1
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
2
|
Lernmark Å, Akolkar B, Hagopian W, Krischer J, McIndoe R, Rewers M, Toppari J, Vehik K, Ziegler AG. Possible heterogeneity of initial pancreatic islet beta-cell autoimmunity heralding type 1 diabetes. J Intern Med 2023; 294:145-158. [PMID: 37143363 PMCID: PMC10524683 DOI: 10.1111/joim.13648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD USA
| | | | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, Colorado USA
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Neuherberg, Germany
| | | |
Collapse
|
3
|
Qu M, Yu K, Rehman Aziz AU, Zhang H, Zhang Z, Li N, Liu B. The role of Actopaxin in tumor metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:90-102. [PMID: 36150525 DOI: 10.1016/j.pbiomolbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Actopaxin is a newly discovered focal adhesions (FAs) protein, actin-binding protein and pseudopodia-enriched molecule. It can not only bind to a variety of FAs proteins (such as Paxillin, ILK and PINCH) and non-FAs proteins (such as TESK1, CdGAP, β2-adaptin, G3BP2, ADAR1 and CD29), but also participates in multiple signaling pathways. Thus, it plays a crucial role in regulating important processes of tumor metastasis, including matrix degradation, migration, and invasion, etc. This review covers the latest progress in the structure and function of Actopaxin, its interaction with other proteins as well as its involvement in regulating tumor development and metastasis. Additionally, the current limitations for Actopaxin related studies and the possible research directions on it in the future are also discussed. It is hoped that this review can assist relevant researchers to obtain a deep understanding of the role that Actopaxin plays in tumor progression, and also enlighten further research and development of therapeutic approaches for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Manrong Qu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Kehui Yu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| |
Collapse
|
4
|
The explorations of dynamic interactions of paxillin at the focal adhesions. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140825. [PMID: 35926716 DOI: 10.1016/j.bbapap.2022.140825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Paxillin is one of the most important adapters in integrin-mediated adhesions that performs numerous crucial functions relying on its dynamic interactions. Its structural behavior serves different purposes, providing a base for several activities. The various domains of paxillin display different functions in the whole process of cell movements and have a significant role in cell adhesion, migration, signal transmission, and protein-protein interactions. On the other hand, some paxillin-associated proteins provide a unique spatiotemporal mechanism for regulating its dynamic characteristics in the tissue homeostasis and make it a more complex and decisive protein at the focal adhesions. This review briefly describes the structural adaptations and molecular mechanisms of recruitment of paxillin into adhesions, explains paxillin's binding dynamics and impact on adhesion stability and turnover, and reveals a variety of paxillin-associated regulatory mechanisms and how paxillin is embedded into the signaling networks.
Collapse
|
5
|
Allenspach EJ, Shubin NJ, Cerosaletti K, Mikacenic C, Gorman JA, MacQuivey MA, Rosen AB, Timms AE, Wray-Dutra MN, Niino K, Liggitt D, Wurfel MM, Buckner JH, Piliponsky AM, Rawlings DJ. The Autoimmune Risk R262W Variant of the Adaptor SH2B3 Improves Survival in Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2710-2719. [PMID: 34740959 PMCID: PMC8612972 DOI: 10.4049/jimmunol.2100454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
The single-nucleotide polymorphism (SNP) rs3184504 is broadly associated with increased risk for multiple autoimmune and cardiovascular diseases. Although the allele is uniquely enriched in European descent, the mechanism for the widespread selective sweep is not clear. In this study, we find the rs3184504*T allele had a strong association with reduced mortality in a human sepsis cohort. The rs3184504*T allele associates with a loss-of-function amino acid change (p.R262W) in the adaptor protein SH2B3, a likely causal variant. To better understand the role of SH2B3 in sepsis, we used mouse modeling and challenged SH2B3-deficient mice with a polymicrobial cecal-ligation puncture (CLP) procedure. We found SH2B3 deficiency improved survival and morbidity with less organ damage and earlier bacterial clearance compared with control mice. The peritoneal infiltrating cells exhibited augmented phagocytosis in Sh2b3 -/- mice with enriched recruitment of Ly6Chi inflammatory monocytes despite equivalent or reduced chemokine expression. Rapid cycling of monocytes and progenitors occurred uniquely in the Sh2b3 -/- mice following CLP, suggesting augmented myelopoiesis. To model the hypomorphic autoimmune risk allele, we created a novel knockin mouse harboring a similar point mutation in the murine pleckstrin homology domain of SH2B3. At baseline, phenotypic changes suggested a hypomorphic allele. In the CLP model, homozygous knockin mice displayed improved mortality and morbidity compared with wild-type or heterozygous mice. Collectively, these data suggest that hypomorphic SH2B3 improves the sepsis response and that balancing selection likely contributed to the relative frequency of the autoimmune risk variant.
Collapse
Affiliation(s)
- Eric J. Allenspach
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Nicholas J. Shubin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Carmen Mikacenic
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jacquelyn A Gorman
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Matthew A. MacQuivey
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Aaron B.I. Rosen
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew E. Timms
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Michelle N. Wray-Dutra
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kerri Niino
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Mark M. Wurfel
- Department of Medicine, Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Adrian M. Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Departments of Pediatrics, Pathology and Global Health, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, Washington, USA,Department of Pediatrics, University of Washington, Seattle, Washington, USA,Department of Immunology, University of Washington, Seattle, Washington, USA,Correspondence should be addressed to D.J.R. () and E.J.A. ()
| |
Collapse
|
6
|
LNK promotes the growth and metastasis of triple negative breast cancer via activating JAK/STAT3 and ERK1/2 pathway. Cancer Cell Int 2020; 20:124. [PMID: 32322171 PMCID: PMC7160949 DOI: 10.1186/s12935-020-01197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background LNK adaptor protein is a crucial regulator of normal hematopoiesis, which down-regulates activated tyrosine kinases at the cell surface resulting in an antitumor effect. To date, little studies have examined activities of LNK in solid tumors except ovarian cancer. Methods Clinical tissue chips were obtained from 16 clinical patients after surgery. Western blotting assay and quantitative real time PCR was performed to measure the expression of LNK. We investigate the in vivo and vitro effect of LNK in Triple Negative Breast Cancer by using cell proliferation、migration assays and an in vivo murine xenograft model. Western blotting assay was performed to investigate the mechanism of LNK in triple negative breast cancer. Results We found that the levels of LNK expression were elevated in high grade triple-negative breast cancer through Clinical tissue chips. Remarkably, overexpression of LNK can promote breast cancer cell proliferation and migration in vivo and vitro, while silencing of LNK show the opposite phenomenon. We also found that LNK can promote breast cancer cell to proliferate and migrate via activating JAK/STAT3 and ERK1/2 pathway. Conclusions Our results suggest that the adaptor protein LNK acts as a positive signal transduction modulator in TNBC.
