1
|
Zhang J, Shen W, Liu F, He H, Han S, Luo L. Fracture-healing effects of Rhizoma Musae ethanolic extract: An integrated study using UHPLC-Q-Exactive-MS/MS, network pharmacology, and molecular docking. PLoS One 2025; 20:e0313743. [PMID: 39808649 PMCID: PMC11731732 DOI: 10.1371/journal.pone.0313743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown. This study aimed to elucidate the chemical constituents of the ethanol extract of Rhizoma Musae (EERM) and investigate its fracture-healing mechanism using network pharmacology. METHODS The chemical profile of EERM was characterized via UHPLC-Q-Exactive-MS/MS. Subsequently, a comprehensive network of compounds, targets, and pathways was constructed using network pharmacology approaches. The interactions between the active compounds of EERM and their targets were validated through molecular docking, molecular dynamics simulation and in vitro cell experiments. RESULTS EERM contained 522 identified compounds. Topological analysis of the protein-protein interaction (PPI) network identified 59 core targets, including key proteins like AKT1, IL-6, and EGFR, known for their anti-inflammatory properties and ability to enhance bone cell proliferation and differentiation. Gene Ontology analysis indicated the involvement of EERM in biological processes such as peptidyl-serine phosphorylation, response to xenobiotic stimulus, and nutrient level regulation. KEGG analysis suggested that EERM's mechanism may involve signaling pathways such as PI3K-Akt, lipid and atherosclerosis, EGFR tyrosine kinase inhibitor resistance, and MAPK pathways. Molecular docking and molecular dynamics simulations results demonstrated a strong binding affinity between the main compounds of EERM and key targets. In vitro cell experiments demonstrate that EERM enhances cell proliferation by upregulating the expression levels of EGFR and STAT3, while simultaneously downregulating AKT1 and CASP3. CONCLUSION This study investigates the potential active compounds of EERM and its key targets in regulating multiple pathways of fracture, leading to promoting bone cell proliferation. These results offer valuable insights for the future development and clinical application of Rhizoma Musae.
Collapse
Affiliation(s)
- Jian Zhang
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wanyan Shen
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Fanzhi Liu
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hehe He
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Shuquan Han
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lina Luo
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
2
|
Zhang J, Shen W, Liu F, He H, Han S, Luo L. Integrated approach with UHPLC-Q-Exactive-tandem mass spectrometry, network analysis, and molecular docking to determine potential active compounds and mechanisms of Rhizoma Musae decoction in osteoarthritis treatment. Front Pharmacol 2025; 15:1380335. [PMID: 39822742 PMCID: PMC11735259 DOI: 10.3389/fphar.2024.1380335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/03/2024] [Indexed: 01/19/2025] Open
Abstract
Objective This study aimed to identify the potential active compounds in Rhizoma Musae decoction and understand their mechanisms of action in osteoarthritis treatment. Methods UHPLC-Q-Exactive-MS/MS technology was used for an in-depth analysis of the chemical compounds present in Rhizoma Musae decoction. A network analysis approach was used to construct a comprehensive network of compounds, targets, and pathways, which provided insights into the molecular mechanisms of Rhizoma Musae decoction in osteoarthritis treatment. Results The integrated analysis revealed the presence of 534 chemical compounds in Rhizoma Musae decoction, with 7beta-hydroxyrutaecarpine, 7,8-dihydroxycoumarin, pinocembrin diacetate, and scopoletin being identified as potential active compounds. Potential targets such as GAPDH, AKT1, TNF, IL6, and SRC were implicated in key pathways including MAPK signaling pathway, lipid and atherosclerosis, PI3K-Akt signaling pathway, and IL-17 signaling pathway. Molecular docking studies showed significant binding affinity between the core targets and key components. In vitro cell experiments have demonstrated that RM decoction can enhance cell proliferation and upregulates the expression of TNFα, IL-6, and SRC, while down-regulating the expression of GAPDH and AKT1. Conclusion The potential active compounds present in Rhizoma Musae decoction influence specific targets and signaling pathways involved in osteoarthritis pathogenesis, providing new insights for the functional development and utilization of RM.
Collapse
Affiliation(s)
- Jian Zhang
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wanyan Shen
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Fanzhi Liu
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hehe He
- Research and Development Department, Guizhou Weikang Zifan Pharmaceutical Co., Ltd., Guiyang, China
| | - Shuquan Han
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Lina Luo
- GuiZhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Guiyang, China
| |
Collapse
|
3
|
Li B, Liu J, He C, Deng Z, Zhou X, Peng R. Unveiling the Therapeutic Potential of Berberine in Rheumatoid Arthritis: A Comprehensive Study of Network Pharmacology, Metabolomics, and Intestinal Flora. J Inflamm Res 2024; 17:10849-10869. [PMID: 39677295 PMCID: PMC11645930 DOI: 10.2147/jir.s493892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by environmental triggers, including the commensal microbiota. Recent research has highlighted distinctive features of the gut microbiota in RA patients. This study investigates the therapeutic potential of berberine (BBR), a gut microbiota modulator known for its significant anti-RA effects, and elucidates the underlying mechanisms. Methods Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of BBR in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. Employing network pharmacology, we identified potential targets involved in RA alleviation by BBR. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. An integrated network encompassing metabolomics and network pharmacology data was constructed using Cytoscape. The potential therapeutic targets and signaling pathways of BBR in the management of RA were predicted using network pharmacology. Key targets and pathways were further validated by molecular docking and immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16S rDNA sequencing and investigated the effects of BBR on the microbiota of CIA rats through bioinformatics and statistical methods. Results Our results showed that BBR demonstrated significant efficacy in alleviating RA symptoms in CIA rats, as evidenced by improvements in paw redness and swelling, attenuation of bone and cartilage damage, reduction in synovial hyperplasia, inflammatory cell infiltration, and suppression of proinflammatory cytokines IL-1β, IL-6, IL-17A, and TNF-α. KEGG analysis highlighted the PI3K/AKT signaling pathway as a key mediator of BBR's anti-RA effects. Metabolomics profiling via LC-MS revealed 22 potential biomarkers. Arginine and proline metabolism, cutin, suberine and wax biosynthesis, glycine, serine and threonine metabolism and taurine and hypotaurine metabolism are the most related pathways of BBR anti-RA. Molecular docking studies corroborated high affinities between BBR and key targets. Furthermore, 16S analysis demonstrated BBR's capacity to modulate gut bacteria composition, including an increase in the abundance of Lachnoclostridium, Akkermansia, Blautia, Romboutsia, and Faecalibacterium genera, alongside a decrease in Prevotella_9 abundance in genus level. Integrated analysis underscored a strong correlation between serum microbiota and fecal metabolites. Conclusion Our findings elucidate the multifaceted mechanisms underlying BBR's therapeutic efficacy in RA, involving inhibition of the PI3K/AKT pathway, modulation of intestinal flora, and regulation of host metabolites. These insights provide novel perspectives on BBR's role in RA management.
