subcortically localized positive corrrelations between 5-HT1A and EMA stress, in attempters only. Given comparable depression severity and childhood and current stress between attempters and nonattempters, lower 5-HTT binding in attempters vs. nonattempters may suggest a biological risk marker. Localized lower 5-HTT and widespread higher 5-HT1A binding with stress among attempters specifically may suggest that a serotonergic phenotype might be a key determinant of risk or resiliency for suicidal behavior.
Collapse
Affiliation(s)
- Elizabeth A Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA.
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Barbara Stanley
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Tse-Hwei Choo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Hanga C Galfalvy
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Spiro P Pantazatos
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA
| | - Maria A Oquendo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; Department of Radiology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
8
|
Su P, Yan S, Yang J, Tong J, Samsom J, You F, Li Y, Chen Q, Jiang A, Zhai D, Chen J, Sun Z, Zhou J, Liu M, Lee FJS, Xu ZQD, Wang X, Vasdev N, Wong AHC, Liu F. Serum amyloid P component (SAP) modulates antidepressant effects through promoting membrane insertion of the serotonin transporter. Neuropsychopharmacology 2023; 48:508-517. [PMID: 36076020 PMCID: PMC9852251 DOI: 10.1038/s41386-022-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 02/02/2023]
Abstract
Serum amyloid P component (SAP) is a universal constituent of human amyloid deposits including those in Alzheimer's disease. SAP has been observed to be elevated in patients with depression, and higher SAP levels are associated with better response to the antidepressant escitalopram. The mechanisms underlying these clinical observations remain unclear. We examined the effect of SAP on serotonin transporter (SERT) expression and localization using Western blot, confocal microscopy, and positron emission tomography with the radioligand [11C]DASB. We also investigated the effect of SAP on treatment response to escitalopram in mice with the forced swim test (FST), a classical behaviour paradigm to assess antidepressant effects. SAP reduced [11C]DASB binding as an index of SERT levels, consistent with Western blots showing decreased total SAP protein because of increased protein degradation. In conjunction with the global decrease in SERT levels, SAP also promotes VAMP-2 mediated SERT membrane insertion. SAP levels are correlated with behavioural despair and SSRI treatment response in mice with FST. In MDD patients, the SAP and membrane SERT levels are correlated with response to SSRI treatment. SAP has complex effects on SERT levels and localization, thereby modulating the effect of SSRIs, which could partially explain clinical variability in antidepressant treatment response. These results add to our understanding of the mechanism for antidepressant drug action, and with further work could be of clinical utility.
Collapse
Affiliation(s)
- Ping Su
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shuxin Yan
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jian Yang
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Junchao Tong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James Samsom
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fan You
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Yun Li
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Qiuyue Chen
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Dongxu Zhai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jiahao Chen
- Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Zuoli Sun
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Jingjing Zhou
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Min Liu
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Frank J S Lee
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zhi-Qing David Xu
- Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Neil Vasdev
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Departments of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Departments of Psychiatry, University of Toronto, Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Departments of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Departments of Physiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
West AM, Holleran KM, Jones SR. Kappa Opioid Receptors Reduce Serotonin Uptake and Escitalopram Efficacy in the Mouse Substantia Nigra Pars Reticulata. Int J Mol Sci 2023; 24:2080. [PMID: 36768403 PMCID: PMC9916942 DOI: 10.3390/ijms24032080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The serotonin and kappa opioid receptor (KOR) systems are strongly implicated in disorders of negative affect, such as anxiety and depression. KORs expressed on axon terminals inhibit the release of neurotransmitters, including serotonin. The substantia nigra pars reticulata (SNr) is involved in regulating affective behaviors. It receives the densest serotonergic innervation in the brain and has high KOR expression; however, the influence of KORs on serotonin transmission in this region is yet to be explored. Here, we used ex vivo fast-scan cyclic voltammetry (FSCV) to investigate the effects of a KOR agonist, U50, 488 (U50), and a selective serotonin reuptake inhibitor, escitalopram, on serotonin release and reuptake in the SNr. U50 alone reduced serotonin release and uptake, and escitalopram alone augmented serotonin release and slowed reuptake, while pretreatment with U50 blunted both the release and uptake effects of escitalopram. Here, we show that the KOR influences serotonin signaling in the SNr in multiple ways and short-term activation of the KOR alters serotonin responses to escitalopram. These interactions between KORs and serotonin may contribute to the complexity in the responses to treatments for disorders of negative affect. Ultimately, the KOR system may prove to be a promising pharmacological target, alongside traditional antidepressant treatments.
Collapse
Affiliation(s)
| | | | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA
| |
Collapse
|
10
|
Deo N, Redpath G. Serotonin Receptor and Transporter Endocytosis Is an Important Factor in the Cellular Basis of Depression and Anxiety. Front Cell Neurosci 2022; 15:804592. [PMID: 35280519 PMCID: PMC8912961 DOI: 10.3389/fncel.2021.804592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression and anxiety are common, debilitating psychiatric conditions affecting millions of people throughout the world. Current treatments revolve around selective serotonin reuptake inhibitors (SSRIs), yet these drugs are only moderately effective at relieving depression. Moreover, up to 30% of sufferers are SSRI non-responders. Endocytosis, the process by which plasma membrane and extracellular constituents are internalized into the cell, plays a central role in the regulation of serotonin (5-hydroxytryptophan, 5-HT) signaling, SSRI function and depression and anxiety pathogenesis. Despite their therapeutic potential, surprisingly little is known about the endocytosis of the serotonin receptors (5-HT receptors) or the serotonin transporter (SERT). A subset of 5-HT receptors are endocytosed by clathrin-mediated endocytosis following serotonin binding, while for the majority of 5-HT receptors the endocytic regulation is not known. SERT internalizes serotonin from the extracellular space into the cell to limit the availability of serotonin for receptor binding and signaling. Endocytosis of SERT reduces serotonin uptake, facilitating serotonin signaling. SSRIs predominantly inhibit SERT, preventing serotonin uptake to enhance 5-HT receptor signaling, while hallucinogenic compounds directly activate specific 5-HT receptors, altering their interaction with endocytic adaptor proteins to induce alternate signaling outcomes. Further, multiple polymorphisms and transcriptional/proteomic alterations have been linked to depression, anxiety, and SSRI non-response. In this review, we detail the endocytic regulation of 5-HT receptors and SERT and outline how SSRIs and hallucinogenic compounds modulate serotonin signaling through endocytosis. Finally, we will examine the deregulated proteomes in depression and anxiety and link these with 5-HT receptor and SERT endocytosis. Ultimately, in attempting to integrate the current studies on the cellular biology of depression and anxiety, we propose that endocytosis is an important factor in the cellular basis of depression and anxiety. We will highlight how a thorough understanding 5-HT receptor and SERT endocytosis is integral to understanding the biological basis of depression and anxiety, and to facilitate the development of a next generation of specific, efficacious antidepressant treatments.
Collapse
Affiliation(s)
- Nikita Deo
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory Redpath
- European Molecular Biology Lab (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences and the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Gregory Redpath
| |
Collapse
|
11
|
Giorgi-Guarnieri D. Clinician Liability in Prescribing Antidepressants. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:372-379. [PMID: 32047384 DOI: 10.1176/appi.focus.20190024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malpractice claims frequently focus on the clinician's prescription of medications. Claims may arise in many environments: inpatient units, outpatient offices, prisons, journal articles, pharmaceutical talks, and clinical trials of new medications. The basis of the claim may be product liability, informed consent, deliberate indifference, violation of the Federal Food, Drug, and Cosmetic Act, or academic malpractice. All malpractice claims include a duty, a breach of duty, causation, and damages. The duty and breach of duty may be obvious, but causation can vary considerably in malpractice claims. Perhaps the damages are most apparent when the patient has suffered side effects. This article explores clinician liability for the use of antidepressants from the clinical trial to the removal from the market.