Collapse
|
7
|
Safarova MS, Fan X, Austin EE, van Zuydam N, Hopewell J, Schaid DJ, Kullo IJ. Targeted Sequencing Study to Uncover Shared Genetic Susceptibility Between Peripheral Artery Disease and Coronary Heart Disease-Brief Report. Arterioscler Thromb Vasc Biol 2020; 39:1227-1233. [PMID: 31070467 DOI: 10.1161/atvbaha.118.312128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective- It is unclear to what extent genetic susceptibility variants are shared between peripheral artery disease (PAD) and coronary heart disease (CHD), both manifestations of atherosclerotic vascular disease. We investigated whether common and low-frequency/rare variants in loci associated with CHD are also associated with PAD. Approach and Results- Targeted sequencing of 41 genomic regions associated with CHD in genome-wide association studies was performed in 1749 PAD cases (65±11 years, 61% men) and 1855 controls (60±11 years, 56% men) of European ancestry. PAD cases had a resting/postexercise ankle-brachial index ≤0.9, or history of lower extremity revascularization; controls had no history of PAD. We tested the association of common (defined as minor allele frequency ≥5%) variants with PAD assuming an additive genetic model with adjustment for age and sex. To identify low-frequency/rare variants (minor allele frequency <5%) associated with PAD, we conducted gene-level analyses using sequence kernel association test and permutation test. After Bonferroni correction, we found common variants in SH2B3, ABO, and ZEB2 to be associated with PAD ( P<4.5×10-5). At the gene level, the strongest associations were for LPL and SH2B3. Conclusions- Targeted sequencing of 41 genomic regions associated with CHD revealed several common variants/genes to be associated with PAD, highlighting the basis of shared genetic susceptibility between CHD and PAD.
Collapse
Affiliation(s)
- Maya S Safarova
- From the Department of Cardiovascular Medicine (M.S.S., X.F., E.E.A., I.J.K.), Mayo Clinic, Rochester, MN
| | - Xiao Fan
- From the Department of Cardiovascular Medicine (M.S.S., X.F., E.E.A., I.J.K.), Mayo Clinic, Rochester, MN
| | - Erin E Austin
- From the Department of Cardiovascular Medicine (M.S.S., X.F., E.E.A., I.J.K.), Mayo Clinic, Rochester, MN
| | - Natalie van Zuydam
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom (N.v.Z.)
| | - Jemma Hopewell
- Nuffield Department of Population Health, Oxford, United Kingdom (J.H.)
| | - Daniel J Schaid
- Department of Health Sciences Research (D.J.S.), Mayo Clinic, Rochester, MN
| | - Iftikhar J Kullo
- From the Department of Cardiovascular Medicine (M.S.S., X.F., E.E.A., I.J.K.), Mayo Clinic, Rochester, MN.,Gonda Vascular Center (I.J.K.), Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Pan J, Peng R, Cheng N, Chen F, Gao B. LNK protein: Low expression in human colorectal carcinoma and relationship with tumor invasion. Biomed Pharmacother 2020; 121:109467. [DOI: 10.1016/j.biopha.2019.109467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
|
9
|
Huang J, Sun Y, Chen L, Ma G. The lymphocyte adapter protein: A negative regulator of myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2019; 134:107-118. [PMID: 31301301 DOI: 10.1016/j.yjmcc.2019.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/15/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is the major limitation for the cardioprotective action of revascularization after myocardial infarction. Lymphocyte adapter protein (Lnk), an adapter protein, has a regulatory role in multiple signaling pathways by functioning as a scaffold for different substrates. However, the involvement of Lnk in myocardial I/R injury remains to be established. In this study, increased expression of Lnk was detected upon the development of myocardial I/R injury. Mice were genetically engineered to investigate the role of Lnk in this pathological process. Upon I/R, myocardial infarction, cardiac dysfunction, inflammation and apoptosis were increased in Lnk-deficient hearts. However, cardiomyocyte-specific overexpression of Lnk protected the hearts against myocardial I/R injury. Mechanistically, we observed that the activation of Akt, but neither ERK1/2 nor STAT3, was influenced by the expression of Lnk upon myocardial I/R injury. Furthermore, the requirement of PI3K-Akt activation for the cardioprotective effect of Lnk was confirmed in rescue experiments using the PI3K inhibitor LY294002. Taken together, our data provide a potential diagnostic and therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Jia Huang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Yuning Sun
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Sinclair PB, Ryan S, Bashton M, Hollern S, Hanna R, Case M, Schwalbe EC, Schwab CJ, Cranston RE, Young BD, Irving JAE, Vora AJ, Moorman AV, Harrison CJ. SH2B3 inactivation through CN-LOH 12q is uniquely associated with B-cell precursor ALL with iAMP21 or other chromosome 21 gain. Leukemia 2019; 33:1881-1894. [PMID: 30816328 PMCID: PMC6756024 DOI: 10.1038/s41375-019-0412-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
In more than 30% of B-cell precursor acute lymphoblastic leukaemia (B-ALL), chromosome 21 sequence is overrepresented through aneuploidy or structural rearrangements, exemplified by intrachromosomal amplification of chromosome 21 (iAMP21). Although frequent, the mechanisms by which these abnormalities promote B-ALL remain obscure. Intriguingly, we found copy number neutral loss of heterozygosity (CN-LOH) of 12q was recurrent in iAMP21-ALL, but never observed in B-ALL without some form of chromosome 21 gain. As a consequence of CN-LOH 12q, mutations or deletions of the adaptor protein, SH2B3, were converted to homozygosity. In patients without CN-LOH 12q, bi-allelic abnormalities of SH2B3 occurred, but only in iAMP21-ALL, giving an overall incidence of 18% in this sub-type. Review of published data confirmed a tight association between overrepresentation of chromosome 21 and both CN-LOH 12q and SH2B3 abnormalities in B-ALL. Despite relatively small patient numbers, preliminary analysis linked 12q abnormalities to poor outcome in iAMP21-ALL (p = 0.03). Homology modelling of a leukaemia-associated SH2 domain mutation and in vitro analysis of patient-derived xenograft cells implicated the JAK/STAT pathway as one likely target for SH2B3 tumour suppressor activity in iAMP21-ALL.