Collapse
Affiliation(s)
- Bocun Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Jing Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Chuan He
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Zhou Deng
- Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Department of Acupuncture, Wuhan, Hubei, People’s Republic of China
| | - Xiaohong Zhou
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Rui Peng
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| |
Collapse
|
4
|
Tang N, Luo X, Ding Z, Shi Y, Cao X, Wu S. Single-Cell Multi-Dimensional data analysis reveals the role of ARL4C in driving rheumatoid arthritis progression and Macrophage polarization dynamics. Int Immunopharmacol 2024; 141:112987. [PMID: 39182267 DOI: 10.1016/j.intimp.2024.112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis (RA) is an enduring autoimmune inflammatory condition distinguished by continual joint inflammation, hyperplasia of the synovium, erosion of bone, and deterioration of cartilage.Fibroblast-like synoviocytes (FLSs) exhibiting "tumor-like" traits are central to this mechanism.ADP-ribosylation factor-like 4c (ARL4C) functions as a Ras-like small GTP-binding protein, significantly impacting tumor migration, invasion, and proliferation.However, it remains uncertain if ARL4C participates in the stimulation of RA FLSs exhibiting "tumor-like" features, thereby fostering the advancement of RA. In our investigation, we unveiled, for the inaugural instance, via the amalgamated scrutiny of single-cell RNA sequencing (scRNA-seq) and Bulk RNA sequencing (Bulk-seq) datasets, that activated fibroblast-like synoviocytes (FLSs) showcase high expression of ARL4C, and the ARL4C protein expression in FLSs derived from RA patients significantly surpasses that observed in individuals with osteoarthritis (OA) and traumatic injury (trauma).Silencing of the ARL4C gene markedly impeded the proliferation of RA FLSs by hindered the transition of cells from the G0/G1 phase to the S phase, and intensified cell apoptosis and diminished the migratory and invasive capabilities. Co-culture of ARL4C gene-silenced RA FLSs with monocytes/macrophages significantly inhibited the polarization of monocytes/macrophages toward M1 and the repolarization of M2 to M1.Furthermore, intra-articular injection of shARL4C significantly alleviated synovial inflammation and cartilage erosion in collagen-induced arthritis (CIA) rats. In conclusion, our discoveries propose that ARL4C assumes a central role in the synovial inflammation, cartilage degradation, and bone erosion associated with RA by triggering the PI3K/AKT and MAPK signaling pathways within RA FLSs.ARL4C holds promise as a prospective target for the development of pharmaceutical agents targeting FLSs, with the aim of addressing RA.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin Luo
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyu Ding
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yanbin Shi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Song Wu
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Domínguez-Luis MJ, Castro-Hernández J, Santos-Concepción S, Díaz-Martín A, Arce-Franco M, Pérez-González N, Díaz M, Castrillo A, Salido E, Machado JD, Gumá M, Corr M, Díaz-González F. Modulation of the K/BxN arthritis mouse model and the effector functions of human fibroblast-like synoviocytes by liver X receptors. Eur J Immunol 2024; 54:e2451136. [PMID: 39148175 DOI: 10.1002/eji.202451136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The role of liver X receptors (LXR) in rheumatoid arthritis (RA) remains controversial. We studied the effect of LXR agonists on fibroblast-like synoviocytes (FLS) from RA patients and the K/BxN arthritis model in LXRα and β double-deficient (Nr1h2/3-/-) mice. Two synthetic LXR agonists, GW3965 and T0901317, were used to activate LXRs and investigate their effects on cell growth, proliferation and matrix metalloproteinases, and chemokine production in cultured FLS from RA patients. The murine model K/BxN serum transfer of inflammatory arthritis in Nr1h2/3-/- animals was used to investigate the role of LXRs on joint inflammation in vivo. LXR agonists inhibited the FLS proliferative capacity in response to TNF, the chemokine-induced migration, the collagenase activity in FLS supernatant and FLS CXCL12 production. In the K/BxN mouse model, Nr1h2/3-/- animals showed aggravated arthritis, histological inflammation, and joint destruction, as well as an increase in synovial metalloproteases and expression of proinflammatory mediators such as IL-1β and CCL2 in joints compared with wild type animals. Taken together, these data underscore the importance of LXRs in modulating the joint inflammatory response and highlight them as potential therapeutic targets in RA.
Collapse
MESH Headings
- Animals
- Humans
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- Mice
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Fibroblasts/metabolism
- Mice, Knockout
- Disease Models, Animal
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cells, Cultured
- Male
- Cell Proliferation
- Female
- Mice, Inbred C57BL
- Benzylamines/pharmacology
Collapse
Affiliation(s)
| | - Javier Castro-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - Ana Díaz-Martín
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | - Mayte Arce-Franco
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Mercedes Díaz
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Salido
- Departamento de Anatomía Patológica, Universidad de La Laguna, La Laguna, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Mónica Gumá
- Department of Medicine, University of California, San Diego, California, USA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, California, USA
| | - Federico Díaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
- Departamento de Medicina Interna, Dermatología, Universidad de La Laguna, La Laguna, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
6
|
Fu W, Shentu C, Chen D, Qiu J, Zong C, Yu H, Zhang Y, Chen Y, Liu X, Xu T. Network pharmacology combined with affinity ultrafiltration to elucidate the potential compounds of Shaoyao Gancao Fuzi Decoction for the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118268. [PMID: 38677569 DOI: 10.1016/j.jep.2024.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao Gancao Fuzi Decoction (SGFD), has been employed for thousands of years in the treatment of rheumatoid arthritis (RA) with remarkable clinical efficacy. However, the material basis underlying the effectiveness of SGFD still remains unclear. AIM OF THE REVIEW This study aims to elucidate the material basis of SGFD through the application of network pharmacology and biological affinity ultrafiltration. RESULTS UPLC-Q-TOF-MS/MS was employed to characterize the components in SGFD, the identified 145 chemical components were mainly categorized into alkaloids, flavonoids, triterpenoids, and monoterpenoids according to the structures. Network pharmacology method was utilized to identify potential targets and signaling pathways of SGFD in the RA treatment, and the anti-inflammatory and anti-RA effects of SGFD were validated through in vivo and in vitro experiments. Moreover, as the significant node in the pharmacology network, TNF-α, a classical therapeutic target in RA, was subsequent employed to screen the interacting compounds in SGFD via affinity ultrafiltration screening method, 6 active molecules (i.e.,glycyrrhizic acid, paeoniflorin, formononetin, isoliquiritigenin, benzoyl mesaconitine, and glycyrrhetinic acid) were exhibited significant interactions. Finally, the significant anti-inflammatory and anti-TNF-α effects of these compounds were validated at the cellular level. CONCLUSIONS In conclusion, this study comprehensively elucidates the pharmacodynamic material basis of SGFD, offering a practical reference model for the systematic investigation of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Weiliang Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Chengyu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Junjie Qiu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Chuhong Zong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yiwei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| |
Collapse
|
7
|
Li Q, Chen Y, Liu H, Tian Y, Yin G, Xie Q. Targeting glycolytic pathway in fibroblast-like synoviocytes for rheumatoid arthritis therapy: challenges and opportunities. Inflamm Res 2023; 72:2155-2167. [PMID: 37940690 DOI: 10.1007/s00011-023-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by hyperplastic synovium, pannus formation, immune cell infiltration, and potential articular cartilage damage. Notably, fibroblast-like synoviocytes (FLS), especially rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), exhibit specific overexpression of glycolytic enzymes, resulting in heightened glycolysis. This elevated glycolysis serves to generate ATP and plays a pivotal role in immune regulation, angiogenesis, and adaptation to hypoxia. Key glycolytic enzymes, such as hexokinase 2 (HK2), phosphofructose-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), and pyruvate kinase M2 (PKM2), significantly contribute to the pathogenic behavior of RAFLS. This increased glycolysis activity is regulated by various signaling pathways. MATERIALS AND METHODS A comprehensive literature search was conducted to retrieve relevant studies published from January 1, 2010, to the present, focusing on RAFLS glycolysis, RA pathogenesis, glycolytic regulation pathways, and small-molecule drugs targeting glycolysis. CONCLUSION This review provides a thorough exploration of the pathological and physiological characteristics of three crucial glycolytic enzymes in RA. It delves into their putative regulatory mechanisms, shedding light on their significance in RAFLS. Furthermore, the review offers an up-to-date overview of emerging small-molecule candidate drugs designed to target these glycolytic enzymes and the upstream signaling pathways that regulate them. By enhancing our understanding of the pathogenic mechanisms of RA and highlighting the pivotal role of glycolytic enzymes, this study contributes to the development of innovative anti-rheumatic therapies.
