1
|
Fakhari S, Campolina‐Silva G, Asayesh F, Girardet L, Scott‐Boyer M, Droit A, Soulet D, Greener J, Belleannée C. Shear stress effects on epididymal epithelial cell via primary cilia mechanosensory signaling. J Cell Physiol 2025; 240:e31475. [PMID: 39508588 PMCID: PMC11733861 DOI: 10.1002/jcp.31475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Shear stress, resulting from fluid flow, is a fundamental mechanical stimulus affecting various cellular functions. The epididymis, essential for sperm maturation, offers a compelling model to study the effects of shear stress on cellular behavior. This organ undergoes extensive proliferation and differentiation until puberty, achieving full functionality as spermatozoa commence their post-testicular maturation. Although the mechanical tension exerted by testicular fluid is hypothesized to drive epithelial proliferation and differentiation, the precise mechanisms remain unclear. Here we assessed whether the responsiveness of the epididymal cells to shear stress depends on functional primary cilia by combining microfluidic strategies on immortalized epididymal cells, calcium signaling assays, and high-throughput gene expression analysis. We identified 97 genes overexpressed in response to shear stress, including early growth response (Egr) 2/3, cellular communication network factor (Ccn) 1/2, and Fos proto-oncogene (Fos). While shear stress triggered a rapid increase of intracellular Ca2+, this response was abrogated following the impairment of primary ciliogenesis through pharmacological and siRNA approaches. Overall, our findings provide valuable insights into how mechanical forces influence the development of the male reproductive system, a requisite to sperm maturation.
Collapse
Affiliation(s)
- Sepideh Fakhari
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Department of ChemistryFaculty of Science and EngineeringQuébec CityQuebecCanada
| | - Gabriel Campolina‐Silva
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| | - Farnaz Asayesh
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
| | - Laura Girardet
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| | - Marie‐Pier Scott‐Boyer
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL)Québec CityQuebecCanada
| | - Arnaud Droit
- Proteomics Platform, Québec Genomic Center, Université Laval, CHU de Québec Research Center (CHUL)Québec CityQuebecCanada
| | - Denis Soulet
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Faculté de pharmacieUniversité LavalQuébec CityQuebecCanada
| | - Jesse Greener
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
- Department of ChemistryFaculty of Science and EngineeringQuébec CityQuebecCanada
| | - Clémence Belleannée
- Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé IntergénérationnelleFaculty of MedicineQuébec CityQuebecCanada
- Centre de recherche du centre hospitalier universitaire de Québec ‐ Université LavalQuébec CityQuebecCanada
| |
Collapse
|
2
|
Huang M, Zhou J, Li X, Liu R, Jiang Y, Chen K, Jiao Y, Yin X, Liu L, Sun Y, Wang W, Xiao Y, Su T, Guo Q, Huang Y, Yang M, Wei J, Darryl Quarles L, Xiao Z, Zeng C, Luo X, Lei G, Li C. Mechanical protein polycystin-1 directly regulates osteoclastogenesis and bone resorption. Sci Bull (Beijing) 2024; 69:1964-1979. [PMID: 38760248 PMCID: PMC11462616 DOI: 10.1016/j.scib.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/19/2024]
Abstract
Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.
Collapse
Affiliation(s)
- Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingxuan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoxiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yangzi Jiang
- School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China; Center for Neuromusculoskeletal Restorative Medicine (CNRM), The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Yin
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuchen Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weishan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shihezi University, Shihezi 832061, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Wei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha 410008, China
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis 38163, USA
| | - Chao Zeng
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Guanghua Lei
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Laboratory Animal Center, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
3
|
Gargalionis AN, Adamopoulos C, Vottis CT, Papavassiliou AG, Basdra EK. Runx2 and Polycystins in Bone Mechanotransduction: Challenges for Therapeutic Opportunities. Int J Mol Sci 2024; 25:5291. [PMID: 38791330 PMCID: PMC11121608 DOI: 10.3390/ijms25105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christos T. Vottis
- First Department of Orthopedics, Medical School, National and Kapodistrian University of Athens, ‘Attikon’ University General Hospital, 12462 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| | - Efthimia K. Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.A.); (A.G.P.)
| |
Collapse
|
4
|
Xu J, Wu X, Zhu H, Zhu Y, Du K, Deng X, Wang C. CRP inhibits the osteoblastic differentiation of OPCs via the up-regulation of primary cilia and repression of the Hedgehog signaling pathway. Med Oncol 2024; 41:72. [PMID: 38345752 DOI: 10.1007/s12032-024-02301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
Inflammation disrupts bone metabolism and leads to bone damage. C-reactive protein (CRP) is a typical inflammation marker. Although CRP measurement has been conducted for many decades, how osteoblastic differentiation influences molecular mechanisms remains largely unknown. The present study attempted to investigate the effects of CRP on primary cultured osteoblast precursor cells (OPCs) while elucidating the underlying molecular mechanisms. OPCs were isolated from suckling Sprague-Dawleyrats. Fewer OPCs were observed after recombinant C-reactive protein treatment. In a series of experiments, CRP inhibited OPC proliferation, osteoblastic differentiation, and the OPC gene expression of the hedgehog (Hh) signaling pathway. The inhibitory effect of CRP on OPC proliferation occurred via blockade of the G1-S transition of the cell cycle. In addition, the regulation effect of proto cilium on osteoblastic differentiation was analyzed using the bioinformatics p. This revealed the primary cilia activation of recombinant CRP effect on OPCs through in vitro experiments. A specific Sonic Hedgehog signaling agonist (SAG) rescued osteoblastic differentiation inhibited by recombinant CRP. Moreover, chloral hydrate, which removes primary cilia, inhibited the Suppressor of Fused (SUFU) formation and blocked Gli2 degradation. This counteracted osteogenesis inhibition caused by CRP. Therefore, these data depict that CRP can inhibit the proliferation and osteoblastic differentiation of OPCs. The underlying mechanism could be associated with primary cilia activation and Hh pathway repression.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangmei Wu
- Department of Physiology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yinghua Zhu
- Department of Pre-Hospital Emergency, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 400014, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyan Deng
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Changdong Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Zhao F, Zhang Y, Pei S, Wang S, Hu L, Wang L, Qian A, Yang TL, Guo Y. Mechanobiological crosstalk among bone cells and between bone and other organs. BONE CELL BIOMECHANICS, MECHANOBIOLOGY AND BONE DISEASES 2024:215-247. [DOI: 10.1016/b978-0-323-96123-3.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a background on osteocytes and the primary cilium, discussing the role it plays in osteocyte mechanosensing. RECENT FINDINGS Osteocytes are thought to be the primary mechanosensing cells in bone tissue, regulating bone adaptation in response to exercise, with the primary cilium suggested to be a key mechanosensing mechanism in bone. More recent work has suggested that, rather than being direct mechanosensors themselves, primary cilia in bone may instead form a key chemo-signalling nexus for processing mechanoregulated signalling pathways. Recent evidence suggests that pharmacologically induced lengthening of the primary cilium in osteocytes may potentiate greater mechanotransduction, rather than greater mechanosensing. While more research is required to delineate the specific osteocyte mechanobiological molecular mechanisms governed by the primary cilium, it is clear from the literature that the primary cilium has significant potential as a therapeutic target to treat mechanoregulated bone diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
- Centre for Predictive in vitro Models, Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| | - Anuphan Sittichokechaiwut
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
8
|
Xiao Z, Cao L, Smith MD, Li H, Li W, Smith JC, Quarles LD. Genetic interactions between polycystin-1 and Wwtr1 in osteoblasts define a novel mechanosensing mechanism regulating bone formation in mice. Bone Res 2023; 11:57. [PMID: 37884491 PMCID: PMC10603112 DOI: 10.1038/s41413-023-00295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Molecular mechanisms transducing physical forces in the bone microenvironment to regulate bone mass are poorly understood. Here, we used mouse genetics, mechanical loading, and pharmacological approaches to test the possibility that polycystin-1 and Wwtr1 have interdependent mechanosensing functions in osteoblasts. We created and compared the skeletal phenotypes of control Pkd1flox/+;Wwtr1flox/+, Pkd1Oc-cKO, Wwtr1Oc-cKO, and Pkd1/Wwtr1Oc-cKO mice to investigate genetic interactions. Consistent with an interaction between polycystins and Wwtr1 in bone in vivo, Pkd1/Wwtr1Oc-cKO mice exhibited greater reductions of BMD and periosteal MAR than either Wwtr1Oc-cKO or Pkd1Oc-cKO mice. Micro-CT 3D image analysis indicated that the reduction in bone mass was due to greater loss in both trabecular bone volume and cortical bone thickness in Pkd1/Wwtr1Oc-cKO mice compared to either Pkd1Oc-cKO or Wwtr1Oc-cKO mice. Pkd1/Wwtr1Oc-cKO mice also displayed additive reductions in mechanosensing and osteogenic gene expression profiles in bone compared to Pkd1Oc-cKO or Wwtr1Oc-cKO mice. Moreover, we found that Pkd1/Wwtr1Oc-cKO mice exhibited impaired responses to tibia mechanical loading in vivo and attenuation of load-induced mechanosensing gene expression compared to control mice. Finally, control mice treated with a small molecule mechanomimetic, MS2 that activates the polycystin complex resulted in marked increases in femoral BMD and periosteal MAR compared to vehicle control. In contrast, Pkd1/Wwtr1Oc-cKO mice were resistant to the anabolic effects of MS2. These findings suggest that PC1 and Wwtr1 form an anabolic mechanotransduction signaling complex that mediates mechanical loading responses and serves as a potential novel therapeutic target for treating osteoporosis.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Li Cao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Micholas Dean Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee-Knoxville, Knoxville, TN, 37996-1939, USA
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee-Knoxville, Knoxville, TN, 37996-1939, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
9
|
Quadri N, Upadhyai P. Primary cilia in skeletal development and disease. Exp Cell Res 2023; 431:113751. [PMID: 37574037 DOI: 10.1016/j.yexcr.2023.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Primary cilia are non-motile, microtubule-based sensory organelle present in most vertebrate cells with a fundamental role in the modulation of organismal development, morphogenesis, and repair. Here we focus on the role of primary cilia in embryonic and postnatal skeletal development. We examine evidence supporting its involvement in physiochemical and developmental signaling that regulates proliferation, patterning, differentiation and homeostasis of osteoblasts, chondrocytes, and their progenitor cells in the skeleton. We discuss how signaling effectors in mechanotransduction and bone development, such as Hedgehog, Wnt, Fibroblast growth factor and second messenger pathways operate at least in part at the primary cilium. The relevance of primary cilia in bone formation and maintenance is underscored by a growing list of rare genetic skeletal ciliopathies. We collate these findings and summarize the current understanding of molecular factors and mechanisms governing primary ciliogenesis and ciliary function in skeletal development and disease.