Collapse
Affiliation(s)
- Paul B Sinclair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Sarra Ryan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Shaun Hollern
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rebecca Hanna
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Marian Case
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Edward C Schwalbe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Claire J Schwab
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ruth E Cranston
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Brian D Young
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julie A E Irving
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ajay J Vora
- Great Ormond Street Hospital for Children NHS trust, London, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
11
|
Statins protect diabetic myocardial microvascular endothelial cells from injury. Int J Diabetes Dev Ctries 2018. [DOI: 10.1007/s13410-018-0646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
12
|
Li X, Meng X, Spiliopoulou A, Timofeeva M, Wei WQ, Gifford A, Shen X, He Y, Varley T, McKeigue P, Tzoulaki I, Wright AF, Joshi P, Denny JC, Campbell H, Theodoratou E. MR-PheWAS: exploring the causal effect of SUA level on multiple disease outcomes by using genetic instruments in UK Biobank. Ann Rheum Dis 2018; 77:1039-1047. [PMID: 29437585 PMCID: PMC6029646 DOI: 10.1136/annrheumdis-2017-212534] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 02/05/2023]
Abstract
Objectives We aimed to investigate the role of serum uric acid (SUA) level in a broad spectrum of disease outcomes using data for 120 091 individuals from UK Biobank. Methods We performed a phenome-wide association study (PheWAS) to identify disease outcomes associated with SUA genetic risk loci. We then implemented conventional Mendelianrandomisation (MR) analysis to investigate the causal relevance between SUA level and disease outcomes identified from PheWAS. We next applied MR Egger analysis to detect and account for potential pleiotropy, which conventional MR analysis might mistake for causality, and used the HEIDI (heterogeneity in dependent instruments) test to remove cross-phenotype associations that were likely due to genetic linkage. Results Our PheWAS identified 25 disease groups/outcomes associated with SUA genetic risk loci after multiple testing correction (P<8.57e-05). Our conventional MR analysis implicated a causal role of SUA level in three disease groups: inflammatory polyarthropathies (OR=1.22, 95% CI 1.11 to 1.34), hypertensive disease (OR=1.08, 95% CI 1.03 to 1.14) and disorders of metabolism (OR=1.07, 95% CI 1.01 to 1.14); and four disease outcomes: gout (OR=4.88, 95% CI 3.91 to 6.09), essential hypertension (OR=1.08, 95% CI 1.03 to 1.14), myocardial infarction (OR=1.16, 95% CI 1.03 to 1.30) and coeliac disease (OR=1.41, 95% CI 1.05 to 1.89). After balancing pleiotropic effects in MR Egger analysis, only gout and its encompassing disease group of inflammatory polyarthropathies were considered to be causally associated with SUA level. Our analysis highlighted a locus (ATXN2/S2HB3) that may influence SUA level and multiple cardiovascular and autoimmune diseases via pleiotropy. Conclusions Elevated SUA level is convincing to cause gout and inflammatory polyarthropathies, and might act as a marker for the wider range of diseases with which it associates. Our findings support further investigation on the clinical relevance of SUA level with cardiovascular, metabolic, autoimmune and respiratory diseases.
Collapse
Affiliation(s)
- Xue Li
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Xiangrui Meng
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Athina Spiliopoulou
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Medical Research Council, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aliya Gifford
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xia Shen
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou He
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.,West China School of Medicine, West China Hospital, Sichuan University, Sichuan, China
| | - Tim Varley
- Public Health and Intelligence, NHS National Services Scotland, Edinburgh, UK
| | - Paul McKeigue
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Ioanna Tzoulaki
- Department Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,MRC-PHE Centre for Environment, School of Public Health, Imperial College London, London, UK.,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Alan F Wright
- Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter Joshi
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.,Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW In this paper, we review the progress made thus far in research related to the genetics of peripheral arterial disease (PAD) by detailing efforts to date in heritability, linkage analyses, and candidate gene studies. We further summarize more contemporary genome-wide association studies (GWAS) and epigenetic studies of PAD. Finally, we review current challenges and future avenues of advanced research in PAD genetics including whole genome sequencing studies. RECENT FINDINGS Studies have estimated the heritability of PAD to be moderate, though the contribution to this heritability that is independent of traditional cardiovascular risk factors remains unclear. Recent efforts have identified SNPs associated with PAD in GWAS analyses, but these have yet to be replicated in independent studies. Much remains to be discovered in the field of PAD genetics. An improved understanding of the genetic foundation for PAD will allow for earlier diagnosis of disease and a more complete pathophysiological understanding of the mechanisms of the disease leading to novel therapeutic interventions. Future avenues for success will likely arise from very large-scale GWAS, whole genome sequencing, and epigenetic studies involving very well-characterized cohorts.
Collapse
Affiliation(s)
- Nathan Belkin
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Division of Vascular and Endovascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce Street, 4 Maloney, Philadelphia, PA, 19104, USA. .,Department of Surgery, Corporal Michael Crescenz VA Medical Center, 3900 Woodland Ave., Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Kim JA, Hwang B, Park SN, Huh S, Im K, Choi S, Chung HY, Huh J, Seo EJ, Lee JH, Bang D, Lee DS. Genomic Profile of Chronic Lymphocytic Leukemia in Korea Identified by Targeted Sequencing. PLoS One 2016; 11:e0167641. [PMID: 27959900 PMCID: PMC5154520 DOI: 10.1371/journal.pone.0167641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/17/2016] [Indexed: 11/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is extremely rare in Asian countries and there has been one report on genetic changes for 5 genes (TP53, SF3B1, NOTCH1, MYD88, and BIRC3) by Sanger sequencing in Chinese CLL. Yet studies of CLL in Asian countries using Next generation sequencing have not been reported. We aimed to characterize the genomic profiles of Korean CLL and to find out ethnic differences in somatic mutations with prognostic implications. We performed targeted sequencing for 87 gene panel using next-generation sequencing along with G-banding and fluorescent in situ hybridization (FISH) for chromosome 12, 13q14.3 deletion, 17p13 deletion, and 11q22 deletion. Overall, 36 out of 48 patients (75%) harbored at least one mutation and mean number of mutation per patient was 1.6 (range 0-6). Aberrant karyotypes were observed in 30.4% by G-banding and 66.7% by FISH. Most recurrent mutation (>10% frequency) was ATM (20.8%) followed by TP53 (14.6%), SF3B1 (10.4%), KLHL6 (8.3%), and BCOR (6.25%). Mutations of MYD88 was associated with moderate adverse prognosis by multiple comparisons (P = 0.055). Mutation frequencies of MYD88, SAMHD1, EGR2, DDX3X, ZMYM3, and MED12 showed similar incidence with Caucasians, while mutation frequencies of ATM, TP53, KLHL6, BCOR and CDKN2A tend to be higher in Koreans than in Caucasians. Especially, ATM mutation showed 1.5 fold higher incidence than Caucasians, while mutation frequencies of SF3B1, NOTCH1, CHD2 and POT1 tend to be lower in Koreans than in Caucasians. However, mutation frequencies between Caucasians and Koreans were not significantly different statistically, probably due to low number of patients. Collectively, mutational profile and adverse prognostic genes in Korean CLL were different from those of Caucasians, suggesting an ethnic difference, while profile of cytogenetic aberrations was similar to those of Caucasians.
