1
|
Behbahanipour M, Navarro S, Bárcenas O, Garcia-Pardo J, Ventura S. Bioengineered self-assembled nanofibrils for high-affinity SARS-CoV-2 capture and neutralization. J Colloid Interface Sci 2024; 674:753-765. [PMID: 38955007 DOI: 10.1016/j.jcis.2024.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred intense research efforts to develop new materials with antiviral activity. In this study, we genetically engineered amyloid-based nanofibrils for capturing and neutralizing SARS-CoV-2. Building upon the amyloid properties of a short Sup35 yeast prion sequence, we fused it to SARS-CoV-2 receptor-binding domain (RBD) capturing proteins, LCB1 and LCB3. By tuning the reaction conditions, we achieved the spontaneous self-assembly of the Sup35-LCB1 fusion protein into a highly homogeneous and well-dispersed amyloid-like fibrillar material. These nanofibrils exhibited high affinity for the SARS-CoV-2 RBD, effectively inhibiting its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, the primary entry point for the virus into host cells. We further demonstrate that this functional nanomaterial entraps and neutralizes SARS-CoV-2 virus-like particles (VLPs), with a potency comparable to that of therapeutic antibodies. As a proof of concept, we successfully fabricated patterned surfaces that selectively capture SARS-CoV-2 RBD protein on wet environments. Collectively, these findings suggest that these protein-only nanofibrils hold promise as disinfecting coatings endowed with selective SARS-CoV-2 neutralizing properties to combat viral spread or in the development of sensitive viral sampling and diagnostic tools.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
2
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
3
|
Zhang DY, Wang J, Huang G, Langberg S, Ding F, Dokholyan NV. APOE regulates the transport of GM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587789. [PMID: 38617316 PMCID: PMC11014540 DOI: 10.1101/2024.04.02.587789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Apolipoprotein E (APOE) is responsible for lipid transport, including cholesterol transport and clearance. While the ε4 allele of APOE (APOE4) is associated with a significant genetic risk factor for late-onset Alzheimer's disease (AD), no mechanistic understanding of its contribution to AD etiology has been established yet. In addition to cholesterol, monosialotetrahexosylganglioside (GM1) is a crucial lipid component in cell membranes and has been implicated in promoting the aggregation of amyloid beta protein (Aβ), a key protein associated with AD. Here, we ask whether there are direct interactions between APOE and GM1 that further impact AD pathology. We find that both APOE3 and APOE4 exhibit superior binding affinity to GM1 compared to cholesterol and have an enhanced cellular uptake to GM1 lipid structures than cholesterol lipid structures. APOE regulates the transport process of GM1 depending on the cell type, which is influenced by the expression of APOE receptors in different cell lines and alters GM1 contents in cell membranes. We also find that the presence of GM1 alters the secondary structure of APOE3 and APOE4 and enhances the binding affinity between APOE and its receptor low-density lipoprotein receptor (LDLR), consequently promoting the cellular uptake of lipid structures in the presence of APOE. To understand the enhanced cellular uptake observed in lipid structures containing 20% GM1, we determined the distribution of GM1 on the membrane and found that GM1 clustering in lipid rafts, thereby supporting the physiological interaction between APOE and GM1. Overall, we find that APOE plays a regulatory role in GM1 transport, and the presence of GM1 on the lipid structures influences this transport process. Our studies introduce a plausible direct link between APOE and AD etiology, wherein APOE regulates GM1, which, in turn, promotes Aβ oligomerization and aggregation.
Collapse
|
4
|
Díaz M, Fabelo N, Martín MV, Santos G, Ferrer I. Evidence for alterations in lipid profiles and biophysical properties of lipid rafts from spinal cord in sporadic amyotrophic lateral sclerosis. J Mol Med (Berl) 2024; 102:391-402. [PMID: 38285093 PMCID: PMC10879240 DOI: 10.1007/s00109-024-02419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease affecting motor neurons in the spinal cord and brainstem whose etiopathogenesis remains unclear. Recent studies have linked major neurodegenerative diseases with altered function of multimolecular lipid-protein complexes named lipid rafts. In the present study, we have isolated lipid rafts from the anterior horn of the spinal cords of controls and ALS individuals and analysed their lipid composition. We found that ALS affects levels of different fatty acids, lipid classes and related ratios and indexes. The most significant changes affected the contents of n-9/n-7 monounsaturated fatty acids and arachidonic acid, the main n-6 long-chain polyunsaturated fatty acid (LCPUFA), which were higher in ALS lipid rafts. Paralleling these findings, ALS lipid rafts lower saturates-to-unsaturates ratio compared to controls. Further, levels of cholesteryl ester (SE) and anionic-to-zwitterionic phospholipids ratio were augmented in ALS lipid rafts, while sulfatide contents were reduced. Further, regression analyses revealed augmented SE esterification to (mono)unsaturated fatty acids in ALS, but to saturates in controls. Overall, these changes indicate that lipid rafts from ALS spinal cord undergo destabilization of the lipid structure, which might impact their biophysical properties, likely leading to more fluid membranes. Indeed, estimations of membrane microviscosity confirmed less viscous membranes in ALS, as well as more mobile yet smaller lipid rafts compared to surrounding membranes. Overall, these results demonstrate that the changes in ALS lipid rafts are unrelated to oxidative stress, but to anomalies in lipid metabolism and/or lipid raft membrane biogenesis in motor neurons. KEY MESSAGES: The lipid matrix of multimolecular membrane complexes named lipid rafts are altered in human spinal cord in sporadic amyotrophic lateral sclerosis (ALS). Lipid rafts from ALS spinal cord contain higher levels of n-6 LCPUFA (but not n-3 LCPUFA), n-7/n-9 monounsaturates and lower saturates-to-unsaturates ratio. ALS lipid rafts display increased contents of cholesteryl esters, anomalous anionic-to-zwitterionic phospholipids and phospholipid remodelling and reduced sulphated and total sphingolipid levels, compared to control lipid rafts. Destabilization of the lipid structure of lipid raft affects their biophysical properties and leads to more fluid, less viscous membrane microdomains. The changes in ALS lipid rafts are unlikely related to increased oxidative stress, but to anomalies in lipid metabolism and/or raft membrane biogenesis in motor neurons.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of Sciences, University of La Laguna, Tenerife, Spain.
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, Tenerife, Spain.
| | - Noemí Fabelo
- Laboratory of Membrane Physiology and Biophysics, School of Sciences, University of La Laguna, Tenerife, Spain
| | - M Virginia Martín
- Centro Oceanográfico de Canarias (COC-IEO), Consejo Superior de Investigaciones Científicas, 38180, Santa Cruz de Tenerife, Spain
| | - Guido Santos
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics. School of Sciences, University of La Laguna, Tenerife, Spain
| | - Isidre Ferrer
- University of Barcelona, 08907, Hospitalet de LLobregatBarcelona, Spain
| |
Collapse
|
5
|
Halder T, Saha B, Dhas N, Acharya S, Acharya N. Development and evaluation of multi-functionalized sialic acid conjugated asiatic acid nanoconstruct to mitigate cognitive deficits in Alzheimer's disease. Drug Dev Res 2024; 85:e22146. [PMID: 38349270 DOI: 10.1002/ddr.22146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
Sialic acid (SA) serves a critical role in neuronal repair and cognitive functions. SA is a nine-carbon carboxylated sugar with a glycoconjugate cap that acts as a ligand and surface decoration with SA facilitates delivery to the target site. The present research aimed to develop SA surface modified AA nanostructured lipid carrier (NLCs) with carbodiimide conjugation method. Sterylamine, poloxamer 188 and tween 80 were used as surfactants and several characterization studies including, differential scanning calorimetry, fourier transform infrared spectroscopy and x-ray photon spectroscopy were analyzed. Further, in vitro, neuroprotective efficiency was evaluated in SH-SY5Y cells and hCMEC/D3 cells and found significant potential effects with the treatments of developed NLCs. Pharmacodynamics studies were also assessed in beta-amyloid-injected rats following quantification of Alzheimer's disease (AD) hallmarks like, Aβ(1-42), tau-protein, glycogen synthase kinase-3β levels, interleukin-6 and tumor necrosis factor-α for neuroinflammatory responses. Characterization studies revealed the conjugation on developed NLCs. The in vitro and in vivo results showed significant effects of SA decorated NLCs in reversing the damage by toxicant which was further characterized by the levels of neurotransmitters like acetylcholinesterase, butyrylcholinesterase. The results revealed significant (p < .05) refurbishment of cholinergic functions after 28 days of treatment of developed NLCs. These preclinical findings support the use of SA as a ligand to deliver the AA at targeted site as well as to mitigate the cognitive deficits in AD.