Collapse
Affiliation(s)
- Neha Quadri
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
10
|
Arai M, Ochi H, Sunamura S, Ito N, Nangaku M, Takeda S, Sato S. A Novel Long Noncoding RNA in Osteocytes Regulates Bone Formation through the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:13633. [PMID: 37686441 PMCID: PMC10488071 DOI: 10.3390/ijms241713633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The vast majority of transcribed RNAs are noncoding RNAs. Among noncoding RNAs, long noncoding RNAs (lncRNAs), which contain hundreds to thousands of bases, have received attention in many fields. The vast majority of the constituent cells in bone tissue are osteocytes, but their regulatory mechanisms are incompletely understood. Considering the wide range of potential contributions of lncRNAs to physiological processes and pathological conditions, we hypothesized that lncRNAs in osteocytes, which have not been reported, could be involved in bone metabolism. Here, we first isolated osteocytes from femurs of mice with osteocyte-specific GFP expression. Then, through RNA-sequencing, we identified osteocyte-specific lncRNAs and focused on a novel lncRNA, 9530026P05Rik (lncRNA953Rik), which strongly suppressed osteogenic differentiation. In the IDG-SW3 osteocyte line with lncRNA953Rik overexpression, the expression of Osterix and its downstream genes was reduced. RNA pull-down and subsequent LC-MS/MS analysis revealed that lncRNA953Rik bound the nuclear protein CCAR2. We demonstrated that CCAR2 promoted Wnt/β-catenin signaling and that lncRNA953Rik inhibited this pathway. lncRNA953Rik sequestered CCAR2 from HDAC1, leading to deacetylation of H3K27 in the Osterix promoter and consequent transcriptional downregulation of Osterix. This research is the first to clarify the role of a lncRNA in osteocytes. Our findings can pave the way for novel therapeutic options targeting lncRNAs in osteocytes to treat bone metabolic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Makoto Arai
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Hiroki Ochi
- Department of Rehabilitation for Motor Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa 359-8555, Japan
| | - Satoko Sunamura
- Department of Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, Tokyo 105-8470, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
11
|
Zhong W, Pathak JL, Liang Y, Zhytnik L, Pals G, Eekhoff EMW, Bravenboer N, Micha D. The intricate mechanism of PLS3 in bone homeostasis and disease. Front Endocrinol (Lausanne) 2023; 14:1168306. [PMID: 37484945 PMCID: PMC10361617 DOI: 10.3389/fendo.2023.1168306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Since our discovery in 2013 that genetic defects in PLS3 lead to bone fragility, the mechanistic details of this process have remained obscure. It has been established that PLS3 variants cause syndromic and nonsyndromic osteoporosis as well as osteoarthritis. PLS3 codes for an actin-bundling protein with a broad pattern of expression. As such, it is puzzling how PLS3 specifically leads to bone-related disease presentation. Our review aims to summarize the current state of knowledge regarding the function of PLS3 in the predominant cell types in the bone tissue, the osteocytes, osteoblasts and osteoclasts. This is related to the role of PLS3 in regulating mechanotransduction, calcium regulation, vesicle trafficking, cell differentiation and mineralization as part of the complex bone pathology presented by PLS3 defects. Considering the consequences of PLS3 defects on multiple aspects of bone tissue metabolism, our review motivates the study of its mechanism in bone diseases which can potentially help in the design of suitable therapy.
Collapse
Affiliation(s)
- Wenchao Zhong
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Janak L. Pathak
- Department of Temporomandibular Joint, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueting Liang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
- The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Lidiia Zhytnik
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, The University of Tartu, Tartu, Estonia
| | - Gerard Pals
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department Internal Medicine Section Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit Amsterdam, Rare Bone Disease Center, AMS, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Tissue Function And Regeneration, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, Netherlands
| |
Collapse
|
12
|
Chang X, Xu S, Zhang H. Regulation of bone health through physical exercise: Mechanisms and types. Front Endocrinol (Lausanne) 2022; 13:1029475. [PMID: 36568096 PMCID: PMC9768366 DOI: 10.3389/fendo.2022.1029475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis, characterized by bone mineral density reduction, bone mass loss, increased bone fragility, and propensity to fractures, is a common disease in older individuals and one of the most serious health problems worldwide. The imbalance between osteoblasts and osteoclasts results in the predominance of bone resorption and decreased bone formation. In recent years, it has been found that regular and proper exercise not only helps prevent the occurrence of osteoporosis but also adds benefits to osteoporosis therapy; accordingly, bone homeostasis is closely associated with mechanical stress and the intricate crosstalk between osteoblasts and osteoclasts. In this review, we summarize the mechanisms of exercise on osteoporosis and provide new proposals for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Xinyu Chang
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Hao Zhang
- Department of Traumatic Orthopedics, the First Affiliated Hospital of Naval Medical University, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Wang L, Lu Y, Cai G, Chen H, Li G, Liu L, Sun L, Guan Z, Sun W, Zhao C, Wang H. Polycystin-2 mediates mechanical tension-induced osteogenic differentiation of human adipose-derived stem cells by activating transcriptional co-activator with PDZ-binding motif. Front Physiol 2022; 13:917510. [PMID: 36091380 PMCID: PMC9450996 DOI: 10.3389/fphys.2022.917510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) have multi-directional differentiation potential including osteogenic differentiation. Mechanical stimulation is thought to be a key regulator of bone remodeling and has been proved to promote osteogenic differentiation of mesenchymal stem cells. However, the mechanism how mechanical tension-induced osteogenesis of hASCs still remains poor understood. Polycystin-2 (PC2), a member of the transient receptor potential polycystic (TRPP) family, is involved in cilia-mediated mechanical transduction. To understand the role of PC2 in osteogenic differentiation under mechanical stimuli in hASCs, PKD2 gene was stably silenced by using lentivirus-mediated shRNA technology. The results showed that mechanical tension sufficiently enhanced osteogenic differentiation but hardly affected proliferation of hASCs. Silencing PKD2 gene caused hASCs to lose the ability of sensing mechanical stimuli and subsequently promoting osteogenesis. PC2 knock-out also reduced the cilia population frequency and cilia length in hASCs. TAZ (transcriptional coactivator with PDZ-binding motif, also known as Wwtr1) could mediate the genes regulation and biological functions of mechanotransduction signal pathway. Here, mechanical tension also enhanced TAZ nuclear translocation of hASCs. PC2 knock-out blocked tension-induced upregulation of nuclear TAZ and suppress tension-induced osteogenesis. TAZ could directly interact with Runx2, and inhibiting TAZ could suppress tension-induced upregulation of Runx2 expression. In summary, our findings demonstrated that PC2 mediate mechanical tension-induced osteogenic differentiation of hASCs by activating TAZ.