Collapse
|
12
|
Saiz-Bianco E, Urbanavicius J, Prunell G, Lagos P. Melanin-concentrating hormone does not modulate serotonin release in primary cultures of fetal raphe nucleus neurons. Neuropeptides 2019; 74:70-81. [PMID: 30642579 DOI: 10.1016/j.npep.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide present in neurons located in the hypothalamus that densely innervate serotonergic cells in the dorsal raphe nucleus (DRN). MCH administration into the DRN induces a depressive-like effect through a serotonergic mechanism. To further understand the interaction between MCH and serotonin, we used primary cultured serotonergic neurons to evaluate the effect of MCH on serotonergic release and metabolism by HPLC-ED measurement of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels. We confirmed the presence of serotonergic neurons in the E14 rat rhombencephalon by immunohistochemistry and showed for the first time evidence of MCHergic fibers reaching the area. Cultures obtained from rhombencephalic tissue presented 2.2 ± 0.7% of serotonergic and 48.9 ± 5.4% of GABAergic neurons. Despite the low concentration of serotonergic neurons, we were able to measure basal cellular and extracellular levels of 5-HT and 5-HIAA without the addition of any serotonergic-enhancer drug. As expected, 5-HT release was calcium-dependent and induced by depolarization. 5-HT extracellular levels were significantly increased by incubation with serotonin reuptake inhibitors (citalopram and nortriptyline) and a monoamine-oxidase inhibitor (clorgyline), and were not significantly modified by a 5-HT1A autoreceptor agonist (8-OHDPAT). Even though serotonergic cells responded as expected to these pharmacological treatments, MCH did not induce significant modifications of 5-HT and 5-HIAA extracellular levels in the cultures. Despite this unexpected result, we consider that assessment of 5-HT and 5-HIAA levels in primary serotonergic cultures may be an adequate approach to study the effect of other drugs and modulators on serotonin release, uptake and turnover.
Collapse
Affiliation(s)
- Eugenia Saiz-Bianco
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
13
|
Baudry A, Pietri M, Launay JM, Kellermann O, Schneider B. Multifaceted Regulations of the Serotonin Transporter: Impact on Antidepressant Response. Front Neurosci 2019; 13:91. [PMID: 30809118 PMCID: PMC6379337 DOI: 10.3389/fnins.2019.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Serotonin transporter, SERT (SLC64A for solute carrier family 6, member A4), is a twelve transmembrane domain (TMDs) protein that assumes the uptake of serotonin (5-HT) through dissipation of the Na+ gradient established by the electrogenic pump Na/K ATPase. Abnormalities in 5-HT level and signaling have been associated with various disorders of the central nervous system (CNS) such as depression, obsessive-compulsive disorder, anxiety disorders, and autism spectrum disorder. Since the 50s, SERT has raised a lot of interest as being the target of a class of antidepressants, the Serotonin Selective Reuptake Inhibitors (SSRIs), used in clinics to combat depressive states. Because of the refractoriness of two-third of patients to SSRI treatment, a better understanding of the mechanisms regulating SERT functions is of priority. Here, we review how genetic and epigenetic regulations, post-translational modifications of SERT, and specific interactions between SERT and a set of diverse partners influence SERT expression, trafficking to and away from the plasma membrane and activity, in connection with the neuronal adaptive cell response to SSRI antidepressants.
Collapse
Affiliation(s)
- Anne Baudry
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Mathea Pietri
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Jean-Marie Launay
- Hôpital Lariboisière, AP-HP, INSERM UMR-S 942, Paris, France.,Pharma Research Department, Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Odile Kellermann
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Benoit Schneider
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| |
Collapse
|
14
|
Kamińska K, Lenda T, Konieczny J, Wardas J, Lorenc-Koci E. Interactions of the tricyclic antidepressant drug amitriptyline with L-DOPA in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Relevance to motor dysfunction in Parkinson's disease. Neurochem Int 2018; 121:125-139. [PMID: 30290201 DOI: 10.1016/j.neuint.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
Antidepressant drugs are recommended for the treatment of Parkinson's disease (PD)-associated depression but their role in the modulation of L-DOPA-induced behavioral and neurochemical markers is poorly explored. The aim of the present study was to examine the impact of the tricyclic antidepressant amitriptyline and L-DOPA, administered chronically alone or in combination, on rotational behavior, monoamine levels and binding of radioligands to their transporters in the dopaminergic brain structures of unilaterally 6-OHDA-lesioned rats. Binding of [3H]nisoxetine to noradrenaline transporter (NET), [3H]GBR 12,935 to dopamine transporter (DAT) and [3H]citalopram to serotonin transporter (SERT) were analyzed by autoradiography. Amitriptyline administered alone did not induce rotational behavior but in combination with L-DOPA increased the number of contralateral rotations much more strongly than L-DOPA alone. The combined treatment also significantly increased the tissue dopamine (DA) content in the ipsilateral striatum and substantia nigra (SN) vs. L-DOPA alone. 6-OHDA-mediated lesion of nigrostriatal DA neurons drastically reduced DAT and NET bindings in the ipsilateral striatum. In the ipsilateral SN, DAT binding decreased while NET binding rose. SERT binding increased significantly mainly in the SN. Amitriptyline administered alone or jointly with L-DOPA had no effect on DAT binding on the lesioned side, significantly decreased SERT binding in the striatum and SN while NET binding only in the SN. Since in the DA-denervated striatum, SERT is mainly responsible for reuptake of L-DOPA-derived DA while in the SN, SERT and NET are involved, the inhibition of these transporters by antidepressant drugs may improve dopaminergic transmission and consequently motor behavior.
Collapse
Affiliation(s)
- Kinga Kamińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Tomasz Lenda
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jolanta Konieczny
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jadwiga Wardas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Elżbieta Lorenc-Koci
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| |
Collapse
|
15
|
Bratkovič T, Modic M, Camargo Ortega G, Drukker M, Rogelj B. Neuronal differentiation induces SNORD115 expression and is accompanied by post-transcriptional changes of serotonin receptor 2c mRNA. Sci Rep 2018; 8:5101. [PMID: 29572515 PMCID: PMC5865145 DOI: 10.1038/s41598-018-23293-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Abstract
The serotonin neurotransmitter system is widespread in the brain and implicated in modulation of neuronal responses to other neurotransmitters. Among 14 serotonin receptor subtypes, 5-HT2cR plays a pivotal role in controlling neuronal network excitability. Serotonergic activity conveyed through receptor 5-HT2cR is regulated post-transcriptionally via two mechanisms, alternative splicing and A-to-I RNA editing. Brain-specific small nucleolar RNA SNORD115 harbours a phylogenetically conserved 18-nucleotide antisense element with perfect complementarity to the region of 5ht2c primary transcript that undergoes post-transcriptional changes. Previous 5ht2c minigene studies have implicated SNORD115 in fine-tuning of both post-transcriptional events. We monitored post-transcriptional changes of endogenous 5ht2c transcripts during neuronal differentiation. Both SNORD115 and 5ht2c were upregulated upon neuronal commitment. We detected increased 5ht2c alternative exon Vb inclusion already at the stage of neuronal progenitors, and more extensive A-to-I editing of non-targeted sites A and B compared to adjacent adenosines at sites E, C and D throughout differentiation. As the extent of editing is known to positively correlate with exon Vb usage while it reduces receptor functionality, our data support the model where SNORD115 directly promotes alternative exon inclusion without the requirement for conversion of key adenosines to inosines, thereby favouring production of full-length receptor isoforms with higher potency.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Biology, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Miha Modic
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Germán Camargo Ortega
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, Jamova 39, 1000, Ljubljana, Slovenia. .,Biomedical Research Institute BRIS, Puhova 10, 1000, Ljubljana, Slovenia. .,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Matthäus F, Haddjeri N, Sánchez C, Martí Y, Bahri S, Rovera R, Schloss P, Lau T. The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons. Eur Neuropsychopharmacol 2016; 26:1806-1817. [PMID: 27665061 DOI: 10.1016/j.euroneuro.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/10/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Citalopram is a clinically applied selective serotonin re-uptake inhibitor for antidepressant pharmacotherapy. It consists of two enantiomers, S-citalopram (escitalopram) and R-citalopram, of which escitalopram exerts the antidepressant therapeutic effect and has been shown to be one of the most efficient antidepressants, while R-citalopram antagonizes escitalopram via an unknown molecular mechanism that may depend on binding to a low-affinity allosteric binding site of the serotonin transporter. However, the precise mechanism of antidepressant regulation of the serotonin transporter by citalopram enantiomers still remains elusive. Here we investigate escitalopram׳s acute effect on (1) serotonergic neuronal firing in transgenic mice that express the human serotonin transporter without and with a mutation that disables the allosteric binding site, and (2) regulation of the serotonin transporter׳s cell surface localization in stem cell-derived serotonergic neurons. Our results demonstrate that escitalopram inhibited neuronal firing less potently in the mouse line featuring a mutation that abolishes the function of the allosteric binding site and induced serotonin transporter internalization independently of the allosteric binding site mechanism. Furthermore, citalopram enantiomers dose-dependently induced serotonin transporter internalization. In conclusion, this study provides new insight into antidepressant effects exerted by citalopram enantiomers in presence and absence of a functional allosteric binding site.