Collapse
Affiliation(s)
- Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zhang R, Deng X, Liu Q, Zhang X, Bai X, Weng S, Chen M. Global research trends and hotspots of PI3K/Akt signaling pathway in the field of osteoarthritis: A bibliometric study. Medicine (Baltimore) 2023; 102:e33489. [PMID: 37058031 PMCID: PMC10101318 DOI: 10.1097/md.0000000000033489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway has gradually become a new target for the treatment of osteoarthritis (OA). Numerous studies of PI3K/Akt signaling in OA have been published in the past few years. By analyzing these research characteristics and qualities, we aimed to reveal the current research focus and emerging trends in PI3K/Akt signaling in OA. We searched the Web of Science database for relevant articles concerning the PI3K/Akt signaling pathway in OA published from inception to October 31, 2022. The following data were extracted: author name, article title, keywords, topic, publication country/region, institution, publication journal, journal impact factor, number of times cited, and H-index. VOSviewer and Excel 2019 were used to conduct the bibliometric study and visualize the analysis. A total of 374 publications were included in this study. In all selected articles, "orthopedics" was the dominant topic (252 of 374, 67.38%). The most productive year was 2021. Frontiers in Pharmacology published the most articles. The People's Republic of China has published the most articles worldwide. The top 5 keywords were "OA," "expression," "apoptosis," "chondrocytes," and "inflammation." The keywords "autophagy," "mitochondrial dysfunction," "inflammatory response," "cartilage degeneration," and "network pharmacology" have increased in recent years. Our study showed a growing trend in published articles related to the PI3K/Akt signaling pathway in OA. Inflammatory response, cartilage degeneration, and apoptosis remain central topics in the field. Research on autophagy, mitochondrial dysfunction, and network pharmacology is on the rise, and the focus on PI3K/Akt will continue to increase.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Quan Liu
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xintian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinxin Bai
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Min Chen
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
9
|
Lanahan SM, Wymann MP, Lucas CL. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol 2022; 22:687-700. [PMID: 35322259 PMCID: PMC9922156 DOI: 10.1038/s41577-022-00701-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
11
|
Mandal AK, Sahoo A, Dwivedi K, Singh R, Kumar V. Potential therapeutic application of biophenols - plants secondary metabolites in rheumatoid arthritis. Crit Rev Food Sci Nutr 2022; 63:8900-8918. [PMID: 35593234 DOI: 10.1080/10408398.2022.2062700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease showed that persistent inflammation in the joints, induces the cartilage destruction, bone erosion, and leukocyte infiltration in the synovium. RA mostly affects the joints of hands, feet, wrists, ankles, and knees. Each year, approximately 20-40 new cases are reported per lac population and the disease affects women more than men. The etiology of RA is still unknown, but many pathways have been identified as potential targets in its pathophysiology, including the PI3K/AKT signaling pathway, NF-κB signaling, Adenosine signaling, Wnt, SYK/BTK, and mTOR signaling pathways. Biophenol, plant secondary metabolite, is considered one of the most abundantly phytoconstituents to have potential anti-inflammatory effects associated with multiple pathways. These indicate that biophenols can be used for its protective effect on the development and symptoms of RA. The current review explores and discusses the role of different biophenols in the treatment of RA disease.
Collapse
Affiliation(s)
| | - Ankit Sahoo
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy, Prayagraj, Uttar Pradesh, India
| | - Richa Singh
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
12
|
Ramesova A, Vesela B, Svandova E, Lesot H, Matalova E. Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis. Histochem Cell Biol 2022; 157:403-413. [PMID: 34999953 DOI: 10.1007/s00418-021-02067-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested in vitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic in vitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during in vivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.
Collapse
Affiliation(s)
- A Ramesova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| | - B Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| | - E Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic. .,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic.
| | - H Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - E Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.,Department of Physiology, Faculty of Veterinary Medicine, Veterinary University, Brno, Czech Republic
| |
Collapse
|
13
|
Ward SG. The Role of PI3K Isoforms in Autoimmune Disease. Curr Top Microbiol Immunol 2022; 436:337-347. [PMID: 36243851 DOI: 10.1007/978-3-031-06566-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aberrant overactivation of the immune system can give rise to chronic and persistent self-attack, culminating in autoimmune disease. This is currently managed therapeutically using potent immunosuppressive and anti-inflammatory drugs. Class I phosphoinositide-3-kinases (PI3Ks) have been identified as ideal therapeutic targets for autoimmune diseases given their wide-ranging roles in immunological processes. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval with many others in development, including several intended to suppress the immune response in autoimmune and inflammatory diseases. This chapter reviews the evidence for contribution of aberrant PI3K activity to a range of autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type I diabetes) and possible therapeutic application of isoform-specific PI3K inhibitors as immunosuppressive drugs.
Collapse
Affiliation(s)
- Stephen G Ward
- Department of Pharmacy and Pharmacology and Bath Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath, B2 7AY, UK.
| |
Collapse
|
14
|
Liu S, Ma H, Zhang H, Deng C, Xin P. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin Immunol 2021; 230:108793. [PMID: 34242749 DOI: 10.1016/j.clim.2021.108793] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by systemic synovitis leading to joint destruction in which imbalances in pro-inflammatory and anti-inflammatory cytokines promote the induction of autoimmunity. Some pro-inflammatory cytokines can trigger the signaling pathways which responsible for immune-mediated inflammation in RA, and the activated signaling pathways produce pro-inflammatory cytokines, resulting in aggravation of RA. Hence, understanding of the signaling pathways and their inhibitors might be advantageous in the development of therapeutic targets and new drugs for RA. In the current review, we summarize the signaling pathways involved in the pathogenesis of RA as well as the potential role of specific inhibitors in its management. We hope this paper may serve a reference for future studies on signaling pathways implicated in the pathogenesis of RA and benefit the treatment of RA.
Collapse
Affiliation(s)
- Shuang Liu
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Hongxing Ma
- Clinical Laboratory Department, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, China
| | - Huaxi Zhang
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Chengjie Deng
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | - Ping Xin
- College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China.
| |
Collapse
|
15
|
Montes-Casado M, Ojeda G, Criado G, Rojo JM, Portolés P. The PI-3-Kinase P110α Catalytic Subunit of T Lymphocytes Modulates Collagen-Induced Arthritis. Int J Mol Sci 2021; 22:6405. [PMID: 34203838 PMCID: PMC8232790 DOI: 10.3390/ijms22126405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) family of enzymes plays a determinant role in inflammation and autoimmune responses. However, the implication of the different isoforms of catalytic subunits in these processes is not clear. Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease that entails innate and adaptive immune response elements in which PI3K is a potential hub for immune modulation. In a mouse transgenic model with T-cell-specific deletion of p110α catalytic chain (p110α-/-ΔT), we show the modulation of collagen-induced arthritis (CIA) by this isoform of PI3K. In established arthritis, p110α-/-ΔT mice show decreased prevalence of illness than their control siblings, higher IgG1 titers and lower levels of IL-6 in serum, together with decreased ex vivo Collagen II (CII)-induced proliferation, IL-17A secretion and proportion of naive T cells in the lymph nodes. In a pre-arthritis phase, at 13 days post-Ag, T-cell-specific deletion of p110α chain induced an increased, less pathogenic IgG1/IgG2a antibodies ratio; changes in the fraction of naive and effector CD4+ subpopulations; and an increased number of CXCR5+ T cells in the draining lymph nodes of the p110α-/-ΔT mice. Strikingly, T-cell blasts in vitro obtained from non-immunized p110α-/-ΔT mice showed an increased expression of CXCR5, CD44 and ICOS surface markers and defective ICOS-induced signaling towards Akt phosphorylation. These results, plus the accumulation of cells in the lymph nodes in the early phase of the process, could explain the diminished illness incidence and prevalence in the p110α-/-ΔT mice and suggests a modulation of CIA by the p110α catalytic chain of PI3K, opening new avenues of intervention in T-cell-directed therapies to autoimmune diseases.
Collapse
Affiliation(s)
- María Montes-Casado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (M.M.-C.); (G.O.)
| | - Gloria Ojeda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (M.M.-C.); (G.O.)
| | - Gabriel Criado
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain;
| | - José M. Rojo
- Centro de Investigaciones Biológicas Margarita Salas, Departamento de Biomedicina Molecular, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Pilar Portolés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain; (M.M.-C.); (G.O.)
- Presidencia, Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| |
Collapse
|
16
|
Autophagy-related proteases accompany the transition of pre-chondrogenic cells into chondroblasts. Ann Anat 2021; 239:151781. [PMID: 34144159 DOI: 10.1016/j.aanat.2021.151781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autophagy is classified as a form of programmed cell death. Nevertheless, besides the death-inducing function, autophagy enables removal of damaged organelles, energy savings, and thus cell survival. This applies in particular to cells with poor renewal capabilities, such as chondroblasts. Autophagy is regulated by a complex molecular network, including proteases and their substrates. In autopodium, autophagy-related proteases have been examined particularly within the context of the elimination of the interdigital tissue. However, the death-inducing effects of their expression/activation have not been specified yet. This work focuses on autophagy-associated proteases (cathepsins, matrix metalloproteinases, and caspases) involved in phalangeal cartilage of the mouse autopodium. METHODS PCR Array, Real Time PCR, and immunohistochemistry were used to follow the expression of autophagy-associated genesin vivo at two developmental stages prenatal/embryonic (E)12 vs. E14. Real Time PCR was then applied to investigate the influence of rapamycin (an inductor of autophagy) on the expression of autophagy-associated proteases in chondroblasts in vitro using micromass culture. RESULTS Several proteases showed increased expression levels during the transition of pre-chondrogenic cells into chondroblastsin vivo. The most significant increases were observed for Ctsb (fold regulation 2.22), Ctsd (fold regulation 2.37), Ctss (fold regulation 2.92), Mmp9 (up to 445%), and Casp8 (up to 250%). The transition was associated also with high expression of crucial autophagic inducers, such as Atgs. The in vitro treatment of chondroblasts by autophagy inductor rapamycin showed significantly decreased expression of cathepsins, a mild increase in expression of metalloproteinases, and no effect in caspase expression. CONCLUSIONS The present data provide a screening of autophagy-associated proteases accompanying the formation of cartilage in vivo and specify their expression under rapamycin treatment in vitro. Notably, the selected proteases are assigned to osteoarthritis, therefore their regulation might be used in clinically oriented studies.