Collapse
Affiliation(s)
- Liang Wang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yahui Lu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guanhui Cai
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongyu Chen
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Gen Li
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luwei Liu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhaolan Guan
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chunyang Zhao
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- *Correspondence: Hua Wang, ; Chunyang Zhao,
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- *Correspondence: Hua Wang, ; Chunyang Zhao,
| |
Collapse
|
14
|
Jeon HH, Kang J, Li J(M, Kim D, Yuan G, Almer N, Liu M, Yang S. The Effect of IFT80 Deficiency in Osteocytes on Orthodontic Loading-Induced and Physiologic Bone Remodeling: In Vivo Study. Life (Basel) 2022; 12:1147. [PMID: 36013326 PMCID: PMC9410307 DOI: 10.3390/life12081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Osteocytes are the main mechanosensory cells during orthodontic and physiologic bone remodeling. However, the question of how osteocytes transmit mechanical stimuli to biological responses remains largely unanswered. Intraflagellar transport (IFT) proteins are important for the formation and function of cilia, which are proposed to be mechanical sensors in osteocytes. In particular, IFT80 is highly expressed in mouse skulls and essential for ciliogenesis. This study aims to investigate the short- and long-term effects of IFT80 deletion in osteocytes on orthodontic bone remodeling and physiological bone remodeling in response to masticatory force. We examined 10-week-old experimental DMP1 CRE+.IFT80f/f and littermate control DMP1 CRE-.IFT80f/f mice. After 5 and 12 days of orthodontic force loading, the orthodontic tooth movement distance and bone parameters were evaluated using microCT. Osteoclast formation was assessed using TRAP-stained paraffin sections. The expression of sclerostin and RANKL was examined using immunofluorescence stain. We found that the deletion of IFT80 in osteocytes did not significantly impact either orthodontic or physiologic bone remodeling, as demonstrated by similar OTM distances, osteoclast numbers, bone volume fractions (bone volume/total volume), bone mineral densities, and the expressions of sclerostin and RANKL. Our findings suggest that there are other possible mechanosensory systems in osteocytes and anatomic limitations to cilia deflection in osteocytes in vivo.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Jessica Kang
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Jiahui (Madelaine) Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Douglas Kim
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Gongsheng Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nicolette Almer
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (J.L.); (D.K.); (N.A.)
| | - Min Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- The Penn Center for Musculoskeletal Disorders, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Zheng L, Han Z, Luo D, Li J, Ye H, Feng R, Zhong Q, Jing J, Yao Y. FGF23 and SOX9 expression in hemophilic cartilage: In vitro studies of the effects of iron. Haemophilia 2022; 28:1062-1068. [PMID: 35802007 DOI: 10.1111/hae.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Clarifying the links between iron and FGF23, SOX9 expression in chondrocytes would be helpful for comprehending articular cartilage degradation pathogenesis in blood-induced arthritis and exploring new protective methods. AIM The purpose of this study was to determine iron regulation of fibroblast growth factor 23 (FGF23) and SRY-box 9 (SOX9) in human chondrocytes, an area which is unexplored in blood-induced arthritis cartilage degradation pathogenesis. METHODS Expression of FGF23, SOX9, MMP13 and collagen Ⅱ in articular cartilage of patients with osteoarthritis (OA) or haemophilic arthritis (HA) was determined by western blot (WB). Iron induced FGF23 and SOX9 mRNA and protein expression in primary human normal chondrocyte cells (HUM-iCell-s018) was quantifified by qRT-PCR and WB, respectively. RESULTS We found that compared with OA patients, the expression of FGF23, MMP13 in articular cartilage of patients with HA was up-regulated, while the expression of SOX9, collagen Ⅱ was down-regulated. Iron induced FGF23 and suppressed SOX9 expression in chondrocytes in a dose-dependent manner. CONCLUSIONS These findings demonstrated that iron were involved in hemophilic cartilage lesion directly via changing cartilage phenotype through regulation of FGF23 and SOX9 expression in chondrocytes.
Collapse
Affiliation(s)
- Liujie Zheng
- Department of Orthopaedic Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhiwei Han
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Dasheng Luo
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiale Li
- Department of Orthopaedic Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui, People's Republic of China
| | - Houlong Ye
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ru Feng
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Qigang Zhong
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Juehua Jing
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yunfeng Yao
- Department of Orthopaedic Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
16
|
Spasic M, Duffy MP, Jacobs CR. Fenoldopam Sensitizes Primary Cilia-Mediated Mechanosensing to Promote Osteogenic Intercellular Signaling and Whole Bone Adaptation. J Bone Miner Res 2022; 37:972-982. [PMID: 35230705 PMCID: PMC9098671 DOI: 10.1002/jbmr.4536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 11/05/2022]
Abstract
Bone cells actively respond to mechanical stimuli to direct bone formation, yet there is no current treatment strategy for conditions of low bone mass and osteoporosis designed to target the inherent mechanosensitivity of bone. Our group has previously identified the primary cilium as a critical mechanosensor within bone, and that pharmacologically targeting the primary cilium with fenoldopam can enhance osteocyte mechanosensitivity. Here, we demonstrate that potentiating osteocyte mechanosensing with fenoldopam in vitro promotes pro-osteogenic paracrine signaling to osteoblasts. Conversely, impairing primary cilia formation and the function of key ciliary mechanotransduction proteins attenuates this intercellular signaling cascade. We then utilize an in vivo model of load-induced bone formation to demonstrate that fenoldopam treatment sensitizes bones of both healthy and osteoporotic mice to mechanical stimulation. Furthermore, we show minimal adverse effects of this treatment and demonstrate that prolonged treatment biases trabecular bone adaptation. This work is the first to examine the efficacy of targeting primary cilia-mediated mechanosensing to enhance bone formation in osteoporotic animals. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Milos Spasic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Michael P Duffy
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | |
Collapse
|
17
|
Vitamin D and Phosphate Interactions in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:37-46. [DOI: 10.1007/978-3-030-91623-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Lewis KJ. Osteocyte calcium signaling - A potential translator of mechanical load to mechanobiology. Bone 2021; 153:116136. [PMID: 34339908 DOI: 10.1016/j.bone.2021.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Osteocytes are embedded dendritic bone cells; by virtue of their position in bone tissue, ability to coordinate bone building osteoblasts and resorbing osteoclasts, and sensitivity to tissue level mechanical loading, they serve as the resident bone mechanosensor. The mechanisms osteocytes use to change mechanical loading into biological signals that drive tissue level changes has been well studied over the last 30 years, however the ways loading parameters are encoded at the cellular level are still not fully understood. Calcium signaling is a first messenger signal exhibited by osteocytes in response to mechanical forces. A body of work interrogating the mechanisms of osteocyte calcium signaling exists and is presently expanding, presenting the opportunity to better understand the relationship between calcium signaling characteristics and tuned osteocyte responses to tissue level strain features (e.g. magnitude, duration, frequency). This review covers the history of osteocyte load induced calcium signaling and highlights potential cellular mechanisms used by osteocytes to turn details about loading parameters into biological events.
Collapse
Affiliation(s)
- Karl J Lewis
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America.
| |
Collapse
|
19
|
McCarthy C, Camci-Unal G. Low Intensity Pulsed Ultrasound for Bone Tissue Engineering. MICROMACHINES 2021; 12:1488. [PMID: 34945337 PMCID: PMC8707172 DOI: 10.3390/mi12121488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
As explained by Wolff's law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.