Collapse
Affiliation(s)
- Jung-Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byungjin Hwang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Si Nae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sunghoon Huh
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sungbin Choi
- Bachelor of Science, University of British Columbia, Vancouver, Canada
| | - Hye Yoon Chung
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - JooRyung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Je-Hwan Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Minami T, Satoh K, Nogi M, Kudo S, Miyata S, Tanaka SI, Shimokawa H. Statins up-regulate SmgGDS through β1-integrin/Akt1 pathway in endothelial cells. Cardiovasc Res 2015; 109:151-61. [PMID: 26598509 DOI: 10.1093/cvr/cvv253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022] Open
Abstract
AIMS The pleiotropic effects of HMG-CoA reductase inhibitors (statins) independent of cholesterol-lowering effects have attracted much attention. We have recently demonstrated that the pleiotropic effects of statins are partly mediated through up-regulation of small GTP-binding protein dissociation stimulator (SmgGDS) with a resultant Rac1 degradation and reduced oxidative stress. However, it remains to be elucidated what molecular mechanisms are involved. METHODS AND RESULTS To first determine in what tissue statins up-regulate SmgGDS expression, we examined the effects of two statins (atorvastatin 10 mg/kg per day and pravastatin 50 mg/kg per day for 1 week) on SmgGDS expression in mice in vivo. The two statins increased SmgGDS expression especially in the aorta. Atorvastatin also increased SmgGDS expression in cultured human umbilical venous endothelial cells (HUVEC) and human aortic endothelial cells, but not in human aortic vascular smooth muscle cells. Furthermore, Akt phosphorylation was transiently enhanced only in HUVEC in response to atorvastatin. Then, to examine whether Akt is involved for up-regulation of SmgGDS by statins, we knocked out Akt1 by its siRNA in HUVEC, which abolished the effects by atorvastatin to up-regulate SmgGDS. Furthermore, when we knocked down β1-integrin to elucidate the upstream molecule of Akt1, the effect of atorvastatin to up-regulate SmgGDS was abolished. Finally, we confirmed that Akt activator, SC79, significantly up-regulate SmgGDS in HUVEC. CONCLUSION These results indicate that statins selectively up-regulate SmgGDS in endothelial cells, for which the β1-integrin/Akt1 pathway may be involved, demonstrating the novel aspects of the pleiotropic effects of statins.
Collapse
Affiliation(s)
- Tatsuro Minami
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masamichi Nogi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Kudo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-ichi Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, Izunokuni, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Kullo IJ, Leeper NJ. The genetic basis of peripheral arterial disease: current knowledge, challenges, and future directions. Circ Res 2015; 116:1551-60. [PMID: 25908728 DOI: 10.1161/circresaha.116.303518] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several risk factors for atherosclerotic peripheral arterial disease (PAD), such as dyslipidemia, diabetes mellitus, and hypertension, are heritable. However, predisposition to PAD may be influenced by genetic variants acting independently of these risk factors. Identification of such genetic variants will provide insights into underlying pathophysiologic mechanisms and facilitate the development of novel diagnostic and therapeutic approaches. In contrast to coronary heart disease, relatively few genetic variants that influence susceptibility to PAD have been discovered. This may be, in part, because of greater clinical and genetic heterogeneity in PAD. In this review, we (1) provide an update on the current state of knowledge about the genetic basis of PAD, including results of family studies and candidate gene, linkage as well as genome-wide association studies; (2) highlight the challenges in investigating the genetic basis of PAD and possible strategies to overcome these challenges; and (3) discuss the potential of genome sequencing, RNA sequencing, differential gene expression, epigenetic profiling, and systems biology in increasing our understanding of the molecular genetics of PAD.
Collapse
Affiliation(s)
- Iftikhar J Kullo
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (I.J.K.); and Department of Vascular Surgery, Stanford, Stanford, CA (N.J.L.).
| | - Nicholas J Leeper
- From the Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (I.J.K.); and Department of Vascular Surgery, Stanford, Stanford, CA (N.J.L.)
| |
Collapse
|
17
|
Zhu X, Fang J, Jiang DS, Zhang P, Zhao GN, Zhu X, Yang L, Wei X, Li H. Exacerbating Pressure Overload-Induced Cardiac Hypertrophy: Novel Role of Adaptor Molecule Src Homology 2-B3. Hypertension 2015; 66:571-81. [PMID: 26101343 DOI: 10.1161/hypertensionaha.115.05183] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
The adaptor protein Src homology 2-B3 (SH2B3), which belongs to a subfamily of Src homology 2 proteins, is a broad inhibitor of growth factors and cytokine signaling in hematopoietic cells. However, the role of SH2B3 in nonhematopoietic systems, particularly cardiomyocytes, has not been defined. In this study, we observed noticeable increase in SH2B3 protein expression during pathological cardiac remodeling in both humans and rodents. Follow-up in vitro gain- and loss-of-function studies suggested that SH2B3 promotes the cardiomyocyte hypertrophy response. Consistent with the cell phenotype, SH2B3 knockout (SH2B3(-/-)) mice exhibited attenuated cardiac remodeling with preserved cardiac function after chronic pressure overload. Conversely, cardiac-specific SH2B3 overexpression aggravated pressure overload-triggered cardiac hypertrophy, fibrosis, and dysfunction. Mechanistically, SH2B3 accelerates and exacerbates cardiac remodeling through the activation of focal adhesion kinase, which, in turn, activates the prohypertrophic downstream phosphoinositide 3-kinase-AKT-mammalian target of rapamycin/glycogen synthase kinase 3β signaling pathway. Finally, we generated a novel SH2B3 knockout rat line and further confirmed the protective effects of SH2B3 deficiency on cardiac remodeling across species. Collectively, our data indicate that SH2B3 functions as a novel and effective modulator of cardiac remodeling and failure.
Collapse
Affiliation(s)
- Xuehai Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Jing Fang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ding-Sheng Jiang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Peng Zhang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Guang-Nian Zhao
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xueyong Zhu
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Ling Yang
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.)
| | - Xiang Wei
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| | - Hongliang Li
- From the Division of Cardiothoracic and Vascular Surgery, Heart-Lung Transplantation Center, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z., J.F., X.W.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.); and Cardiovascular Research Institute of Wuhan University, Wuhan, China (D.-S.J., P.Z., G.-N.Z., X.Z., L.Y., H.L.).
| |
Collapse
|
18
|
PARVA promotes metastasis by modulating ILK signalling pathway in lung adenocarcinoma. PLoS One 2015; 10:e0118530. [PMID: 25738875 PMCID: PMC4349696 DOI: 10.1371/journal.pone.0118530] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
α-parvin (PARVA) is known to be involved in the linkage of integrins, regulation of actin cytoskeleton dynamics and cell survival. However, the role that PARVA plays in cancer progression remains unclear. Here, using a lung cancer invasion cell line model and expression microarrays, we identify PARVA as a potential oncogene. The overexpression of PARVA increased cell invasion, colony-forming ability and endothelial cell tube formation. By contrast, knockdown of PARVA inhibited invasion and tube formation in vitro. Overexpression of PARVA also promoted tumorigenicity, angiogenesis and metastasis in in vivo mouse models. To explore the underlying mechanism, we compared the expression microarray profiles of PARVA-overexpressing cells with those of control cells to identify the PARVA-regulated signalling pathways. Pathway analysis showed that eight of the top 10 pathways are involved in invasion, angiogenesis and cell death. Next, to identify the direct downstream signalling pathway of PARVA, 371 significantly PARVA-altered genes were analysed further using a transcription factor target model. Seven of the top 10 PARVA-altered transcription factors shared a common upstream mediator, ILK. Lastly, we found that PARVA forms a complex with SGK1 and ILK to enhance the phosphorylation of ILK, which led to the phosphorylation of Akt and GSK3β. Notably, the inactivation of ILK reversed PARVA-induced invasion. Taken together, our findings imply that PARVA acts as an oncogene by activating ILK, and that this activation is followed by the activation of Akt and inhibition of GSK3β. To our knowledge, this is the first study to characterize the role of PARVA in lung cancer progression.