Collapse
|
17
|
Fuehrer J, Pichler KM, Fischer A, Giurea A, Weinmann D, Altmann F, Windhager R, Gabius H, Toegel S. N-Glycan profiling of chondrocytes and fibroblast-like synoviocytes: Towards functional glycomics in osteoarthritis. Proteomics Clin Appl 2021; 15:e2000057. [PMID: 33580901 PMCID: PMC8548877 DOI: 10.1002/prca.202000057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE N-Glycan profiling provides an indicator of the cellular potential for functional pairing with tissue lectins. Following the discovery of galectin expression by chondrocytes as a factor in osteoarthritis pathobiology, mapping of N-glycans upon their phenotypic dedifferentiation in culture and in fibroblast-like synoviocytes is a step to better understand glycobiological contributions to disease progression. EXPERIMENTAL DESIGN The profiles of cellular N-glycans of human osteoarthritic chondrocytes and fibroblast-like synoviocytes were characterized by mass spectrometry. RT-qPCR experiments determined mRNA levels of 16 glycosyltransferases. Responsiveness of cells to galectins was quantified by measuring the mRNA level for interleukin-1β. RESULTS The shift of chondrocytes to a fibroblastic phenotype (dedifferentiation) is associated with changes in N-glycosylation. The N-glycan profile of chondrocytes at passage 4 reflects characteristics of synoviocytes. Galectins-1 and -3 enhance expression of interleukin-1β mRNA in both cell types, most pronounced in primary culture. Presence of interleukin-1β leads to changes in sialylation in synoviocytes that favor galectin binding. CONCLUSIONS AND CLINICAL RELEVANCE N-Glycosylation reflects phenotypic changes of osteoarthritic cells in vitro. Like chondrocytes, fibroblast-like synoviocytes express N-glycans that are suited to bind galectins, and these proteins serve as inducers of pro-inflammatory markers in these cells. Synoviocytes can thus contribute to disease progression in osteoarthritis in situ.
Collapse
Affiliation(s)
- Johannes Fuehrer
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Katharina M. Pichler
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Anita Fischer
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| | - Alexander Giurea
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Hans‐Joachim Gabius
- Faculty of Veterinary MedicineInstitute of Physiological ChemistryLudwig‐Maximilians University MunichMunichGermany
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| |
Collapse
|
18
|
Hayer S, Vervoordeldonk MJ, Denis MC, Armaka M, Hoffmann M, Bäcklund J, Nandakumar KS, Niederreiter B, Geka C, Fischer A, Woodworth N, Blüml S, Kollias G, Holmdahl R, Apparailly F, Koenders MI. 'SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Ann Rheum Dis 2021; 80:714-726. [PMID: 33602797 PMCID: PMC8142455 DOI: 10.1136/annrheumdis-2020-219247] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Animal models for inflammatory arthritides such as rheumatoid arthritis (RA) and psoriatic arthritis are widely accepted and frequently used to identify pathological mechanisms and validate novel therapeutic strategies. Unfortunately, many publications reporting on these animal studies lack detailed description and appropriate assessment of the distinct histopathological features of arthritis: joint inflammation, cartilage damage and bone erosion. Therefore, the European consortium BeTheCure, consisting of 38 academic and industrial partners from 15 countries, set as goal to standardise the histological evaluation of joint sections from animal models of inflammatory arthritis. The consensual approach of a task force including 16 academic and industrial scientists as well as laboratory technicians has resulted in the development of the Standardised Microscopic Arthritis Scoring of Histological sections (‘SMASH’) recommendations for a standardised processing and microscopic scoring of the characteristic histopathological features of arthritis, exemplified by four different rodent models for arthritis: murine collagen-induced arthritis, collagen–antibody-induced arthritis, human tumour necrosis factor transgenic Tg197 mice and rat pristane-induced arthritis, applicable to any other inflammatory arthritis model. Through standardisation, the SMASH recommendations are designed to improve and maximise the information derived from in vivo arthritis experiments and to promote reproducibility and transparent reporting on such studies. In this manuscript, we will discuss and provide recommendations for analysis of histological joint sections: identification of the regions of interest, sample preparation, staining procedures and quantitative scoring methods. In conclusion, awareness of the different features of the arthritis pathology in animal models of inflammatory arthritis is of utmost importance for reliable research outcome, and the standardised histological processing and scoring methods in these SMASH recommendations will help increase uniformity and reproducibility in preclinical research on inflammatory arthritis.
Collapse
Affiliation(s)
- Silvia Hayer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | | | - Marietta Armaka
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece
| | - Markus Hoffmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Johan Bäcklund
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Birgit Niederreiter
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | | | - Anita Fischer
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | | | - Stephan Blüml
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Wien, Austria
| | - George Kollias
- Department of Immunology, Biomedical Sciences Research Centre 'Alexander Fleming', Vari, Greece.,Department of Physiology, Medical School, University of Athens, Athens, Greece
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Division of Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage 2020; 28:400-409. [PMID: 32081707 DOI: 10.1016/j.joca.2020.02.027] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a complicated degenerative disease that affects whole joint tissue. Currently, apart from surgical approaches to treat late stage OA, effective treatments to reverse OA are not available. Thus, the mechanisms leading to OA, and more effective approaches to treat OA should be investigated. According to available evidence, the PI3K/AKT/mTOR signaling pathway is essential for normal metabolism of joint tissues, but is also involved in development of OA. To provide a wide viewpoint to roles of PI3K/AKT/mTOR signaling pathway in osteoarthritis, a comprehensive literature search was performed using PubMed terms 'PI3K OR AKT OR mTOR' and 'osteoarthritis'. This review highlights the role of PI3K/AKT/mTOR signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation, and discusses how this signaling pathway affects development of the disease. We also summarize recent evidences of therapeutic approaches to treat OA by targeting the PI3K/AKT/mTOR pathway, and discuss potential challenges in developing these strategies for clinical treatment of OA.
Collapse
Affiliation(s)
- K Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - J Luo
- The Center for Biomedical Research, The Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - J Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - X Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - X Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - F Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
20
|
Dong C, Wang X, Li N, Zhang K, Wang X, Zhang H, Wang H, Wang B, An M, Ma B. microRNA-mediated GAS1 downregulation promotes the proliferation of synovial fibroblasts by PI3K-Akt signaling in osteoarthritis. Exp Ther Med 2019; 18:4273-4286. [PMID: 31777535 PMCID: PMC6862556 DOI: 10.3892/etm.2019.8101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperplastic synovial fibroblasts (SFs) serve a critical role in the pathogenesis of knee osteoarthritis (OA); however, the molecular mechanism involved in OA during synovial tissue hyperproliferation remains unclear. Growth arrest-specific gene 1 (GAS1), a cell growth repressor gene, was found to be downregulated in OASFs according to previous preliminary experiments. It was therefore hypothesized that reduced GAS1 expression may participate in the hyperproliferation of SFs in OA development, downstream of possible microRNA (miR) regulation, in hyperplastic OASFs. In the present study, GAS1 expression was indeed decreased in OASFs and interleukin-1β-induced SFs by reverse transcription-quantitative PCR and western blot analysis. Further cell viability assays, cell cycle and apoptosis analyses revealed that the overexpression of GAS1 can inhibited proliferation, induced cell cycle arrest and promoted apoptosis in SFs. In contrast, GAS1 knockdown in SFs accelerated cell proliferation, enhanced cell cycle progression and suppressed apoptosis. Notably, the suppressive effects of GAS1 were mediated through the inactivation of the PI3K-Akt pathway. Finally, miR-34a-5p and miR-181a-5p were predicted and subsequently verified to directly target the 3′-untranslated region of the GAS1 gene, downregulating GAS1 levels in OASFs and IL-1β-induced SFs. In conclusion, the present study demonstrated that downregulation of GAS1 can lead to the hyperproliferation of SFs in OA pathogenesis through the PI3K-Akt pathway, and miR-34a-5p and miR-181a-5p are potential regulators of GAS1 expression in OA. Therefore, it may be promising to investigate the potential of GAS1 as a novel therapeutic target for preventing SF hyperplasia in OA.