Collapse
Affiliation(s)
- Colleen McCarthy
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA;
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01605, USA
| |
Collapse
|
20
|
Gould NR, Torre OM, Leser JM, Stains JP. The cytoskeleton and connected elements in bone cell mechano-transduction. Bone 2021; 149:115971. [PMID: 33892173 PMCID: PMC8217329 DOI: 10.1016/j.bone.2021.115971] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
Bone is a mechano-responsive tissue that adapts to changes in its mechanical environment. Increases in strain lead to increased bone mass acquisition, whereas decreases in strain lead to a loss of bone mass. Given that mechanical stress is a regulator of bone mass and quality, it is important to understand how bone cells sense and transduce these mechanical cues into biological changes to identify druggable targets that can be exploited to restore bone cell mechano-sensitivity or to mimic mechanical load. Many studies have identified individual cytoskeletal components - microtubules, actin, and intermediate filaments - as mechano-sensors in bone. However, given the high interconnectedness and interaction between individual cytoskeletal components, and that they can assemble into multiple discreet cellular structures, it is likely that the cytoskeleton as a whole, rather than one specific component, is necessary for proper bone cell mechano-transduction. This review will examine the role of each cytoskeletal element in bone cell mechano-transduction and will present a unified view of how these elements interact and work together to create a mechano-sensor that is necessary to control bone formation following mechanical stress.
Collapse
Affiliation(s)
- Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Olivia M Torre
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA..
| |
Collapse
|
21
|
Xu X, Liu S, Liu H, Ru K, Jia Y, Wu Z, Liang S, Khan Z, Chen Z, Qian A, Hu L. Piezo Channels: Awesome Mechanosensitive Structures in Cellular Mechanotransduction and Their Role in Bone. Int J Mol Sci 2021; 22:ijms22126429. [PMID: 34208464 PMCID: PMC8234635 DOI: 10.3390/ijms22126429] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Piezo channels are mechanosensitive ion channels located in the cell membrane and function as key cellular mechanotransducers for converting mechanical stimuli into electrochemical signals. Emerged as key molecular detectors of mechanical forces, Piezo channels' functions in bone have attracted more and more attention. Here, we summarize the current knowledge of Piezo channels and review the research advances of Piezo channels' function in bone by highlighting Piezo1's role in bone cells, including osteocyte, bone marrow mesenchymal stem cell (BM-MSC), osteoblast, osteoclast, and chondrocyte. Moreover, the role of Piezo channels in bone diseases is summarized.
Collapse
Affiliation(s)
- Xia Xu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shuyu Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hua Liu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kang Ru
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunxian Jia
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zixiang Wu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shujing Liang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zarnaz Khan
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| | - Lifang Hu
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.X.); (S.L.); (H.L.); (K.R.); (Y.J.); (Z.W.); (S.L.); (Z.K.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: (A.Q.); (L.H.)
| |
Collapse
|
22
|
Pereira RC, Gitomer BY, Chonchol M, Harris PC, Noche KJ, Salusky IB, Albrecht LV. Characterization of Primary Cilia in Osteoblasts Isolated From Patients With ADPKD and CKD. JBMR Plus 2021; 5:e10464. [PMID: 33869988 PMCID: PMC8046038 DOI: 10.1002/jbm4.10464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/02/2021] [Accepted: 01/12/2021] [Indexed: 11/08/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of chronic kidney disease (CKD) and leads to a specific type of bone disease. The primary cilium is a major cellular organelle implicated in the pathophysiology of ADPKD caused by mutations in polycystin-1 (PKD1) and polycystin-2 (PKD2). In this study, for the first time, cilia were characterized in primary preosteoblasts isolated from patients with ADPKD. All patients with ADPKD had low bone turnover and primary osteoblasts were also obtained from patients with non-ADPKD CKD with low bone turnover. Image-based immunofluorescence assays analyzed cilia using standard markers, pericentrin, and acetylated-α-tubulin, where cilia induction and elongation were chosen as relevant endpoints for these initial investigations. Osteoblastic activity was examined by measuring alkaline phosphatase levels and mineralized matrix deposition rates. It was found that primary cilia can be visualized in patient-derived osteoblasts and respond to elongation treatments. Compared with control cells, ADPKD osteoblasts displayed abnormal cilia elongation that was significantly more responsive in cells with PKD2 nontruncating mutations and PKD1 mutations. In contrast, non-ADPKD CKD osteoblasts were unresponsive and had shorter cilia. Finally, ADPKD osteoblasts showed increased rates of mineralized matrix deposition compared with non-ADPKD CKD. This work represents the first study of cilia in primary human-derived osteoblasts from patients with CKD and patients with ADPKD who have normal kidney function, offering new insights as bone disease phenotypes are not well recapitulated in animal models. These data support a model whereby altered cilia occurs in PKD-mutated osteoblasts, and that ADPKD-related defects in bone cell activity and mineralization are distinct from adynamic bone disease from patients with non-ADPKD CKD. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Renata C Pereira
- Department of PediatricsDavid Geffen School of Medicine at UCLLos AngelesCAUSA
| | - Berenice Y Gitomer
- Department of Medicine, Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Michel Chonchol
- Department of Medicine, Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Peter C Harris
- Division of Nephrology and HypertensionMayo ClinicRochesterMNUSA
| | - Kathleen J Noche
- Department of PediatricsDavid Geffen School of Medicine at UCLLos AngelesCAUSA
| | - Isidro B Salusky
- Department of PediatricsDavid Geffen School of Medicine at UCLLos AngelesCAUSA
| | - Lauren V Albrecht
- Department of Biological ChemistryDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| |
Collapse
|
23
|
Xu J, Deng X, Wu X, Zhu H, Zhu Y, Liu J, Chen Q, Yuan C, Liu G, Wang C. Primary cilia regulate gastric cancer-induced bone loss via cilia/Wnt/β-catenin signaling pathway. Aging (Albany NY) 2021; 13:8989-9010. [PMID: 33690174 PMCID: PMC8034975 DOI: 10.18632/aging.202734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Cancer-associated bone disease is a frequent occurrence in cancer patients and is associated with pain, bone fragility, loss, and fractures. However, whether primary or non-bone metastatic gastric cancer induces bone loss remains unclear. Here, we collected clinical evidence of bone loss by analyzing serum and X-rays of 25 non-bone metastatic gastric cancer patients. In addition, C57BL mice were injected with the human gastric cancer cell line HGC27 and its effect on bone mass was analyzed by Micro-CT, immunoblotting, and immunohistochemistry. Furthermore, the degree of the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) co-cultured with HGC-27 or SGC-7901 cells was analyzed by colony-formation assay, alizarin red staining, immunofluorescence, qPCR, immunoblotting, and alkaline phosphatase activity assay. These indicated that gastric cancer could damage bone tissue before the occurrence of bone metastases. We also found that cilia formation of MSCs was increased in the presence of HGC27 cells, which was associated with abnormal activation of the Wnt/β-catenin pathway. Expression of DKK1 inhibited the Wnt/β-catenin signaling pathway and partially rescued osteogenic differentiation of MSCs. In summary, our results suggest that gastric cancer cells might cause bone damage prior to the occurrence of bone metastasis via cilia-dependent activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Deng
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiangmei Wu
- Department of Physiology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yinghua Zhu
- Department of Pre-Hospital Emergency, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing 400014, China
| | - Jie Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, Hubei, China
| | - Geli Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Changdong Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
24
|
Nigro EA, Boletta A. Role of the polycystins as mechanosensors of extracellular stiffness. Am J Physiol Renal Physiol 2021; 320:F693-F705. [PMID: 33615892 DOI: 10.1152/ajprenal.00545.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polycystin-1 (PC-1) is a transmembrane protein, encoded by the PKD1 gene, mutated in autosomal dominant polycystic kidney disease (ADPKD). This common genetic disorder, characterized by cyst formation in both kidneys, ultimately leading to renal failure, is still waiting for a definitive treatment. The overall function of PC-1 and the molecular mechanism responsible for cyst formation are slowly coming to light, but they are both still intensively studied. In particular, PC-1 has been proposed to act as a mechanosensor, although the precise signal that activates the mechanical properties of this protein has been long debated and questioned. In this review, we report studies and evidence of PC-1 function as a mechanosensor, starting from the peculiarity of its structure, through the long journey that progressively shed new light on the potential initiating events of cystogenesis, concluding with the description of PC-1 recently shown ability to sense the mechanical stimuli provided by the stiffness of the extracellular environment. These new findings have potentially important implications for the understanding of ADPKD pathophysiology and potentially for designing new therapies.NEW & NOTEWORTHY Polycystin-1 has recently emerged as a possible receptor able to sense extracellular stiffness and to negatively control the cellular actomyosin contraction machinery. Here, we revisit a large body of literature on autosomal dominant polycystic kidney disease providing a new possible mechanistic view on the topic.