Collapse
Affiliation(s)
- Tripti Halder
- Department of Pharmacognosy, Nirma University, Ahmedabad, Gujarat, India
- Faculty of Pharmacy, School of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Bijit Saha
- Department of Research and Development, Jodas Expoim Pvt Ltd, Kukatpally, Hyderabad, Telangana, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sanjeev Acharya
- Faculty of Pharmacy, Institute of Pharmacy, Ganpat University, Kherva, Gujarat, India
| | - Niyati Acharya
- Department of Pharmacognosy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
6
|
Sohrabi T, Mirzaei-Behbahani B, Zadali R, Pirhaghi M, Morozova-Roche LA, Meratan AA. Common Mechanisms Underlying α-Synuclein-Induced Mitochondrial Dysfunction in Parkinson's Disease. J Mol Biol 2023:167992. [PMID: 36736886 DOI: 10.1016/j.jmb.2023.167992] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is the most common neurological movement disorder characterized by the selective and irreversible loss of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. While most cases are sporadic or environmental, about 10% of patients have a positive family history with a genetic cause. The misfolding and aggregation of α-synuclein (α-syn) as a casual factor in the pathogenesis of PD has been supported by a great deal of literature. Extensive studies of mechanisms underpinning degeneration of the dopaminergic neurons induced by α-syn dysfunction suggest a complex process that involves multiple pathways, including mitochondrial dysfunction and increased oxidative stress, impaired calcium homeostasis through membrane permeabilization, synaptic dysfunction, impairment of quality control systems, disruption of microtubule dynamics and axonal transport, endoplasmic reticulum/Golgi dysfunction, nucleus malfunction, and microglia activation leading to neuroinflammation. Among them mitochondrial dysfunction has been considered as the most primary target of α-syn-induced toxicity, leading to neuronal cell death in both sporadic and familial forms of PD. Despite reviewing many aspects of PD pathogenesis related to mitochondrial dysfunction, a systemic study on how α-syn malfunction/aggregation damages mitochondrial functionality and leads to neurodegeneration is missing in the literature. In this review, we give a detailed molecular overview of the proposed mechanisms by which α-syn, directly or indirectly, contributes to mitochondrial dysfunction. This may provide valuable insights for development of new therapeutic approaches in relation to PD. Antioxidant-based therapy as a potential strategy to protect mitochondria against oxidative damage, its challenges, and recent developments in the field are discussed.
Collapse
Affiliation(s)
- Tahereh Sohrabi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behnaz Mirzaei-Behbahani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ramin Zadali
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
7
|
Maity D. Inhibition of Amyloid Protein Aggregation Using Selected Peptidomimetics. ChemMedChem 2023; 18:e202200499. [PMID: 36317359 DOI: 10.1002/cmdc.202200499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Aberrant protein aggregation leads to the formation of amyloid fibrils. This phenomenon is linked to the development of more than 40 irremediable diseases such as Alzheimer's disease, Parkinson's disease, type 2 diabetes, and cancer. Plenty of research efforts have been given to understanding the underlying mechanism of protein aggregation, associated toxicity, and the development of amyloid inhibitors. Recently, the peptidomimetic approach has emerged as a potential tool to modulate several protein-protein interactions (PPIs). In this review, we discussed selected peptidomimetic-based approaches for the modulation of important amyloid proteins (Islet Amyloid Polypeptide, Amyloid Beta, α-synuclein, mutant p53, and insulin) aggregation. This approach holds a powerful platform for creating an essential stepping stone for the vital development of anti-amyloid therapeutic agents.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Robinson MJ, Newbury S, Singh K, Leonenko Z, Beazely MA. The Interplay Between Cholesterol and Amyloid-β on HT22 Cell Viability, Morphology, and Receptor Tyrosine Kinase Signaling. J Alzheimers Dis 2023; 96:1663-1683. [PMID: 38073391 DOI: 10.3233/jad-230753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-β (Aβ) pathology, but these therapeutics have generally failed in clinical trials. Aβ is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE This work elucidates some of the interplay between membrane cholesterol and Aβ42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS The effects of cholesterol depletion by methyl-β-cyclodextrin followed by treatment with Aβ and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS Cell viability studies show that cholesterol depletion was mildly protective against Aβ toxicity. Together cholesterol reduction and Aβ42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aβ42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS Cholesterol depletion impacted the effects of Aβ42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
- Morgan J Robinson
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Sean Newbury
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Kartar Singh
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Michael A Beazely
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
9
|
Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Rosales-Pérez KE, Orozco-Hernández JM, Islas-Flores H, Galar-Martínez M, Hernández-Navarro MD. Chronic exposure to realistic concentrations of metformin prompts a neurotoxic response in Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157888. [PMID: 35952892 DOI: 10.1016/j.scitotenv.2022.157888] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Metformin (MET) is among the most consumed drugs around the world, and thus, it is considered the uppermost drug in mass discharged into water settings. Nonetheless, data about the deleterious consequences of MET on water organisms are still scarce and require further investigation. Herein, we aimed to establish whether or not chronic exposure to MET (1, 20, and 40 μg/L) may alter the swimming behavior and induce neurotoxicity in Danio rerio adults. After 4 months of exposure, MET-exposed fish exhibited less swimming activity when compared to control fish. Moreover, compared with the control group, MET significantly inhibited the activity of AChE and induced oxidative damage in the brain of fish. Concerning gene expression, MET significantly upregulated the expression of Nrf1, Nrf2, BAX, p53, BACE1, APP, PSEN1, and downregulated CASP3 and CASP9. Although MET did not overexpress the CASP3 gene, we saw a meaningful rise in the activity of this enzyme in the blood of fish exposed to MET compared to the control group, which we then confirmed by a high number of apoptotic cells in the TUNEL assay. Our findings demonstrate that chronic exposure to MET may impair fish swimming behavior, making them more vulnerable to predators.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
10
|
Qu L, Wang L, Ji H, Fang Y, Lei P, Zhang X, Jin L, Sun D, Dong H. Toxic Mechanism and Biological Detoxification of Fumonisins. Toxins (Basel) 2022; 14:182. [PMID: 35324679 PMCID: PMC8954241 DOI: 10.3390/toxins14030182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Food safety is related to the national economy and people's livelihood. Fumonisins are widely found in animal feed, feed raw materials, and human food. This can not only cause economic losses in animal husbandry but can also have carcinogenicity or teratogenicity and can be left in animal meat, eggs, and milk which may enter the human body and pose a serious threat to human health. Although there are many strategies to prevent fumonisins from entering the food chain, the traditional physical and chemical methods of mycotoxin removal have some disadvantages, such as an unstable effect, large nutrient loss, impact on the palatability of feed, and difficulty in mass production. As a safe, efficient, and environmentally friendly detoxification technology, biological detoxification attracts more and more attention from researchers and is gradually becoming an accepted technique. This work summarizes the toxic mechanism of fumonisins and highlights the advances of fumonisins in the detoxification of biological antioxidants, antagonistic microorganisms, and degradation mechanisms. Finally, the future challenges and focus of the biological control and degradation of fumonisins are discussed.
Collapse
Affiliation(s)
- Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Lei Wang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Ji
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Yimeng Fang
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Pengyu Lei
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Libo Jin
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Da Sun
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China;
- Biomedical Collaborative Innovation Center of Zhejiang Province, Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China; (L.W.); (H.J.); (Y.F.); (P.L.); (L.J.)
| |
Collapse
|
11
|
Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiol Dis 2022; 168:105696. [DOI: 10.1016/j.nbd.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
|
12
|
Sgambati E, Tani A, Leri M, Delfino G, Zecchi-Orlandini S, Bucciantini M, Nosi D. Correlation between Sialylation Status and Cell Susceptibility to Amyloid Toxicity. Cells 2022; 11:cells11040601. [PMID: 35203252 PMCID: PMC8870280 DOI: 10.3390/cells11040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
The interaction between the cell membrane and misfolded protein species plays a crucial role in the development of neurodegeneration. This study was designed to clarify the relationship between plasma membrane composition in terms of the differently linked sialic acid (Sia) content and cell susceptibility to toxic and misfolded Aβ-42 peptides. The sialylation status in different cell lines was investigated by lectin histochemistry and confocal immunofluorescence and then correlated with the different propensities to bind amyloid fibrils and with the relative cell susceptibility to amyloid damage. This study reveals that expressions of Sias α2,3 and α2,6 linked to galactose/N-acetyl-galactosamine, and PolySia are positively correlated with Aβ-42-induced cell toxicity. PolySia shows an early strong interaction with amyloid fibrils, favoring their binding to GM1 ganglioside containing α2,3 galactose-linked Sia and a loss of cell viability. Our findings demonstrate that cell lines with a prevailing plastic neuron-like phenotype and high monoSia and PolySia contents are highly susceptible to amyloid Aβ-42 toxicity. This toxicity may involve a change in neuron metabolism and promote a compensative/protective increase in PolySia, which, in turn, could favor amyloid binding to GM1, thus exacerbating cell dysmetabolism and further amyloid aggregation.