Collapse
Affiliation(s)
- Chuan Dong
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Xinli Wang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Nan Li
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Kailiang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Xiaoyan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haomeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Haipeng Wang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Bo Wang
- Department of Bone and Joint Diseases, Honghui Hospital of Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Ming An
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Baoan Ma
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
21
|
Wang D, Zhou W, Chen J, Wei W. Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J Cell Physiol 2019; 234:14460-14472. [PMID: 30710358 DOI: 10.1002/jcp.28215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K), a crucial signaling molecule, is regulated by various upstream regulators. Traditionally, receptor tyrosine kinases and G protein-coupled receptor are regarded as its principle upstream regulators; however, recent reports have indicated that spleen tyrosine kinase, β-arrestin2, Janus kinase, and RAS can also perform this role. Dysregulation of PI3K is common in the progression of various diseases, including, but not limited to, tumors, Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, and acute myelogenous leukemia. The aim of this review is to provide a perspective on PI3K-related diseases examining both the classical and nonclassical upstream regulators of PI3K in detail.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
22
|
Tavares LD, Galvão I, Costa VV, Batista NV, Rossi LCR, Brito CB, Reis AC, Queiroz-Junior CM, Braga AD, Coelho FM, Dias AC, Zamboni DS, Pinho V, Teixeira MM, Amaral FA, Souza DG. Phosphoinositide-3 kinase gamma regulates caspase-1 activation and leukocyte recruitment in acute murine gout. J Leukoc Biol 2019; 106:619-629. [PMID: 31392775 DOI: 10.1002/jlb.ma1118-470rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022] Open
Abstract
This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1β production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.
Collapse
Affiliation(s)
- Lívia D Tavares
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vivian V Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia V Batista
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia C R Rossi
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila B Brito
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alesandra C Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda D Braga
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda M Coelho
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Ana C Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, University of São Paulo FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele G Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
23
|
Ma JD, Jing J, Wang JW, Yan T, Li QH, Mo YQ, Zheng DH, Gao JL, Nguyen KA, Dai L. A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Arthritis Res Ther 2019; 21:153. [PMID: 31234900 PMCID: PMC6591920 DOI: 10.1186/s13075-019-1935-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/06/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction Anti-malarial drug artesunate can suppress inflammation and prevent cartilage and bone destruction in collagen-induced arthritis model in rats—suggesting it may be a potent drug for rheumatoid arthritis (RA) therapy. We aimed to investigate its effect on the invasive property of fibroblast-like synoviocytes (FLS) from patients with RA. Methods Synovial tissues were obtained by closed needle biopsy from active RA patients, and FLS were isolated and cultured in vitro. RA-FLS were treated with artesunate at various concentrations, while methotrexate or hydroxychloroquine was employed as comparator drugs. Cell viability, proliferation, cell cycle, apoptosis, migration, invasion, and pseudopodium formation of RA-FLS were assessed by CCK-8 assays, EdU staining, Annexin V-FITC/PI staining, transwell assays, or F-actin staining, respectively. Further, relative changes of expressed proteases were analyzed by Proteome profiler human protease array and verified by quantitative real-time PCR (qPCR), Western blot, and ELISA. The expression of signaling molecules of MAPK, NF-κB, AP-1, and PI3K/Akt pathways were measured by qPCR and Western blot. PDK-1 knockdown by specific inhibitor AR-12 or siRNA transfection was used to verify the pharmacological mechanism of artesunate on RA-FLS. Results Artesunate significantly inhibited the migration and invasion of RA-FLS in a dose-dependent manner with or without TNF-α stimulation. The effect was mediated through artesunate inhibition of MMP-2 and MMP-9 production, and pre-treatment with exogenous MMP-9 reversed the inhibitory effect of artesunate on RA-FLS invasion. Artesunate had a stronger inhibitory effect on migration and invasion of RA-FLS as well as greater anti-inflammatory effect than those of hydroxychloroquine. Similar inhibitory effect was detected between artesunate and methotrexate, and synergy was observed when combined. Mechanistically, artesunate significantly inhibited PDK-1 expression as well as Akt and RSK2 phosphorylation—in a similar manner to PDK-1-specific inhibitor AR-12 or PDK-1 knockdown by siRNA transfection. This inhibition results in suppression of RA-FLS migration and invasion as well as decreased MMP-2 and MMP-9 expression. Conclusions Our study demonstrates artesunate is capable of inhibiting migration and invasion of RA-FLS through suppression of PDK1-induced activation of Akt and RSK2 phosphorylation—suggesting that artesunate may be a potential disease-modifying anti-rheumatic drug for RA. Electronic supplementary material The online version of this article (10.1186/s13075-019-1935-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Da Ma
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jun Jing
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jun-Wei Wang
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Tao Yan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qian-Hua Li
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Ying-Qian Mo
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Dong-Hui Zheng
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China
| | - Jin-Long Gao
- Institute of Dental Research, Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
| | - Ky-Anh Nguyen
- Institute of Dental Research, Sydney Dental School, The University of Sydney, Sydney, NSW, Australia
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
24
|
Jia H, Dai G, Su W, Xiao K, Weng J, Zhang Z, Wang Q, Yuan T, Shi F, Zhang Z, Chen W, Sai Y, Wang J, Li X, Cai Y, Yu J, Ren P, Venable J, Rao T, Edwards JP, Bembenek SD. Discovery, Optimization, and Evaluation of Potent and Highly Selective PI3Kγ-PI3Kδ Dual Inhibitors. J Med Chem 2019; 62:4936-4948. [PMID: 31033293 DOI: 10.1021/acs.jmedchem.8b02014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An electronic density model was developed and used to identify a novel pyrrolotriazinone replacement for a quinazolinone, a commonly used moiety to impart selectivity in inhibitors for PI3Kγ and PI3Kδ. Guided by molecular docking, this new specificity piece was then linked to the hinge-binding region of the inhibitor using a novel cyclic moiety. Further structure-activity relationship optimization around the hinge region led to the discovery of candidate 26, a highly potent and selective PI3Kγ-PI3Kδ dual inhibitor with favorable drug metabolism and pharmacokinetic properties in preclinical species.
Collapse
Affiliation(s)
- Hong Jia
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Guangxiu Dai
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Weiguo Su
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Kun Xiao
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jianyang Weng
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Zhulin Zhang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Qing Wang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Tianhai Yuan
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Fuying Shi
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Zheng Zhang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Wei Chen
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Yang Sai
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jian Wang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Xiong Li
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Yu Cai
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jun Yu
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Ping Ren
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jennifer Venable
- Janssen Pharmaceuticals Research & Development , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - Tadimeti Rao
- Janssen Pharmaceuticals Research & Development , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - James P Edwards
- Janssen Pharmaceutical Research & Development , 1400 McKean Road , Spring House , Pennsylvania 19477 , United States
| | - Scott D Bembenek
- Janssen Pharmaceuticals Research & Development , 3210 Merryfield Row , San Diego , California 92121 , United States
| |
Collapse
|
25
|
FOXO3 is involved in the tumor necrosis factor-driven inflammatory response in fibroblast-like synoviocytes. J Transl Med 2019; 99:648-658. [PMID: 30679758 DOI: 10.1038/s41374-018-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Fibroblast-like synoviocytes (FLS) are major contributors to joint inflammation in rheumatoid arthritis (RA). Forkhead box O 3 (FOXO3) perturbations in immune cells are increasingly linked to RA pathogenesis. Here, we show that FOXO3 is distinctly inactivated/phosphorylated in the FLS of rheumatoid synovitis. In vitro, stimulation of FLS with tumor necrosis factor-alpha α (TNFα) induced a rapid and sustained inactivation of FOXO3. mRNA profiling revealed that the inactivation of FOXO3 is important for the sustained pro-inflammatory interferon response to TNFα (CXCL9, CXCL10, CXCL11, and TNFSF18). Mechanistically, our studies demonstrate that the inactivation of FOXO3 results from TNF-induced downregulation of phosphoinositide-3-kinase-interacting protein 1 (PIK3IP1). Thus, we identified FOXO3 and its modulator PIK3IP1 as a critical regulatory circuit for the inflammatory response of the resident mesenchymal cells to TNFα and contribute insight into how the synovial tissue brings about chronic inflammation that is driven by TNFα.
