1
|
Kushnir MM, Salihovic S, Bergquist J, Lind PM, Lind L. Environmental contaminants, sex hormones and SHBG in an elderly population. ENVIRONMENTAL RESEARCH 2024; 263:120054. [PMID: 39341538 DOI: 10.1016/j.envres.2024.120054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Effects of environmental contaminants (ECs) on endocrine systems have been reported, but few studies assessed associations between ECs and sex hormones (SH) in elderly. Aim of this study was to investigate whether blood concentrations of four classes of ECs were associated with SH concentrations in elderly. METHODS Samples from participants of the cross-sectional population-based Prospective Investigation of the Vasculature in Uppsala Seniors study (PIVUS, 70-year-old men and women, n = 1016) were analyzed using validated mass spectrometry-based methods for SH (testosterone (T), dihydrotestosterone (DHT), estrone and estradiol (E2)); 23 persistent organic pollutants (POPs); 8 perfluoroalkyl substances (PFAS); 4 phthalates and 11 metals. SH binding globulin (SHBG) was analyzed using immunoassay. The measured concentrations were normalized, and the values converted to a z-scale. Linear regression analyses were conducted to assess association between concentration of the SH, SHBG and E2/T (aromatase enzyme index, AEI) with the ECs. Multiple linear regression analyses were performed to model the relationships. RESULTS The strongest associations were observed with the polychlorinated biphenyls (PCBs). In men, the strongest associations with concentrations of SH and SHBG were seen for PCBs containing >5 chlorine, monoethyl phthalate (MEP), Ni and Cd; and in women, with PCBs, MEP, several of the PFAS, Cd, Co, and Ni. Difference in the effect of ECs on AEI between men and women were observed. Area under the ROC curve for the models predicting abnormal values of SH and SHBG >0.75 due to the effects of ECs was observed for T, DHT, and E2 in men, and for E2 and SHBG in women. CONCLUSIONS Results of this study suggest that in elderly subjects, concentrations of many ECs associated with concentrations of SH and SHBG, and AEI. Further studies are needed to confirm the findings and to assess effect of the pollutants on endocrine system function in elderly.
Collapse
Affiliation(s)
- Mark M Kushnir
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA; Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | - Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Sweden
| | - Jonas Bergquist
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; Department of Chemistry, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Valle MI, Cutini PH, Cepeda SB, Campelo AE, Sandoval MJ, Massheimer VL. Direct in vitro action of estrone on uterine and white adipose tissue in obesity. Mol Cell Endocrinol 2024; 583:112142. [PMID: 38154755 DOI: 10.1016/j.mce.2023.112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
The hypothesis whether estrone (E1) could exhibit a direct action at uterus and white adipose tissue (WAT), under obesity was tested. In uterine tissue of obese rats, E1 increased nitric oxide (NO) synthesis, and reduced reactive oxygen species (ROS) production. The anti-oxidative action of E1 was sustained under inflammatory stress or high glucose levels. ICI 182780 or G15 compounds were employed as ER or GPER antagonists respectively. The action of E1 on ROS release involved ER participation; instead GPER mediated the acute stimulation on NO production. The antioxidative effect depends on NO-ROS balance. NO synthase (NOS) blockage suppressed the reduction in ROS synthesis elicited by E1, effect mediated by cNOS and not by iNOS. On WAT explants, E1 reduced ROS and thiobarbituric acid reactive substances production, and diminished leptin release. In summary, the data provide evidence that, in uterus and WAT, E1 counteracts inflammatory and oxidative stress induced by obesity.
Collapse
Affiliation(s)
- María Ivone Valle
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Pablo H Cutini
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Sabrina B Cepeda
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Adrián E Campelo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Bioterio Del Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Marisa J Sandoval
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Virginia L Massheimer
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
3
|
Jin X, Perrella SL, Lai CT, Taylor NL, Geddes DT. Causes of Low Milk Supply: The Roles of Estrogens, Progesterone, and Related External Factors. Adv Nutr 2024; 15:100129. [PMID: 37832920 PMCID: PMC10831895 DOI: 10.1016/j.advnut.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Low milk supply (LMS) poses a significant challenge to exclusive and continued breastfeeding, affecting ∼10% to 15% of mothers. Milk production is intricately regulated by both endocrine and autocrine control mechanisms, with estrogens and progesterone playing pivotal roles in this process. In addition to endogenously produced hormones, external substances capable of interfering with normal hormonal actions, including phytoestrogens, mycoestrogens, synthetic estrogens, and hormonal contraceptives, can influence milk production. The effects of these extrinsic hormones on milk production may vary based on maternal body mass index. This comprehensive review examines the multifaceted causes of LMS, focusing on the involvement of estrogens, progesterone, and related external factors in milk production. Furthermore, it investigates the interplay between hormonal factors and obesity, aiming to elucidate the endocrine mechanisms underlying obesity-associated LMS. Insights from this review provide valuable perspectives for developing interventions to improve milk production and address the challenges associated with LMS.
Collapse
Affiliation(s)
- Xuehua Jin
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sharon L Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicolas L Taylor
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia; ARC Training Centre in Biomedical Analysis, The University of Western Australia, Crawley, Western Australia, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia; ARC Training Centre in Biomedical Analysis, The University of Western Australia, Crawley, Western Australia, Australia. donna@
| |
Collapse
|
4
|
Lv W, Zheng Y, Jiao J, Fu Y, Xu T, Zhang L, Zhang Z, Ma N. The Role of XBP1 in bone metabolism. Front Endocrinol (Lausanne) 2023; 14:1217579. [PMID: 37795354 PMCID: PMC10546391 DOI: 10.3389/fendo.2023.1217579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Bone is a dynamic organ that, once formed, undergoes a constant remodeling process that includes bone resorption and synthesis. Osteoclasts and osteoblasts are primarily responsible for controlling this process. X-box binding protein 1 (XBP1), a transcription factor, affects the metabolism of bones in various ways. In recent years, numerous studies have revealed that XBP1 plays a vital role in bone metabolism, including osteoclast and osteoblast development, as well as in regulating immune cell differentiation that affects the immune microenvironment of bone remodeling. In this review, we highlight the regulatory mechanisms of XBP1 on osteoclasts and osteoblasts, how XBP1 affects the immune microenvironment of bone remodeling by influencing the differentiation of immune cells, and predict the possible future research directions of XBP1 to provide new insights for the treatment of bone-related metabolic diseases.
Collapse
Affiliation(s)
- Wenhao Lv
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Junjun Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Fu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Tingrui Xu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
5
|
Stanczyk FZ, Archer DF. Biosynthesis of estetrol in human pregnancy: Potential pathways. J Steroid Biochem Mol Biol 2023; 232:106359. [PMID: 37390976 DOI: 10.1016/j.jsbmb.2023.106359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Estetrol (E4) has emerged as a novel and highly promising estrogen for therapeutic use. E4 is a weak natural estrogen produced only in pregnancy. Because of its novelty, there is considerable interest by clinicians in how it is produced in pregnancy. Although the fetal liver plays a key role in its production, the placenta is also involved. A current view is that estradiol (E2) formed in the placenta enters the fetal compartment and is then rapidly sulfated. E2 sulfate then undergoes 15α-/16α-hydroxylation in the fetal liver thereby forming E4 sulfate (phenolic pathway). However, another pathway involving 15α,16α-dihydroxy-DHEAS formed in the fetal liver and converted to E4 in the placenta also plays a significant role (neutral pathway). It is not known which pathway predominates, but both pathways appear to be important in E4 biosynthesis. In this commentary, we summarize the well-established pathways in the formation of estrogens in the nonpregnant and pregnant female. We then review what is known about the biosynthesis of E4 and describe the 2 proposed pathways involving the fetus and placenta.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David F Archer
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
6
|
Kasarinaite A, Sinton M, Saunders PTK, Hay DC. The Influence of Sex Hormones in Liver Function and Disease. Cells 2023; 12:1604. [PMID: 37371074 PMCID: PMC10296738 DOI: 10.3390/cells12121604] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The liver performs a multitude of bodily functions, whilst retaining the ability to regenerate damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver physiology and the development of new model systems to improve our understanding of liver biology in health and disease. A major risk factor for the development of liver disease is hepatic fibrosis. Key drivers of this process are metabolic dysfunction and pathologic activation of the immune system. Although non-alcoholic fatty liver disease (NAFLD) is largely regarded as benign, it does progress to non-alcoholic steatohepatitis in a subset of patients, increasing their risk of developing cirrhosis and hepatocellular carcinoma. NAFLD susceptibility varies across the population, with obesity and insulin resistance playing a strong role in the disease development. Additionally, sex and age have been identified as important risk factors. In addition to the regulation of liver biochemistry, sex hormones also regulate the immune system, with sexual dimorphism described for both innate and adaptive immune responses. Therefore, sex differences in liver metabolism, immunity and their interplay are important factors to consider when designing, studying and developing therapeutic strategies to treat human liver disease. The purpose of this review is to provide the reader with a general overview of sex steroid biology and their regulation of mammalian liver physiology.