Collapse
|
19
|
Le BBS, Tillou X, Branchereau J, Dilek N, Poirier N, Châtelais M, Charreau B, Minault D, Hervouet J, Renaudin K, Crossan C, Scobie L, Takeuchi Y, Diswall M, Breimer M, Klar N, Daha M, Simioni P, Robson S, Nottle M, Salvaris E, Cowan P, d’Apice A, Sachs D, Yamada K, Lagutina I, Duchi R, Perota A, Lazzari G, Galli C, Cozzi E, Soulillou JP, B. V, Blancho G. Bortezomib, C1-inhibitor and plasma exchange do not prolong the survival of multi-transgenic GalT-KO pig kidney xenografts in baboons. Am J Transplant 2015; 15:358-70. [PMID: 25612490 PMCID: PMC4306235 DOI: 10.1111/ajt.12988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 08/12/2014] [Indexed: 01/25/2023]
Abstract
Galactosyl-transferase KO (GalT-KO) pigs represent a potential solution to xenograft rejection, particularly in the context of additional genetic modifications. We have performed life supporting kidney xenotransplantation into baboons utilizing GalT-KO pigs transgenic for human CD55/CD59/CD39/HT. Baboons received tacrolimus, mycophenolate mofetil, corticosteroids and recombinant human C1 inhibitor combined with cyclophosphamide or bortezomib with or without 2-3 plasma exchanges. One baboon received a control GalT-KO xenograft with the latter immunosuppression. All immunosuppressed baboons rejected the xenografts between days 9 and 15 with signs of acute humoral rejection, in contrast to untreated controls (n = 2) that lost their grafts on days 3 and 4. Immunofluorescence analyses showed deposition of IgM, C3, C5b-9 in rejected grafts, without C4d staining, indicating classical complement pathway blockade but alternate pathway activation. Moreover, rejected organs exhibited predominantly monocyte/macrophage infiltration with minimal lymphocyte representation. None of the recipients showed any signs of porcine endogenous retrovirus transmission but some showed evidence of porcine cytomegalovirus (PCMV) replication within the xenografts. Our work indicates that the addition of bortezomib and plasma exchange to the immunosuppressive regimen did not significantly prolong the survival of multi-transgenic GalT-KO renal xenografts. Non-Gal antibodies, the alternative complement pathway, innate mechanisms with monocyte activation and PCMV replication may have contributed to rejection.
Collapse
Affiliation(s)
- Bas-Bernardet S. Le
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - X. Tillou
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - J. Branchereau
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - N. Dilek
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Effimune, Nantes, France
| | - N. Poirier
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Effimune, Nantes, France
| | - M. Châtelais
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - B. Charreau
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - D. Minault
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - J. Hervouet
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France
| | - K. Renaudin
- Pathology Laboratory, CHU- Hôtel Dieu, Nantes, France
| | - C. Crossan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - L. Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - Y. Takeuchi
- University College London, London, United Kingdom,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - M. Diswall
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - M.E. Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - N. Klar
- Department of Nephrology, University Medical Center, Leiden, The Netherlands,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - M.R. Daha
- Department of Nephrology, University Medical Center, Leiden, The Netherlands,Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| | - P. Simioni
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padua, Padua, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - S.C. Robson
- Gastroenterology and Transplant Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M.B. Nottle
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, Australia
| | - E.J. Salvaris
- Immunology Research Centre, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - P.J. Cowan
- Immunology Research Centre, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - A.J.F. d’Apice
- Immunology Research Centre, St Vincent’s Hospital Melbourne, Victoria, Australia
| | - D.H. Sachs
- Transplantation Biology Research Center (TBRC), Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - K. Yamada
- Transplantation Biology Research Center (TBRC), Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - I. Lagutina
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - R. Duchi
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - A. Perota
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - G. Lazzari
- Avantea, Cremona, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - C. Galli
- Avantea, Cremona, Italy,Dept. of Veterinary Medical Science, University of Bologna, Ozzano Emilia, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - E. Cozzi
- Transplant Immunology Unit, Padua General Hospital, Padua, Italy and Consortium for Research in Organ Transplantation (CORIT), Padua, Italy,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - J.-P. Soulillou
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| | - Vanhove B.
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,Effimune, Nantes, France
| | - G. Blancho
- Institut de Transplantation- Urologie- Néphrologie (ITUN), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1064, Centre Hospitalier Universitaire (CHU) de Nantes, Université de Nantes, Nantes, France,European Xenotransplantation Network Xenome (LSHB- CT- 2006- 037377)
| |
Collapse
|
20
|
Mimae T, Ito A. New challenges in pseudopodial proteomics by a laser-assisted cell etching technique. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:538-46. [PMID: 25461796 DOI: 10.1016/j.bbapap.2014.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 10/10/2014] [Indexed: 12/26/2022]
Abstract
Pseudopodia are ventral membrane protrusions that extend toward higher concentrations of chemoattractants and play key roles in cell migration and cancer cell invasion. Cancers, including carcinoma and sarcoma, become life threatening when they invade surrounding structures and other organs. Understanding the molecular basis of invasiveness is important for the elimination of cancers. Thus, determining the pseudopodial composition will offer insights into the mechanisms underlying tumor cell invasiveness and provide potential biomarkers and therapeutic targets. Pseudopodial composition has been extensively investigated by using proteomic approaches. A variety of modalities, including gel-based and mass spectrometry-based methods, have been employed for pseudopodial proteomics. Our research group recently established a novel method using excimer laser pulses to selectively harvest pseudopodia, and we successfully identified a number of new pseudopodial constituents. Here, we summarized the conventional proteomic procedures and describe our new excimer laser-assisted method, with a special emphasis on the differences in the methods used to isolate pseudopodia. In addition, we discussed the theoretical background for the use of excimer laser-mediated cell ablation in proteomic applications. Using the excimer laser-assisted method, we showed that alpha-parvin, an actin-binding adaptor protein, is localized to pseudopodia, and is involved in breast cancer invasiveness. Our results clearly indicate that excimer laser-assisted cell etching is a useful technique for pseudopodial proteomics. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Takahiro Mimae
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan.