Collapse
Affiliation(s)
- Friederike Matthäus
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Nasser Haddjeri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Connie Sánchez
- Sourcing and Scientific Excellence at Lundbeck Research USA, Inc., Paramus, NJ, USA
| | - Yasmina Martí
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Senda Bahri
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Renaud Rovera
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Patrick Schloss
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany
| | - Thorsten Lau
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Department Psychiatry and Psychotherapy, Biochemical Laboratory, Mannheim, Germany.
| |
Collapse
|
17
|
Enatescu VR, Papava I, Enatescu I, Antonescu M, Anghel A, Seclaman E, Sirbu IO, Marian C. Circulating Plasma Micro RNAs in Patients with Major Depressive Disorder Treated with Antidepressants: A Pilot Study. Psychiatry Investig 2016; 13:549-557. [PMID: 27757134 PMCID: PMC5067350 DOI: 10.4306/pi.2016.13.5.549] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Significant progress was made in the understanding etiopathogenic factors related to MDD, including through research on the role of micro RNAs (miRs). We investigated plasma miRs as potential markers for MDD in patients treated with antidepressants. METHODS At the initiation and at the end of twelve weeks of treatment, blood samples were collected and a structured diagnostic interview and a standardized depression rating scale for the presence and severity of major depression were done. The average decrease in HAMD score was 76.89%. Plasma miR expression profiling was performed by real time PCR. The lists of up-regulated (cut-off=2) and down-regulated miRs were imported into the miRWalk2.0 algorithm and used for target predictions. KEGG database pathways analysis was used to retrieve the pathways significantly targeted by at least two of the miRs. RESULTS Of the 222 miRs detected in plasma samples of MDD patients, 40 were differentially expressed after treatment. Twenty-three miRs were significantly overexpressed with fold changes between 1.85 and 25.42, and 17 miRs were significantly downregulated with fold changes from 0.28 to 0.68. Pathway analysis revealed a list of 29 pathways for up-regulated miRs, and 20 pathways for down-regulated miRs. Six dysregulated miRs are common to all the top five pathways (Wnt signaling, Cancer, Endocytosis, Axon guidance, MAPK signaling): miR-146a-5p, miR-146b-5p, miR-221-3p, miR-24-3p, miR-26a-5p. CONCLUSION Overall, our miRWalk analysis of changes in plasma microRNAs after treatment of patients with major depression might open a new avenue for the understanding of Escitalopram mode of action and for its side effects.
Collapse
Affiliation(s)
- Virgil Radu Enatescu
- Victor Babes University of Medicine and Pharmacy Timisoara-Discipline of Psychiatry, Timisoara, Romania
- Eduard Pamfil Psychiatry Clinic, Timisoara County Hospital, Timisoara, Romania
| | - Ion Papava
- Victor Babes University of Medicine and Pharmacy Timisoara-Discipline of Psychiatry, Timisoara, Romania
- Eduard Pamfil Psychiatry Clinic, Timisoara County Hospital, Timisoara, Romania
| | - Ileana Enatescu
- Victor Babes University of Medicine and Pharmacy Timisoara-Department of Neonatology and Puericulture, Timisoara, Romania
| | - Mirela Antonescu
- Victor Babes University of Medicine and Pharmacy Timisoara-Department of Biochemistry, Timisoara, Romania
| | - Andrei Anghel
- Victor Babes University of Medicine and Pharmacy Timisoara-Department of Biochemistry, Timisoara, Romania
| | - Edward Seclaman
- Victor Babes University of Medicine and Pharmacy Timisoara-Department of Biochemistry, Timisoara, Romania
| | - Ioan Ovidiu Sirbu
- Victor Babes University of Medicine and Pharmacy Timisoara-Department of Biochemistry, Timisoara, Romania
| | - Catalin Marian
- Victor Babes University of Medicine and Pharmacy Timisoara-Department of Biochemistry, Timisoara, Romania
| |
Collapse
|
18
|
Mnie-Filali O, Lau T, Matthaeus F, Abrial E, Delcourte S, El Mansari M, Pershon A, Schloss P, Sánchez C, Haddjeri N. Protein Kinases Alter the Allosteric Modulation of the Serotonin Transporter In Vivo and In Vitro. CNS Neurosci Ther 2016; 22:691-9. [PMID: 27171685 DOI: 10.1111/cns.12562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 01/17/2023] Open
Abstract
AIM Studies using S- and R-enantiomers of the SSRI citalopram have shown that R-citalopram exerts an antagonistic effect on the efficacy of the antidepressant S-citalopram (escitalopram) through an interaction at an allosteric modulator site on the serotonin transporter (SERT). Here, we show that protein kinase signaling systems are involved in the allosteric modulation of the SERT in vivo and in vitro. METHODS We assessed the effects of nonspecific protein kinase inhibitor staurosporine in the action of escitalopram and/or R-citalopram using electrophysiological and behavioral assays in rats and cell surface SERT expression measures in serotoninergic cells. RESULTS Acute administration of R-citalopram counteracted the escitalopram-induced suppression of the serotonin (5-HT) neuronal firing activity and increase of the head twitches number following L-5-hydroxytryptophan injection. Importantly, these counteracting effects of R-citalopram were abolished by prior systemic administration of staurosporine. Interestingly, the preventing effect of staurosporine on 5-HT neuronal firing activity was abolished by direct activation of protein kinase C with phorbol 12-myristate 13-acetate. Finally, in vitro, quantification of the amount of cell surface-expressed SERT molecules revealed that R-citalopram prevented escitalopram-induced SERT internalization that was completely altered by staurosporine. CONCLUSION Taken together, these results highlight for the first time an involvement of protein kinases in the allosteric modulation of SERT function.
Collapse
Affiliation(s)
- Ouissame Mnie-Filali
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.,Department of Integrative Neurophysiology, CNCR, Vrije Universiteit, Amsterdam, The Netherlands
| | - Thorsten Lau
- Biochemical Laboratory, Central Institute of Mental Health, Mannheim, Germany
| | | | - Erika Abrial
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Sarah Delcourte
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Mostafa El Mansari
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Alan Pershon
- Neuropharmacology, Lundbeck Research USA, Paramus, NJ, USA
| | - Patrick Schloss
- Biochemical Laboratory, Central Institute of Mental Health, Mannheim, Germany
| | - Connie Sánchez
- Neuropharmacology, Lundbeck Research USA, Paramus, NJ, USA
| | - Nasser Haddjeri
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| |
Collapse
|
19
|
Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration. Mol Psychiatry 2016; 21:328-38. [PMID: 26100539 PMCID: PMC4759205 DOI: 10.1038/mp.2015.80] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/27/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022]
Abstract
Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, ~80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive-like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant-like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies.