Collapse
Affiliation(s)
- Alvile Kasarinaite
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Matthew Sinton
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 9TA, UK
| | - Philippa T. K. Saunders
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - David C. Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
7
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
8
|
卓 灵, 王 烁, 刘 星, 陈 保, 李 想. [Estradiol inhibits differentiation of mouse macrophage into a pro-inflammatory phenotype by upregulating the IRE1 α-XBP1 signaling axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:432-437. [PMID: 35426809 PMCID: PMC9010986 DOI: 10.12122/j.issn.1673-4254.2022.03.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the mechanism by which estradiol modulates the immunophenotype of macrophages through the endoplasmic reticulum stress pathway. METHODS Peritoneal macrophages isolated from C57 mice were cultured in the presence of 60 ng/mL interferon-γ (IFN-γ) followed by treatment with estradiol (1.0 nmol/L) alone, estradiol with estrogen receptor antagonist (Acolbifene, 4 nmol/L), estradiol with IRE1α inhibitor (4 μ 8 C), or estradiol with IRE1α agonist. After the treatments, the expression levels of MHC-Ⅱ, iNOS and endoplasmic reticulum stress marker proteins IRE1α, eIF2α and ATF6 in the macrophages were detected with Western blotting, and the mRNA levels of TGF-β, IL-6, IL-10 and TNF-α were detected with RT-PCR. RESULTS Estrogen treatment of the macrophages significantly decreased the expressions of M1-related proteins MHC-Ⅱ (P=0.021) and iNOS (P < 0.001) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.004), increased the mRNA expression of TGF-β (P=0.002) and IL-10 (P=0.008), and up-regulated the protein expressions of IRE1α (P < 0.001) and its downstream transcription factor XBP-1 (P < 0.001). Addition of the estrogen inhibitor obviously blocked the effect of estrogen. Compared with estrogen treatment alone, combined treatment of the macrophages with estrogen and the IRE1α inhibitor 4 μ 8 C significantly up-regulated the protein expressions of MHC-Ⅱ (P=0.002) and iNOS (P=0.003) and the mRNA expressions of TNF-α (P=0.003) and IL-6 (P=0.024), and obviously down-regulated the mRNA expression of TGF-β (P < 0.001) and IL-10 (P < 0.001); these changes were not observed in cells treated with estrogen and the IRE1α agonist. CONCLUSION Estrogen can inhibit the differentiation of murine macrophages into a pro-inflammatory phenotype by up-regulating the IRE1α-XBP-1 signaling axis, thereby producing an inhibitory effect on inflammatory response.
Collapse
Affiliation(s)
- 灵剑 卓
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 烁辰 王
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 星 刘
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 保安 陈
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 想 李
- />南方医科大学南方医院急诊科,广东 广州 510515Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
de Alencar AKN, Wang H, de Oliveira GMM, Sun X, Zapata-Sudo G, Groban L. Crossroads between Estrogen Loss, Obesity, and Heart Failure with Preserved Ejection Fraction. Arq Bras Cardiol 2021; 117:1191-1201. [PMID: 34644788 PMCID: PMC8757160 DOI: 10.36660/abc.20200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity and heart failure with preserved ejection fraction (HFpEF) increases significantly in postmenopausal women. Although obesity is a risk factor for left ventricular diastolic dysfunction (LVDD), the mechanisms that link the cessation of ovarian hormone production, and particularly estrogens, to the development of obesity, LVDD, and HFpEF in aging females are unclear. Clinical, and epidemiologic studies show that postmenopausal women with abdominal obesity (defined by waist circumference) are at greater risk for developing HFpEF than men or women without abdominal obesity. The study presents a review of clinical data that support a mechanistic link between estrogen loss plus obesity and left ventricular remodeling with LVDD. It also seeks to discuss potential cell and molecular mechanisms for estrogen-mediated protection against adverse adipocyte cell types, tissue depots, function, and metabolism that may contribute to LVDD and HFpEF.
Collapse
Affiliation(s)
| | - Hao Wang
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gláucia Maria Moraes de Oliveira
- Universidade Federal do Rio de JaneiroDepartamento de Clínica MédicaFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Departamento de Clínica Médica, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Xuming Sun
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
| | - Gisele Zapata-Sudo
- Universidade Federal do Rio de JaneiroInstituto de Ciências BiomédicasRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Ciências Biomédicas, Rio de Janeiro, RJ - Brasil
- Universidade Federal do Rio de JaneiroInstituto de Cardiologia Edson SaadFaculdade de MedicinaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro - Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Rio de Janeiro, RJ - Brasil
| | - Leanne Groban
- Wake Forest School of MedicineDepartments of AnesthesiologyWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Departments of Anesthesiology, Winston-Salem, North Carolina - Estados Unidos da América
- Wake Forest School of MedicineWinston-SalemNorth CarolinaEstados Unidos da AméricaWake Forest School of Medicine - Internal Medicine-Section of Molecular Medicine, Winston-Salem, North Carolina - Estados Unidos da América
| |
Collapse
|
10
|
Kurmann L, Okoniewski M, Dubey RK. Estradiol Inhibits Human Brain Vascular Pericyte Migration Activity: A Functional and Transcriptomic Analysis. Cells 2021; 10:cells10092314. [PMID: 34571963 PMCID: PMC8472363 DOI: 10.3390/cells10092314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Stroke is the third leading cause of mortality in women and it kills twice as many women as breast cancer. A key role in the pathophysiology of stroke plays the disruption of the blood–brain barrier (BBB) within the neurovascular unit. While estrogen induces vascular protective actions, its influence on stroke remains unclear. Moreover, experiments assessing its impact on endothelial cells to induce barrier integrity are non-conclusive. Since pericytes play an active role in regulating BBB integrity and function, we hypothesize that estradiol may influence BBB by regulating their activity. In this study using human brain vascular pericytes (HBVPs) we investigated the impact of estradiol on key pericyte functions known to influence BBB integrity. HBVPs expressed estrogen receptors (ER-α, ER-β and GPER) and treatment with estradiol (10 nM) inhibited basal cell migration but not proliferation. Since pericyte migration is a hallmark for BBB disruption following injury, infection and inflammation, we investigated the effects of estradiol on TNFα-induced PC migration. Importantly, estradiol prevented TNFα-induced pericyte migration and this effect was mimicked by PPT (ER-α agonist) and DPN (ER-β agonist), but not by G1 (GPR30 agonist). The modulatory effects of estradiol were abrogated by MPP and PHTPP, selective ER-α and ER-β antagonists, respectively, confirming the role of ER-α and ER-β in mediating the anti-migratory actions of estrogen. To delineate the intracellular mechanisms mediating the inhibitory actions of estradiol on PC migration, we investigated the role of AKT and MAPK activation. While estradiol consistently reduced the TNFα-induced MAPK and Akt phosphorylation, only the inhibition of MAPK, but not Akt, significantly abrogated the migratory actions of TNFα. In transendothelial electrical resistance measurements, estradiol induced barrier function (TEER) in human brain microvascular endothelial cells co-cultured with pericytes, but not in HBMECs cultured alone. Importantly, transcriptomics analysis of genes modulated by estradiol in pericytes showed downregulation of genes known to increase cell migration and upregulation of genes known to inhibit cell migration. Taken together, our findings provide the first evidence that estradiol modulates pericyte activity and thereby improves endothelial integrity.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
| | | | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland;
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
11
|
Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals (Basel) 2021; 11:ani11072152. [PMID: 34359280 PMCID: PMC8300725 DOI: 10.3390/ani11072152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Estrogens are a group of steroid hormones that recently have gained even more attention in the eyes of scientists. There is an ongoing discussion in the scientific community about their relevance as environmental contaminants and the danger they pose to animal health and welfare. In available literature we can find many examples of their negative effects and mechanisms that are involved with such phenomena. Abstract Nowadays, there is a growing interest in environmental pollution; however, knowledge about this aspect is growing at an insufficient pace. There are many potential sources of environmental contamination, including sex hormones—especially estrogens. The analyzed literature shows that estrone (E1), estradiol (E2), estriol (E3), and synthetic ethinyloestradiol (EE2) are the most significant in terms of environmental impact. Potential sources of contamination are, among others, livestock farms, slaughterhouses, and large urban agglomerations. Estrogens occurring in the environment can negatively affect the organisms, such as animals, through phenomena such as feminization, dysregulation of natural processes related to reproduction, lowering the physiological condition of the organisms, disturbances in the regulation of both proapoptotic and anti-apoptotic processes, and even the occurrence of neoplastic processes thus drastically decreasing animal welfare. Unfortunately, the amount of research conducted on the negative consequences of their impact on animal organisms is many times smaller than that of humans, despite the great richness and diversity of the fauna. Therefore, there is a need for further research to help fill the gaps in our knowledge.