Collapse
Affiliation(s)
- Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy;
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Giovanni Delfino
- Department of Biology (BIO), University of Florence, Via Giorgio La Pira 4, 50121 Florence, Italy;
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
- Correspondence:
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (A.T.); (S.Z.-O.); (D.N.)
| |
Collapse
|
13
|
Liu J, Xu W, Wang K, Chen F, Ren L, Xu J, Yao K, Chen X. Congenital cataract-causing mutation βB1-L116P is prone to amyloid fibrils aggregation and protease degradation with low structural stability. Int J Biol Macromol 2022; 195:475-482. [PMID: 34896472 DOI: 10.1016/j.ijbiomac.2021.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Congenital cataract, a common disease with lens opacification, causes blindness in the newborn worldwide and is mainly caused by abnormal aggregation of crystallin. As the main structural protein in the mammalian lens, βB1-crystallin has an important role in the maintenance of lens transparency. Recently, the L116P mutation in βB1-CRY was found in a Chinese family with congenital nuclear cataracts, while its underlying pathogenic mechanism remains unclear. In the current study, the βB1 wild-type protein was purified, and the mutated form, βB1-L116P, was examined for examining the effect on structural stability and susceptibility against environmental stresses. Our results reveal low solubility and structural stability of βB1-L116P at physiological temperature, which markedly impaired the protein structure and the oligomerization of βB1-crystallin. Under guanidine hydrochloride-induced denaturing conditions, βB1-L116P mutation perturbed the protein unfolding process, making it prone to amyloid fibrils aggregation. More importantly, the L116P mutation increased susceptibility of βB1-crystallin against UV radiation. βB1-L116P overexpression led to the formation of more serious intracellular aggresomes under UV radiation or oxidative stress. Furthermore, the βB1-L116P mutation increased the sensitivity to the proteolysis process. These results indicate that the low structural stability, susceptibility to amyloid fibrils aggregation, and protease degradation of βB1-L116P may contribute to cataract development and associated symptoms.
Collapse
Affiliation(s)
- Jian Liu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Eye Center of Zhejiang Hospital, Zhejiang University School of Medicine, 12 Lingyin Road, Hangzhou 310012, China
| | - Wanyue Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Kaijie Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology &Visual Sciences Key Lab, Beijing 100062, China
| | - Fanrui Chen
- College of International Education, Xinyang Normal University, No.237 Nanhu Road, Xinyang 464000, China
| | - Ling Ren
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| |
Collapse
|
14
|
Marini M, Tani A, Manetti M, Sgambati E. Overview of sialylation status in human nervous and skeletal muscle tissues during aging. Acta Histochem 2021; 123:151813. [PMID: 34753032 DOI: 10.1016/j.acthis.2021.151813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Sialic acids (Sias) are a large and heterogeneous family of electronegatively charged nine-carbon monosaccharides containing a carboxylic acid and are mostly found as terminal residues in glycans of glycoproteins and glycolipids such as gangliosides. They are linked to galactose or N-acetylgalactosamine via α2,3 or α2,6 linkage, or to other Sias via α2,8 or more rarely α2,9 linkage, resulting in mono, oligo and polymeric forms. Given their characteristics, Sias play a crucial role in a multitude of human tissue biological processes in physiological and pathological conditions, ranging from development and growth to adult life until aging. Here, we review the sialylation status in human adult life focusing on the nervous and skeletal muscle tissues, which both display significant structural and functional changes during aging, strongly impacting on the whole human body and, therefore, on the quality of life. In particular, this review highlights the fundamental roles played by different types of glycoconjugates Sias in several cellular biological processes in the nervous and skeletal muscle tissues during adult life, also discussing how changes in Sia content during aging may contribute to the physiological decline of physical and nervous functions and to the development of age-related degenerative pathologies. Based on our current knowledge, further in-depth investigations could help to develop novel prophylactic strategies and therapeutic approaches that, by maintaining and/or restoring the correct sialylation status in the nervous and skeletal muscle tissues, could contribute to aging slowing and the prevention of age-related pathologies.
Collapse
|
15
|
Liang Y, Ueno M, Zha S, Okimura T, Jiang Z, Yamaguchi K, Hatakeyama T, Oda T. Sulfated polysaccharide ascophyllan prevents amyloid fibril formation of human insulin and inhibits amyloid-induced hemolysis and cytotoxicity in PC12 cells. Biosci Biotechnol Biochem 2021; 85:2281-2291. [PMID: 34519773 DOI: 10.1093/bbb/zbab163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023]
Abstract
We found that ascophyllan significantly inhibited the fibrillation of human insulin and was the most effective among the sulfated polysaccharides tested. Gel-filtration analysis suggested that ascophyllan was capable of forming a complex with insulin through a weak interaction. Secondary structure transition from native α-helix to β-sheet predominant structure of insulin under the fibrillation conditions was suppressed in the presence of ascophyllan. Interestingly, ascophyllan attenuated insulin fibril-induced hemolysis of human erythrocytes. Moreover, ascophyllan attenuated insulin amyloid-induced cytotoxicity on rat pheochromocytoma PC12 cells and reduced the level of intracellular reactive oxygen species. This is the first report indicating that a sulfated polysaccharide, ascophyllan, can suppress the insulin amyloid fibril formation and inhibit the fibril-induced detrimental bioactivities.
Collapse
Affiliation(s)
- Yan Liang
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Mikinori Ueno
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Shijiao Zha
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi, Japan
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
- Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen, China
| | - Kenichi Yamaguchi
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
- Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo-machi, Nagasaki, Japan
| |
Collapse
|
16
|
Yu W, Ying J, Wang X, Liu X, Zhao T, Yoon S, Zheng Q, Fang Y, Yang D, Hua F. The Involvement of Lactosylceramide in Central Nervous System Inflammation Related to Neurodegenerative Disease. Front Aging Neurosci 2021; 13:691230. [PMID: 34349634 PMCID: PMC8326838 DOI: 10.3389/fnagi.2021.691230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases are a class of slow-progressing terminal illnesses characterized by neuronal lesions, such as multiple sclerosis [MS, Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS)]. Their incidence increases with age, and the associated burden on families and society will become increasingly more prominent with aging of the general population. In recent years, there is growing studies have shown that lactosylceramide (LacCer) plays a crucial role in the progression of neurodegeneration, although these diseases have different pathogenic mechanisms and etiological characteristics. Based on latest research progress, this study expounds the pathogenic role of LacCer in driving central nervous system (CNS) inflammation, as well as the role of membrane microstructure domain (lipid rafts) and metabolite gangliosides, and discusses in detail their links with the pathogenesis of neurodegenerative diseases, with a view to providing new strategies and ideas for the study of pathological mechanisms and drug development for neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Tiancheng Zhao
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Sungtae Yoon
- Helping Minds International Charitable Foundation, New York, NY, United States
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
17
|
EVOO Polyphenols Relieve Synergistically Autophagy Dysregulation in a Cellular Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137225. [PMID: 34281279 PMCID: PMC8267626 DOI: 10.3390/ijms22137225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Autophagy, the major cytoplasmic process of substrate turnover, declines with age, contributing to proteostasis decline, accumulation of harmful protein aggregates, damaged mitochondria and to ROS production. Accordingly, abnormalities in the autophagic flux may contribute to many different pathophysiological conditions associated with ageing, including neurodegeneration. Recent data have shown that extra-virgin olive oil (EVOO) polyphenols stimulate cell defenses against plaque-induced neurodegeneration, mainly, through autophagy induction. (2) Methods: We carried out a set of in vitro experiments on SH-SY5Y human neuroblastoma cells exposed to toxic Aβ1–42 oligomers to investigate the molecular mechanisms involved in autophagy activation by two olive oil polyphenols, oleuropein aglycone (OleA), arising from the hydrolysis of oleuropein (Ole), the main polyphenol found in olive leaves and drupes and its main metabolite, hydroxytyrosol (HT). (3) Results: Our data show that the mixture of the two polyphenols activates synergistically the autophagic flux preventing cell damage by Aβ1–42 oligomers., in terms of ROS production, and impairment of mitochondria. (4) Conclusion: Our results support the idea that EVOO polyphenols act synergistically in autophagy modulation against neurodegeneration. These data confirm and provide the rationale to consider these molecules, alone or in combination, as promising candidates to contrast ageing-associated neurodegeneration.