Collapse
Affiliation(s)
- Elisa A Nigro
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr Med Chem 2021; 28:1489-1507. [PMID: 32223730 PMCID: PMC7665836 DOI: 10.2174/0929867327666200330142432] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Osteoporosis is a pathological loss of bone mass due to an imbalance in bone remodeling where osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation resulting in skeletal fragility and fractures. Anti-resorptive agents, such as bisphosphonates and SERMs, and anabolic drugs that stimulate bone formation, including PTH analogues and sclerostin inhibitors, are current treatments for osteoporosis. Despite their efficacy, severe side effects and loss of potency may limit the long term usage of a single drug. Sequential and combinational use of current drugs, such as switching from an anabolic to an anti-resorptive agent, may provide an alternative approach. Moreover, there are novel drugs being developed against emerging new targets such as Cathepsin K and 17β-HSD2 that may have less side effects. This review will summarize the molecular mechanisms of osteoporosis, current drugs for osteoporosis treatment, and new drug development strategies.
Collapse
Affiliation(s)
- Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
26
|
Ding D, Yang X, Luan HQ, Wu XT, He C, Sun LW, Fan YB. Pharmacological Regulation of Primary Cilium Formation Affects the Mechanosensitivity of Osteocytes. Calcif Tissue Int 2020; 107:625-635. [PMID: 32940720 DOI: 10.1007/s00223-020-00756-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are responsible for sensing mechanical loading in osteocytes. However, the underlying working mechanism of cilia remains elusive. An osteocyte model is necessary to reveal the role of cilia. Furthermore, the osteocyte model should be with upregulated or downregulated primary cilium expression. Herein, we used a pharmacological method to regulate the cilium formation of osteocytes. After screening, some pharmacological agents can regulate the cilium formation of osteocytes. We performed a CCK-8 assay to analyze the optimal working conditions of the drugs for MLO-Y4 cells. The agents include chloral hydrate (CH), Gd3+, Li+, and rapamycin. The expression of cilia affects the cellular functions, including mechanosensitivity, of osteocytes. Results showed that CH downregulated the cilium formation and ciliogenesis of osteocytes. In addition, Gd3+, Li+, and rapamycin upregulated the cilium expression of osteocytes. Moreover, the cilium expression positively correlated with the mechanosensitivity of osteocytes. This work reveals the role of primary cilia in the mechanosensing of osteocytes.
Collapse
Affiliation(s)
- Dong Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hui-Qin Luan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| | - Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Cai He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.
| |
Collapse
|
27
|
Gitomer B, Pereira R, Salusky IB, Stoneback JW, Isakova T, Cai X, Dalrymple LS, Ofsthun N, You Z, Malluche HH, Maddux F, George D, Torres V, Chapman A, Steinman TI, Wolf M, Chonchol M. Mineral bone disease in autosomal dominant polycystic kidney disease. Kidney Int 2020; 99:977-985. [PMID: 32926884 DOI: 10.1016/j.kint.2020.07.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 01/09/2023]
Abstract
Mice with disruption of Pkd1 in osteoblasts demonstrate reduced bone mineral density, trabecular bone volume and cortical thickness. To date, the bone phenotype in adult patients with autosomal dominant polycystic kidney disease (ADPKD) with stage I and II chronic kidney disease has not been investigated. To examine this, we characterized biochemical markers of mineral metabolism, examined bone turnover and biology, and estimated risk of fracture in patients with ADPKD. Markers of mineral metabolism were measured in 944 patients with ADPKD and other causes of kidney disease. Histomorphometry and immunohistochemistry were compared on bone biopsies from 20 patients with ADPKD with a mean eGFR of 97 ml/min/1.73m2 and 17 healthy individuals. Furthermore, adults with end stage kidney disease (ESKD) initiating hemodialysis between 2002-2013 and estimated the risk of bone fracture associated with ADPKD as compared to other etiologies of kidney disease were examined. Intact fibroblast growth factor 23 was higher and total alkaline phosphatase lower in patients with compared to patients without ADPKD with chronic kidney disease. Compared to healthy individuals, patients with ADPKD demonstrated significantly lower osteoid volume/bone volume (0.61 vs. 1.21%) and bone formation rate/bone surface (0.012 vs. 0.026 μm3/μm2/day). ESKD due to ADPKD was not associated with a higher risk of fracture as compared to ESKD due to diabetes (age adjusted incidence rate ratio: 0.53 (95% confidence interval 0.31, 0.74) or compared to other etiologies of kidney disease. Thus, individuals with ADPKD have lower alkaline phosphatase, higher circulating intact fibroblast growth factor 23 and decreased bone formation rate. However, ADPKD is not associated with higher rates of bone fracture in ESKD.
Collapse
Affiliation(s)
- Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Renata Pereira
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xuan Cai
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Norma Ofsthun
- Fresenius Medical Care North America, Waltham, Massachusetts, USA
| | - Zhiying You
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Harmut H Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Medicine, University of Kentucky Chandler Medical Center, Lexington, Kentucky, USA
| | | | - Diana George
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vicente Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Arlene Chapman
- Section of Nephrology, University of Chicago, Chicago, Illinois, USA
| | - Theodore I Steinman
- Department of Medicine and Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
28
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
29
|
Williams KM, Leser JM, Gould NR, Joca HC, Lyons JS, Khairallah RJ, Ward CW, Stains JP. TRPV4 calcium influx controls sclerostin protein loss independent of purinergic calcium oscillations. Bone 2020; 136:115356. [PMID: 32272228 PMCID: PMC7605285 DOI: 10.1016/j.bone.2020.115356] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/09/2023]
Abstract
Skeletal remodeling is driven in part by the osteocyte's ability to respond to its mechanical environment by regulating the abundance of sclerostin, a negative regulator of bone mass. We have recently shown that the osteocyte responds to fluid shear stress via the microtubule network-dependent activation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species and subsequent opening of TRPV4 cation channels, leading to calcium influx, activation of CaMKII, and rapid sclerostin protein downregulation. In addition to the initial calcium influx, purinergic receptor signaling and calcium oscillations occur in response to mechanical load and prior to rapid sclerostin protein loss. However, the independent contributions of TRPV4-mediated calcium influx and purinergic calcium oscillations to the rapid sclerostin protein downregulation remain unclear. Here, we showed that NOX2 and TRPV4-dependent calcium influx is required for calcium oscillations, and that TRPV4 activation is both necessary and sufficient for sclerostin degradation. In contrast, calcium oscillations are neither necessary nor sufficient to acutely decrease sclerostin protein abundance. However, blocking oscillations with apyrase prevented fluid shear stress induced changes in osterix (Sp7), osteoprotegerin (Tnfrsf11b), and sclerostin (Sost) gene expression. In total, these data provide key mechanistic insights into the way bone cells translate mechanical cues to target a key effector of bone formation, sclerostin.
Collapse
Affiliation(s)
- Katrina M Williams
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Humberto C Joca
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James S Lyons
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of Nursing, Baltimore, MD 21201, USA.
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
31
|
A distinct bone phenotype in ADPKD patients with end-stage renal disease. Kidney Int 2020; 95:412-419. [PMID: 30665572 DOI: 10.1016/j.kint.2018.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is among the most common hereditary nephropathies. Low bone turnover osteopenia has been reported in mice with conditional deletion of the PKD1 and PKD2 genes in osteoblasts, and preliminary clinical data also suggest suppressed bone turnover in patients with ADPKD. The present study compared the bone phenotype between patients with end stage renal disease (ESRD) due to ADPKD and controls with ESRD due to other causes. Laboratory parameters of bone mineral metabolism (fibroblast growth factor 23 and sclerostin), bone turnover markers (bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b) and bone mineral density (BMD, by dual energy x-ray absorptiometry, DXA) were assessed in 518 patients with ESRD, including 99 with ADPKD. Bone histomorphometry data were available in 71 patients, including 10 with ADPKD. Circulating levels of bone alkaline phosphatase were significantly lower in patients with ADPKD (17.4 vs 22.6 ng/mL), as were histomorphometric parameters of bone formation. Associations between ADPKD and parameters of bone formation persisted after adjustment for classical determinants including parathyroid hormone, age, and sex. BMD was higher in skeletal sites rich in cortical bone in patients with ADPKD compared to non-ADPKD patients (Z-score midshaft radius -0.04 vs -0.14; femoral neck -0.72 vs -1.02). Circulating sclerostin levels were significantly higher in ADPKD patients (2.20 vs 1.84 ng/L). In conclusion, patients with ESRD due to ADPKD present a distinct bone and mineral phenotype, characterized by suppressed bone turnover, better preserved cortical BMD, and high sclerostin levels.