Collapse
|
12
|
Saraf MK, Jeng YJ, Watson CS. Nongenomic effects of estradiol vs. the birth control estrogen ethinyl estradiol on signaling and cell proliferation in pituitary tumor cells, and differences in the ability of R-equol to neutralize or enhance these effects. Steroids 2021; 168:108411. [PMID: 31132367 DOI: 10.1016/j.steroids.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
Ethinyl estradiol (EE2, the active component of many birth control formulations) persists in treated waste waters and it has become a concerning endocrine-disrupting contaminant throughout the world. Previous studies have not examined the behavior of EE2 in nongenomic signaling pathways and the subsequent functional responses (either alone or in mixtures) or conducted comparisons with the physiological estrogen estradiol (E2). In this study, mitogen-activated protein kinases (MAPKs), ERK, and JNK were activated in pituitary tumor cells by fM EE2, but p38 activation was insensitive to
Collapse
Affiliation(s)
- Manish Kumar Saraf
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch Galveston, TX 77555-0645, United States
| | - Yow-Jiun Jeng
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch Galveston, TX 77555-0645, United States
| | - Cheryl S Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch Galveston, TX 77555-0645, United States.
| |
Collapse
|
13
|
Stella A, Dey S. A Sensitive and Specific ESI-Positive LC-MS/MS Method for the Quantitation of Estrogens in Human Serum in Under Three Minutes. J Chromatogr Sci 2021; 59:280-288. [PMID: 33306780 PMCID: PMC7882671 DOI: 10.1093/chromsci/bmaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/17/2020] [Accepted: 11/02/2020] [Indexed: 11/14/2022]
Abstract
Amplifex Diene reagent was employed to derivatize estradiol (E2) to enhance the analyte signal at low picogram concentrations. This derivatization enabled measurement of E2 (and other estrogens) in ESI+ mode, earlier retention times for analytes than other methods, avoidance of MS harmful ammonium fluoride in mobile phases, and an LLOQ below 1 pg/mL. The sample preparation workflow involved liquid-liquid extraction followed by Amplifex Diene derivatization for 10 min at ambient temperature. Samples were chromatographed using a standard C18 column and analyzed using a SCIEX 6500+ mass spectrometer. The assay calibrators were prepared in-house, traceable to certified reference materials, and ranged from 1.29 to 624 pg/mL. A method comparison to samples from the CDC HoSt program yielded a correlation coefficient of 0.9858 and bias of -1.37%. The LLOQ using certified reference material was 0.66 pg/mL. The intra-run precision was <9.00% for low- and high-level samples, whereas the inter-run precision was 15.2 and 5.43% for low- and high-level samples, respectively. No interference from other clinically relevant steroids was found. Amplifex Diene derivatized E2 and estrone (E1) was found to be stable for over 6 months, both refrigerated and frozen.
Collapse
Affiliation(s)
- Aaron Stella
- SCIEX, 500 Old Connecticut Pathway, Framingham, MA 01701, USA
| | - Subhakar Dey
- SCIEX, 500 Old Connecticut Pathway, Framingham, MA 01701, USA
| |
Collapse
|
14
|
Mirczuk SM, Scudder CJ, Read JE, Crossley VJ, Regan JT, Richardson KM, Simbi B, McArdle CA, Church DB, Fenn J, Kenny PJ, Volk HA, Wheeler-Jones CP, Korbonits M, Niessen SJ, McGonnell IM, Fowkes RC. Natriuretic Peptide Expression and Function in GH3 Somatolactotropes and Feline Somatotrope Pituitary Tumours. Int J Mol Sci 2021; 22:ijms22031076. [PMID: 33499110 PMCID: PMC7865297 DOI: 10.3390/ijms22031076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.
Collapse
Affiliation(s)
- Samantha M. Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Christopher J. Scudder
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Jordan E. Read
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Victoria J. Crossley
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Jacob T. Regan
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Karen M. Richardson
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
| | - Bigboy Simbi
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Craig A. McArdle
- Department of Translational Science, Bristol Medical School, University of Bristol, Whitson Street, Bristol BS1 3NY, UK;
| | - David B. Church
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Joseph Fenn
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Patrick J. Kenny
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Small Animal Specialist Hospital, 1 Richardson Place, North Ryde, 2113 NSW, Australia
| | - Holger A. Volk
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hannover, Germany
| | - Caroline P. Wheeler-Jones
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Stijn J. Niessen
- Clinical Sciences & Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK; (D.B.C.); (J.F.); (P.J.K.); (H.A.V.); (S.J.N.)
| | - Imelda M. McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
| | - Robert C. Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (S.M.M.); (C.J.S.); (J.E.R.); (V.J.C.); (J.T.R.); (K.M.R.)
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK; (B.S.); (C.P.W.-J.); (I.M.M.)
- Correspondence: ; Tel.: +11-44-207-468-1215
| |
Collapse
|
15
|
Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc Natl Acad Sci U S A 2020; 117:17166-17176. [PMID: 32632016 DOI: 10.1073/pnas.2002266117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Signaling of 17β-estradiol (estrogen) through its two nuclear receptors, α and β (ERα, ERβ), is an important mechanism of transcriptional regulation. Although ERs are broadly expressed by cells of the immune system, the mechanisms by which they modulate immune responses remain poorly understood. ERβ-specific signaling is reduced in patients with chronic inflammatory diseases, including systemic lupus erythematosus and inflammatory bowel disease, and our previous work suggests that dysregulation of ERβ-specific signaling contributes to enhanced intestinal inflammation in female SAMP/YitFC mice, a spontaneous model of Crohn's disease-like ileitis. The present study builds on these prior observations to identify a nonredundant, immunoprotective role for ERβ-specific signaling in TGF-β-dependent regulatory T cell (Treg) differentiation. Using a strain of congenic SAMP mice engineered to lack global expression of ERβ, we observed dramatic, female-specific exacerbation of intestinal inflammation accompanied by significant reductions in intestinal Treg frequency and function. Impaired Treg suppression in the absence of ERβ was associated with aberrant overexpression of Tsc22d3 (GILZ), a glucocorticoid-responsive transcription factor not normally expressed in mature Tregs, and ex vivo data reveal that forced overexpression of GILZ in mature Tregs inhibits their suppressive function. Collectively, our findings identify a pathway of estrogen-mediated immune regulation in the intestine, whereby homeostatic expression of ERβ normally functions to limit Treg-specific expression of GILZ, thereby maintaining effective immune suppression. Our data suggest that transcriptional cross-talk between glucocorticoid and steroid sex hormone signaling represents an important and understudied regulatory node in chronic inflammatory disease.
Collapse
|
16
|
Kadokawa H. Discovery of new receptors regulating luteinizing hormone and follicle-stimulating hormone secretion by bovine gonadotrophs to explore a new paradigm for mechanisms regulating reproduction. J Reprod Dev 2020; 66:291-297. [PMID: 32249236 PMCID: PMC7470908 DOI: 10.1262/jrd.2020-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies in the 1960s and 1970s have reported that both gonadotropin-releasing hormone (GnRH) and estradiol-activated nuclear estrogen receptors regulate gonadotropin
secretion in women. However, I had previously reported that gonadotroph function is regulated by complex crosstalk between several membrane receptors. RNA-seq had previously
revealed 259 different receptor genes expressed in the anterior pituitary of heifers. However, the biological roles of most of these receptors remain unknown. I identified four new
receptors of interest: G protein-coupled receptor 30 (GPR30), anti-Mullerian hormone (AMH) receptor type 2 (AMHR2), and G protein-coupled receptors 61 and 153 (GPR61 and GPR153).
GPR30 rapidly (within a few minutes) mediates picomolar, but not nanomolar, levels of estradiol to suppress GnRH-induced luteinizing hormone (LH) secretion from bovine
gonadotrophs, without decreasing mRNA expressions of the LHα, LHβ, or follicle-stimulating hormone (FSH) β subunits. GPR30 is activated by other endogenous estrogens, estrone and
estriol. Moreover, GPR30 activation by zearalenone, a nonsteroidal mycoestrogen, suppresses LH secretion. AMHR2, activated by AMH, stimulates LH and FSH secretion, thus regulating
gonadotrophs, where other TGF-β family members, including inhibin and activin, potentially affect FSH secretion. I also show that GPR61, activated by its ligand (recently
discovered) significantly alters LH and FSH secretion. GPR61, GPR153, and AMHR2 co-localize with the GnRH receptor in unevenly dispersed areas of the bovine gonadotroph cell
surface, probably lipid rafts. The findings summarized in this review reveal a new paradigm regarding the mechanisms regulating reproduction via novel receptors expressed on bovine
gonadotrophs.
Collapse
Affiliation(s)
- Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
17
|
Klinge CM. Estrogenic control of mitochondrial function. Redox Biol 2020; 31:101435. [PMID: 32001259 PMCID: PMC7212490 DOI: 10.1016/j.redox.2020.101435] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Sex-based differences in human disease are caused in part by the levels of endogenous sex steroid hormones which regulate mitochondrial metabolism. This review updates a previous review on how estrogens regulate metabolism and mitochondrial function that was published in 2017. Estrogens are produced by ovaries and adrenals, and in lesser amounts by adipose, breast stromal, and brain tissues. At the cellular level, the mechanisms by which estrogens regulate diverse cellular functions including reproduction and behavior is by binding to estrogen receptors α, β (ERα and ERβ) and G-protein coupled ER (GPER1). ERα and ERβ are transcription factors that bind genomic and mitochondrial DNA to regulate gene transcription. A small proportion of ERα and ERβ interact with plasma membrane-associated signaling proteins to activate intracellular signaling cascades that ultimately alter transcriptional responses, including mitochondrial morphology and function. Although the mechanisms and targets by which estrogens act directly and indirectly to regulate mitochondrial function are not fully elucidated, it is clear that estradiol regulates mitochondrial metabolism and morphology via nuclear and mitochondrial-mediated events, including stimulation of nuclear respiratory factor-1 (NRF-1) transcription that will be reviewed here. NRF-1 is a transcription factor that interacts with coactivators including peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α) to regulate nuclear-encoded mitochondrial genes. One NRF-1 target is TFAM that binds mtDNA to regulate its transcription. Nuclear-encoded miRNA and lncRNA regulate mtDNA-encoded and nuclear-encoded transcripts that regulate mitochondrial function, thus acting as anterograde signals. Other estrogen-regulated mitochondrial activities including bioenergetics, oxygen consumption rate (OCR), and extracellular acidification (ECAR), are reviewed.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, 40292, KY, USA.