Collapse
|
18
|
Gaglione R, Smaldone G, Cesaro A, Rumolo M, De Luca M, Di Girolamo R, Petraccone L, Del Vecchio P, Oliva R, Notomista E, Pedone E, Arciello A. Impact of a Single Point Mutation on the Antimicrobial and Fibrillogenic Properties of Cryptides from Human Apolipoprotein B. Pharmaceuticals (Basel) 2021; 14:ph14070631. [PMID: 34209895 PMCID: PMC8308739 DOI: 10.3390/ph14070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses. The effects of a single point mutation (Pro → Ala in position 7) on the biological properties of ApoB-derived peptide r(P)ApoBLPro have been evaluated. Although the two versions of the peptide share similar antimicrobial and anti-biofilm properties, only r(P)ApoBLAla peptide was found to exert bactericidal effects. Interestingly, antimicrobial activity of both peptide versions appears to be dependent from their interaction with specific components of bacterial surfaces, such as LPS or LTA, which induce peptides to form β-sheet-rich amyloid-like structures. Altogether, obtained data indicate a correlation between ApoB-derived peptides self-assembling state and their antibacterial activity.
Collapse
Affiliation(s)
- Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | | | - Angela Cesaro
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Mariano Rumolo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Maria De Luca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
| | - Rosario Oliva
- Physical Chemistry I—Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany;
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Naples, Italy;
- Research Centre on Bioactive Peptides (CIRPeB), University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.G.); (A.C.); (M.R.); (M.D.L.); (R.D.G.); (L.P.); (P.D.V.)
- Istituto Nazionale di Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
- Correspondence: ; Tel.: +39-081-679147
| |
Collapse
|
19
|
Diociaiuti M, Bonanni R, Cariati I, Frank C, D’Arcangelo G. Amyloid Prefibrillar Oligomers: The Surprising Commonalities in Their Structure and Activity. Int J Mol Sci 2021; 22:ijms22126435. [PMID: 34208561 PMCID: PMC8235680 DOI: 10.3390/ijms22126435] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
It has been proposed that a “common core” of pathologic pathways exists for the large family of amyloid-associated neurodegenerations, including Alzheimer’s, Parkinson’s, type II diabetes and Creutzfeldt–Jacob’s Disease. Aggregates of the involved proteins, independently from their primary sequence, induced neuron membrane permeabilization able to trigger an abnormal Ca2+ influx leading to synaptotoxicity, resulting in reduced expression of synaptic proteins and impaired synaptic transmission. Emerging evidence is now focusing on low-molecular-weight prefibrillar oligomers (PFOs), which mimic bacterial pore-forming toxins that form well-ordered oligomeric membrane-spanning pores. At the same time, the neuron membrane composition and its chemical microenvironment seem to play a pivotal role. In fact, the brain of AD patients contains increased fractions of anionic lipids able to favor cationic influx. However, up to now the existence of a specific “common structure” of the toxic aggregate, and a “common mechanism” by which it induces neuronal damage, synaptotoxicity and impaired synaptic transmission, is still an open hypothesis. In this review, we gathered information concerning this hypothesis, focusing on the proteins linked to several amyloid diseases. We noted commonalities in their structure and membrane activity, and their ability to induce Ca2+ influx, neurotoxicity, synaptotoxicity and impaired synaptic transmission.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
| | - Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
20
|
Leri M, Chaudhary H, Iashchishyn IA, Pansieri J, Svedružić ŽM, Gómez Alcalde S, Musteikyte G, Smirnovas V, Stefani M, Bucciantini M, Morozova-Roche LA. Natural Compound from Olive Oil Inhibits S100A9 Amyloid Formation and Cytotoxicity: Implications for Preventing Alzheimer's Disease. ACS Chem Neurosci 2021; 12:1905-1918. [PMID: 33979140 PMCID: PMC8291483 DOI: 10.1021/acschemneuro.0c00828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
![]()
Polyphenolic compounds
in the Mediterranean diet have received
increasing attention due to their protective properties in amyloid
neurodegenerative and many other diseases. Here, we have demonstrated
for the first time that polyphenol oleuropein aglycone (OleA), which
is the most abundant compound in olive oil, has multiple potencies
for the inhibition of amyloid self-assembly of pro-inflammatory protein
S100A9 and the mitigation of the damaging effect of its amyloids on
neuroblastoma SH-SY5Y cells. OleA directly interacts with both native
and fibrillar S100A9 as shown by intrinsic fluorescence and molecular
dynamic simulation. OleA prevents S100A9 amyloid oligomerization as
shown using amyloid oligomer-specific antibodies and cross-β-sheet
formation detected by circular dichroism. It decreases the length
of amyloid fibrils measured by atomic force microscopy (AFM) as well
as reduces the effective rate of amyloid growth and the overall amyloid
load as derived from the kinetic analysis of amyloid formation. OleA
disintegrates already preformed fibrils of S100A9, converting them
into nonfibrillar and nontoxic aggregates as revealed by amyloid thioflavin-T
dye binding, AFM, and cytotoxicity assays. At the cellular level,
OleA targets S100A9 amyloids already at the membranes as shown by
immunofluorescence and fluorescence resonance energy transfer, significantly
reducing the amyloid accumulation in GM1 ganglioside containing membrane
rafts. OleA increases overall cell viability when neuroblastoma cells
are subjected to the amyloid load and alleviates amyloid-induced intracellular
rise of reactive oxidative species and free Ca2+. Since
S100A9 is both a pro-inflammatory and amyloidogenic protein, OleA
may effectively mitigate the pathological consequences of the S100A9-dependent
amyloid-neuroinflammatory cascade as well as provide protection from
neurodegeneration, if used within the Mediterranean diet as a potential
preventive measure.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Himanshu Chaudhary
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Igor A. Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | - Silvia Gómez Alcalde
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Greta Musteikyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | | |
Collapse
|
21
|
Palazzi L, Fongaro B, Leri M, Acquasaliente L, Stefani M, Bucciantini M, Polverino de Laureto P. Structural Features and Toxicity of α-Synuclein Oligomers Grown in the Presence of DOPAC. Int J Mol Sci 2021; 22:ijms22116008. [PMID: 34199427 PMCID: PMC8199589 DOI: 10.3390/ijms22116008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson’s disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Patrizia Polverino de Laureto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
- Correspondence:
| |
Collapse
|
22
|
Cariati I, Bonanni R, Marini M, Rinaldi AM, Zarrilli B, Tancredi V, Frank C, D’Arcangelo G, Diociaiuti M. Role of Electrostatic Interactions in Calcitonin Prefibrillar Oligomer-Induced Amyloid Neurotoxicity and Protective Effect of Neuraminidase. Int J Mol Sci 2021; 22:ijms22083947. [PMID: 33920464 PMCID: PMC8070249 DOI: 10.3390/ijms22083947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 01/06/2023] Open
Abstract
Salmon calcitonin is a good model for studying amyloid behavior and neurotoxicity. Its slow aggregation rate allows the purification of low molecular weight prefibrillar oligomers, which are the most toxic species. It has been proposed that these species may cause amyloid pore formation in neuronal membranes through contact with negatively charged sialic acid residues of the ganglioside GM1. In particular, it has been proposed that an electrostatic interaction may be responsible for the initial contact between prefibrillar oligomers and GM1 contained in lipid rafts. Based on this evidence, the aim of our work was to investigate whether the neurotoxic action induced by calcitonin prefibrillar oligomers could be counteracted by treatment with neuraminidase, an enzyme that removes sialic acid residues from gangliosides. Therefore, we studied cell viability in HT22 cell lines and evaluated the effects on synaptic transmission and long-term potentiation by in vitro extracellular recordings in mouse hippocampal slices. Our results showed that treatment with neuraminidase alters the surface charges of lipid rafts, preventing interaction between the calcitonin prefibrillar oligomers and GM1, and suggesting that the enzyme, depending on the concentration used, may have a partial or total protective action in terms of cell survival and modulation of synaptic transmission.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine (Phd), Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Mario Marini
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Anna Maria Rinaldi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Beatrice Zarrilli
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (A.M.R.); (B.Z.); (V.T.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
23
|
Rawal P, Zhao L. Sialometabolism in Brain Health and Alzheimer's Disease. Front Neurosci 2021; 15:648617. [PMID: 33867926 PMCID: PMC8044809 DOI: 10.3389/fnins.2021.648617] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that are mostly found as terminal residues in glycan structures of glycoconjugates including both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in the brain where they regulate neuronal sprouting and plasticity, axon myelination and myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer's disease (AD), highlights the potential role of sialic acids in the development of microglial dysfunction and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be involved in several other major changes associated with AD. Elevated levels of serum sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid carrier) metabolism have been demonstrated as an aggravating factor in the formation of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and have been implicated to be an important regulator of neurogenesis that contributes to neuronal repair and recovery from neurodegeneration such as in AD. In summary, this article reviews current understanding of neural functions of sialic acids and alterations of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of looking at sialic acids as a promising novel therapeutic target for AD intervention.