Collapse
|
20
|
Spies M, Knudsen GM, Lanzenberger R, Kasper S. The serotonin transporter in psychiatric disorders: insights from PET imaging. Lancet Psychiatry 2015; 2:743-755. [PMID: 26249305 DOI: 10.1016/s2215-0366(15)00232-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/09/2023]
Abstract
Over the past 20 years, psychotropics affecting the serotonergic system have been used extensively in the treatment of psychiatric disorders. Molecular imaging, in particular PET, has allowed for elucidation of the essential contribution of the serotonin transporter to the pathophysiology of various psychiatric disorders and their treatment. We review studies that use PET to measure cerebral serotonin transporter activity in psychiatric disorders, focusing on major depressive disorder and antidepressant treatment. We also discuss opportunities and limitations in the application of this neuroimaging method in clinical practice. Although results from individual studies diverge, meta-analysis indicates a trend towards reduced serotonin transporter availability in patients with major depressive disorder. Inconsistencies in results might suggest symptom heterogeneity in major depressive disorder and might therefore be relevant for stratification of patients into clinical subsets. PET has enabled the elucidation of mechanisms of response to selective serotonin reuptake inhibitors (SSRIs) and hence provides a basis for rational pharmacological treatment of major depressive disorder. Such imaging studies have also suggested that the pattern of serotonin transporter binding before treatment might predict response to antidepressant treatment, which could potentially be clinically useful in the future. Additionally, this Review discusses PET studies investigating the serotonin transporter in anxiety, obsessive-compulsive disorder, and eating disorders. Few studies have shown changes in serotonin transporter activity in schizophrenia and attention deficit hyperactivity disorder. By showing the scarcity of data in these psychiatric disorders, we highlight the potential for further investigation in this field.
Collapse
Affiliation(s)
- Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Rominger A, Cumming P, Brendel M, Xiong G, Zach C, Karch S, Tatsch K, Bartenstein P, la Fougère C, Koch W, Pogarell O. Altered serotonin and dopamine transporter availabilities in brain of depressed patients upon treatment with escitalopram: A [123 I]β-CIT SPECT study. Eur Neuropsychopharmacol 2015; 25:873-81. [PMID: 25819144 DOI: 10.1016/j.euroneuro.2014.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/25/2014] [Accepted: 12/24/2014] [Indexed: 01/13/2023]
Abstract
Altered SERT and DAT availabilities during treatment with escitalopram were investigated with [(123)I]2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) SPECT in a series of patients fulfilling the criteria for unipolar major depressive disorder (MDD). 27 patients (10m, 42±16y) with diagnosis of MDD were recruited for the study. All patients underwent neuropsychiatric testing for assessment of Hamilton Depression (HAM-D) and Beck Depression Inventory (BDI) scores. At baseline, [(123)I]β-CIT SPECT recordings were acquired 4h (SERT-weighted) and 20-24h p.i (DAT-weighted). Follow-up scans and neuropsychiatric testing were performed after six weeks of stable escitalopram medication. Voxel-wise parametric maps of specific/ non-specific ratios-1 (~BPND) were calculated. At baseline, DAT-weighted BPND was 5.06±0.81 in striatum and SERT-weighted BPND was 0.94±0.18 in thalamus. There were significant negative correlations with age for DAT in striatum (R=-0.60; p<0.01) and SERT in thalamus (R=-0.45; p<0.05). Under SSRI treatment there was an apparent 42% occupancy of SERT in thalamus (p<0.0001), whereas DAT availability increased significantly by 20% in striatum (p<0.001); higher apparent SERT occupancy in thalamus was associated with lesser DAT increase in striatum (R=-0.62; p<0.005). The low apparent SERT occupancy may be confounded by alterations in SERT expression during treatment. Thus, [(123)I]β-CIT SPECT revealed age-dependent declines in DAT and SERT availabilities in un-medicated MDD patients, comparable to that seen previously in healthy controls. At follow-up, the SSRI-evoked increase in DAT was less pronounced in the older patients, even though apparent SERT occupancy and clinical improvement were not age-dependent. Present findings may have implications for escitalopram dosage and side effect profile in younger MDD patients.
Collapse
Affiliation(s)
- A Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - P Cumming
- Department of Psychiatry, University of Oslo, Oslo, Norway
| | - M Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - G Xiong
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C Zach
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - S Karch
- Department of Psychiatry, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - K Tatsch
- Department of Nuclear Medicine, Municipal Hospital Karlsruhe Inc., Karlsruhe, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C la Fougère
- Department of Nuclear Medicine, University of Tubingen, Tubingen, Germany
| | - W Koch
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - O Pogarell
- Department of Psychiatry, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
22
|
Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders. Mol Neurobiol 2015; 53:2778-2786. [PMID: 25823514 DOI: 10.1007/s12035-015-9152-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression.
Collapse
|
23
|
Zhao R, Wang S, Huang Z, Zhang L, Yang X, Bai X, Zhou D, Qin Z, Du G. Lipopolysaccharide-induced serotonin transporter up-regulation involves PKG-I and p38MAPK activation partially through A3 adenosine receptor. Biosci Trends 2015; 9:367-76. [DOI: 10.5582/bst.2015.01168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Zhao
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | | | - Li Zhang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Xiuying Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Xiaoyu Bai
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Dan Zhou
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Zhizhen Qin
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of MedicalSciences & Peking Union Medical College
| |
Collapse
|
24
|
Ruchala I, Cabra V, Solis E, Glennon RA, De Felice LJ, Eltit JM. Electrical coupling between the human serotonin transporter and voltage-gated Ca(2+) channels. Cell Calcium 2014; 56:25-33. [PMID: 24854234 DOI: 10.1016/j.ceca.2014.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
Abstract
Monoamine transporters have been implicated in dopamine or serotonin release in response to abused drugs such as methamphetamine or ecstasy (MDMA). In addition, monoamine transporters show substrate-induced inward currents that may modulate excitability and Ca(2+) mobilization, which could also contribute to neurotransmitter release. How monoamine transporters modulate Ca(2+) permeability is currently unknown. We investigate the functional interaction between the human serotonin transporter (hSERT) and voltage-gated Ca(2+) channels (CaV). We introduce an excitable expression system consisting of cultured muscle cells genetically engineered to express hSERT. Both 5HT and S(+)MDMA depolarize these cells and activate the excitation-contraction (EC)-coupling mechanism. However, hSERT substrates fail to activate EC-coupling in CaV1.1-null muscle cells, thus implicating Ca(2+) channels. CaV1.3 and CaV2.2 channels are natively expressed in neurons. When these channels are co-expressed with hSERT in HEK293T cells, only cells expressing the lower-threshold L-type CaV1.3 channel show Ca(2+) transients evoked by 5HT or S(+)MDMA. In addition, the electrical coupling between hSERT and CaV1.3 takes place at physiological 5HT concentrations. The electrical coupling between monoamine neurotransmitter transporters and Ca(2+) channels such as CaV1.3 is a novel mechanism by which endogenous substrates (neurotransmitters) or exogenous substrates (like ecstasy) could modulate Ca(2+)-driven signals in excitable cells.