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kinki University, Osaka 589-8511, Japan
| |
Collapse
|
21
|
Traister A, Li M, Aafaqi S, Lu M, Arab S, Radisic M, Gross G, Guido F, Sherret J, Verma S, Slorach C, Mertens L, Hui W, Roy A, Delgado-Olguín P, Hannigan G, Maynes JT, Coles JG. Integrin-linked kinase mediates force transduction in cardiomyocytes by modulating SERCA2a/PLN function. Nat Commun 2014; 5:4533. [PMID: 25208486 DOI: 10.1038/ncomms5533] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 12/17/2022] Open
Abstract
Human dilated cardiomyopathy (DCM) manifests as a profound reduction in biventricular cardiac function that typically progresses to death or cardiac transplantation. There is no effective mechanism-based therapy currently available for DCM, in part because the transduction of mechanical load into dynamic changes in cardiac contractility (termed mechanotransduction) remains an incompletely understood process during both normal cardiac function and in disease states. Here we show that the mechanoreceptor protein integrin-linked kinase (ILK) mediates cardiomyocyte force transduction through regulation of the key calcium regulatory protein sarcoplasmic/endoplasmic reticulum Ca(2+)ATPase isoform 2a (SERCA-2a) and phosphorylation of phospholamban (PLN) in the human heart. A non-oncogenic ILK mutation with a synthetic point mutation in the pleckstrin homology-like domain (ILK(R211A)) is shown to enhance global cardiac function through SERCA-2a/PLN. Thus, ILK serves to link mechanoreception to the dynamic modulation of cardiac contractility through a previously undiscovered interaction with the functional SERCA-2a/PLN module that can be exploited to rescue impaired mechanotransduction in DCM.
Collapse
Affiliation(s)
- Alexandra Traister
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Mark Li
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Shabana Aafaqi
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Mingliang Lu
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Sara Arab
- University Health Network, University of Toronto, Toronto, Ontario, Canada M5S 2J7
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Gil Gross
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Fiorella Guido
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - John Sherret
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Subodh Verma
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8
| | - Cameron Slorach
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Luc Mertens
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Wei Hui
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Anna Roy
- 1] Program in Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Paul Delgado-Olguín
- 1] Program in Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 [2] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 [3] Heart &Stroke Richard Lewar Centre of Excellence, Toronto, Ontario, Canada M5B 1W8
| | - Gregory Hannigan
- Cell Adhesion Signaling Laboratory, Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3800, Australia
| | - Jason T Maynes
- 1] Department of Anesthesia and Pain Medicine, Division of Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8 [2] Departments of Anesthesia and Biochemistry, Universtiy of Toronto, Toronto, Ontario, Canada M5S 2J7
| | - John G Coles
- Cardiology Division, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
22
|
Kilarski LL, Achterberg S, Devan WJ, Traylor M, Malik R, Lindgren A, Pare G, Sharma P, Slowik A, Thijs V, Walters M, Worrall BB, Sale MM, Algra A, Kappelle LJ, Wijmenga C, Norrving B, Sandling JK, Rönnblom L, Goris A, Franke A, Sudlow C, Rothwell PM, Levi C, Holliday EG, Fornage M, Psaty B, Gretarsdottir S, Thorsteinsdottir U, Seshadri S, Mitchell BD, Kittner S, Clarke R, Hopewell JC, Bis JC, Boncoraglio GB, Meschia J, Ikram MA, Hansen BM, Montaner J, Thorleifsson G, Stefanson K, Rosand J, de Bakker PIW, Farrall M, Dichgans M, Markus HS, Bevan S. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology 2014; 83:678-85. [PMID: 25031287 PMCID: PMC4150131 DOI: 10.1212/wnl.0000000000000707] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/25/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To perform a genome-wide association study (GWAS) using the Immunochip array in 3,420 cases of ischemic stroke and 6,821 controls, followed by a meta-analysis with data from more than 14,000 additional ischemic stroke cases. METHODS Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls. After imputation we meta-analyzed the results with imputed GWAS data from 3,548 cases and 5,972 controls recruited from the ischemic stroke WTCCC2 study, and with summary statistics from a further 8,480 cases and 56,032 controls in the METASTROKE consortium. A final in silico "look-up" of 2 single nucleotide polymorphisms in 2,522 cases and 1,899 controls was performed. Associations were also examined in 1,088 cases with intracerebral hemorrhage and 1,102 controls. RESULTS In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07-1.13], p = 7.12 × 10(-11)) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90-1.17], p = 0.695). CONCLUSION Our results show, for the first time, a genetic risk locus associated with ischemic stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with intracerebral hemorrhage.
Collapse
|
23
|
Kullo IJ, Shameer K, Jouni H, Lesnick TG, Pathak J, Chute CG, de Andrade M. The ATXN2-SH2B3 locus is associated with peripheral arterial disease: an electronic medical record-based genome-wide association study. Front Genet 2014; 5:166. [PMID: 25009551 PMCID: PMC4070196 DOI: 10.3389/fgene.2014.00166] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/19/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES In contrast to coronary heart disease (CHD), genetic variants that influence susceptibility to peripheral arterial disease (PAD) remain largely unknown. BACKGROUND We performed a two-stage genomic association study leveraging an electronic medical record (EMR) linked-biorepository to identify genetic variants that mediate susceptibility to PAD. METHODS PAD was defined as a resting/post-exercise ankle-brachial index (ABI) ≤0.9 or ≥1.4 and/or history of lower extremity revascularization. Controls were patients without history of PAD. In Stage I we performed a genome-wide association analysis adjusting for age and sex, of 537, 872 SNPs in 1641 PAD cases (66 ± 11 years, 64% men) and 1604 control subjects (61 ± 7 year, 60% men) of European ancestry. In Stage II we genotyped the top 48 SNPs that were associated with PAD in Stage I, in a replication cohort of 740 PAD cases (70 ± 11 year, 63% men) and 1051 controls (70 ± 12 year, 61% men). RESULTS The SNP rs653178 in the ATXN2-SH2B3 locus was significantly associated with PAD in the discovery cohort (OR = 1.23; P = 5.59 × 10(-5)), in the replication cohort (OR = 1.22; 8.9 × 10(-4)) and in the combined cohort (OR = 1.22; P = 6.46 × 10(-7)). In the combined cohort this SNP remained associated with PAD after additional adjustment for cardiovascular risk factors including smoking (OR = 1.22; P = 2.15 × 10(-6)) and after excluding patients with ABI > 1.4 (OR = 1.24; P = 3.98 × 10(-7)). The SNP is in near-complete linkage disequilibrium (LD) (r (2) = 0.99) with a missense SNP (rs3184504) in SH2B3, a gene encoding an adapter protein that plays a key role in immune and inflammatory response pathways and vascular homeostasis. The SNP has pleiotropic effects and has been previously associated with multiple phenotypes including myocardial infarction. CONCLUSIONS Our findings suggest that the ATXN2-SH2B3 locus influences susceptibility to PAD.