| |
Collapse
|
18
|
Estradiol/GPER affects the integrity of mammary duct-like structures in vitro. Sci Rep 2020; 10:1386. [PMID: 31992771 PMCID: PMC6987193 DOI: 10.1038/s41598-020-57819-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/06/2020] [Indexed: 01/19/2023] Open
Abstract
High estrogen concentration leads to an inflammatory reaction in the mammary gland tissue in vivo; however, the detailed mechanism underlying its specific effects on the breast duct has not been fully clarified. We used 3D-cultured MCF-10A acini as a breast duct model and demonstrated various deleterious effects of 17-β estradiol (E2), including the destruction of the basement membrane surrounding the acini, abnormal adhesion between cells, and cell death via apoptosis and pyroptosis. Moreover, we clarified the mechanism underlying these phenomena: E2 binds to GPER in MCF-10A cells and stimulates matrix metalloproteinase 3 (MMP-3) and interleukin-1β (IL-1β) secretion via JNK and p38 MAPK signaling pathways. IL-1β activates the IL-1R1 signaling pathway and induces continuous MMP-3 and IL-1β secretion. Collectively, our novel findings reveal an important molecular mechanism underlying the effects of E2 on the integrity of duct-like structures in vitro. Thus, E2 may act as a trigger for ductal carcinoma transition in situ.
Collapse
|
19
|
Crescitelli MC, Rauschemberger MB, Cepeda S, Sandoval M, Massheimer VL. Role of estrone on the regulation of osteoblastogenesis. Mol Cell Endocrinol 2019; 498:110582. [PMID: 31525430 DOI: 10.1016/j.mce.2019.110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
Although estradiol bone contribution has been deeply studied, little is known about the action of estrone. We investigated the direct action of estrone on osteoblasts growth and differentiation, with focus on the biochemical mechanism displayed by the estrogen. Murine calvarial osteoblast cultures in vitro exposed to 10 nM estrone were employed. Estrone enhanced gene expression of the osteogenic differentiation marker, Runx2 mRNA (150% above control). The hormone significantly increased cell proliferation (38% above control), nitric oxide production (108% above control), alkaline phosphatase activity (50% above control), in addition to stimulation of extracellular matrix mineralization. Using specific antagonists, we found that the mechanism of action of estrone involves estrogen receptor, nitric oxide synthase and MAPK signalling pathways participation. The hormone acts by its own and probably not via conversion to estradiol, since 17 B HSD inhibition did not affect the hormonal action. This work shows a novel action of estrone on bone cells promoting osteoblastogenesis.
Collapse
Affiliation(s)
- M Carla Crescitelli
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - M Belén Rauschemberger
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Sabrina Cepeda
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Marisa Sandoval
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Virginia L Massheimer
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina.
| |
Collapse
|
20
|
Hudon Thibeault AA, Sanderson JT, Vaillancourt C. Serotonin-estrogen interactions: What can we learn from pregnancy? Biochimie 2019; 161:88-108. [PMID: 30946949 DOI: 10.1016/j.biochi.2019.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
We have reviewed the scientific literature related to four diseases in which to serotonin (5-HT) is involved in the etiology, herein named 5-HT-linked diseases, and whose prevalence is influenced by estrogenic status: depression, migraine, irritable bowel syndrome and eating disorders. These diseases all have in common a sex-dimorphic prevalence, with women more frequently affected than men. The co-occurrence between these 5-HT-linked diseases suggests that they have common physiopathological mechanisms. In most 5-HT-linked diseases (except for anorexia nervosa and irritable bowel syndrome), a decrease in the serotonergic tone is observed and estrogens are thought to contribute to the improvement of symptoms by stimulating the serotonergic system. Human pregnancy is characterized by a unique 5-HT and estrogen synthesis by the placenta. Pregnancy-specific disorders, such as hyperemesis gravidarum, gestational diabetes mellitus and pre-eclampsia, are associated with a hyperserotonergic state and decreased estrogen levels. Fetal programming of 5-HT-linked diseases is a complex phenomenon that involves notably fetal-sex differences, which suggest the implication of sex steroids. From a mechanistic point of view, we hypothesize that estrogens regulate the serotonergic system, resulting in a protective effect against 5-HT-linked diseases, but that, in turn, 5-HT affects estrogen synthesis in an attempt to retrieve homeostasis. These two processes (5-HT and estrogen biosynthesis) are crucial for successful pregnancy outcomes, and thus, a disruption of this 5-HT-estrogen relationship may explain pregnancy-specific pathologies or pregnancy complications associated with 5-HT-linked diseases.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| | - J Thomas Sanderson
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada.
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, 531, boulevard des Prairies, Laval, QC, H7V 1B7, Canada; Center for Interdisciplinary Research on Well-Being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, C.P.8888, succ. Centre-Ville, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
21
|
Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:135-170. [PMID: 31036290 DOI: 10.1016/bs.apcsb.2019.01.001] [Citation(s) in RCA: 537] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary female sex hormones, estrogens, are responsible for the control of functions of the female reproductive system, as well as the development of secondary sexual characteristics that appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or signaling events that result in the control of gene expression. These actions can be mediated by direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, the effects of estrogens on gene expression are controlled by highly regulated complex mechanisms. In this chapter, we summarize the knowledge gained in the past 60years since the discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene expression. We provide an overview of estrogen biosynthesis, and we describe the main mechanisms by which the female sex hormone controls gene transcription in different tissues and cell types. Specifically, we address the molecular events governing regulation of gene expression via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target specific estrogen receptors and their implications for human health and medical therapeutics.
Collapse
Affiliation(s)
- Nathalie Fuentes
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Patricia Silveyra
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States; The University of North Carolina at Chapel Hill, School of Nursing, Chapel Hill, NC, United States.
| |
Collapse
|
22
|
Watson CS, Koong L, Jeng YJ, Vinas R. Xenoestrogen interference with nongenomic signaling actions of physiological estrogens in endocrine cancer cells. Steroids 2019; 142:84-93. [PMID: 30012504 PMCID: PMC6339598 DOI: 10.1016/j.steroids.2018.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 11/20/2022]
Abstract
Rapid nongenomic signaling by estrogens (Es), initiated near the cell membrane, provides new explanations for the potent actions of environmental chemicals that imperfectly mimic physiological Es. These pathways can affect tumor growth, stabilization, or shrinkage via a number of signaling streams such as activation/inactivation of mitogen-activated protein kinases and caspases, generation of second messengers, and phospho-triggering of cyclin instability. Though prostate cancers are better known for their responsiveness to androgen deprivation, ∼17% of late stage tumors regress in response to high dose natural or pharmaceutical Es; however, the mechanisms at the cellular level are not understood. More accurate recent measurements show that estradiol (E2) levels decline in aging men, leading to the hypothesis that maintaining young male levels of E2 may prevent the growth of prostate cancers. Major contributions to reducing prostate cancer cell numbers included low E2 concentrations producing sustained ERK phospho-activation correlated with generation of reactive oxygen species causing cancer cell death, and phospho-activation of cyclin D1 triggering its rapid degradation by interrupting cell cycle progression. These therapeutic actions were stronger in early stage tumor cells (with higher membrane estrogen receptor levels), and E2 was far more effective compared to diethylstilbestrol (the most frequently prescribed E treatment). Xenoestrogens (XEs) exacerbated the growth of prostate cancer cells, and as we know from previous studies in pituitary cancer cells, can interfere with the nongenomic signaling actions of endogenous Es. Therefore, nongenomic actions of physiological levels of E2 may be important deterrents to the growth of prostate cancers, which could be undermined by the actions of XEs.
Collapse
Affiliation(s)
- Cheryl S Watson
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Luke Koong
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Yow-Jiun Jeng
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Rene Vinas
- Biochemistry & Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
23
|
Sosa LDV, Petiti JP, Picech F, Chumpen S, Nicola JP, Perez P, De Paul A, Valdez-Taubas J, Gutierrez S, Torres AI. The ERα membrane pool modulates the proliferation of pituitary tumours. J Endocrinol 2019; 240:229-241. [PMID: 30400032 DOI: 10.1530/joe-18-0418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms underlying the ERα nuclear/cytoplasmic pool that modulates pituitary cell proliferation have been widely described, but it is still not clear how ERα is targeted to the plasma membrane. The aim of this study was to analyse ERα palmitoylation and the plasma membrane ERα (mERα) pool, and their participation in E2-triggered membrane-initiated signalling in normal and pituitary tumour cell growth. Cell cultures were prepared from anterior pituitaries of female Wistar rats and tumour GH3 cells, and treated with 10 nM of oestradiol (E2). The basal expression of ERα was higher in tumour GH3 than in normal pituitary cells. Full-length palmitoylated ERα was observed in normal and pituitary tumour cells, demonstrating that E2 stimulation increased both, ERα in plasma membrane and ERα and caveolin-1 interaction after short-term treatment. In addition, the Dhhc7 and Dhhc21 palmitoylases were negatively regulated after sustained stimulation of E2 for 3 h. Although the uptake of BrdU into the nucleus in normal pituitary cells was not modified by E2, a significant increase in the GH3 tumoural cell, as well as ERK1/2 activation, with this effect being mimicked by PPT, a selective antagonist of ERα. These proliferative effects were blocked by ICI 182780 and the global inhibitor of palmitoylation. These findings indicate that ERα palmitoylation modulated the mERα pool and consequently the ERK1/2 pathway, thereby contributing to pituitary tumour cell proliferation. These results suggest that the plasma membrane ERα pool might be related to the proliferative behaviour of prolactinoma and may be a marker of pituitary tumour growth.