Collapse
Affiliation(s)
- Punam Rawal
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
24
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
25
|
Protective effect of Vigna unguiculata extract against aging and neurodegeneration. Aging (Albany NY) 2020; 12:19785-19808. [PMID: 33024055 PMCID: PMC7732273 DOI: 10.18632/aging.104069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Aging and age-related neurodegeneration are among the major challenges in modern medicine because of the progressive increase in the number of elderly in the world population. Nutrition, which has important long-term consequences for health, is an important way to prevent diseases and achieve healthy aging. The beneficial effects of Vigna unguiculata on metabolic disorders have been widely documented. Here, we show that an aqueous extract of V. unguiculata beans delays senescence both in Saccharomyces cerevisiae and Drosophila melanogaster, in a Snf1/AMPK-dependent manner. Consistently, an increased expression of FOXO, SIRT1, NOTCH and heme oxygenase (HO) genes, already known to be required for the longevity extension in D. melanogaster, is also shown. Preventing α-synuclein self-assembly is one of the most promising approaches for the treatment of Parkinson's disease (PD), for which aging is a risk factor. In vitro aggregation of α-synuclein, its toxicity and membrane localization in yeast and neuroblastoma cells are strongly decreased in the presence of bean extract. In a Caenorhabditis elegans model of PD, V. unguiculata extract substantially reduces the number of the age-dependent degeneration of the cephalic dopaminergic neurons. Our findings support the role of V. unguiculata beans as a functional food in age-related disorders.
Collapse
|
26
|
Leri M, Vasarri M, Palazzi L, Barletta E, Nielsen E, Bucciantini M, Degl'Innocenti D. Maysin plays a protective role against α-Synuclein oligomers cytotoxicity by triggering autophagy activation. Food Chem Toxicol 2020; 144:111626. [PMID: 32738375 DOI: 10.1016/j.fct.2020.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder characterized by the progressive loss of neurons. The accumulation of aggregated forms of the α-Synuclein (Syn) protein is the main cause of neurotoxicity in PD by disrupting cellular homeostasis until neuronal death. Scientific research is constantly looking for natural products as preventive agents against the progression of several neurodisorders due their safety and non-toxic nature. Neuroprotective phytochemicals include Maysin (Mys), the most abundant C-glycosilflavone in corn silk. In this work, the Mys protective role against damage by Syn amyloid aggregates - oligomers and fibrils - was investigated in SH-SY5Y human neuroblastoma cells obtaining novel and interesting information concerning the Mys molecular mechanism of action. Mys showed effectiveness in preventing the typical toxic events induced by Syn amyloid aggregates, i.e. oxidative stress and imbalance of intracellular calcium homeostasis. Mys exhibited a cytoprotective role, especially against Syn oligomers injury, activating an autophagic degradative process, thus playing a key role on several features of amyloid neurotoxicity. Therefore, Mys could be proposed for the first time to the scientific community as an interesting novel natural compound that might allow to develop alternative strategies to prevent the damage of Syn oligomers involved in Parkinson's disease.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Luana Palazzi
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padua, via F. Marzolo 5, 35131, Padua, Italy.
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Erik Nielsen
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Donatella Degl'Innocenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
27
|
Bucciantini M, Leri M, Stefani M, Melki R, Zecchi-Orlandini S, Nosi D. The Amphipathic GM1 Molecule Stabilizes Amyloid Aggregates, Preventing their Cytotoxicity. Biophys J 2020; 119:326-336. [PMID: 32579964 DOI: 10.1016/j.bpj.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
Amyloid aggregates have been demonstrated to exert cytotoxic effects in several diseases. It is widely accepted that the complex and fascinating aggregation pathway involves a series of steps during which many heterogeneous intermediates are generated. This process may be greatly potentiated by the presence of amphipathic components of plasma membrane because they may serve as interaction, condensation, and nucleation points. However, there are few data regarding structural alterations induced by the binding between the amyloid fibrils and membrane components and its direct effects on cell integrity. In this study, we found, by 1-anilinonaphthalene 8-sulfonic acid and transmission electron microscopy/fast Fourier transform, that yeast prion Sup35 oligomers showed higher structural uniformity and altered surface properties when grown in the presence of monosialotetrahexosylganglioside, a component of the cell membrane. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and confocal/sensitized Förster resonance energy transfer analyses revealed that these fibrils showed low cytotoxicity and affinity to plasma membrane. Moreover, time-lapse analysis of Sup35 oligomer fibrillation on cells suggested that the amyloid aggregation process per se exerts cytotoxic effects through the interaction of amyloid intermediates with plasma membrane components. These data provide, to our knowledge, new insights to understand the mechanism of amyloid growth and cytotoxicity in the pathogenesis of amyloid diseases.
Collapse
Affiliation(s)
- Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy; Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Ronald Melki
- Institut Francois Jacob, CEA and Laboratory of Neurodegenerative Diseases, CNRS 92265, Fontenay-Aux-Roses, France
| | | | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
28
|
Coarse-grained MD simulations reveal beta-amyloid fibrils of various sizes bind to interfacial liquid-ordered and liquid-disordered regions in phase separated lipid rafts with diverse membrane-bound conformational states. Biophys Chem 2020; 260:106355. [PMID: 32179374 DOI: 10.1016/j.bpc.2020.106355] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022]
Abstract
The membrane binding behaviors of beta-amyloid fibrils, dimers to pentamers, from solution to lipid raft surfaces, were investigated using coarse-grained (CG) MD simulations. Our CG rafts contain phospholipid, cholesterol (with or without tail- or headgroup modifications), and with or without asymmetrically distributed monosialotetrahexosylganglioside (GM1). All rafts exhibited liquid-ordered (Lo), liquid-disordered (Ld), and interfacial Lo/Ld (Lod) domains, with domain sizes depending on cholesterol structure. For rafts without GM1, all fibrils bound to the Lod domains. Specifically, dimer fibrils bound exclusively via the C-terminal, while larger fibrils could bind via other protein regions. Interestingly, a membrane-inserted state was detected for a trimer fibril in a raft with tail-group modified cholesterol. For rafts containing GM1, fibrils bound either to the GM1-clusters, with numerous membrane-bound conformations, or to the non-GM1-containing-Lod domains via the C-terminal. Our results indicate beta-amyloid fibrils bind to Lod domains or GM1, with diversified membrane-bound conformations, in structurally heterogeneous lipid membranes.