Collapse
|
26
|
Chen SJ, Lin GJ, Chen JW, Wang KC, Tien CH, Hu CF, Chang CN, Hsu WF, Fan HC, Sytwu HK. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis. Int J Mol Sci 2019; 20:ijms20061332. [PMID: 30884802 PMCID: PMC6470801 DOI: 10.3390/ijms20061332] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease of unknown etiology. It is characterized by the presence of rheumatoid factor and anticitrullinated peptide antibodies. The orchestra of the inflammatory process among various immune cells, cytokines, chemokines, proteases, matrix metalloproteinases (MMPs), and reactive oxidative stress play critical immunopathologic roles in the inflammatory cascade of the joint environment, leading to clinical impairment and RA. With the growing understanding of the immunopathogenic mechanisms, increasingly novel marked and potential biologic agents have merged for the treatment of RA in recent years. In this review, we focus on the current understanding of pathogenic mechanisms, highlight novel biologic disease-modifying antirheumatic drugs (DMRADs), targeted synthetic DMRADs, and immune-modulating agents, and identify the applicable immune-mediated therapeutic strategies of the near future. In conclusion, new therapeutic approaches are emerging through a better understanding of the immunopathophysiology of RA, which is improving disease outcomes better than ever.
Collapse
Affiliation(s)
- Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Kai-Chen Wang
- School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei City 112, Taiwan.
- Department of Neurology, Cheng Hsin General Hospital, No. 45, Cheng Hsin St., Pai-Tou, Taipei City 112, Taiwan.
| | - Chiung-Hsi Tien
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chih-Fen Hu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
| | - Chia-Ning Chang
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Wan-Fu Hsu
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Penghu Branch of Tri-Service General Hospital, National Defense Medical Center, No. 90, Qianliao, Magong City, Penghu County 880, Taiwan.
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei City 114, Taiwan.
- Department of Pediatrics, Tungs' Taichung MetroHarborHospital, No. 699, Section 8, Taiwan Blvd., Taichung City 435, Taiwan.
| | - Huey-Kang Sytwu
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, MinChuan East Road, Neihu, Taipei City 114, Taiwan.
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County 350, Taiwan.
| |
Collapse
|
27
|
Ko J, Kim JY, Lee EJ, Yoon JS. Inhibitory Effect of Idelalisib, a Selective Phosphatidylinositol 3-Kinase δ Inhibitor, on Adipogenesis in an In Vitro Model of Graves' Orbitopathy. ACTA ACUST UNITED AC 2018; 59:4477-4485. [DOI: 10.1167/iovs.18-24509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Casciaro M, Di Salvo E, Brizzi T, Rodolico C, Gangemi S. Involvement of miR-126 in autoimmune disorders. Clin Mol Allergy 2018; 16:11. [PMID: 29743819 PMCID: PMC5930861 DOI: 10.1186/s12948-018-0089-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Micro-RNA represent a great family of small non-condign ribonucleic acid molecules; in particular microRNA-126 is an important member of this family and is expressed in many human cells such as cardiomyocytes, endothelial and lung cells. Some studies have shown the implication of miR-126 in cancer, but recently significant progresses have also been made in determining the role of miR-126 regulating immune-related diseases; probably, in a near future, they could potentially serve as diagnostic biomarkers or therapeutic targets. OBJECTIVE The purpose of this review is to investigate the role of miR-126 in autoimmune diseases, so as to offer innovative therapies. RESULTS According literature, it was concluded that miRNAs, especially miR-126, are involved in many pathologies and that their expression levels increase in autoimmune diseases because they interfere with the transcription of the proteins involved. Since microRNAs can be detected from several biological sources, they may be attractive as potential biomarkers for the diagnosis, prognosis, disease activity and severity of various diseases. In fact, once confirmed the involvement of miR-126 in autoimmune diseases, it was speculated that it could be used as a promising biomarker. These discovers implicate that miR-126 have a central role in many pathways leading to the development and sustain of autoimmune diseases. Its key role make this microRNA a potential therapeutic target in autoimmunity. CONCLUSION Although miR-126 relevant role in several immune-related diseases, further studies are needed to clear its molecular mechanisms; the final step of these novel researches could be the blockage or the prevention of the diseases onset by creating of new targeted therapy.
Collapse
Affiliation(s)
- Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
| | - Eleonora Di Salvo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Teresa Brizzi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Messina University Hospital, 98125 Messina, Italy
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches.
Collapse
|
30
|
Willemsen-Seegers N, Uitdehaag JC, Prinsen MB, de Vetter JR, de Man J, Sawa M, Kawase Y, Buijsman RC, Zaman GJ. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance. J Mol Biol 2017; 429:574-586. [DOI: 10.1016/j.jmb.2016.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
31
|
Diao HY, Shao JG, Bian ZL, Chen L, Ju LL, Zhang Y. Role of phosphoinositide-3 kinase signaling pathways in pathogenesis of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2016; 24:3002-3008. [DOI: 10.11569/wcjd.v24.i19.3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) as a common acute disease poses a great threat to people's health. According to statistics, about one-fifth of cases develop acute respiratory distress syndrome and multiple organ dysfunction, which result in high mortality. The early understanding of the pathogenesis of this disease is limited to an inflammatory response resulting in autodigestion, edema, hemorrhage and necrosis of pancreatic tissue after the abnormal activation of trypsin. In recent years, researchers have focused their research on the role of immune inflammatory response in the pathogenesis of AP. Here we discuss the relationship between the immune inflammation and PI3K signaling pathways in AP.
Collapse
|
32
|
Gao J, Zhou XL, Kong RN, Ji LM, He LL, Zhao DB. microRNA-126 targeting PIK3R2 promotes rheumatoid arthritis synovial fibro-blasts proliferation and resistance to apoptosis by regulating PI3K/AKT pathway. Exp Mol Pathol 2015; 100:192-8. [PMID: 26723864 DOI: 10.1016/j.yexmp.2015.12.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The purpose of our study was to elucidate the impact of microRNA-126 (miR-126) targeting PIK3R2 gene on cell proliferation and apoptosis of rheumatoid arthritis synovial fibro-blasts (RASFs) by regulating PI3K/AKT signal pathway. METHODS The synovial tissue samples of this study were from 55 RA patients undergoing joint replacement and 27 healthy people undergoing joint repair due to trauma. The target genes of miR-126 were collected by the TargetScan and PIK3R2 as the direct target gene of miR-126 was confirmed by dual-luciferase reporter assay system. Our experiment had five groups including the blank control, miR-126 mimic, miR-126 mimic control, miR-126 inhibitor and miR-126 inhibitor control groups. Additionally, real-time quantitative polymerase chain reaction (RT-qPCR), Western-Blot, cell counting kit (CCK-8) and flow cytometry were carried out in this study. RESULTS Compared with healthy individuals, the RA patients had increased miR-126, but decreased PIK3R2 mRNA expressions in the synovial tissues. Pearson correlation analysis indicated that miR-126 expression was negatively correlated with PIK3R2 mRNA expression (all P<0.05). When compared with the blank group respectively, the miR-126 mimic group had raising cell proportions in S and G2/M phases with reduced rate of cell apoptosis, while the miR-126 inhibitor group had raising cell proportions in G0/G1 and G2/M phases with increased rate of cell apoptosis (all P<0.05). Besides, compared with the blank control group, the miR-126 mimic group had declined expression of PIK3R2 protein with ascended expression of PI3K and p-AKT (all P<0.05), while the miR-126 inhibitor group had increased expression of PIK3R2 protein with decreased expression of PI3K and p-AKT (all P<0.05). CONCLUSION Our study demonstrated that down-regulation of miR-126 may indirectly inhibit PI3K/AKT signaling pathway to disrupt the imbalance between growth and death of RASFs by targeting PIK3R2, which may be clinically helpful to find therapeutic strategies directed toward miR-126 function for RA patients.