Collapse
Affiliation(s)
- Iwona Ruchala
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Vanessa Cabra
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Ernesto Solis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Richard A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Louis J De Felice
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
25
|
Lau T, Heimann F, Bartsch D, Schloss P, Weber T. Nongenomic, glucocorticoid receptor-mediated regulation of serotonin transporter cell surface expression in embryonic stem cell derived serotonergic neurons. Neurosci Lett 2013; 554:115-20. [PMID: 24021805 DOI: 10.1016/j.neulet.2013.08.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/26/2013] [Accepted: 08/29/2013] [Indexed: 01/30/2023]
Abstract
Depressive disorders have been linked to the combined dysregulation of the hypothalamus-pituitary-adrenal (HPA)-axis and the serotonergic system. The HPA-axis and serotonergic (5-HT) neurons exert reciprocal regulatory actions. It has been reported that glucocorticoid-glucocorticoid receptor (GR) signaling influences serotonin transporter (5-HTT) transcription but data also points to the fact that 5-HTT expression is regulated nongenomically via redistribution of 5-HTT from the cell surface into intracellular compartments. In order to analyze the acute effects of glucocorticoids on 5-HTT cell surface localization we differentiated serotonergic neurons from mouse embryonic stem (ES) cells derived from the C57BL/6N blastocysts. These postmitotic 5-HT neurons express all relevant serotonergic markers following the application of a growth factor-based differentiation protocol. Increasing concentrations of the GR agonist dexamethasone (Dex) resulted in enhanced, dose-dependent 5-HTT cell surface localization in the presence of the protein synthesis inhibitor cycloheximide already 1h after incubation. Inhibition of GR function by the specific GR-antagonist mifepristone abolished the increase in 5-HTT cell surface localization. Hence, our data account for a nongenomic upregulation of 5-HTT cell surface expression by glucocorticoid-GR interaction which likely constitutes a rapid physiological response to increased levels of glucocorticoids as seen during stress. Taken together, we provide a cellular model to analyze and dissect glucocorticoid-5HTT interactions on a molecular level that corresponds to in vivo animal models using C57BL/6N mice.
Collapse
Affiliation(s)
- Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
26
|
Hodge JM, Wang Y, Berk M, Collier FM, Fernandes TJ, Constable MJ, Pasco JA, Dodd S, Nicholson GC, Kennedy RL, Williams LJ. Selective serotonin reuptake inhibitors inhibit human osteoclast and osteoblast formation and function. Biol Psychiatry 2013; 74:32-9. [PMID: 23260229 DOI: 10.1016/j.biopsych.2012.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/08/2012] [Accepted: 11/06/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants and one of the most commonly used medications. There is growing concern that SSRIs, which sequester in bone marrow at higher concentrations than brain or blood, increase bone fragility and fracture risk. However, their mechanism of action on human osteoclasts (OC) and osteoblasts (OB) differentiation remains unclear. METHODS Expression of serotonin receptors (5-HTR), transporter (5-HTT), and tryptophan hydroxylase 1 (TPH1) was assessed in human OC (precursors and mature) and OB (nonmineralizing and mineralizing) by polymerase chain reaction. OC formation and resorption was measured in the presence of 5 SSRIs. OBs cultured with SSRIs for 28 days were assessed for alkaline phosphatase (ALP) and bone mineralization. Cell viability and apoptosis were determined by annexin V flow cytometry. RESULTS OCs and OB expressed TPH1, 5-HTT, and 5-HTR1B. The 5-HTR2A was expressed only in OB, whereas 5-HTR2B expression increased from precursor to mature OC. All SSRIs (except citalopram) dose-dependently inhibited OC formation and resorption between 1 μmol/L and 10 μmol/L; order of potency: sertraline > fluoxetine > paroxetine > fluvoxamine > citalopram. Similarly, SSRIs (except citalopram) inhibited ALP and bone mineralization by OB but only at 30 μmol/L. Apoptosis was induced by SSRIs in OC and OB in an identical pattern to inhibitory effects. Serotonin treatment had no effect on either OC or OB parameters. CONCLUSIONS These data demonstrate that SSRIs differentially inhibit bone cell function via apoptosis. This may explain the mechanisms of bone loss with chronic use and aid clinical choices.
Collapse
Affiliation(s)
- Jason M Hodge
- Barwon Biomedical Research, The Geelong Hospital, Geelong, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Allosteric modulation of an excitatory amino acid transporter: the subtype-selective inhibitor UCPH-101 exerts sustained inhibition of EAAT1 through an intramonomeric site in the trimerization domain. J Neurosci 2013; 33:1068-87. [PMID: 23325245 DOI: 10.1523/jneurosci.3396-12.2013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain."
Collapse
|
28
|
Zavitsanou K, Dalton VS, Walker AK, Weickert CS, Sominsky L, Hodgson DM. Neonatal lipopolysaccharide treatment has long-term effects on monoaminergic and cannabinoid receptors in the rat. Synapse 2013; 67:290-9. [DOI: 10.1002/syn.21640] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/29/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | - Victoria S. Dalton
- Department of Psychiatry and Trinity College Institute of Neuroscience; Trinity College Dublin; Dublin; Ireland
| | | | | | - Luba Sominsky
- Laboratory of Neuroimmunology, School of Psychology; University of Newcastle; Newcastle; Australia
| | - Deborah M. Hodgson
- Laboratory of Neuroimmunology, School of Psychology; University of Newcastle; Newcastle; Australia
| |
Collapse
|
29
|
Ferrés-Coy A, Pilar-Cuellar F, Vidal R, Paz V, Masana M, Cortés R, Carmona MC, Campa L, Pazos Á, Montefeltro A, Valdizán EM, Artigas F, Bortolozzi A. RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis. Transl Psychiatry 2013; 3:e211. [PMID: 23321808 PMCID: PMC3566716 DOI: 10.1038/tp.2012.135] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/08/2012] [Accepted: 11/10/2012] [Indexed: 12/16/2022] Open
Abstract
Current antidepressants, which inhibit the serotonin transporter (SERT), display limited efficacy and slow onset of action. Here, we show that partial reduction of SERT expression by small interference RNA (SERT-siRNA) decreased immobility in the tail suspension test, displaying an antidepressant potential. Moreover, short-term SERT-siRNA treatment modified mouse brain variables considered to be key markers of antidepressant action: reduced expression and function of 5-HT(1A)-autoreceptors, elevated extracellular serotonin in forebrain and increased neurogenesis and expression of plasticity-related genes (BDNF, VEGF, Arc) in hippocampus. Remarkably, these effects occurred much earlier and were of greater magnitude than those evoked by long-term fluoxetine treatment. These findings highlight the critical role of SERT in serotonergic function and show that the reduction of SERT expression regulates serotonergic neurotransmission more potently than pharmacological blockade of SERT. The use of siRNA-targeting genes in serotonin neurons (SERT, 5-HT(1A)-autoreceptor) may be a novel therapeutic strategy to develop fast-acting antidepressants.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antidepressive Agents/metabolism
- Antidepressive Agents/pharmacology
- Autoreceptors/genetics
- Autoreceptors/metabolism
- Brain-Derived Neurotrophic Factor/drug effects
- Brain-Derived Neurotrophic Factor/genetics
- Cytoskeletal Proteins/drug effects
- Cytoskeletal Proteins/genetics
- Fluoxetine/metabolism
- Fluoxetine/pharmacology
- Gene Expression
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/genetics
- Neurogenesis/genetics
- Neurogenesis/physiology
- RNA Interference/physiology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Small Interfering/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Serotonin Plasma Membrane Transport Proteins/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
- Vascular Endothelial Growth Factor A/drug effects
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- A Ferrés-Coy
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - F Pilar-Cuellar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC; UC-CISC-SODERCAN), Santander, Spain
| | - R Vidal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC; UC-CISC-SODERCAN), Santander, Spain
| | - V Paz
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - M Masana
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - R Cortés
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | | | - L Campa
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Á Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC; UC-CISC-SODERCAN), Santander, Spain
| | | | - E M Valdizán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC; UC-CISC-SODERCAN), Santander, Spain
| | - F Artigas
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - A Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
30
|
Descarries L, Riad M. Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT. Philos Trans R Soc Lond B Biol Sci 2012; 367:2416-25. [PMID: 22826342 DOI: 10.1098/rstb.2011.0361] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Serotonin (5-HT) 5-HT(1A) autoreceptors (5-HT(1A)autoR) and the plasmalemmal 5-HT transporter (SERT) are key elements in the regulation of central 5-HT function and its responsiveness to antidepressant drugs. Previous immuno-electron microscopic studies in rats have demonstrated an internalization of 5-HT(1A)autoR upon acute administration of the selective agonist 8-OH-DPAT or the selective serotonin reuptake inhibitor antidepressant fluoxetine. Interestingly, it was subsequently shown in cats as well as in humans that this internalization is detectable by positron emission tomography (PET) imaging with the 5-HT(1A) radioligand [(18)F]MPPF. Further immunocytochemical studies also revealed that, after chronic fluoxetine treatment, the 5-HT(1A)autoR, although present in normal density on the plasma membrane of 5-HT cell bodies and dendrites, do not internalize when challenged with 8-OH-DPAT. Resensitization requires several weeks after discontinuation of the chronic fluoxetine treatment. In contrast, the SERT internalizes in both the cell bodies and axon terminals of 5-HT neurons after chronic but not acute fluoxetine treatment. Moreover, the total amount of SERT immunoreactivity is then reduced, suggesting that SERT is not only internalized, but also degraded in the course of the treatment. Ongoing and future investigations prompted by these finding are briefly outlined by way of conclusion.