Collapse
|
29
|
Diociaiuti M, Bombelli C, Zanetti-Polzi L, Belfiore M, Fioravanti R, Macchia G, Giordani C. The Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and a Lipid-Raft Model: Molecular Mechanisms Leading to Membrane Damage, Ca 2+-Influx and Neurotoxicity. Biomolecules 2019; 10:biom10010058. [PMID: 31905804 PMCID: PMC7022306 DOI: 10.3390/biom10010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
To investigate the interaction between amyloid assemblies and “lipid-rafts”, we performed functional and structural experiments on salmon calcitonin (sCT) solutions rich in prefibrillar oligomers, proto- and mature-fibers interacting with liposomes made of monosialoganglioside-GM1 (4%), DPPC (48%) and cholesterol (48%). To focus on the role played by electrostatic forces and considering that sCT is positive and GM1 is negative at physiologic pH, we compared results with those relative to GM1-free liposomes while, to assess membrane fluidity effects, with those relative to cholesterol-free liposomes. We investigated functional effects by evaluating Ca2+-influx in liposomes and viability of HT22-DIFF neurons. Only neurotoxic solutions rich in unstructured prefibrillar oligomers were able to induce Ca2+-influx in the “lipid-rafts” model, suggesting that the two phenomena were correlated. Thus, we investigated protein conformation and membrane modifications occurring during the interaction: circular dichroism showed that “lipid-rafts” fostered the formation of β-structures and energy filtered-transmission electron microscopy that prefibrillar oligomers formed pores, similar to Aβ did. We speculate that electrostatic forces between the positive prefibrillar oligomers and the negative GM1 drive the initial binding while the hydrophobic profile and flexibility of prefibrillar oligomers, together with the membrane fluidity, are responsible for the subsequent pore formation leading to Ca2+-influx and neurotoxicity.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
- Correspondence: ; Tel.: +39-06-49902981
| | - Cecilia Bombelli
- CNR-Istituto per i Sistemi Biologici, UOS di Roma, c/o Dipartimento di Chimica, Sapienza Università di Roma, I-00185 Roma, Italy;
| | - Laura Zanetti-Polzi
- Dipartimento di Fisica e Scienze Chimiche, Università dell’Aquila, via Vetoio (Coppito 1), 67010 L’Aquila, Italy;
| | - Marcello Belfiore
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
| | - Raoul Fioravanti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
- Dipartimento di Chimica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Gianfranco Macchia
- Centro Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, I-00161 Roma, Italy;
| | - Cristiano Giordani
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia;
| |
Collapse
|
30
|
Chandel TI, Afghani M, Masroor A, Siddique IA, Zakariya SM, Ali M, Khan RH. An insight into the inhibition of fibrillation process verses disaggregation of preformed fibrils of bovine serum albumin by isoprenaline hydrochloride. Int J Biol Macromol 2019; 154:1448-1459. [PMID: 31778695 DOI: 10.1016/j.ijbiomac.2019.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023]
Abstract
This study is based on the analysis of the recent trend of medication in neurodegenerative diseases. Due to the asymptomatic nature of the diseases, medication delays. Therefore, mechanism of medication assists in removal of the symptoms. Therefore, in order to find out remedy for complete prevention of the disease we have considered "inhibition verses disaggregation" study. Various biophysical techniques such as turbidity measurement (TM), Thioflavin T (ThT) binding assays, circular dichroism (CD), transmission electron microscopy (TEM) etc. has been performed. Isoprenaline hydrochloride (ISO) was a good candidate for inhibition and disaggregation of preformed fibrils of BSA. Therefore, it is concluded that inhibition of fibrillation process was more momentous, effective procedure in restricting the aggregation by stabilizing the native conformation of BSA than the removal of preformed amyloid fibrils under in vitro condition. Forwarding ahead, to understand the efficiency of the two processes under in vivo condition, this study can be applied on animal models so that we can look forward on human beings as well for the development of vaccines. This study is concerned about the applied aspect of research in future so that we can hope for prevention of the disease instead of only removal of the symptoms.
Collapse
Affiliation(s)
- Tajalli Ilm Chandel
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P., India
| | - Mariyam Afghani
- Schools of Life Sciences, Devi Ahilya Vishwavidyalaya, Takshila campus, Bhawarkua, Khandwa road, Indore, M.P., India
| | - Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P., India
| | | | | | - Maroof Ali
- Moradabad Institutes of Technology, Moradabad, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
31
|
Palazzi L, Leri M, Cesaro S, Stefani M, Bucciantini M, Polverino de Laureto P. Insight into the molecular mechanism underlying the inhibition of α-synuclein aggregation by hydroxytyrosol. Biochem Pharmacol 2019; 173:113722. [PMID: 31756328 DOI: 10.1016/j.bcp.2019.113722] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the elderly people. To date, drugs able to reverse the disease are not available; the gold standard is levodopa that only relieves clinical symptoms, yet with severe side effects after prolonged administration. Many efforts are underway to find alternative targets for PD prevention or treatment, the most promising being α-synuclein (Syn). Recently, we reported that oleuropein aglycone (OleA) interferes with amyloid aggregation of Syn both stabilizing its monomeric state and inducing the formation of harmless, off-pathway oligomers. This study is focused at describing the interaction between Syn and hydroxytyrosol (HT), the phenolic moiety and main metabolite of OleA, and the interferences with Syn aggregation by using biophysical and biological techniques. Our results show that HT dose-dependently inhibits Syn aggregation and that covalent and non-covalent binding mediate HT-Syn interaction. HT does not modify the natively unfolded structure of Syn, rather, it stabilizes specific regions of the molecule leading to inhibition of protein fibrillation. Cellular assays showed that HT reduces the toxicity of Syn aggregates. Moreover, Syn aggregates interaction with the cell membrane, an important factor for prion-like properties of Syn on-pathway oligomers, was reduced in cells exposed to Syn aggregates grown in the presence of HT.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, Italy
| | - Samuele Cesaro
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | | |
Collapse
|
32
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
33
|
Canerina-Amaro A, Pereda D, Diaz M, Rodriguez-Barreto D, Casañas-Sánchez V, Heffer M, Garcia-Esparcia P, Ferrer I, Puertas-Avendaño R, Marin R. Differential Aggregation and Phosphorylation of Alpha Synuclein in Membrane Compartments Associated With Parkinson Disease. Front Neurosci 2019; 13:382. [PMID: 31068782 PMCID: PMC6491821 DOI: 10.3389/fnins.2019.00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) is a major factor behind the onset of Parkinson’s disease (PD). Sublocalization of this protein may be relevant for the formation of multimeric α-syn oligomeric configurations, insoluble aggregates that form Lewy bodies in PD brains. Processing of this protein aggregation is regulated by associations with distinct lipid classes. For instance, instability of lipid raft (LR) microdomains, membrane regions with a particular lipid composition, is an early event in the development of PD. However, the relevance of membrane microdomains in the regulation and trafficking of the distinct α-syn configurations associated with PD remains unexplored. In this study, using 6- and 14-month-old healthy and MPTP-treated animals as a model of PD, we have investigated the putative molecular alterations of raft membrane microstructures, and their impact on α-syn dynamics and conformation. A comparison of lipid analyses of LR microstructures and non-raft (NR) fractions showed alterations in gangliosides, cholesterol, polyunsaturated fatty acids (PUFA) and phospholipids in the midbrain and cortex of aged and MPTP-treated mice. In particular, the increase of PUFA and phosphatidylserine (PS) during aging correlated with α-syn multimeric formation in NR. In these aggregates, α-syn was phosphorylated in pSer129, the most abundant post-transductional modification of α-syn promoting toxic aggregation. Interestingly, similar variations in PUFA and PS content correlating with α-syn insoluble accumulation were also detected in membrane microstructures from the human cortex of incidental Parkinson Disease (iPD) and PD, as compared to healthy controls. Furthermore, structural changes in membrane lipid microenvironments may induce rearrangements in raft-interacting proteins involved in other neuropathologies. Therefore, we also investigated the dynamic of other protein markers involved in cognition and memory impairment such as metabotropic glutamate receptor 5 (mGluR5), ionotropic NMDA receptor (NMDAR2B), prion protein (PrPc) and amyloid precursor protein (APP), whose activity depends on membrane lipid organization. We observed a decline of these protein markers in LR fractions with the progression of aging and pathology. Overall, our findings demonstrate that lipid alterations in membranous compartments promoted by brain aging and PD-like injury may have an effect on α-syn aggregation and segregation in abnormal multimeric structures.