Collapse
|
32
|
Abstract
Osteoporosis is a condition where bone resorption exceeds bone formation leading to degeneration. With an aging population, the prevalence of osteoporosis is on the rise. Although advances in the field have made progress in targeting the mechanisms of the disease, the efficacy of current treatments remains limited and is complicated by unexpected side effects. Therefore, to overcome this treatment gap, new approaches are needed to identify and elucidate the cellular mechanisms mediating the pathogenesis of osteoporosis, which requires a strong understanding of bone biology. This chapter will focus on bone cells (osteoclasts, osteoblasts, and osteocytes) and their role in the bone turnover process in normal physiology and in pathology. With regard to osteoclast function, the regulators and underpinning signaling pathways leading to bone resorption will be discussed. Decreased osteoblastogenesis also contributes to bone deterioration with aging and osteoporosis; hence the factors and signaling pathways mediating osteoblast formation and function will be examined. Osteocytes are mature osteoblasts embedded in bone matrix and act as endocrine cells; their role in bone health and pathology will also be reviewed. In addition, this chapter will explore the emerging role of adipocytes in bone biology and the implications of increased bone marrow fat infiltration with aging on bone degeneration. In conclusion, a greater understanding of the pathogenesis of osteoporosis is of utmost importance in order to develop more effective treatments for osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine, Melbourne Medical School - Western Precinct, The University of Melbourne, St. Albans, VIC, Australia
| | - Nicole Stupka
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia
- Department of Medicine, Melbourne Medical School - Western Precinct, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia.
- Department of Medicine, Melbourne Medical School - Western Precinct, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
33
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|
34
|
R Ferreira R, Fukui H, Chow R, Vilfan A, Vermot J. The cilium as a force sensor-myth versus reality. J Cell Sci 2019; 132:132/14/jcs213496. [PMID: 31363000 DOI: 10.1242/jcs.213496] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.
Collapse
Affiliation(s)
- Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Hajime Fukui
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Department of Living Matter Physics, 37077 Göttingen, Germany .,J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
35
|
Hu Z, Hong S, Zhang Y, Dai H, Lin S, Yi T, Zhuang H. Down-regulated WDR35 contributes to fetal anomaly via regulation of osteogenic differentiation. Gene 2019; 697:48-56. [PMID: 30790652 DOI: 10.1016/j.gene.2019.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Autosomal recessive disorder is closely correlated with congenital fetal malformation. The mutation of WDR35 may lead to short rib-polydactyly syndrome (SRP), asphyxiating thoracic dystrophy (ATD, Jeune syndrome) and Ellis van Creveld syndrome. The purpose of this study is to investigate the role of WDR35 in fetal anomaly. RESULTS The fetuses presented malformation with abnormal head shape, cardiac dilatation, pericardial effusion, and non-displayed left pulmonary artery and left lung. After the detection of genomic DNA (gDNA) in amniotic fluid cells (AFC), chromosomal rearrangement was found in arr[hg19] 2p25.3p23.3. It was revealed through multiple PCR-DHPLC that MYCN, WDR35, LPIN1, ODC1, KLF11 and NBAS contained duplicated copy numbers in 2p25.3p23.3. AF-MSCs were mostly positive for CD44, CD105, negative for CD34 and CD14. Western Blot test showed that WDR35-encoded protein was decreased in the patients' AFC compared to that in normal pregnant women. In the patients' amniotic fluid-derived mesenchymal stem cells (AF-MSCs), WDR35 overexpression could repair cilia formation, and the overexpression of WDR35 or Gli2 could significantly enhance ALP activity and expressions of osteogenic differentiation marker genes, including RUNXE2, OCN, BSP and ALP. However, WDR35 silencing in C3H10T1/2 cells could remarkably inhibit cilia formation and osteogenic differentiation. This inhibitory effect could be attenuated by Gli2 overexpression. CONCLUSIONS The results demonstrated that copy number variation (CNV) of WDR35 may lead to skeletal dysplasia and fetal anomaly, and that down-regulated WDR35 may damage the cilia formation and sequentially indirectly regulate Gli signal, which would eventually result in negative regulation of osteogenic differentiation.
Collapse
Affiliation(s)
- Zhongren Hu
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Shurong Hong
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Yu Zhang
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Huijing Dai
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Shuzhen Lin
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Tingyu Yi
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Hongmei Zhuang
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China.
| |
Collapse
|
36
|
Hruska KA, Mahjoub MR. New pathogenic insights inform therapeutic target development for renal osteodystrophy. Kidney Int 2019; 95:261-263. [PMID: 30665565 DOI: 10.1016/j.kint.2018.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
In an ancillary analysis of cross-sectional observational studies of bone health in end-stage kidney disease (ESKD), Evenepoel et al. reported that subjects with autosomal-dominant polycystic kidney disease (ADPKD) had a unique phenotype in their renal osteodystrophy. ADPKD caused resistance to parathyroid hormone (PTH) producing lower turnover states and preservation of cortical bone mineral density. PTH resistance was probably produced by increased osteocyte sclerostin levels, which is regulated by mechanical loading sensed through primary cilia sensory function affected by mutation in PKD1 and PKD2.
Collapse
Affiliation(s)
- Keith A Hruska
- Department of Pediatrics Renal Division Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Medicine Renal Division Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| | - Moe R Mahjoub
- Department of Medicine Renal Division Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Cell Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
37
|
Elliott KH, Brugmann SA. Sending mixed signals: Cilia-dependent signaling during development and disease. Dev Biol 2018; 447:28-41. [PMID: 29548942 DOI: 10.1016/j.ydbio.2018.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Molecular signals are the guiding force of development, imparting direction upon cells to divide, migrate, differentiate, etc. The mechanisms by which a cell can receive and transduce these signals into measurable actions remains a 'black box' in developmental biology. Primary cilia are ubiquitous, microtubule-based organelles that dynamically extend from a cell to receive and process molecular and mechanical signaling cues. In the last decade, this organelle has become increasingly intriguing to the research community due to its ability to act as a cellular antenna, receive and transduce molecular stimuli, and initiate a cellular response. In this review, we discuss the structure of primary cilia, emphasizing how the ciliary components contribute to the transduction of signaling pathways. Furthermore, we address how the cilium integrates these signals and conveys them into cellular processes such as proliferation, migration and tissue patterning. Gaining a deeper understanding of the mechanisms used by primary cilia to receive and integrate molecular signals is essential, as it opens the door for the identification of therapeutic targets within the cilium that could alleviate pathological conditions brought on by aberrant molecular signaling.
Collapse
Affiliation(s)
- Kelsey H Elliott
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
38
|
Xiao Z, Baudry J, Cao L, Huang J, Chen H, Yates CR, Li W, Dong B, Waters CM, Smith JC, Quarles LD. Polycystin-1 interacts with TAZ to stimulate osteoblastogenesis and inhibit adipogenesis. J Clin Invest 2017; 128:157-174. [PMID: 29202470 DOI: 10.1172/jci93725] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023] Open
Abstract
The molecular mechanisms that transduce the osteoblast response to physical forces in the bone microenvironment are poorly understood. Here, we used genetic and pharmacological experiments to determine whether the polycystins PC1 and PC2 (encoded by Pkd1 and Pkd2) and the transcriptional coactivator TAZ form a mechanosensing complex in osteoblasts. Compound-heterozygous mice lacking 1 copy of Pkd1 and Taz exhibited additive decrements in bone mass, impaired osteoblast-mediated bone formation, and enhanced bone marrow fat accumulation. Bone marrow stromal cells and osteoblasts derived from these mice showed impaired osteoblastogenesis and enhanced adipogenesis. Increased extracellular matrix stiffness and application of mechanical stretch to multipotent mesenchymal cells stimulated the nuclear translocation of the PC1 C-terminal tail/TAZ (PC1-CTT/TAZ) complex, leading to increased runt-related transcription factor 2-mediated (Runx2-mediated) osteogenic and decreased PPARγ-dependent adipogenic gene expression. Using structure-based virtual screening, we identified a compound predicted to bind to PC2 in the PC1:PC2 C-terminal tail region with helix:helix interaction. This molecule stimulated polycystin- and TAZ-dependent osteoblastogenesis and inhibited adipogenesis. Thus, we show that polycystins and TAZ integrate at the molecular level to reciprocally regulate osteoblast and adipocyte differentiation, indicating that the polycystins/TAZ complex may be a potential therapeutic target to increase bone mass.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jerome Baudry
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Li Cao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jinsong Huang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hao Chen
- Department of Pharmaceutical Sciences and
| | | | - Wei Li
- Department of Pharmaceutical Sciences and
| | - Brittany Dong
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christopher M Waters
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
39
|
Spasic M, Jacobs CR. Primary cilia: Cell and molecular mechanosensors directing whole tissue function. Semin Cell Dev Biol 2017; 71:42-52. [PMID: 28843978 PMCID: PMC5922257 DOI: 10.1016/j.semcdb.2017.08.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Primary cilia are immotile, microtubule-based organelles extending from the surface of nearly every mammalian cell. Mechanical stimulation causes deflection of the primary cilium, initiating downstream signaling cascades to the rest of the cell. The cilium forms a unique subcellular microdomain, and defects in ciliary protein composition or physical structure have been associated with a myriad of human pathologies. In this review, we discuss the importance of ciliary mechanotransduction at the cell and tissue level, and how furthering our molecular understanding of primary cilia mechanobiology may lead to therapeutic strategies to treat human diseases.