Collapse
Affiliation(s)
- Iftikhar J Kullo
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, MN, USA
| | - Khader Shameer
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, MN, USA
| | - Hayan Jouni
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, MN, USA
| | - Timothy G Lesnick
- Biomedical Statistics and Informatics, Health-Related Sciences, Mayo Clinic Rochester, MN, USA
| | - Jyotishman Pathak
- Biomedical Statistics and Informatics, Health-Related Sciences, Mayo Clinic Rochester, MN, USA
| | - Christopher G Chute
- Biomedical Statistics and Informatics, Health-Related Sciences, Mayo Clinic Rochester, MN, USA
| | - Mariza de Andrade
- Biomedical Statistics and Informatics, Health-Related Sciences, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
24
|
Lian J, Huang Y, Huang RS, Xu L, Le Y, Yang X, Xu W, Huang X, Ye M, Zhou J, Duan S. Meta-analyses of four eosinophil related gene variants in coronary heart disease. J Thromb Thrombolysis 2014; 36:394-401. [PMID: 23328882 DOI: 10.1007/s11239-012-0862-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of our study is to assess the contribution of four eosinophil related gene variants (rs12619285, rs1420101, rs3184504 and rs4143832) to the risk of coronary heart disease (CHD). We conducted four meta-analyses of studies examining the association between four eosinophil related gene variants and the risk of CHD. A systematic search was conducted using MEDLINE, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI), Wanfang Chinese Periodical. A case-control study was conducted between 162 CHD cases and 119 non-CHD controls to explore their contribution to CHD. For rs3184504 of SH2B3 gene, the meta-analysis was performed among 19 study stages among 94,555 participants. Significant association between rs3184504 and CHD risk was observed in European and South Asian populations (OR = 1.13, 95% CI = 1.10-1.16, p < 0.0001, fixed-effect method). For the other SNPs (rs12619285, rs1420101, and rs4143832), we combined our case-control data with the previous studies and found no association of them with the risk of CHD. No significant contribution of the four genetic variants to CHD was observed in Han Chinese (p > 0.05). In conclusion, our results supported a significant association between rs3184504 of SH2B3 gene and the risk of CHD in Europeans and South Asians, although we were unable to observe association between the four variants and the risk of CHD in Han Chinese.
Collapse
Affiliation(s)
- Jiangfang Lian
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, 315041, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling. Biochem J 2014; 459:565-76. [DOI: 10.1042/bj20131119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human neural stem cells possess an inherent brain tumour tropism. We identified brain tumour-derived TIMP-1 as a novel chemoattractant for human neural stem cells. TIMP-1 binding to CD63 at the plasma membrane activated β1 integrin-mediated signalling, inducing cell adhesion and migration.
Collapse
|
26
|
Abstract
LNK (SH2B3) is an adaptor protein studied extensively in normal and malignant hematopoietic cells. In these cells, it downregulates activated tyrosine kinases at the cell surface resulting in an antiproliferative effect. To date, no studies have examined activities of LNK in solid tumors. In this study, we found by in silico analysis and staining tissue arrays that the levels of LNK expression were elevated in high-grade ovarian cancer. To test the functional importance of this observation, LNK was either overexpressed or silenced in several ovarian cancer cell lines. Remarkably, overexpression of LNK rendered the cells resistant to death induced by either serum starvation or nutrient deprivation, and generated larger tumors using a murine xenograft model. In contrast, silencing of LNK decreased ovarian cancer cell growth in vitro and in vivo. Western blot studies indicated that overexpression of LNK upregulated and extended the transduction of the mitogenic signal, whereas silencing of LNK produced the opposite effects. Furthermore, forced expression of LNK reduced cell size, inhibited cell migration and markedly enhanced cell adhesion. Liquid chromatography-mass spectroscopy identified 14-3-3 as one of the LNK-binding partners. Our results suggest that in contrast to the findings in hematologic malignancies, the adaptor protein LNK acts as a positive signal transduction modulator in ovarian cancers.
Collapse
|
27
|
Poirier N, Mary C, Le Bas-Bernardet S, Daguin V, Belarif L, Chevalier M, Hervouet J, Minault D, Ville S, Charpy V, Blancho G, Vanhove B. Advantages of Papio anubis for preclinical testing of immunotoxicity of candidate therapeutic antagonist antibodies targeting CD28. MAbs 2014; 6:697-707. [PMID: 24598534 DOI: 10.4161/mabs.28375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models. We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release. In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo.
Collapse
Affiliation(s)
- Nicolas Poirier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| | - Caroline Mary
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| | - Stephanie Le Bas-Bernardet
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Centre Hospitalier Universitaire; Nantes, France
| | - Veronique Daguin
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Lyssia Belarif
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Melanie Chevalier
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Jeremy Hervouet
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - David Minault
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Simon Ville
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Vianney Charpy
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France
| | - Gilles Blancho
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Centre Hospitalier Universitaire; Nantes, France
| | - Bernard Vanhove
- Institut National de la Santé Et de la Recherche Médicale Unité Mixte de Recherche; Institut de Transplantation Urologie Néphrologie (ITUN) ; Université de Nantes; Nantes, France; Effimune SAS; Nantes, France
| |
Collapse
|
28
|
α-Parvin, a pseudopodial constituent, promotes cell motility and is associated with lymph node metastasis of lobular breast carcinoma. Breast Cancer Res Treat 2014; 144:59-69. [PMID: 24496929 DOI: 10.1007/s10549-014-2859-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/23/2014] [Indexed: 12/27/2022]
Abstract
Invasive lobular carcinoma (ILC) is more frequently lymph node positive than is invasive ductal carcinoma (IDC), and ILC cell infiltration shows distinctive histological characteristics, suggesting the action of ILC-specific invasion molecules. To identify such a molecule, we used a proteomic approach in the pseudopodia of MDA-MB-231 breast cancer cells. A pseudopodial constituent was identified using excimer laser ablation, two-dimensional difference gel electrophoresis, mass spectroscopy, and immunocytofluorescence. MDA-MB-231 cells were modified to express various levels of this constituent by transient transfection and were examined for pseudopodia formation and migratory abilities using wound healing and two-chamber assays. Immunohistochemical positivity of human breast cancer cells (56 ILCs and 21 IDCs) was compared with clinicopathological variables. An actin-binding adaptor protein, α-parvin, was found to localize to pseudopodia and to form focal adhesions in cells not induced to extend pseudopodia. Pseudopodial length and density and migratory abilities correlated with α-parvin expression. Twenty-one (37.5 %) ILCs stained positive for α-parvin, whereas the results were negative for all 21 IDCs (P < 0.001). α-Parvin positivity in ILC was significantly associated with lymphatic invasion (P = 0.038) and lymph node metastasis (P = 0.003) in univariate analyses and to lymph node metastasis (P = 0.020) in multivariate analyses. α-Parvin, a pseudopodial constituent, was found to promote migration of breast cancer cells and to be expressed exclusively by ILC, suggesting that α-parvin is an ILC-specific invasion molecule that may have clinical utility as a biomarker for aggressive subsets of ILC.