Collapse
Affiliation(s)
- Laurent Descarries
- Departments of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, , Montreal, Quebec, Canada H3C 3J7.
| | | |
Collapse
|
31
|
The genetics of selective serotonin reuptake inhibitors. Pharmacol Ther 2012; 136:375-400. [PMID: 22944042 DOI: 10.1016/j.pharmthera.2012.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the most widely prescribed drugs in psychiatry. Based on the fact that SSRIs increase extracellular monoamine levels in the brain, the monoamine hypothesis of depression was introduced, postulating that depression is associated with too low serotonin, dopamine and noradrenaline levels. However, several lines of evidence indicate that this hypothesis is too simplistic and that depression and the efficacy of SSRIs are dependent on neuroplastic changes mediated by changes in gene expression. Because a coherent view on global gene expression is lacking, we aim to provide an overview of the effects of SSRI treatment on the final targets of 5-HT receptor signal transduction pathways, namely the transcriptional regulation of genes. We address gene polymorphisms in humans that affect SSRI efficacy, as well as in vitro studies employing human-derived cells. We also discuss the molecular targets affected by SSRIs in animal models, both in vivo and in vitro. We conclude that serotonin transporter gene variation in humans affects the efficacy and side-effects of SSRIs, whereas SSRIs generally do not affect serotonin transporter gene expression in animals. Instead, SSRIs alter mRNA levels of genes encoding serotonin receptors, components of non-serotonergic neurotransmitter systems, neurotrophic factors, hypothalamic hormones and inflammatory factors. So far little is known about the epigenetic and age-dependent molecular effects of SSRIs, which might give more insights in the working mechanism(s) of SSRIs.
Collapse
|
32
|
Lanzenberger R, Kranz GS, Haeusler D, Akimova E, Savli M, Hahn A, Mitterhauser M, Spindelegger C, Philippe C, Fink M, Wadsak W, Karanikas G, Kasper S. Prediction of SSRI treatment response in major depression based on serotonin transporter interplay between median raphe nucleus and projection areas. Neuroimage 2012; 63:874-81. [PMID: 22828162 DOI: 10.1016/j.neuroimage.2012.07.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 01/01/2023] Open
Abstract
Recent mathematical models suggest restored serotonergic burst-firing to underlie the antidepressant effect of selective serotonin reuptake inhibitors (SSRI), resulting from down-regulated serotonin transporters (SERT) in terminal regions. This mechanism possibly depends on the interregional balance between SERTs in the raphe nuclei and in terminal regions before treatment. To evaluate these hypotheses on a systems level in humans in vivo, we investigated SERT availability and occupancy longitudinally in patients with major depressive disorder using positron emission tomography (PET) and the radioligand [11C]DASB. Measurements were performed before and after a single oral dose, as well as after three weeks (mean 24.73±3.3 days) of continuous oral treatment with either escitalopram (10 mg/day) or citalopram (20 mg/day). Data were analyzed using voxel-wise linear regression and ANOVA to evaluate SERT binding, occupancy and binding ratios (SERT binding of the entire brain compared to SERT binding in the dorsal and median raphe nuclei) in relation to treatment outcome. Regression analysis revealed that treatment response was predicted by pre-treatment SERT binding ratios, i.e., SERT binding in key regions of depression including bilateral habenula, amygdala-hippocampus complex and subgenual cingulate cortex in relation to SERT binding in the median but not dorsal raphe nucleus (p<0.05 FDR-corrected). Similar results were observed in the direct comparison of responders and non-responders. Our data provide a first proof-of-concept for recent modeling studies and further underlie the importance of the habenula and subgenual cingulate cortex in the etiology of and recovery from major depression. These findings may indicate a promising molecular predictor of treatment response and stimulate new treatment approaches based on regional differences in SERT binding.
Collapse
Affiliation(s)
- Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Underwood MD, Kassir SA, Bakalian MJ, Galfalvy H, Mann JJ, Arango V. Neuron density and serotonin receptor binding in prefrontal cortex in suicide. Int J Neuropsychopharmacol 2012; 15:435-47. [PMID: 21733245 PMCID: PMC4167642 DOI: 10.1017/s1461145711000691] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although serotonin receptor and cytoarchitectonic alterations are reported in prefrontal cortex (PFC) in suicide and depression, no study has considered binding relative to neuron density. Therefore, we measured neuron density and serotonin transporter (SERT), 5-HT1A and 5-HT2A binding in matched suicides and controls. Suicides and normal controls (n=15 matched pairs) were psychiatrically characterized. Neuron density and binding were determined in dorsal [Brodmann area (BA) 9] and ventral (BA 47) PFC by stereology and quantitative autoradiography in near-adjacent sections. Binding index was defined as the ratio of receptor binding to neuron density. Suicides had lower neuron density in the gyrus of both areas. The binding index was lower for SERT in BA 47 but not in BA9; the 5-HT1A binding index was higher in BA 9 but not in BA 47, while the 5-HT2A binding index was not different between groups. SERT binding was lower in suicides in BA 47 but not BA 9, while 5-HT1A binding was higher in BA 9 but not BA 47. SERT binding negatively correlated with 5-HT1A binding in BA 47 in suicides. Neuron density decreased with age. The 5-HT1A binding index was higher in females than males. We found lower neuron density and lower SERT binding index in both PFC regions in suicides. More 5-HT1A binding with less SERT binding and the negative correlation in depressed suicides suggests post-synaptic receptor up-regulation, and it is independent of the difference in neuron density. Thus, abnormalities in both cortical neurons and in their serotonergic innervation are present in suicides and future studies will need to determine whether cortical changes reflect the trophic effect of altered serotonin innervation.