Collapse
Affiliation(s)
- Milos Spasic
- Columbia University, Department of Biomedical Engineering, United States.
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Over the past decades, osteocytes have emerged as mechano-sensors of bone and master regulators of bone homeostasis. This article summarizes latest research and progress made in understanding osteocyte mechanobiology and critically reviews tools currently available to study these cells. RECENT FINDINGS Whereas increased mechanical forces promote bone formation, decrease loading is always associated with bone loss and skeletal fragility. Recent studies identified cilia, integrins, calcium channels, and G-protein coupled receptors as important sensors of mechanical forces and Ca2+ and cAMP signaling as key effectors. Among transcripts regulated by mechanical forces, sclerostin and RANKL have emerged as potential therapeutic targets for disuse-induced bone loss. In this paper, we review the mechanisms by which osteocytes perceive and transduce mechanical cues and the models available to study mechano-transduction. Future directions of the field are also discussed.
Collapse
Affiliation(s)
- Yuhei Uda
- Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Ehab Azab
- Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Ningyuan Sun
- Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Chao Shi
- Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, People's Republic of China
| | - Paola Divieti Pajevic
- Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA.
- , 700 Albany Street, W201C, Boston, MA, 02118, USA.
| |
Collapse
|
41
|
Kuroshima S, Kaku M, Ishimoto T, Sasaki M, Nakano T, Sawase T. A paradigm shift for bone quality in dentistry: A literature review. J Prosthodont Res 2017. [PMID: 28633987 DOI: 10.1016/j.jpor.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. STUDY SELECTION This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. RESULTS In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. CONCLUSION The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry.
Collapse
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan.
| | - Masaru Kaku
- Division of Bio-prosthodontics, Graduate School of Medical and Dental Science, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-City, Niigata 951-8514, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The primary cilium is a non-motile microtubule-based organelle that senses a diverse range of extracellular signals. While recent studies highlight the importance of ciliary-dependent developmental signals, including Hedgehog, Wnt, and platelet-derived growth factor, it is not well understood whether and how bone morphogenetic protein (BMP) signaling, a key regulator of skeletogenesis, is involved in cilia-related bone developmental aspects and in the etiology of skeletal disorders. RECENT FINDINGS Increasing evidence suggests that osteoblast- or osteocyte-specific deletion of ciliary proteins leads to diverse skeletal malformations, reinforcing the idea that primary cilia are indispensable for regulating bone development and maintenance. Furthermore, it became evident that ciliary proteins not only contribute to ciliogenesis but also orchestrate cellular trafficking. This review summarizes the current understanding of ciliary proteins in bone development and discusses the potential role of BMP signaling in primary cilia, enabling us to unravel the potential pathogenesis of skeletal ciliopathies.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan.
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA.
- Graduate Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
43
|
Ehnert S, Sreekumar V, Aspera-Werz RH, Sajadian SO, Wintermeyer E, Sandmann GH, Bahrs C, Hengstler JG, Godoy P, Nussler AK. TGF-β 1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia. J Mol Med (Berl) 2017; 95:653-663. [PMID: 28271209 DOI: 10.1007/s00109-017-1526-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/29/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a critical regulator of bone density owing to its multiple effects on cell growth and differentiation. Recently, we have shown that TGF-β1 effectively blocks bone morphogenetic protein (BMP) induced maturation of osteoblasts by upregulating histone deacetylase (HDAC) activity. The current study aimed at investigating the effect of rhTGF-β1 treatment on the expression of specific HDACs and their cellular effects, e.g., microtubule structures (primary cilia) and mechanosensation. Exposure to TGF-β1 most significantly induced expression of HDAC6 both on gene and protein level. Being most abundant in the cytoplasm HDAC6 effectively deacetylates microtubule structures. Thus, TGF-β1-induced expression of HDAC6 led to deformation and shortening of primary cilia as well as to reduced numbers of ciliated cells. Primary cilia are described to sense mechanical stimuli. Thus, fluid flow was applied to the cells, which stimulated osteoblast function (AP activity and matrix mineralization). Compromised primary cilia in TGF-β1-treated cells were associated with reduced osteogenic function, despite exposure to fluid flow conditions. Chemical inhibition of HDAC6 with Tubacin restored primary cilium structure and length. These cells showed improved osteogenic function especially under fluid flow conditions. Summarizing our results, TGF-β1 impairs human osteoblast maturation partially via HDAC6-mediated distortion and/or shortening of primary cilia. This knowledge opens up new treatment options for trauma patients with chronically elevated TGF-β1-levels (e.g., diabetics), which frequently suffer from delayed fracture healing despite adequate mechanical stimulation. KEY MESSAGES Exposure to TGF-β1 induces expression of HDAC6 in human osteoblasts. TGF-β1 exposed human osteoblasts show less and distorted primary cilia. TGF-β1 exposed human osteoblasts are less sensitive towards mechanical stimulation. Mechanosensation can be recovered by HDAC6 inhibitor Tubacin in human osteoblasts.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| | - Vrinda Sreekumar
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Romina H Aspera-Werz
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Sahar O Sajadian
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Elke Wintermeyer
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Gunther H Sandmann
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Christian Bahrs
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| | - Andreas K Nussler
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| |
Collapse
|
44
|
Dalagiorgou G, Piperi C, Adamopoulos C, Georgopoulou U, Gargalionis AN, Spyropoulou A, Zoi I, Nokhbehsaim M, Damanaki A, Deschner J, Basdra EK, Papavassiliou AG. Mechanosensor polycystin-1 potentiates differentiation of human osteoblastic cells by upregulating Runx2 expression via induction of JAK2/STAT3 signaling axis. Cell Mol Life Sci 2017; 74:921-936. [PMID: 27699453 PMCID: PMC11107574 DOI: 10.1007/s00018-016-2394-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
Polycystin-1 (PC1) has been proposed as a chief mechanosensing molecule implicated in skeletogenesis and bone remodeling. Mechanotransduction via PC1 involves proteolytic cleavage of its cytoplasmic tail (CT) and interaction with intracellular pathways and transcription factors to regulate cell function. Here we demonstrate the interaction of PC1-CT with JAK2/STAT3 signaling axis in mechanically stimulated human osteoblastic cells, leading to transcriptional induction of Runx2 gene, a master regulator of osteoblastic differentiation. Primary osteoblast-like PC1-expressing cells subjected to mechanical-stretching exhibited a PC1-dependent increase of the phosphorylated(p)/active form of JAK2. Specific interaction of PC1-CT with pJAK2 was observed after stretching while pre-treatment of cells with PC1 (anti-IgPKD1) and JAK2 inhibitors abolished JAK2 activation. Consistently, mechanostimulation triggered PC1-mediated phosphorylation and nuclear translocation of STAT3. The nuclear phosphorylated(p)/DNA-binding competent pSTAT3 levels were augmented after stretching followed by elevated DNA-binding activity. Pre-treatment with a STAT3 inhibitor either alone or in combination with anti-IgPKD1 abrogated this effect. Moreover, PC1-mediated mechanostimulation induced elevation of Runx2 mRNA levels. ChIP assays revealed direct regulation of Runx2 promoter activity by STAT3/Runx2 after mechanical-stretching that was PC1-dependent. Our findings show that mechanical load upregulates expression of Runx2 gene via potentiation of PC1-JAK2/STAT3 signaling axis, culminating to possibly control osteoblastic differentiation and ultimately bone formation.