Collapse
Affiliation(s)
- Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Xiao-Li Zhou
- Department of Pathology, Changzhou Second People's Hospital, Changzhou 213003, PR China
| | - Rui-Na Kong
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Lian-Mei Ji
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Ling-Ling He
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Dong-Bao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
33
|
Wang J, Zhang W, Zou H, Lin Y, Lin K, Zhou Z, Qiang J, Lin J, Chuka CM, Ge R, Zhao S, Yang X. 10-Hydroxy-2-decenoic acid inhibiting the proliferation of fibroblast-like synoviocytes by PI3K–AKT pathway. Int Immunopharmacol 2015; 28:97-104. [DOI: 10.1016/j.intimp.2015.05.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 01/05/2023]
|
34
|
Yanamandra M, Mitra S, Giri A. Development and application of PI3K assays for novel drug discovery. Expert Opin Drug Discov 2014; 10:171-86. [DOI: 10.1517/17460441.2015.997205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahesh Yanamandra
- 1Scientist, GVK Biosciences Private Ltd, Biology, Campus MLR 1, Survey Nos. 125 (part) and 126, IDA Mallapur, Hyderabad, Telangana, 500076, India
- 2Jawaharlal Nehru Technological University, Institute of Science and Technology, Centre for Biotechnology, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Sayan Mitra
- 3GVK Biosciences Private Ltd, Biology, Campus MLR 1, Survey Nos. 125 (part) and 126, IDA Mallapur, Hyderabad, Telangana, 500076, India
| | - Archana Giri
- 4Jawaharlal Nehru Technological University, Institute of Science and Technology, Centre for Biotechnology, Kukatpally, Hyderabad, Telangana, 500085, India
| |
Collapse
|
35
|
PI3K signalling in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:882-97. [PMID: 25514767 DOI: 10.1016/j.bbalip.2014.12.006] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
PI3Ks regulate several key events in the inflammatory response to damage and infection. There are four Class I PI3K isoforms (PI3Kα,β,γ,δ), three Class II PI3K isoforms (PI3KC2α, C2β, C2γ) and a single Class III PI3K. The four Class I isoforms synthesise the phospholipid 'PIP3'. PIP3 is a 'second messenger' used by many different cell surface receptors to control cell movement, growth, survival and differentiation. These four isoforms have overlapping functions but each is adapted to receive efficient stimulation by particular receptor sub-types. PI3Kγ is highly expressed in leukocytes and plays a particularly important role in chemokine-mediated recruitment and activation of innate immune cells at sites of inflammation. PI3Kδ is also highly expressed in leukocytes and plays a key role in antigen receptor and cytokine-mediated B and T cell development, differentiation and function. Class III PI3K synthesises the phospholipid PI3P, which regulates endosome-lysosome trafficking and the induction of autophagy, pathways involved in pathogen killing, antigen processing and immune cell survival. Much less is known about the function of Class II PI3Ks, but emerging evidence indicates they can synthesise PI3P and PI34P2 and are involved in the regulation of endocytosis. The creation of genetically-modified mice with altered PI3K signalling, together with the development of isoform-selective, small-molecule PI3K inhibitors, has allowed the evaluation of the individual roles of Class I PI3K isoforms in several mouse models of chronic inflammation. Selective inhibition of PI3Kδ, γ or β has each been shown to reduce the severity of inflammation in one or more models of autoimmune disease, respiratory disease or allergic inflammation, with dual γ/δ or β/δ inhibition generally proving more effective. The inhibition of Class I PI3Ks may therefore offer a therapeutic opportunity to treat non-resolving inflammatory pathologies in humans. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
36
|
Derer A, Böhm C, Grötsch B, Grün JR, Grützkau A, Stock M, Böhm S, Sehnert B, Gaipl U, Schett G, Hueber AJ, David JP. Rsk2 controls synovial fibroblast hyperplasia and the course of arthritis. Ann Rheum Dis 2014; 75:413-21. [DOI: 10.1136/annrheumdis-2014-205618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/01/2014] [Indexed: 11/03/2022]
|
37
|
Lupia E, Pigozzi L, Goffi A, Hirsch E, Montrucchio G. Role of phosphoinositide 3-kinase in the pathogenesis of acute pancreatitis. World J Gastroenterol 2014; 20:15190-15199. [PMID: 25386068 PMCID: PMC4223253 DOI: 10.3748/wjg.v20.i41.15190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/12/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
A large body of experimental and clinical data supports the notion that inflammation in acute pancreatitis has a crucial role in the pathogenesis of local and systemic damage and is a major determinant of clinical severity. Thus, research has recently focused on molecules that can regulate the inflammatory processes, such as phosphoinositide 3-kinases (PI3Ks), a family of lipid and protein kinases involved in intracellular signal transduction. Studies using genetic ablation or pharmacologic inhibitors of different PI3K isoforms, in particular the class I PI3Kδ and PI3Kγ, have contributed to a greater understanding of the roles of these kinases in the modulation of inflammatory and immune responses. Recent data suggest that PI3Ks are also involved in the pathogenesis of acute pancreatitis. Activation of the PI3K signaling pathway, and in particular of the class IB PI3Kγ isoform, has a significant role in those events which are necessary for the initiation of acute pancreatic injury, namely calcium signaling alteration, trypsinogen activation, and nuclear factor-κB transcription. Moreover, PI3Kγ is instrumental in modulating acinar cell apoptosis, and regulating local neutrophil infiltration and systemic inflammatory responses during the course of experimental acute pancreatitis. The availability of PI3K inhibitors selective for specific isoforms may provide new valuable therapeutic strategies to improve the clinical course of this disease. This article presents a brief summary of PI3K structure and function, and highlights recent advances that implicate PI3Ks in the pathogenesis of acute pancreatitis.
Collapse
|
38
|
Blüml S, Redlich K, Smolen JS. Mechanisms of tissue damage in arthritis. Semin Immunopathol 2014; 36:531-40. [PMID: 25212687 DOI: 10.1007/s00281-014-0442-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 01/17/2023]
Abstract
The destruction of articular structures in the course of inflammatory arthritides such as rheumatoid arthritis (RA) or seronegative spondyloarthropathies is the most serious direct consequence of these diseases. Indeed, joint damage constitutes the "organ damage" of RA and-just like in all other diseases with organ involvement-such damage will usually be irreversible, cause permanent loss of function and subsequent disability. Research has identified a number of mechanisms and mediators of damage to articular structures such as bone and cartilage, ranging from proinflammatory cytokines, signal transduction pathways and cells types, which will be discussed in this review.
Collapse
Affiliation(s)
- Stephan Blüml
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
39
|
PI3K inhibitors as potential therapeutics for autoimmune disease. Drug Discov Today 2014; 19:1195-9. [DOI: 10.1016/j.drudis.2014.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
|
40
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|
41
|
PI3Kγ inhibition alleviates symptoms and increases axon number in experimental autoimmune encephalomyelitis mice. Neuroscience 2013; 253:89-99. [DOI: 10.1016/j.neuroscience.2013.08.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/20/2022]
|
42
|
Boyle DL, Kim HR, Topolewski K, Bartok B, Firestein GS. Novel phosphoinositide 3-kinase δ,γ inhibitor: potent anti-inflammatory effects and joint protection in models of rheumatoid arthritis. J Pharmacol Exp Ther 2013; 348:271-80. [PMID: 24244039 DOI: 10.1124/jpet.113.205955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoinositide 3-kinases γ and δ (PI3Kγ and PI3Kδ) are expressed in rheumatoid arthritis (RA) synovium and regulate innate and adaptive immune responses. We determined the effect of a potent PI3Kδ,γ inhibitor, IPI-145, in two preclinical models of RA. IPI-145 was administered orally in rat adjuvant-induced arthritis (AA) and intraperitoneally in mouse collagen-induced arthritis (CIA). Efficacy was assessed by paw swelling, clinical scores, histopathology and radiography, and microcomputed tomography scanning. Gene expression and Akt phosphorylation in joint tissues were determined by quantitative real-time polymerase chain reaction and Western blot analysis. Serum concentrations of anti-type II collagen (CII) IgG and IgE were measured by immunoassay. T-cell responses to CII were assayed using thymidine incorporation and immunoassay. IPI-145 significantly reduced arthritis severity in both RA models using dosing regimens initiated before onset of clinical disease. Treatment of established arthritis with IPI-145 in AA, but not CIA, significantly decreased arthritis progression. In AA, histology scores, radiographic joint damage, and matrix metalloproteinase (MMP)-13 expression were reduced in IPI-145-treated rats. In CIA, joint histology scores and expression of MMP-3 and MMP-13 mRNA were lower in the IPI-145 early treatment group than in the vehicle group. The ratio of anti-CII IgG2a to total IgG in CIA was modestly reduced. Interleukin-17 production in response to CII was decreased in the IPI-145-treated group, suggesting an inhibitory effect on T-helper cell 17 differentiation. These data show that PI3Kδ,γ inhibition suppresses inflammatory arthritis, as well as bone and cartilage damage, through effects on innate and adaptive immunity and that IPI-145 is a potential therapy for RA.