Collapse
Affiliation(s)
- Liliana Del V Sosa
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan P Petiti
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Florencia Picech
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Sabrina Chumpen
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Juan P Nicola
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIBICI-CONICET, Cordoba, Argentina
| | - Pablo Perez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Ana De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Javier Valdez-Taubas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, CIQUIBIC-CONICET, Cordoba, Argentina
| | - Silvina Gutierrez
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia I Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica - Consejo Nacional de Investigaciones Científicas Técnicas (CONICET) Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
24
|
Camilletti MA, Abeledo-Machado A, Ferraris J, Pérez PA, Faraoni EY, Pisera D, Gutierrez S, Díaz-Torga G. Role of GPER in the anterior pituitary gland focusing on lactotroph function. J Endocrinol 2019; 240:99-110. [PMID: 30400046 DOI: 10.1530/joe-18-0402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Ovarian steroids control a variety of physiological functions. They exert actions through classical nuclear steroid receptors, but rapid non-genomic actions through specific membrane steroid receptors have been also described. In this study, we demonstrate that the G-protein-coupled estrogen receptor (GPER) is expressed in the rat pituitary gland and, at a high level, in the lactotroph population. Our results revealed that ~40% of the anterior pituitary cells are GPER positive and ~35% of the lactotrophs are GPER positive. By immunocytochemical and immuno-electron-microscopy studies, we demonstrated that GPER is localized in the plasmatic membrane but is also associated to the endoplasmic reticulum in rat lactotrophs. Moreover, we found that local Gper expression is regulated negatively by 17β-estradiol (E2) and progesterone (P4) and fluctuates during the estrus cycle, being minimal in proestrus. Interestingly, lack of ovarian steroids after an ovariectomy (OVX) significantly increased pituitary GPER expression specifically in the three morphologically different subtypes of lactotrophs. We found a rapid estradiol stimulatory effect on PRL secretion mediated by GPER, both in vitro and ex vivo, using a GPER agonist G1, and this effect was prevented by the GPER antagonist G36, demonstrating a novel role for this receptor. Then, the increased pituitary GPER expression after OVX could lead to alterations in the pituitary function as all three lactotroph subtypes are target of GPER ligand and could be involved in the PRL secretion mediated by GPER. Therefore, it should be taken into consideration in the response of the gland to an eventual hormone replacement therapy.
Collapse
Affiliation(s)
- María Andrea Camilletti
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Pablo A Pérez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Medicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Silvina Gutierrez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Medicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
25
|
Perkins MS, Louw-du Toit R, Africander D. Hormone Therapy and Breast Cancer: Emerging Steroid Receptor Mechanisms. J Mol Endocrinol 2018; 61:R133-R160. [PMID: 29899079 DOI: 10.1530/jme-18-0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Although hormone therapy is widely used by millions of women to relieve symptoms of menopause, it has been associated with several side-effects such as coronary heart disease, stroke and increased invasive breast cancer risk. These side-effects have caused many women to seek alternatives to conventional hormone therapy, including the controversial custom-compounded bioidentical hormone therapy suggested to not increase breast cancer risk. Historically estrogens and the estrogen receptor were considered the principal factors promoting breast cancer development and progression, however, a role for other members of the steroid receptor family in breast cancer pathogenesis is now evident, with emerging studies revealing an interplay between some steroid receptors. In this review, we discuss examples of hormone therapy used for the relief of menopausal symptoms, highlighting the distinction between conventional hormone therapy and custom-compounded bioidentical hormone therapy. Moreover, we highlight the fact that not all hormones have been evaluated for an association with increased breast cancer risk. We also summarize the current knowledge regarding the role of steroid receptors in mediating the carcinogenic effects of hormones used in menopausal hormone therapy, with special emphasis on the influence of the interplay or crosstalk between steroid receptors. Unraveling the intertwined nature of steroid hormone receptor signaling pathways in breast cancer biology is of utmost importance, considering that breast cancer is the most prevalent cancer among women worldwide. Moreover, understanding these mechanisms may reveal novel prevention or treatment options, and lead to the development of new hormone therapies that does not cause increased breast cancer risk.
Collapse
Affiliation(s)
- Meghan S Perkins
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
26
|
Heimovics SA, Merritt JR, Jalabert C, Ma C, Maney DL, Soma KK. Rapid effects of 17β-estradiol on aggressive behavior in songbirds: Environmental and genetic influences. Horm Behav 2018; 104:41-51. [PMID: 29605636 PMCID: PMC6344317 DOI: 10.1016/j.yhbeh.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. 17β-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.
Collapse
Affiliation(s)
| | | | - Cecilia Jalabert
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada
| | - Chunqi Ma
- University of British Columbia, Department of Psychology, Vancouver, BC, Canada
| | - Donna L Maney
- Emory University, Department of Psychology, Atlanta, GA, USA
| | - Kiran K Soma
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada; University of British Columbia, Department of Psychology, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Canada
| |
Collapse
|
27
|
Borgert CJ, Matthews JC, Baker SP. Human-relevant potency threshold (HRPT) for ERα agonism. Arch Toxicol 2018; 92:1685-1702. [PMID: 29632997 PMCID: PMC5962616 DOI: 10.1007/s00204-018-2186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical’s ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical’s potency for a specific MoA—its mechanistic potency—is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17β-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| | - Stephen P Baker
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
28
|
Dehydroepiandrosterone (DHEA) and Its Sulfate (DHEA-S) in Mammalian Reproduction: Known Roles and Novel Paradigms. VITAMINS AND HORMONES 2018; 108:223-250. [PMID: 30029728 DOI: 10.1016/bs.vh.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Steroid hormones form an integral part of normal development in mammalian organisms. Cholesterol is the parent compound from which all steroid hormones are synthesized. The product pregnenolone formed from cholesterol serves as precursor for mineralocorticoids, glucocorticoids, as well as dehydroepiandrosterone (DHEA) and its derived sexual hormones. DHEA assumes the prohormone status of a predominant endogenous precursor and a metabolic intermediate in ovarian follicular steroidogenesis. DHEA supplementation has been used to enhance ovarian reserve. Steroids like estradiol and testosterone have long been contemplated to play important roles in regulating meiotic maturation of oocytes in conjunction with gonadotropins. It is known that oocyte priming with estrogen is necessary to develop calcium (Ca2+) oscillations during maturation. Accruing evidence from diverse studies suggests that DHEA and its sulfate (dehydroepiandrosterone sulfate, DHEA-S) play significantly vital role not only as intermediates in androgen and estrogen formation, but may also be the probable 'oocyte factor' and behave as endogenous agonists triggering calcium oscillations for oocyte activation. DHEA/DHEA-S have been reported to regulate calcium channels for the passage of Ca2+ through the oocyte cytoplasm and for maintaining required threshold of Ca2+ oscillations. This role of DHEA/DHEA-S assumes critical significance in assisted reproductive technology and in-vitro fertilization treatment cycles where physical, chemical, and mechanical methods are employed for artificial oocyte activation to enhance fertilization rates. However, since these methods are invasive and may also cause adverse epigenetic modifications; oral or culture-media supplementation with DHEA/DHEA-S provides a noninvasive innate mechanism of in-vitro oocyte activation based on physiological metabolic pathway.
Collapse
|
29
|
Kadokawa H, Pandey K, Onalenna K, Nahar A. Reconsidering the roles of endogenous estrogens and xenoestrogens: the membrane estradiol receptor G protein-coupled receptor 30 (GPR30) mediates the effects of various estrogens. J Reprod Dev 2018. [PMID: 29515057 PMCID: PMC6021614 DOI: 10.1262/jrd.2017-153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrone (E1) and estriol (E3) are considered “weak” estrogens, which exert suppressive effects through estrogen receptors α and β. However, recent studies have demonstrated that E1 and E3,
as well as estradiol (E2), suppress gonadotropin-releasing hormone-induced luteinizing hormone secretion from bovine gonadotrophs via G-protein-coupled receptor 30, which is expressed in
various reproductive organs. Currently, there is a lack of fundamental knowledge regarding E1 and E3, including their blood levels. In addition, xenoestrogens may remain in the body over
long time periods because of enterohepatic circulation. Therefore, it is time to reconsider the roles of endogenous estrogens and xenoestrogens for reproduction.