Collapse
Affiliation(s)
- Georgia Dalagiorgou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Ilianna Zoi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Anna Damanaki
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111, Bonn, Germany
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
45
|
Abstract
The primary cilium is a mechanosensor in a variety of mammalian cell types, initiating and directing intracellular signalling cascades in response to external stimuli. When primary cilia formation is disrupted, cells have diminished mechanosensitivity and an abrogated response to mechanical stimulation. Due to this important role, we hypothesised that increasing primary cilia length would enhance the downstream response and therefore, mechanosensitivity. To test this hypothesis, we increased osteocyte primary cilia length with fenoldopam and lithium and found that cells with longer primary cilia were more mechanosensitive. Furthermore, fenoldopam treatment potentiated adenylyl cyclase activity and was able to recover primary cilia form and sensitivity in cells with impaired cilia. This work demonstrates that modulating the structure of the primary cilium directly impacts cellular mechanosensitivity. Our results implicate cilium length as a potential therapeutic target for combating numerous conditions characterised by impaired cilia function.
Collapse
|
46
|
Jankowska M, Haarhaus M, Qureshi AR, Lindholm B, Evenepoel P, Stenvinkel P. Sclerostin─A Debutant on the Autosomal Dominant Polycystic Kidney Disease Scene? Kidney Int Rep 2017; 2:481-485. [PMID: 29142975 PMCID: PMC5678633 DOI: 10.1016/j.ekir.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/09/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease originating from a mutation in genes encoding polycystin 1 and 2. Recent evidence suggests that these polycystins mediate mechanosensation not only in the primary cilium of kidney cells but also in bone cells. The Wnt/β-catenin signaling pathway plays a central role in mechanotransduction in osteocytes. Mechanical unloading causes the upregulation of the Wnt inhibitor sclerostin. We tested the hypothesis that ADPKD associates with higher circulating sclerostin levels. Methods In this observational, cross-sectional study, circulating levels of sclerostin and other laboratory parameters of mineral and bone disease, including intact parathyroid hormone (PTH), calcium, phosphate, magnesium, 25(OH) D-vitamin, 1,25 (OH)2 D-vitamin, and bone specific alkaline phosphatase (BALP) were assessed in 100 patients with end-stage renal disease recruited from an ongoing longitudinal cohort study in Stockholm, Sweden. Results Patients with ADPKD had higher sclerostin levels and lower BALP levels as compared to patients with other primary renal disease. In multivariate analysis, ADPKD associated with circulating sclerostin levels, independent of the established determinants including age, gender, body mass index, diabetes, phosphate, PTH, and 1,25 (OH)2 D-vitamin. Discussion Circulating sclerostin levels are increased in ADPKD, possibly reflecting impaired mechanosensation. The clinical relevance of this finding, especially with regard to bone health, remains to be investigated. Our finding draws attention to the etiology of kidney disease as an important, yet neglected, confounder of the association between renal failure and mineral and bone disease.
Collapse
Affiliation(s)
- Magdalena Jankowska
- Division of Renal Medicine and Baxter Novum, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Mathias Haarhaus
- Division of Renal Medicine and Baxter Novum, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine and Baxter Novum, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Xie YF, Shi WG, Zhou J, Gao YH, Li SF, Fang QQ, Wang MG, Ma HP, Wang JF, Xian CJ, Chen KM. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 2016; 93:22-32. [PMID: 27622883 DOI: 10.1016/j.bone.2016.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022]
Abstract
Pulsed electromagnetic fields (PEMFs) have been considered as a potential candidate for the prevention and treatment of osteoporosis, however, the mechanism of its action is still elusive. We have previously reported that 50Hz 0.6mT PEMFs stimulate osteoblastic differentiation and mineralization in a primary cilium- dependent manner, but did not know the reason. In the current study, we found that the PEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) by activating bone morphogenetic protein BMP-Smad1/5/8 signaling on the condition that primary cilia were normal. Further studies revealed that BMPRII, the primary binding receptor of BMP ligand, was readily and strongly upregulated by PEMF treatment and localized at the bases of primary cilia. Abrogation of primary cilia with small interfering RNA sequence targeting IFT88 abolished the PEMF-induced upregulation of BMPRII and its ciliary localization. Knockdown of BMPRII expression level with RNA interference had no effects on primary cilia but significantly decreased the promoting effect of PEMFs on osteoblastic differentiation and maturation. These results indicated that PEMFs stimulate osteogenic differentiation and maturation of osteoblast by primary cilium-mediated upregulation of BMPRII expression and subsequently activation of BMP-Smad1/5/8 signaling, and that BMPRII is the key component linking primary cilium and BMP-Smad1/5/8 pathway. This study has thus revealed the molecular mechanism for the osteogenic effect of PEMFs.
Collapse
Affiliation(s)
- Yan-Fang Xie
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Wen-Gui Shi
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Shao-Feng Li
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Qing-Qing Fang
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Ming-Gang Wang
- School of life science and engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China.
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Ju-Fang Wang
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| |
Collapse
|
48
|
Lau KHW, Rundle CH, Zhou XD, Baylink DJ, Sheng MHC. Conditional deletion of IGF-I in osteocytes unexpectedly accelerates bony union of the fracture gap in mice. Bone 2016; 92:18-28. [PMID: 27519969 DOI: 10.1016/j.bone.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023]
Abstract
This study evaluated the effects of deficient IGF-I expression in osteocytes on fracture healing. Transgenic mice with conditional knockout (cKO) of Igf1 in osteocytes were generated by crossing Dmp1-Cre mice with Igf1 flox mice. Fractures were created on the mid-shaft of tibia of 12-week-old male cKO mice and wild-type (WT) littermates by three-point bending. At 21 and 28days post-fracture healing, the increases in cortical bone mineral density, mineral content, bone area, and thickness, as well as sub-cortical bone mineral content at the fracture site were each greater in cKO calluses than in WT calluses. There were 85% decrease in the cartilage area and >2-fold increase in the number of osteoclasts in cKO calluses at 14days post-fracture, suggesting a more rapid remodeling of endochondral bone. The upregulation of mRNA levels of osteoblast marker genes (cbfa1, alp, Opn, and Ocn) was greater in cKO calluses than in WT calluses. μ-CT analysis suggested an accelerated bony union of the fracture gap in cKO mice. The Sost mRNA level was reduced by 50% and the Bmp2 mRNA level was increased 3-fold in cKO fractures at 14days post-fracture, but the levels of these two mRNAs in WT fractures were unchanged, suggesting that the accelerated fracture repair may in part act through the Wnt and/or BMP signaling. In conclusion, conditional deletion of Igf1 in osteocytes not only did not impair, but unexpectedly enhanced, bony union of the fracture gap. The accelerated bony union was due in part to upregulation of the Wnt and BMP2 signaling in response to deficient osteocyte-derived IGF-I expression, which in turn favors intramembranous over endochondral bone repair.
Collapse
Affiliation(s)
- Kin-Hing W Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA; Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Xiao-Dong Zhou
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Matilda H-C Sheng
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
49
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
50
|
Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun 2016; 7:11024. [PMID: 26996322 PMCID: PMC4802171 DOI: 10.1038/ncomms11024] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Intraflagellar transport proteins (IFT) are required for hedgehog (Hh) signalling transduction that is essential for bone development, however, how IFT proteins regulate Hh signalling in osteoblasts (OBs) remains unclear. Here we show that deletion of ciliary IFT80 in OB precursor cells (OPC) in mice results in growth retardation and markedly decreased bone mass with impaired OB differentiation. Loss of IFT80 blocks canonical Hh–Gli signalling via disrupting Smo ciliary localization, but elevates non-canonical Hh–Gαi–RhoA–stress fibre signalling by increasing Smo and Gαi binding. Inhibition of RhoA and ROCK activity partially restores osteogenic differentiation of IFT80-deficient OPCs by inhibiting non-canonical Hh–RhoA–Cofilin/MLC2 signalling. Cytochalasin D, an actin destabilizer, dramatically restores OB differentiation of IFT80-deficient OPCs by disrupting actin stress fibres and promoting cilia formation and Hh–Gli signalling. These findings reveal that IFT80 is required for OB differentiation by balancing between canonical Hh–Gli and non-canonical Hh–Gαi–RhoA pathways and highlight IFT80 as a therapeutic target for craniofacial and skeletal abnormalities. Primary cilia are highly conserved microtubule-based organelles that play essential roles in several cellular processes including osteogenesis. Here the authors show that intraflagellar protein IFT80 regulates osteoblast differentiation by balancing signalling though the canonical and non-canonical Hedgehog pathways.
Collapse
|