Collapse
Affiliation(s)
- Mark D Underwood
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Lau T, Schloss P. Differential regulation of serotonin transporter cell surface expression. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Differential expression of neuronal dopamine and serotonin transporters DAT and SERT in megakaryocytes and platelets generated from human MEG-01 megakaryoblasts. Cell Tissue Res 2011; 346:151-61. [PMID: 22006250 DOI: 10.1007/s00441-011-1256-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/16/2011] [Indexed: 10/16/2022]
Abstract
In the central nervous system, serotonergic and dopaminergic signaling is terminated by the activity of specialized transporter proteins for serotonin (SERT) and dopamine (DAT). These transporter proteins are found both on the cell surface and in intracellular transport vesicles. Trafficking between these subcellular domains regulates the efficiency of removal of extracellular neurotransmitters and hence the efficacy of neuronal signaling. Therefore, it is of high interest to gain more insight into the regulatory mechanisms of the human DAT and SERT cell surface expression in their natural surroundings, i.e., in human cells. Because it is not possible to cultivate human neuronal cells expressing these transporter proteins, there is a need to find other human cells expressing these neuronal proteins. Here, we have investigated the expression of human SERT and DAT on developing megakaryocytes and platelet-like particles derived from the megakaryocyte progenitor cell line MEG-01 upon differentiation by valproic acid (VPA) and all-trans retinoic acid (ATRA). Our results show that MEG-01 cells express SERT and DAT and that VPA and ATRA induce a significant increase of transporter expression on developing megakaryocytes and platelets. As compared to ATRA, VPA more efficiently induced SERT expression but not DAT expression. Comparable to naïve platelets and neurons, SERT was localized to both the cell surface and intracellular compartments. Hence, VPA and ATRA-treated MEG-01 cells provide a model well-suited to studying neuronal monoamine transporter expression, not only during transcription and translation but also with respect to protein trafficking to and from the cell surface.
Collapse
|
36
|
Nagayasu K, Yatani Y, Kitaichi M, Kitagawa Y, Shirakawa H, Nakagawa T, Kaneko S. Utility of organotypic raphe slice cultures to investigate the effects of sustained exposure to selective 5-HT reuptake inhibitors on 5-HT release. Br J Pharmacol 2011; 161:1527-41. [PMID: 20698856 DOI: 10.1111/j.1476-5381.2010.00978.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Selective 5-hydroxytryptamine (5-HT, serotonin) reuptake inhibitors (SSRIs) are widely used antidepressants and their therapeutic effect requires several weeks of drug administration. The delayed onset of SSRI efficacy is due to the slow neuroadaptive changes of the 5-hydroxytryptaminergic (5-HTergic) system. In this study, we examined the acute and chronic effects of SSRIs on the 5-HTergic system using rat raphe slice cultures. EXPERIMENTAL APPROACH For organotypic raphe slice cultures, mesencephalic coronal sections containing dorsal and median raphe nuclei were prepared from neonatal Wistar rats and cultured for 14-16 days. KEY RESULTS Acute treatment with citalopram, paroxetine or fluoxetine (0.1-10 µM) in the slice cultures slightly increased extracellular 5-HT levels, while sustained exposure for 4 days augmented the elevation of 5-HT level in a time-dependent manner. Sustained exposure to citalopram had no effect on tissue contents of 5-HT and its metabolite, expression of tryptophan hydroxylase or the membrane expression of 5-HT transporters. The augmented 5-HT release was attenuated by Ca(2+) -free incubation medium or treatment with tetrodotoxin. Experiments with 5-HT(1A/B) receptor agonists and antagonists revealed that desensitization of 5-HT(1) autoreceptors was not involved in the augmentation of 5-HT release. Finally, co-treatment with an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate, but not an N-methyl-d-aspartate, receptor antagonist, suppressed this augmentation. CONCLUSION AND IMPLICATIONS These results suggest that sustained exposure to SSRIs induces the augmentation of exocytotic 5-HT release, which is caused, at least in part, by the activation of AMPA/kainate receptors in the raphe slice cultures.
Collapse
Affiliation(s)
- Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Wu X, Hsuchou H, Kastin AJ, He Y, Khan RS, Stone KP, Cash MS, Pan W. Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor. Psychoneuroendocrinology 2011; 36:266-78. [PMID: 20724079 PMCID: PMC3015024 DOI: 10.1016/j.psyneuen.2010.07.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/18/2010] [Accepted: 07/21/2010] [Indexed: 01/23/2023]
Abstract
Contrary to the reduction of depressive-like behavior observed in several strains of cytokine receptor knockout mice, mice lacking the specific receptor for interleukin (IL)-15 showed increased immobility in tail suspension and modified forced swimming tests. There was also a reduction in social interactions. The hippocampus of the IL15Rα knockout mice had decreased mRNA for 5-HT(1A), increased mRNA for 5-HT(2C), and region-specific changes of serotonin reuptake transporter (SERT) immunoreactivity. Fluoxetine (the classic antidepressant Prozac, which inhibits 5-HT(2C) and SERT) reduced the immobility of the IL15Rα knockout mice in comparison with their pretreatment baseline. Together with the unchanged performance of the IL15Rα knockout mice on the rotarod, this response to fluoxetine indicates that the immobility reflects depression. Wildtype mice responded to IL15 treatment with improvement of immobility induced by forced swimming, whereas the knockout mice failed to respond. Thus, the cognate IL15 receptor is necessary for the antidepressive activity of IL15. In ex vivo studies, IL15 decreased synaptosomal uptake of 5-HT, and modulated the expression of 5-HT(2C) and SERT in cultured neurons in a dose- and time-dependent manner. Thus, the effect of IL15 on serotonin transmission may underlie the depressive-like behavior of IL15Rα knockout mice. We speculate that IL15 is essential to maintain neurochemical homeostasis and thereby plays a role in preventing neuropsychiatric symptoms.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Cells, Cultured
- Depression/genetics
- Depression/metabolism
- Depression/pathology
- Depression/prevention & control
- Dose-Response Relationship, Drug
- Drug Evaluation, Preclinical
- Fluoxetine/pharmacology
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Interleukin-15/pharmacology
- Interleukin-15/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nervous System/drug effects
- Nervous System/metabolism
- Receptors, Interleukin-15/agonists
- Receptors, Interleukin-15/genetics
- Receptors, Interleukin-15/metabolism
- Receptors, Interleukin-15/physiology
- Serotonin/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weihong Pan
- Corresponding author: Weihong Pan, MD, PhD, Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA, Tel. 1-225-763-2707, Fax 1-225-763-0261, , Web: http://labs.pbrc.edu/bloodbrainbarrier
| |
Collapse
|
38
|
Kittler K, Lau T, Schloss P. Antagonists and substrates differentially regulate serotonin transporter cell surface expression in serotonergic neurons. Eur J Pharmacol 2009; 629:63-7. [PMID: 20006597 DOI: 10.1016/j.ejphar.2009.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/19/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
The serotonin transporter (SERT) terminates serotonergic neurotransmission by the rapid removal of serotonin (5-hydroxytryptamine, 5-HT) from the extracellular space back into serotonergic neurons. SERT therefore controls the concentration of extracellular 5-HT, and thus one mechanism to regulate the efficacy of serotonergic neurotransmission is via modulation of the density of SERT molecules on the cell membrane. We have studied the effects of prolonged exposure to various selective serotonin re-uptake inhibitors (SSRIs), as well as cocaine and the transport substrates 5-HT and 3,4-methylenedioxy-methamphetamine (MDMA), on SERT cell surface expression in cultured serotonergic neurons. This was achieved via quantification of the amount of cell surface-expressed SERT molecules using antibody detection combined with confocal laser scanning microscopy. Our results show that exposure to the SSRIs citalopram, fluoxetine, sertraline and paroxetine all induced SERT internalization, but with different efficacies. The substrates 5-HT and MDMA also induced SERT internalization, while cocaine elevated SERT cell surface expression.