Collapse
Affiliation(s)
- Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kiran Pandey
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kereilwe Onalenna
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Asrafun Nahar
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
30
|
Otsuka M, Kadokawa H. GPR30 mediates estrone, estriol, and estradiol to suppress gonadotropin-releasing hormone-induced luteinizing hormone secretion in the anterior pituitary of heifers. J Reprod Dev 2017; 63:519-525. [PMID: 28781349 PMCID: PMC5649102 DOI: 10.1262/jrd.2017-035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recent studies demonstrated that G-protein-coupled receptor 30 (GPR30) on the plasma membrane of gonadotroph cells mediates picomolar, but not nanomolar, levels of estradiol (E2) to rapidly suppress gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion in the anterior pituitary (AP). While estrone (E1) and estriol (E3) are considered "weak" estrogens that exert suppressive effects through estrogen receptors α and β, it is conceivable that they also strongly suppress GnRH-induced LH secretion via GPR30. Both E1 and E3 are likely present within the blood at picomolar or nanomolar concentrations, indicating that such concentrations are sufficient to suppress GnRH-induced LH secretion. To evaluate this possibility, bovine AP cells were cultured under steroid-free conditions and then incubated with various concentrations (0.01 pM to 10 nM) of E2, E1, or E3, prior to stimulation with GnRH. Notably, GnRH-induced LH secretion from AP cells was inhibited by 1-100 pM E2, 1-10 pM E1, and 1-100 pM E3. GnRH-induced LH secretion from AP cells was not inhibited by lower (0.01-0.1 pM) or higher (1-10 nM) concentrations of E2, E1, and E3. These suppressive effects were inhibited by pre-treatment of AP cells with the GPR30 antagonist G36, but not with the estrogen receptor alpha antagonist. Treatment with E1 or E3 also yielded decreased cytoplasmic cAMP levels in cultured AP cells pre-treated with dopamine and phosphodiesterase inhibitors. Therefore, these results suggest that GPR30 mediates the suppressive effects of E1, E3, and E2 on GnRH-induced LH secretion from bovine AP.
Collapse
Affiliation(s)
- Midori Otsuka
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
31
|
Swanepoel AC, Naidoo P, Nielsen VG, Pretorius E. Clinical relevance of hypercoagulability and possible hypofibrinolysis associated with estrone and estriol. Microsc Res Tech 2017; 80:697-703. [DOI: 10.1002/jemt.22854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 02/02/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Albe C. Swanepoel
- Department of Physiology, School of Medicine, Faculty of Health Sciences; University of Pretoria; South Africa
| | - Priyaa Naidoo
- Department of Physiology, School of Medicine, Faculty of Health Sciences; University of Pretoria; South Africa
| | - Vance G. Nielsen
- The Department of Anaesthesiology; The University of Arizona College of Medicine; Tucson Arizona
| | - Etheresia Pretorius
- Department of Physiology, School of Medicine, Faculty of Health Sciences; University of Pretoria; South Africa
| |
Collapse
|
32
|
|
33
|
Sánchez M, Suárez L, Cantabrana B, Bordallo J. Estradiol-modified prolactin secretion independently of action potentials and Ca 2+ and blockade of outward potassium currents in GH 3 cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:95-104. [PMID: 27747371 DOI: 10.1007/s00210-016-1310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Estrogens facilitate prolactin (PRL) secretion acting on pituitary cells. In GH3 cells, estradiol induces acute action potentials and oscillations of intracellular Ca2+ associated with the secretagogue function. Estradiol modulates several ion channels which may affect the action potential rate and the release of PRL in lactotroph cells, which might depend on its concentration. The aims were to characterize the acute effect of supraphysiological concentrations of estradiol on Ca2+ and noninactivating K+ currents and measure the effect on the spontaneous action potentials and PRL release in the somatolactotroph cell line, GH3. Electrophysiological studies were carried out by voltage- and current-clamp techniques and ELISA determination of PRL secretion. Pharmacological concentrations of estradiol (above 1 μM), without a latency period, blocked Ca2+ channels and noninactivating K+ currents, including the large-conductance voltage- and Ca2+-activated K+ channels (BK), studied in whole-cell nystatin perforated and in excided inside-out patches of GH3 and CHO cells, transiently transfected with the human α-pore forming subunit of BK. The effect on BK was contrary to the agonist effect associated with the regulatory β1-subunits of the BK, which GH3 cells lack, but its transient transfection did not modify the noninactivating current blockade, suggesting a different mechanism of regulation. Estradiol, at the same concentration range, acutely decreased the frequency of action potentials, an expected effect as consequence of the Ca2+ channel blockade. Despite this, PRL secretion initially increased, followed by a decrease in long-term incubations. This suggests that, in GH3 cells, supraphysiological concentrations of estradiol modulating PRL secretion are partially independent of extracellular Ca2+ influx.
Collapse
Affiliation(s)
- Manuel Sánchez
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Asturias, Spain. .,Farmacología, Facultad de Medicina y Ciencias de la Salud, Julián Clavería 6, 33006, Oviedo, Asturias, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Fundación Bancaria Caja de Ahorros de Asturias, Asturias, Spain.
| | - Lorena Suárez
- Instituto Universitario de Oncología del Principado de Asturias, Fundación Bancaria Caja de Ahorros de Asturias, Asturias, Spain
| | - Begoña Cantabrana
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Asturias, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Fundación Bancaria Caja de Ahorros de Asturias, Asturias, Spain
| | - Javier Bordallo
- Farmacología, Departamento de Medicina, Universidad de Oviedo, Asturias, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Fundación Bancaria Caja de Ahorros de Asturias, Asturias, Spain
| |
Collapse
|
34
|
Saraf MK, Jeng YJ, Watson CS. R-equol, a synthetic metabolite of the dietary estrogen daidzein, modulates the nongenomic estrogenic effects of 17β-estradiol in pituitary tumor cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23273747.2016.1226697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Liu X, Jung D, Jo A, Ji K, Moon HB, Choi K. Long-term exposure to triphenylphosphate alters hormone balance and HPG, HPI, and HPT gene expression in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2288-96. [PMID: 26865342 DOI: 10.1002/etc.3395] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/11/2015] [Accepted: 02/08/2016] [Indexed: 05/28/2023]
Abstract
With the global decline in the use of polybrominated diphenyl ethers, the demand for alternative flame retardants, such as triphenylphosphate (TPP), has increased substantially. Triphenylphosphate is now detected in various environments including aquatic ecosystems worldwide. However, studies on the toxicological consequences of chronic TPP exposure on aquatic organisms are scarce. The zebrafish model was used to investigate the effects of long-term TPP exposure on the endocrine system. Zebrafish embryos were exposed to 5 µg/L, 50 µg/L, or 500 µg/L TPP for 120 d, and hormonal and transcriptional responses were measured along the hypothalamic-pituitary-gonad (HPG) axis, the hypothalamic-pituitary-interrenal (HPI) axis, and the hypothalamic-pituitary-thyroid (HPT) axis. Exposure to TPP significantly increased plasma 17β-estradiol, but decreased 11-ketotestosterone in both sexes. Gene expression data support these changes. In the HPI axis, plasma cortisol and proopiomelanocortin (pomc) and mineralocorticoid receptor transcripts increased in females, but in males cortisol decreased whereas pomc increased (p < 0.05). Thyroxine and triiodothyronine increased, and thyrotrophin-releasing hormone receptor 2 (trhr2) and trh expression were affected only in females (p < 0.05). In summary, long-term exposure to TPP enhanced estrogenicity in both males and females, potentially through influencing the HPG axis, but modulated the HPI, and HPT axes differently by sex, suggesting that both genomic and nongenomic responses might be involved. Environ Toxicol Chem 2016;35:2288-2296. © 2016 SETAC.
Collapse
Affiliation(s)
- Xiaoshan Liu
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- School of Public Health, Guangdong Medical University, Dongguan City, Guangdong Province, People's Republic of China
| | - Dawoon Jung
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Areum Jo
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- National Institute of Environmental Research, Incheon, Republic of Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Nogami H, Hiraoka Y, Aiso S. Estradiol and corticosterone stimulate the proliferation of a GH cell line, MtT/S: Proliferation of growth hormone cells. Growth Horm IGF Res 2016; 29:33-38. [PMID: 27082452 DOI: 10.1016/j.ghir.2016.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH). DESIGN Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum. The relative cell density after culture was estimated by the Cell Titer-Glo Luminescent Cell Viability Assay System, and the proliferation rate was determined by the BrdU incorporation method. The mRNA levels were determined by real-time PCR. RESULTS Estradiol and the specific agonist for both estrogen receptor (ER) α and ERβ stimulated MtT/S growth at a dose dependent manner. The membrane impermeable estrogen, 17β-estradiol-bovine serum albumin conjugate also stimulated the MtT/S proliferation. The effects of all estrogens were inhibited by an estrogen receptor antagonist, ICI182780. Corticosterone stimulated the proliferation of MtT/S cells at doses lower than 10nM without stimulating GH gene transcription, whereas it did not change the proliferation rate at 1μM. The effects of corticosterone were inhibited by glucocorticoid receptor inhibitor, RU486, but not by the mineralocorticoid receptor antagonist, spironolactone. Both estrogens and glucocorticoids were found to stimulate the proliferation of MtT/S, increasing the mRNA expression of cyclins D1, D3, and E. CONCLUSIONS The results suggest that estrogens and glucocorticoids may be involved in the mechanisms responsible for the proliferation of GH cells in the course of pituitary development, to maintain the population of GH cells in the adult pituitary gland, and also in the promotion of GH cell tumors.