Collapse
Affiliation(s)
- Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Daniel Pereda
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Mario Diaz
- Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain.,Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Deiene Rodriguez-Barreto
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Verónica Casañas-Sánchez
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Faculty of Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Marija Heffer
- Department of Biology, University of Osijek School of Medicine, Osijek, Croatia
| | - Paula Garcia-Esparcia
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,CIBERNED, Barcelona, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Santa Cruz de Tenerife, Spain.,Associate Research Unit ULL-CSIC, Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases, University of La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
34
|
Leri M, Natalello A, Bruzzone E, Stefani M, Bucciantini M. Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ 1-42 aggregation. Food Chem Toxicol 2019; 129:1-12. [PMID: 30995514 DOI: 10.1016/j.fct.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Oleuropein aglycone (OleA), the most abundant polyphenol in extra virgin olive oil (EVOO), and Hydroxythyrosol (HT), the OleA main metabolite, have attracted our interest due to their multitarget effects, including the interference with amyloid aggregation path. However, the mechanistic details of their anti-amyloid effect are not known yet. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which OleA and HT modulate the Aβ1-42 fibrillation, a main histopathological feature of Alzheimer's disease (AD). In particular, OleA prevents the growth of toxic Aβ1-42 oligomers and blocks their successive growth into mature fibrils following its interaction with the peptide N-terminus, while HT speeds up harmless fibril formation. Our data demonstrate that, by stabilizing oligomers and fibrils, both polyphenols reduce their seeding activity and aggregate/membrane interaction on human neuroblastoma SH-SY5Y cells. These findings highlight the great potential of EVOO polyphenols and offer the possibility to validate and to optimize their use for possible AD prevention and therapy.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6 - 50139 Florence, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Elena Bruzzone
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy.
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50 - 50134, Florence, Italy; Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| |
Collapse
|
35
|
Brás IC, Lopes LV, Outeiro TF. Sensing α-Synuclein From the Outside via the Prion Protein: Implications for Neurodegeneration. Mov Disord 2018; 33:1675-1684. [DOI: 10.1002/mds.27478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration; University Medical Center Göttingen; Göttingen Germany
| | - Luísa V. Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina; Universidade de Lisboa; Lisboa Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration; University Medical Center Göttingen; Göttingen Germany
- CEDOC, Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciências Médicas; Universidade Nova de Lisboa, Campo dos Mártires da Pátria; Lisboa Portugal
- Max Planck Institute for Experimental Medicine; Göttingen Germany
- Institute of Neuroscience, The Medical School; Newcastle University; Newcastle Upon Tyne UK
| |
Collapse
|
36
|
Katebi B, Mahdavimehr M, Meratan AA, Ghasemi A, Nemat-Gorgani M. Protective effects of silibinin on insulin amyloid fibrillation, cytotoxicity and mitochondrial membrane damage. Arch Biochem Biophys 2018; 659:22-32. [PMID: 30266624 DOI: 10.1016/j.abb.2018.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 02/02/2023]
Abstract
A growing body of evidence suggests that secretion and assembly of insulin to amyloid fibrils reduce its efficacy in treating type II diabetes and may lead to dysfunctioning of several organs. The research presented here explores the effects of silibinin on the in vitro amyloid fibrillation and cytotoxicity of bovine insulin fibrils on SH-SY5Y human neuroblastoma cells. Interaction of the resulting structures with rat brain mitochondria was also investigated. Using a range of methods for amyloid detection we showed that insulin fibrillation was significantly inhibited by silibinin in a dose-dependent fashion. Moreover, we found that silibinin was very effective in attenuating insulin fibril-induced neuronal toxicity characterized by decrease of cell viability, the release of lactate dehydrogenase, intracellular reactive oxygen species enhancement, morphological alterations, and apoptotic cell death induction. While insulin fibrillation products showed the capacity to damage mitochondria, the resultant structures produced in the presence of silibinin were totally ineffective. Together, results demonstrate the capacity of insulin fibrils to cause SH-SY5Y cell death by inducing necrosis/apoptosis changes and suggest how silibinin may afford protection. It is concluded that elucidation of such protection may provide important insights into the development of preventive and therapeutic agents for amyloid-related diseases.
Collapse
Affiliation(s)
- Bentolhoda Katebi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Mohsen Mahdavimehr
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
37
|
Giorgetti S, Greco C, Tortora P, Aprile FA. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. Int J Mol Sci 2018; 19:E2677. [PMID: 30205618 PMCID: PMC6164555 DOI: 10.3390/ijms19092677] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/02/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022] Open
Abstract
Amyloids result from the aggregation of a set of diverse proteins, due to either specific mutations or promoting intra- or extra-cellular conditions. Structurally, they are rich in intermolecular β-sheets and are the causative agents of several diseases, both neurodegenerative and systemic. It is believed that the most toxic species are small aggregates, referred to as oligomers, rather than the final fibrillar assemblies. Their mechanisms of toxicity are mostly mediated by aberrant interactions with the cell membranes, with resulting derangement of membrane-related functions. Much effort is being exerted in the search for natural antiamyloid agents, and/or in the development of synthetic molecules. Actually, it is well documented that the prevention of amyloid aggregation results in several cytoprotective effects. Here, we portray the state of the art in the field. Several natural compounds are effective antiamyloid agents, notably tetracyclines and polyphenols. They are generally non-specific, as documented by their partially overlapping mechanisms and the capability to interfere with the aggregation of several unrelated proteins. Among rationally designed molecules, we mention the prominent examples of β-breakers peptides, whole antibodies and fragments thereof, and the special case of drugs with contrasting transthyretin aggregation. In this framework, we stress the pivotal role of the computational approaches. When combined with biophysical methods, in several cases they have helped clarify in detail the protein/drug modes of interaction, which makes it plausible that more effective drugs will be developed in the future.
Collapse
Affiliation(s)
- Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy.
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Paolo Tortora
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
- Milan Center for Neuroscience (Neuro-MI), 20126 Milano, Italy.
| | - Francesco Antonio Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| |
Collapse
|
38
|
Zhang L, Trushin S, Christensen TA, Tripathi U, Hong C, Geroux RE, Howell KG, Poduslo JF, Trushina E. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis 2018; 114:1-16. [PMID: 29477640 PMCID: PMC5926207 DOI: 10.1016/j.nbd.2018.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/03/2018] [Accepted: 02/07/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibition of mitochondrial axonal trafficking by amyloid beta (Aβ) peptides has been implicated in early pathophysiology of Alzheimer's Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aβ oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aβ peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aβ peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aβ peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aβ peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aβ species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aβ aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aβ may not be sufficient to alleviate the trafficking phenotype.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Courtney Hong
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Kyle G Howell
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microscopy and Cell Analysis Core Facility, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Joseph F Poduslo
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
39
|
Ulicna K, Bednarikova Z, Hsu WT, Holztragerova M, Wu JW, Hamulakova S, Wang SSS, Gazova Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf B Biointerfaces 2018; 166:108-118. [DOI: 10.1016/j.colsurfb.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
40
|
Oleuropein aglycone: A polyphenol with different targets against amyloid toxicity. Biochim Biophys Acta Gen Subj 2018; 1862:1432-1442. [DOI: 10.1016/j.bbagen.2018.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/29/2022]
|
41
|
Dhouafli Z, Leri M, Bucciantini M, Stefani M, Gadhoumi H, Mahjoub B, Ben Jannet H, Guillard J, Ksouri R, Saidani Tounsi M, Soto C, Hayouni EA. 1,2,4-trihydroxynaphthalene-2-O-β-D-glucopyranoside delays amyloid-β 42 aggregation and reduces amyloid cytotoxicity. Biofactors 2018; 44:272-280. [PMID: 29582494 DOI: 10.1002/biof.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Presently, misfolding and aggregation of amyloid-β42 (Aβ42 ) are considered early events in Alzheimer's disease (AD) pathogenesis. The use of natural products to inhibit the aggregation process and to protect cells from cytotoxicity of early aggregate grown at the onset of the aggregation path is one of the promising strategies against AD. Recently, we have purified a new powerful antioxidant and inhibitor of Aβ42 aggregation from the leaves of Lawsonia inermis. The new compound was identified as a new Lawsoniaside; 1,2,4-trihydroxynaphthalene-2-O-β-D-glucopyranoside (THNG). Herein, we show that THNG interferes with Aβ42 aggregation, inhibits its conformational change to a β-sheet-rich structure, decreases its polymerization into large fibrillar species, reduces oxidative stress, and aggregate cytotoxicity. These results indicate that THNG has great potential as a neuroprotective and therapeutic agent against AD. © 2018 BioFactors, 44(3):272-280, 2018.