Collapse
Affiliation(s)
- David L Boyle
- Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of California San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
43
|
The anti-arthritic and immune-modulatory effects of NHAG: a novel glucosamine analogue in adjuvant-induced arthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:487610. [PMID: 23971039 PMCID: PMC3732632 DOI: 10.1155/2013/487610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/14/2013] [Accepted: 06/27/2013] [Indexed: 01/28/2023]
Abstract
Rheumatoid arthritis (RA) is potentially devastating condition which lacks good treatment options. Pro-inflammatory cytokines interleukin-1beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and oxidative stress markers such as nitric oxide (NO) and peroxide (PO) are mediators of RA pathogenesis. In the present study N-[2,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-3-yl]acrylamide (NHAG), analogue of glucosamine, was evaluated in adjuvant-induced arthritic model of rats. The disease progression was monitored by analysing arthritis scoring, loss of body weight, paw oedema, and histological changes in joints. RA associated hyperalgesia was evaluated by gait analysis. The serum or plasma levels of NO, PO, glutathione (GSH) superoxide dismutase (SOD) IL-1β and TNF-α were analyzed to monitor the state of disease severity. The arthritic control animals exhibited significant increase in arthritic score (P < 0.003) and paw oedema (P < 0.001) with parallel loss in body weight (P < 0.04). The NHAG-treated arthritic animals exhibited refinement in the gait changes associated with arthritis. NHAG also significantly decreased the NO (P < 0.02) and PO (P < 0.03) with concurrent increased in GSH (P < 0.04) and SOD (P < 0.007). Both IL-1β (P < 0.001) and TNF-α (P < 0.001), were significantly decreased in NHAG-treated group. Thus NHAG might have a therapeutic potential for arthritis by exerting antioxidative and immunomodulatory effects.
Collapse
|
44
|
Liu G, Bi Y, Wang R, Shen B, Zhang Y, Yang H, Wang X, Liu H, Lu Y, Han F. Kinase AKT1 negatively controls neutrophil recruitment and function in mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2680-90. [PMID: 23904165 DOI: 10.4049/jimmunol.1300736] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophils are critically involved in host defense and inflammatory injury. However, intrinsic signaling mechanisms controlling neutrophil recruitment and activities are poorly defined. In this article, we showed that protein kinase AKT1 (also known as PKBα) is the dominant isoform expressed in neutrophils and is downregulated upon bacterial infection and neutrophil activation. AKT1 deficiency resulted in severe disease progression accompanied by recruitment of neutrophils and enhanced bactericidal activity in the acute inflammatory lung injury (ALI) and the Staphylococcus aureus infection mouse models. Moreover, the depletion of neutrophils efficiently reversed the aggravated inflammatory response, but adoptive transfer of AKT1(-/-) neutrophils could potentiate the inflammatory immunity, indicating an intrinsic effect of the neutrophil in modulating inflammation in AKT1(-/-) mice. In the ALI model, the infiltration of neutrophils into the inflammatory site was associated with enhanced migration capacity, whereas inflammatory stimuli could promote neutrophil apoptosis. In accordance with these findings, neutralization of CXCR2 attenuated neutrophil infiltration and delayed the occurrence of inflammation. Finally, the enhanced bactericidal activity and inflammatory immunity of AKT-deficient neutrophils were mediated by a STAT1-dependent, but not a mammalian target of rapamycin-dependent, pathway. Thus, our findings indicated that the AKT1-STAT1 signaling axis negatively regulates neutrophil recruitment and activation in ALI and S. aureus infection in mice.
Collapse
Affiliation(s)
- Guangwei Liu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200023, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
IL-17 in the rheumatologist's line of sight. BIOMED RESEARCH INTERNATIONAL 2013; 2013:295132. [PMID: 23984335 PMCID: PMC3741932 DOI: 10.1155/2013/295132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/27/2013] [Indexed: 12/18/2022]
Abstract
Over the past decades, the identification of several new cytokines, including interleukin (IL)-17 and IL-23, and of new T helper cell subsets, including Th17 cells, has changed the vision of immunological processes. The IL-17/Th17 pathway plays a critical role during the development of inflammation and autoimmunity, and targeting this pathway has become an attractive strategy for a number of diseases. This review aims to describe the effects of IL-17 in the joint and its roles in the development of autoimmune and inflammatory arthritis. Furthermore, biotherapies targeting directly or indirectly IL-17 in inflammatory rheumatisms will be developed.
Collapse
|
46
|
Kinase inhibitors: A new tool for the treatment of rheumatoid arthritis. Clin Immunol 2013; 148:66-78. [DOI: 10.1016/j.clim.2013.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 01/01/2023]
|
47
|
Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 2013; 64:1027-54. [PMID: 23023033 DOI: 10.1124/pr.110.004051] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphoinositide 3-kinase/mammalian target of rapamycin/protein kinase B (PI3K/mTOR/Akt) signaling pathway is central to a plethora of cellular mechanisms in a wide variety of cells including leukocytes. Perturbation of this signaling cascade is implicated in inflammatory and autoimmune disorders as well as hematological malignancies. Proteins within the PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic intervention. There has been a remarkable evolution of PI3K inhibitors in the past 20 years from the early chemical tool compounds to drugs that are showing promise as anticancer agents in clinical trials. The use of animal models and pharmacological tools has expanded our knowledge about the contribution of individual class I PI3K isoforms to immune cell function. In addition, class II and III PI3K isoforms are emerging as nonredundant regulators of immune cell signaling revealing potentially novel targets for disease treatment. Further complexity is added to the PI3K/mTOR/Akt pathway by a number of novel signaling inputs and feedback mechanisms. These can present either caveats or opportunities for novel drug targets. Here, we consider recent advances in 1) our understanding of the contribution of individual PI3K isoforms to immune cell function and their relevance to inflammatory/autoimmune diseases as well as lymphoma and 2) development of small molecules with which to inhibit the PI3K pathway. We also consider whether manipulating other proximal elements of the PI3K signaling cascade (such as class II and III PI3Ks or lipid phosphatases) are likely to be successful in fighting off different immune diseases.
Collapse
Affiliation(s)
- John G Foster
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
48
|
Kim HR. Phosphoinositide 3-kinase (PI3K) as a New Therapeutic Target for Rheumatoid Arthritis. JOURNAL OF RHEUMATIC DISEASES 2013. [DOI: 10.4078/jrd.2013.20.2.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Transient receptor potential canonical channel 1 impacts on mechanosignaling during cell migration. Pflugers Arch 2012; 464:623-30. [DOI: 10.1007/s00424-012-1169-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/01/2023]
|
50
|
Cushing TD, Metz DP, Whittington DA, McGee LR. PI3Kδ and PI3Kγ as Targets for Autoimmune and Inflammatory Diseases. J Med Chem 2012; 55:8559-81. [DOI: 10.1021/jm300847w] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Timothy D. Cushing
- Therapeutic
Discovery, Amgen Inc., 1120 Veterans Boulevard,
South San Francisco,
California 94080, United States
| | - Daniela P. Metz
- Inflammation Research, Amgen Inc., One
Amgen Center Drive, Thousand Oaks,
California 91320, United States
| | - Douglas A. Whittington
- Molecular Structure and Characterization, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts
02142, United States
| | - Lawrence R. McGee
- Therapeutic
Discovery, Amgen Inc., 1120 Veterans Boulevard,
South San Francisco,
California 94080, United States
| |
Collapse
|