Collapse
Affiliation(s)
- Haruo Nogami
- Laboratory of Molecular Neuroendocrinology, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan.
| | - Yoshiki Hiraoka
- Department of Anatomy, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Sadakazu Aiso
- Department of Anatomy, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
37
|
Jeon SY, Hwang KA, Choi KC. Effect of steroid hormones, estrogen and progesterone, on epithelial mesenchymal transition in ovarian cancer development. J Steroid Biochem Mol Biol 2016; 158:1-8. [PMID: 26873134 DOI: 10.1016/j.jsbmb.2016.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/12/2022]
Abstract
As the primary female sex steroid hormones, estrogens and progesterone play important roles to regulate growth, differentiation, and function of a broad range of target tissues in the human body and maintain the function of female reproductive tissues. Ovarian cancer is the most cause of cancer death in gynecological malignancy. Despite enormous outcomes in the understanding of ovarian cancer pathology, this disease has resulted in poor survival rates since most patients are asymptomatic until the disease has been metastasized. The exact molecular events leading to metastasis of ovarian tumor cells have not yet been well elucidated, although it is recognized that the acquisition of capacity for migration and invasiveness would be a necessary prerequisite. During metastasis, epithelial-mesenchymal transition (EMT) is an important process, in which epithelial cells lose their intracellular adhesion and cell polarity and acquire increased motility and invasive properties to become mesenchymal like cells. The process of cancer cells to undergo EMT is regulated through the up- and down- regulation of a multiple cellular markers and signaling proteins. In this review, we focused the roles of women sex steroid hormones, estrogen and progesterone, in ovarian cancer, especially the ovarian cancer undergoing EMT and metastatic process. All things considered, we may suggest that progesterone is a potent hormone which inhibits the growth of human ovarian cancer cells and development to metastasis whereas estrogen may act as a risk factor of ovarian cancer progression and that progesterone therapy may be an alternative clinically effective tool for the treatment of human ovarian cancer.
Collapse
Affiliation(s)
- So-Ye Jeon
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
38
|
Chimote NM, Nath NM, Chimote NN, Chimote BN. Follicular fluid dehydroepiandrosterone sulfate is a credible marker of oocyte maturity and pregnancy outcome in conventional in vitro fertilization cycles. J Hum Reprod Sci 2016; 8:209-13. [PMID: 26751787 PMCID: PMC4691972 DOI: 10.4103/0974-1208.170397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AIM: To investigate if the level of dehydroepiandrosterone sulfate (DHEA-s) in follicular fluid (FF) influences the competence of oocytes to fertilize, develop to the blastocyst stage, and produce a viable pregnancy in conventional in vitro fertilization (IVF) cycles. SETTINGS AND DESIGN: Prospective study of age-matched, nonpolycystic ovary syndrome (PCOS) women undergoing antagonist stimulation protocol involving conventional insemination and day 5 blastocyst transfer. MATERIALS AND METHODS: FF levels of DHEA-s and E2 were measured by a radio-immuno-assay method using diagnostic kits. Fertilization rate, embryo development to the blastocyst stage and live birth rate were main outcome measures. Cycles were divided into pregnant/nonpregnant groups and also into low/medium/high FF DHEA-s groups. Statistical analysis was done by GraphPad Prism V software. RESULTS: FF DHEA-s levels were significantly higher in pregnant (n = 111) compared to nonpregnant (n = 381) group (1599 ± 77.45 vs. 1372 ± 40.47 ng/ml; P = 0.01). High (n = 134) FF DHEA-s group had significantly higher percentage of metaphase II (MII) oocytes (91.5 vs. 85.54 vs. 79.44%, P < 0.0001), fertilization rate (78.86 vs. 74.16 vs. 71.26%, P < 0.0001), cleavage rate (83.67 vs. 69.1 vs. 66.17%, P = 0.0002), blastocyst formation rate (37.15 vs. 33.01 vs. 26.95%, P < 0.0001), and live birth rate (29.85 vs. 22.22 vs. 14.78%, P = 0.017) compared to medium (n = 243) and low (n = 115) FF DHEA-s groups, respectively despite comparable number of oocytes retrieved and number of blastocysts transferred. FF DHEA-s levels correlated significantly with the attainment of MII oocytes (Pearson r = 0.41) and fertilization rates (Pearson r = 0.35). CONCLUSION: FF DHEA-s level influences the oocyte maturation process and is predictive of fertilization, embryo development to the blastocyst stage and live birth rates in non-PCOS women undergoing conventional IVF cycles.
Collapse
Affiliation(s)
- Natachandra M Chimote
- Department of Endocrinology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Nirmalendu M Nath
- Department of Biochemistry, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Nishad N Chimote
- Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| | - Bindu N Chimote
- Department of Embryology, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Department of Biochemistry, Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India; Vaunshdhara Clinic and Assisted Conception Centre, Nagpur, India
| |
Collapse
|
39
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
40
|
Koong LY, Watson CS. Rapid, nongenomic signaling effects of several xenoestrogens involved in early- vs. late-stage prostate cancer cell proliferation. ACTA ACUST UNITED AC 2015. [DOI: 10.4161/23273747.2014.995003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Luke Y Koong
- Biochemistry & Molecular Biology Department; University of Texas Medical Branch; Galveston, TX USA
| | | |
Collapse
|
41
|
Koong LY, Watson CS. Direct estradiol and diethylstilbestrol actions on early- versus late-stage prostate cancer cells. Prostate 2014; 74:1589-603. [PMID: 25213831 PMCID: PMC4205220 DOI: 10.1002/pros.22875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/16/2014] [Indexed: 11/06/2022]
Abstract
BACKGROUND Diethylstilbestrol (DES) and other pharmaceutical estrogens have been used at ≥ µM concentrations to treat advanced prostate tumors, with successes primarily attributed to indirect hypothalamic-pituitary-testicular axis control mechanisms. However, estrogens also directly affect tumor cells, though the mechanisms involved are not well understood. METHODS LAPC-4 (androgen-dependent) and PC-3 (androgen-independent) cell viability was measured after estradiol (E2) or DES treatment across wide concentration ranges. We then examined multiple rapid signaling mechanisms at 0.1 nM E2 and 1 µM DES optima including levels of: activation (phosphorylation) for mitogen-activated protein kinases, cell-cycle proteins, and caspase 3, necroptosis, and reactive oxygen species (ROS). RESULTS LAPC-4 cells were more responsive than PC-3 cells. Robust and sustained extracellular-regulated kinase activation with E2 , but not DES, correlated with ROS generation and cell death. c-Jun N-terminal kinase was only activated in E2-treated PC-3 cells and was not correlated with caspase 3-mediated apoptosis; necroptosis was not involved. The cell-cycle inhibitor protein p16(INK4A) was phosphorylated in both cell lines by both E2 and DES, but to differing extents. In both cell types, both estrogens activated p38 kinase, which subsequently phosphorylated cyclin D1, tagging it for degradation, except in DES-treated PC-3 cells. CONCLUSIONS Cyclin D1 status correlated most closely with disrupted cell cycling as a cause of reduced cell numbers, though other mechanisms also contributed. As low as 0.1 nM E2 effectively elicited these mechanisms, and its use could dramatically improve outcomes for both early- and late-stage prostate cancer patients, while avoiding the side effects of high-dose DES treatment.
Collapse
Affiliation(s)
- Luke Y Koong
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | | |
Collapse
|
42
|
Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 2014; 109:22-31. [PMID: 25245209 DOI: 10.1016/j.brainresbull.2014.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
Abstract
Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Swapan K Ray
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA.
| |
Collapse
|
43
|
Scully MM, Palacios-Helgeson LK, Wah LS, Jackson TA. Rapid estrogen signaling negatively regulates PTEN activity through phosphorylation in endometrial cancer cells. Discov Oncol 2014; 5:218-31. [PMID: 24844349 DOI: 10.1007/s12672-014-0184-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/05/2014] [Indexed: 01/16/2023] Open
Abstract
Hyperestrogenicity is a risk factor for endometrial cancer. 17β-estradiol (E2) is known to stimulate both genomic and nongenomic estrogen receptor-α (ERα) actions in a number of reproductive tissues. However, the contributions of transcription-independent ERα signaling on normal and malignant endometrium are not fully understood. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that decreases cellular mitosis primarily through negative regulation of the phosphoinositide 3-kinase/AKT signaling axis. PTEN levels are elevated during the E2 dominated, mitotically active, proliferative phase of the menstrual cycle, indicating possible hormonal regulation of PTEN in the uterus. In order to determine if rapid E2 signaling regulates PTEN, we used ERα-positive, PTEN-positive, endometrial cells. We show that cytosolic E2/ERα signaling leads to increased phosphorylation of PTEN at key regulatory residues. Importantly, E2 stimulation decreased PTEN lipid phosphatase activity and caused consequent increases in phospho-AKT. We further demonstrate that cytosolic ERα forms a complex with PTEN in an E2-dependent manner, and that ERα constitutively complexes with protein kinase2-α (CK2α), a kinase previously shown to phosphorylate the C-terminal tail of PTEN. These results provide mechanistic support for an E2-dependent, ERα cytosolic signaling complex that negatively regulates PTEN activity through carboxy terminus phosphorylation. Using an animal model, we show that sustained E2 signaling results in increased phospho-PTEN (S380, T382, and T383), total PTEN, and phospho-AKT (S473). Taken together, we provide a novel mechanism in which transcription-independent E2/ERα signaling may promote a pro-tumorigenic environment in the endometrium.