Collapse
Affiliation(s)
- Zohra Dhouafli
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Hamza Gadhoumi
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Borhane Mahjoub
- Laboratoire de Chimie, Institut Supérieur Agronomique de Chott Meriem, Sousse, Tunisia
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Tunisie
| | - Jérôme Guillard
- Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP, UMR CNRS 7285, Poitiers Cedex 9, France
| | - Riadh Ksouri
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Moufida Saidani Tounsi
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and related Brain disorders, University of Texas Medical School at Houston, Houston, TX, USA
| | - El Akrem Hayouni
- Laboratoire des Plantes Aromatiques et Médicinales (LPAM- LR15CBBC06), Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| |
Collapse
|
42
|
Zhang S, Chen H, Wang A, Liu Y, Hou H, Hu Q. Genotoxicity analysis of five particle matter toxicants from cigarette smoke based on γH2AX assay combined with Hill/Two-component model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:131-140. [PMID: 29329021 DOI: 10.1016/j.etap.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
To investigate the genotoxic characteristics of typical toxicants in particle phase of cigarette smoke, including B[a]P, nicotine, tar, NNN and NNK. The in vitro γH2AX assay was used to detect the DNA double-strand breaks (DSBs) in A549 cells using high content screening (HCS). The results showed all toxicants had a dose/time-dependent effects on induction of γH2AX except for NNN and NNK. Based on dose-response of γH2AX and Hill model, the ability to induce DSBs was evaluated: NNN-acetate > B[a]P > NNK-acetate > tar > nicotine. Based on time-course of γH2AX and two-component model, the complex DNA damage was the main subtypes of DNA damage induced by these toxicants. Overall, all toxicants were genotoxic in A549 cells in a dose- or time- dependent manner except for NNN and NNK based on the γH2AX HCS assay. NNN-acetate had more potential to induce DSBs, which was followed by B[a]P, NNK-acetate, tar and nicotine.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China; University of Science and Technology of China, Hefei 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| |
Collapse
|
43
|
Quittot N, Sebastiao M, Al-Halifa S, Bourgault S. Kinetic and Conformational Insights into Islet Amyloid Polypeptide Self-Assembly Using a Biarsenical Fluorogenic Probe. Bioconjug Chem 2018; 29:517-527. [DOI: 10.1021/acs.bioconjchem.7b00827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Noé Quittot
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Mathew Sebastiao
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Soultan Al-Halifa
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, Quebec Network
for Research on Protein Function, Engineering and Applications, PROTEO, University of Québec in Montreal, C.P. 8888, Succursale Centre-Ville, Montreal, Québec H3C 3P8, Canada
| |
Collapse
|
44
|
Ponikova S, Kubackova J, Bednarikova Z, Marek J, Demjen E, Antosova A, Musatov A, Gazova Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim Biophys Acta Gen Subj 2017; 1861:2934-2943. [DOI: 10.1016/j.bbagen.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
|
45
|
Zhang S, Chen H, Wang A, Liu Y, Hou H, Hu Q. Assessment of genotoxicity of four volatile pollutants from cigarette smoke based on the in vitro γH2AX assay using high content screening. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:30-36. [PMID: 28818740 DOI: 10.1016/j.etap.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
To evaluate the genotoxic effects of formaldehyde, acetaldehyde, acrolein and benzene on A549 cells, the in vitro γH2AX assay was used in combination with high content screening (HCS) technology. All aldehydes showed a significant genotoxicity in a dose/time-dependent effect on the induction of γH2AX. Benzene failed to show a significant genotoxicity based on the γH2AX assay. However, hydroquinone (one of metabolites of benzene) showed a significant genotoxicity in vitro. Based on the dose-response of γH2AX and Hill model, the ability to induce DNA double-strand break can be evaluated as acrolein>formaldehyde>acetaldehyde>benzene. The slow DNA damage/repair mechanism may be more important than the fast one for aldehydes based on time-course of γH2AX and two-component model. Overall, all toxicants were genotoxic in a dose- or time-dependent manner based on the in vitro γH2AX HCS assay, and acrolein had a strong potential to induce DNA damage followed by formaldehyde, acetaldehyde and benzene in sequence.
Collapse
Affiliation(s)
- Sen Zhang
- Institute of Applied Technology, Hefei Institutes of physical Science, Chinese Academy of Sciences, Hefei 230088, PR China; University of Science and Technology of China, Hefei 230026, PR China; China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China
| | - An Wang
- Institute of Applied Technology, Hefei Institutes of physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Yong Liu
- Institute of Applied Technology, Hefei Institutes of physical Science, Chinese Academy of Sciences, Hefei 230088, PR China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou 450001, PR China.
| |
Collapse
|
46
|
Structural Properties of Human IAPP Dimer in Membrane Environment Studied by All-Atom Molecular Dynamics Simulations. Sci Rep 2017; 7:7915. [PMID: 28801684 PMCID: PMC5554177 DOI: 10.1038/s41598-017-08504-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
The aggregation of human islet amyloid polypeptide (hIAPP) can damage the membrane of the β-cells in the pancreatic islets and induce type 2 diabetes (T2D). Growing evidences indicated that the major toxic species are small oligomers of IAPP. Due to the fast aggregation nature, it is hard to characterize the structures of IAPP oligomers by experiments, especially in the complex membrane environment. On the other side, molecular dynamics simulation can provide atomic details of the structure and dynamics of the aggregation of IAPP. In this study, all-atom bias-exchange metadynamics (BE-Meta) and unbiased molecular dynamics simulations were employed to study the structural properties of IAPP dimer in the membranes environments. A number of intermediates, including α-helical states, β-sheet states, and fully disordered states, are identified. The formation of N-terminal β-sheet structure is prior to the C-terminal β-sheet structure towards the final fibril-like structures. The α-helical intermediates have lower propensity in the dimeric hIAPP and are off-pathway intermediates. The simulations also demonstrate that the β-sheet intermediates induce more perturbation on the membrane than the α-helical and disordered states and thus pose higher disruption ability.
Collapse
|
47
|
|
48
|
Young LM, Tu LH, Raleigh DP, Ashcroft AE, Radford SE. Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. Chem Sci 2017; 8:5030-5040. [PMID: 28970890 PMCID: PMC5613229 DOI: 10.1039/c7sc00620a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form.
Collapse
Affiliation(s)
- Lydia M Young
- Astbury Centre for Structural Molecular Biology , School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , UK .
| | - Ling-Hsien Tu
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , USA
- Genomics Research Center , Academia Sinica , 128 Academia , Taipei 11529 , Taiwan
| | - Daniel P Raleigh
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794-3400 , USA
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology , School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , UK .
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology , School of Molecular and Cellular Biology , University of Leeds , Leeds LS2 9JT , UK .
| |
Collapse
|
49
|
Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D, Maria Doglia S, Relini A, Penco A, Giorgetti S, Gerace E, Mannaioni G, Bellotti V, Rigacci S, Cerbai E, Stefani M. Biochemical and Electrophysiological Modification of Amyloid Transthyretin on Cardiomyocytes. Biophys J 2017; 111:2024-2038. [PMID: 27806283 DOI: 10.1016/j.bpj.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/26/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy.
| | - Valentina Spinelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Amanda Penco
- Department of Physics, University of Genoa, Genoa, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Elisabetta Gerace
- Department of Health Science, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy; Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom
| | - Stefania Rigacci
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; Center of Molecular Medicine, University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences "Mario Serio,", University of Florence, Florence, Italy; Research Centre on the Molecular Basis of Neurodegeneration, University of Florence, Florence, Italy
| |
Collapse
|
50
|
Chemerovski‐Glikman M, Frenkel‐Pinter M, Mdah R, Abu‐Mokh A, Gazit E, Segal D. Inhibition of the Aggregation and Toxicity of the Minimal Amyloidogenic Fragment of Tau by Its Pro‐Substituted Analogues. Chemistry 2017; 23:9618-9624. [DOI: 10.1002/chem.201701218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Marina Chemerovski‐Glikman
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Moran Frenkel‐Pinter
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Ragad Mdah
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Amjaad Abu‐Mokh
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| | - Ehud Gazit
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
- Department of Materials Science and EngineeringIby and Aladar Fleischman Faculty of EngineeringTel Aviv University Tel Aviv 6997801 Israel
| | - Daniel Segal
- Department of Molecular Microbiology & BiotechnologySagol Interdisciplinary School of NeurosciencesGeorge S. Wise Faculty of Life SciencesTel-Aviv University Tel-Aviv 69978 Israel
| |
Collapse
|