Collapse
Affiliation(s)
- Katharina Kittler
- Biochemical Laboratory, Central Institute of Mental Health, J5, 68159 Mannheim, Germany
| | | | | |
Collapse
|
39
|
Cherubino F, Miszner A, Renna MD, Sangaletti R, Giovannardi S, Bossi E. GABA transporter lysine 448: a key residue for tricyclic antidepressants interaction. Cell Mol Life Sci 2009; 66:3797-808. [PMID: 19756379 PMCID: PMC11115653 DOI: 10.1007/s00018-009-0153-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/28/2009] [Indexed: 11/26/2022]
Abstract
The effects of three tricyclic antidepressants (TCAs) and two serotonin selective reuptake inhibitors (SSRIs) have been studied with an electrophysiological approach on Xenopus laevis oocytes expressing the rat GABA (gamma-Aminobutyric-acid) transporter rGAT1. All tested TCAs and SSRIs inhibit the GABA-associated current in a dose-dependent way with low but comparable efficacy. The pre-steady-state and uncoupled currents appear substantially unaffected. The efficacy of desipramine, but not of the other drugs, is strongly increased in the lysine-glutamate or -aspartate mutants K448E and K448D. Comparison of I(max) and K(0.5GABA) in the absence and presence of desipramine showed that both parameters are reduced by the drug in the wild-type and in the K448E mutant. This suggests an uncompetitive inhibition, in which the drug can bind only after the substrate, an explanation in agreement with the lack of effects on the pre-steady-state and leak currents, and with the known structural data.
Collapse
Affiliation(s)
- Francesca Cherubino
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
- Fondazione Maugeri IRCCS, Via Roncaccio 16, Tradate, VA Italy
| | - Andreea Miszner
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
| | - Maria Daniela Renna
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
| | - Rachele Sangaletti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
| | - Stefano Giovannardi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
- Neurosciences Center, University of Insubria, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Molecular Sciences, University of Insubria, DBSM, Via Dunant 3, 21100 Varese, Italy
- Neurosciences Center, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
40
|
Fluoxetine (Prozac) binding to serotonin transporter is modulated by chloride and conformational changes. J Neurosci 2009; 29:9635-43. [PMID: 19641126 DOI: 10.1523/jneurosci.0440-09.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin transporter (SERT) is the main target for widely used antidepressant agents. Several of these drugs, including imipramine, citalopram, sertraline, and fluoxetine (Prozac), bound more avidly to SERT in the presence of Cl(-). In contrast, Cl(-) did not enhance cocaine or paroxetine binding. A Cl(-) binding site recently identified in SERT, and shown to be important for Cl(-) dependent transport, was also critical for the Cl(-) dependence of antidepressant affinity. Mutation of the residues contributing to this site eliminated the Cl(-)-mediated affinity increase for imipramine and fluoxetine. Analysis of ligand docking to a single state of SERT indicated only small differences in the energy of interaction between bound ligands and Cl(-). These differences in interaction energy cannot account for the affinity differences observed for Cl(-) dependence. However, fluoxetine binding led to a conformational change, detected by cysteine accessibility experiments, that was qualitatively different from that induced by cocaine or other ligands. Given the known Cl(-) requirement for serotonin-induced conformational changes, we propose that Cl(-) binding facilitates conformational changes required for optimal binding of fluoxetine and other antidepressant drugs.
Collapse
|
41
|
Association of a functional polymorphism in the adrenomedullin gene (ADM) with response to paroxetine. THE PHARMACOGENOMICS JOURNAL 2009; 10:126-33. [PMID: 19636336 DOI: 10.1038/tpj.2009.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To identify genes that may be relevant to the molecular action of antidepressants, we investigated transcriptional changes induced by the selective serotonin reuptake inhibitor paroxetine in a serotonergic cell line. We examined gene expression changes after acute treatment with paroxetine and sought to validate microarray results by quantitative PCR (qPCR). Concordant transcriptional changes were confirmed for 14 genes by qPCR and five of these, including the adrenomedullin gene (Adm), either approached or reached statistical significance. Reporter gene assays showed that a SNP (rs11042725) in the upstream flanking region of ADM significantly altered expression. Association analysis demonstrated rs11042725 to be significantly associated with response to paroxetine (odds ratio=0.075, P<0.001) but not with response to either fluoxetine or citalopram. Our results suggest that ADM is involved with the therapeutic efficacy of paroxetine, which may have pharmacogenetic utility.
Collapse
|
42
|
Association of changes in norepinephrine and serotonin transporter expression with the long-term behavioral effects of antidepressant drugs. Neuropsychopharmacology 2009; 34:1467-81. [PMID: 18923402 PMCID: PMC2727703 DOI: 10.1038/npp.2008.183] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous work has shown that repeated desipramine treatment causes downregulation of the norepinephrine transporter (NET) and persistent antidepressant-like effects on behavior, ie effects observed 2 days after discontinuation of drug treatment when acute effects are minimized. The present study examined whether this mechanism generalizes to other antidepressants and also is evident for the serotonin transporter (SERT). Treatment of rats for 14 days with 20 mg/kg per day protriptyline or 7.5 mg/kg per day sertraline reduced NET and SERT expression, respectively, in cerebral cortex and hippocampus; these treatments also induced a persistent antidepressant-like effect on forced-swim behavior. Increased serotonergic neurotransmission likely mediated the behavioral effect of sertraline, as it was blocked by inhibition of serotonin synthesis with p-chlorophenylalanine; a parallel effect was observed previously for desipramine and noradrenergic neurotransmission. Treatment with 20 mg/kg per day reboxetine for 42, but not 14, days reduced NET expression; antidepressant-like effects on behavior were observed for both treatment durations. Treatment for 14 days with 70 mg/kg per day venlafaxine, which inhibits both the NET and SERT, or 10 mg/kg per day phenelzine, a monoamine oxidase inhibitor, produced antidepressant-like effects on behavior without altering NET or SERT expression. For all drugs tested, reductions of NET and SERT protein were not accompanied by reduced NET or SERT mRNA in locus coeruleus or dorsal raphe nucleus, respectively. Overall, the present results suggest an important, though not universal, role for NET and SERT regulation in the long-term behavioral effects of antidepressants. Understanding the mechanisms underlying transporter regulation in vivo may suggest novel targets for the development of antidepressant drugs.
Collapse
|
43
|
Lau T, Horschitz S, Bartsch D, Schloss P. Monitoring mouse serotonin transporter internalization in stem cell-derived serotonergic neurons by confocal laser scanning microscopy. Neurochem Int 2009; 54:271-6. [DOI: 10.1016/j.neuint.2008.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/27/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
|
44
|
Organic cation transporter 3: Keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. Proc Natl Acad Sci U S A 2008; 105:18976-81. [PMID: 19033200 DOI: 10.1073/pnas.0800466105] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mood disorders cause much suffering and are the single greatest cause of lost productivity worldwide. Although multiple medications, along with behavioral therapies, have proven effective for some individuals, millions of people lack an effective therapeutic option. A common serotonin (5-HT) transporter (5-HTT/SERT, SLC6A4) polymorphism is believed to confer lower 5-HTT expression in vivo and elevates risk for multiple mood disorders including anxiety, alcoholism, and major depression. Importantly, this variant is also associated with reduced responsiveness to selective 5-HT reuptake inhibitor antidepressants. We hypothesized that a reduced antidepressant response in individuals with a constitutive reduction in 5-HTT expression could arise because of the compensatory expression of other genes that inactivate 5-HT in the brain. A functionally upregulated alternate transporter for 5-HT may prevent extracellular 5-HT from rising to levels sufficiently high enough to trigger the adaptive neurochemical events necessary for therapeutic benefit. Here we demonstrate that expression of the organic cation transporter type 3 (OCT3, SLC22A3), which also transports 5-HT, is upregulated in the brains of mice with constitutively reduced 5-HTT expression. Moreover, the OCT blocker decynium-22 diminishes 5-HT clearance and exerts antidepressant-like effects in these mice but not in WT animals. OCT3 may be an important transporter mediating serotonergic signaling when 5-HTT expression or function is compromised.
Collapse
|