Collapse
Affiliation(s)
- Melanie M Scully
- Department of Obstetrics and Gynecology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA,
| | | | | | | |
Collapse
|
44
|
Abstract
Some chemicals used in consumer products or manufacturing (e.g. plastics, surfactants, pesticides, resins) have estrogenic activities; these xenoestrogens (XEs) chemically resemble physiological estrogens and are one of the major categories of synthesized compounds that disrupt endocrine actions. Potent rapid actions of XEs via nongenomic mechanisms contribute significantly to their disruptive effects on functional endpoints (e.g. cell proliferation/death, transport, peptide release). Membrane-initiated hormonal signaling in our pituitary cell model is predominantly driven by mERα with mERβ and GPR30 participation. We visualized ERα on plasma membranes using many techniques in the past (impeded ligands, antibodies to ERα) and now add observations of epitope proximity with other membrane signaling proteins. We have demonstrated a range of rapid signals/protein activations by XEs including: calcium channels, cAMP/PKA, MAPKs, G proteins, caspases, and transcription factors. XEs can cause disruptions of the oscillating temporal patterns of nongenomic signaling elicited by endogenous estrogens. Concentration effects of XEs are nonmonotonic (a trait shared with natural hormones), making it difficult to design efficient (single concentration) toxicology tests to monitor their harmful effects. A plastics monomer, bisphenol A, modified by waste treatment (chlorination) and other processes causes dephosphorylation of extracellular-regulated kinases, in contrast to having no effects as it does in genomic signaling. Mixtures of XEs, commonly found in contaminated environments, disrupt the signaling actions of physiological estrogens even more severely than do single XEs. Understanding the features of XEs that drive these disruptive mechanisms will allow us to redesign useful chemicals that exclude estrogenic or anti-estrogenic activities.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Guangzhen Hu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| | - Adriana A Paulucci-Holthauzen
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
45
|
Watson CS, Jeng YJ, Bulayeva NN, Finnerty CC, Koong LY, Zivadinovic D, Alyea RA, Midoro-Horiuti T, Goldblum RM, Anastasio NC, Cunningham KA, Seitz PK, Smith TD. Multi-well plate immunoassays for measuring signaling protein activations/deactivations and membrane vs. intracellular receptor levels. Methods Mol Biol 2014; 1204:123-133. [PMID: 25182766 PMCID: PMC9159966 DOI: 10.1007/978-1-4939-1346-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We developed fixed-cell multi-well plate immunoassays that increase the throughput and ease of quantification for questions formerly assessed by immunoblot scanning. The assays make use of the now abundant antibodies designed to recognize receptor subtypes and posttranslationally modified signaling proteins. By optimizing permeabilization and fixation conditions, mainly based on specific cell types, the assay can be adapted to the study of many different antigens of importance to hormonal and neurotransmitter signaling scenarios.
Collapse
Affiliation(s)
- Cheryl S Watson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 0645 312 Basic Science Building, Galveston, TX, 77555, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Solar P, Velasquez L. Consequences of nongenomic actions of estradiol on pathogenic genital tract response. J Mol Signal 2013; 8:1. [PMID: 23351368 PMCID: PMC3570385 DOI: 10.1186/1750-2187-8-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/24/2013] [Indexed: 12/26/2022] Open
Abstract
Estradiol is a steroid hormone that regulates the structure and function of the female reproductive system. In addition to its genomic effects, which are mediated by activated nuclear receptors, estradiol elicits a variety of rapid signaling events independently of transcriptional or genomic regulation. These nongenomic actions influence the milieu of the genital tract, which changes the ability of pathogens to infect the genital tract. This review discusses our current knowledge regarding the mechanisms and relevance of nongenomic estradiol signaling in the genital tract that could change the ability of pathogens to invade epithelial cells. PubMed was searched through January 1980 for papers related to estradiol actions in the ovary, fallopian tube, uterus and cervix. The mechanisms conveying these rapid effects consist of a multitude of signaling molecules and include cross-talk with slower transcriptional actions. The nongenomic actions of estradiol that influence the infectious abilities of pathogens occur either directly on the genital tract cells or indirectly by modulating the local and systemic immune systems. Additional in-depth characterization of the response is required before the normal and pathological reproductive functions of the nongenomic estradiol pathway can be targeted for pharmacological intervention.
Collapse
Affiliation(s)
- Paula Solar
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andrés Bello, Echaurren 183, Santiago, Chile.
| | | |
Collapse
|
47
|
McClure RES, Barha CK, Galea LAM. 17β-Estradiol, but not estrone, increases the survival and activation of new neurons in the hippocampus in response to spatial memory in adult female rats. Horm Behav 2013; 63:144-57. [PMID: 23063473 DOI: 10.1016/j.yhbeh.2012.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
Abstract
Estrogens fluctuate across the lifespan in women, with circulating 17β-estradiol levels higher pre-menopause than estrone and circulating estrone levels higher postmenopause than 17β-estradiol. Estrone is a common component of hormone replacement therapies, but research shows that 17β-estradiol may have a greater positive impact on cognition. Previous studies show that acute estrone and 17β-estradiol impact hippocampus-dependent learning and cell proliferation in the dentate gyrus in a dose-dependent manner in adult female rats. The current study explores how chronic treatment with estrone and 17β-estradiol differentially influences spatial learning, hippocampal neurogenesis and activation of new neurons in response to spatial memory. Adult female rats received daily injections of vehicle (sesame oil), or a 10 μg dose of either 17β-estradiol or estrone for 20 days. One day following the first hormone injection all rats were injected with the DNA synthesis marker, bromodeoxyuridine. On days 11-15 after BrdU injection rats were trained on a spatial reference version of the Morris water maze, and five days later (day 20 of estrogens treatment) were given a probe trial to assess memory retention. Cell proliferation was assessed by the endogenous cell cycle marker, Ki67, cell survival was assessed by counting the number and density of BrdU-ir cells in the dentate gyrus and cell activation was assessed by the percentage of BrdU-ir cells that were co-labelled with the immediate early gene product zif268. There were no significant differences between groups in acquisition or retention of Morris water maze. However, the 17β-estradiol group had significantly higher, while the estrone group had significantly lower, levels of cell survival (BrdU-ir cells) in the dentate gyrus compared to controls. Furthermore, rats injected with 17β-estradiol showed significantly higher levels of activation of new neurons in response to spatial memory compared to controls. These results provide insight into how estrogens differentially influence the brain and behavior, and may provide insight into the development of hormone replacement therapies for women.
Collapse
Affiliation(s)
- Robyn E S McClure
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
48
|
Dent JR, Fletcher DK, McGuigan MR. Evidence for a Non-Genomic Action of Testosterone in Skeletal Muscle Which may Improve Athletic Performance: Implications for the Female Athlete. J Sports Sci Med 2012; 11:363-70. [PMID: 24149341 PMCID: PMC3737931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/01/2012] [Indexed: 06/02/2023]
Abstract
This review will focus on the proposed second mode of testosterone action (now termed non-genomic) that appears to occur independently of the traditional transcriptional mechanism in mammalian skeletal muscle cells which may enhance skeletal muscle contractile properties. This mechanism of testosterone action differs from the traditional pathway, originating at the cell membrane, having a rapid onset of action, requiring second messengers to execute its effects and is insensitive to inhibitors of traditional androgen receptor action, transcription and protein synthesis. Importantly, unlike the traditional action of testosterone in skeletal muscle, this non-genomic pathway is shown to have a direct acute effect on calcium-dependent components important for the contractile process. The changes within the contractile apparatus may enhance the ability of the muscle to produce explosive power during athletic performance. Rapid increases in Inositol triphosphate mass and calcium release from the sarcoplasmic reticulum have been reported in rodent skeletal muscle cells, and a rapid androgen (dihydrotestosterone)-induced increase in peak force production has been recorded in intact rodent skeletal muscle fibre bundles while showing increases in the activity of the Ras/MAP/ERK mediated pathway. Because the non-genomic action of testosterone is enhanced during increases in exposure to testosterone and is acute in its action, implications for athletic performance are likely greater in females than males due to natural fluctuations in circulating testosterone levels during the female menstrual cycle, reproductive pathology, and changes induced by hormonal contraceptive methods. Research should be undertaken in humans to confirm a pathway for non-genomic testosterone action in human skeletal muscle. Specifically, relationships between testosterone fluctuations and physiological changes within skeletal muscle cells and whole muscle exercise performance need to be examined. Key pointsNon-genomic calcium mediated events activated by testosterone have been identified in skeletal muscle cells.The non-genomic action originates at the cell membrane, is rapid in onset and is directed by second messengers' calcium and IP3.A possible action of non-genomic testosterone may be the initiation of a more efficient contraction through the mobilisation of calcium from the SR resulting in greater force production or velocity of contraction in fast twitch fibres.Physiologically, females with menstrual disorders that cause hyperandrogenism may have a performance advantage in events that require great force or power production.
Collapse
Affiliation(s)
- Jessica R Dent
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology , Auckland, New Zealand
| | | | | |
Collapse
|
49
|
Viñas R, Jeng YJ, Watson CS. Non-genomic effects of xenoestrogen mixtures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2694-714. [PMID: 23066391 PMCID: PMC3447581 DOI: 10.3390/ijerph9082694] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/09/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens' actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types.
Collapse
Affiliation(s)
- René Viñas
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
50
|
Zárate S, Jaita G, Ferraris J, Eijo G, Magri ML, Pisera D, Seilicovich A. Estrogens induce expression of membrane-associated estrogen receptor α isoforms in lactotropes. PLoS One 2012; 7:e41299. [PMID: 22844453 PMCID: PMC3402499 DOI: 10.1371/journal.pone.0041299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022] Open
Abstract
Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2 participates in anterior pituitary cell renewal during the estrous cycle.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guadalupe Eijo
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María L. Magri
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|