Collapse
|
29
|
Aghabozorg Afjeh SS, Ghaderian SMH, Mirfakhraie R, Piryaei M, Zaim Kohan H. Association Study of rs3184504 C>T Polymorphism in Patients With Coronary Artery Disease. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2014; 3:157-65. [PMID: 25317402 PMCID: PMC4170489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/21/2014] [Accepted: 07/12/2014] [Indexed: 10/31/2022]
Abstract
Cardiovascular disease has become the main factor of death and birth defects in the world and also in Iran. New clinical studies have shown that early diagnosis of patients with coronary artery disease (CAD) can contribute to effective prevention or therapeutic structures, which reduce mortality or the next chance of cardiovascular events, and increase the quality of life. Most studies on CAD disease and its genetic risk factors so far, have been done excluding the Iranian population. PubMed was used to search for all relevant studies published on or before 2013 and rs3184504 was selected for association study for CAD. A total of 200 subjects with 100 cases and 100 controls were ultimately included in the analysis. Blood samples were collected and after DNA extraction the DNA analysis was performed by TaqMan Probe Real Time PCR to evaluate the association between candidate variant with the disease and some blood biochemical factors. Our study demonstrated that there was not a direct association between rs3184504 C>T variant with risk of CAD in Iranian population, whereas, there is a significant association between this variant with increased blood LDL and diastolic blood pressure. Further molecular analysis and other disease association studies are necessary in the Iranian population.
Collapse
Affiliation(s)
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding author: Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Piryaei
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hooshang Zaim Kohan
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Ernst N, Yay A, Bíró T, Tiede S, Humphries M, Paus R, Kloepper JE. β1 integrin signaling maintains human epithelial progenitor cell survival in situ and controls proliferation, apoptosis and migration of their progeny. PLoS One 2013; 8:e84356. [PMID: 24386370 PMCID: PMC3874009 DOI: 10.1371/journal.pone.0084356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/14/2013] [Indexed: 01/05/2023] Open
Abstract
β1 integrin regulates multiple epithelial cell functions by connecting cells with the extracellular matrix (ECM). While β1 integrin-mediated signaling in murine epithelial stem cells is well-studied, its role in human adult epithelial progenitor cells (ePCs) in situ remains to be defined. Using microdissected, organ-cultured human scalp hair follicles (HFs) as a clinically relevant model for studying human ePCs within their natural topobiological habitat, β1 integrin-mediated signaling in ePC biology was explored by β1 integrin siRNA silencing, specific β1 integrin-binding antibodies and pharmacological inhibition of integrin-linked kinase (ILK), a key component of the integrin-induced signaling cascade. β1 integrin knock down reduced keratin 15 (K15) expression as well as the proliferation of outer root sheath keratinocytes (ORSKs). Embedding of HF epithelium into an ECM rich in β1 integrin ligands that mimic the HF mesenchyme significantly enhanced proliferation and migration of ORSKs, while K15 and CD200 gene and protein expression were inhibited. Employing ECM-embedded β1 integrin-activating or -inhibiting antibodies allowed to identify functionally distinct human ePC subpopulations in different compartments of the HF epithelium. The β1 integrin-inhibitory antibody reduced β1 integrin expression in situ and selectively enhanced proliferation of bulge ePCs, while the β1 integrin-stimulating antibody decreased hair matrix keratinocyte apoptosis and enhanced transferrin receptor (CD71) immunoreactivity, a marker of transit amplifying cells, but did not affect bulge ePC proliferation. That the putative ILK inhibitor QLT0267 significantly reduced ORSK migration and proliferation and induced massive ORSK apoptosis suggests a key role for ILK in mediating the ß1 integrin effects. Taken together, these findings demonstrate that ePCs in human HFs require β1 integrin-mediated signaling for survival, adhesion, and migration, and that different human HF ePC subpopulations differ in their response to β1 integrin signaling. These insights may be exploited for cell-based regenerative medicine strategies that employ human HF-derived ePCs.
Collapse
Affiliation(s)
- Nancy Ernst
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Arzu Yay
- Department of Histology and Embryology, University of Erciyes, Kayseri, Turkey
| | - Tamás Bíró
- DE-MTA ‘‘Lendület’’ Cellular Physiology Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Stephan Tiede
- Institute of Experimental Immunology, Euroimmun AG, Luebeck, Germany
| | - Martin Humphries
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany
- Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
- * E-mail:
| | | |
Collapse
|
31
|
Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways. Kidney Int 2013; 85:1290-302. [PMID: 24336029 DOI: 10.1038/ki.2013.491] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease is an emerging health problem worldwide. The eye shares striking structural, developmental, and genetic pathways with the kidney, suggesting that kidney disease and ocular disease may be closely linked. A growing number of studies have found associations of chronic kidney disease with age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. In addition, retinal microvascular parameters have been shown to be predictive of chronic kidney disease. Chronic kidney disease shares common vascular risk factors including diabetes, hypertension, smoking, and obesity, and pathogenetic mechanisms including inflammation, oxidative stress, endothelial dysfunction, and microvascular dysfunction, with ocular diseases supporting the 'Common Soil Hypothesis.' In this review, we present major epidemiological evidence for these associations and explore underlying pathogenic mechanisms and common risk factors for kidney and ocular disease. Understanding the link between kidney and ocular disease can lead to the development of new treatment and screening strategies for both diseases.
Collapse
|
32
|
Shin ES, Sorenson CM, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 306:L620-34. [PMID: 24318110 DOI: 10.1152/ajplung.00188.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with important roles in regulation of inflammation and angiogenesis. It is produced by various cell types, including endothelial cells (EC). However, the cell autonomous impact of PEDF on EC function needs further investigation. Lung EC prepared from PEDF-deficient (PEDF-/-) mice were more migratory and failed to undergo capillary morphogenesis in Matrigel compared with wild type (PEDF+/+) EC. Although no significant differences were observed in the rates of apoptosis in PEDF-/- EC compared with PEDF+/+ cells under basal or stress conditions, PEDF-/- EC proliferated at a slower rate. PEDF-/- EC also expressed increased levels of proinflammatory markers, including vascular endothelial growth factor, inducible nitric oxide synthase, vascular cell adhesion molecule-1, as well as altered cellular junctional organization, and nuclear localization of β-catenin. The PEDF-/- EC were also more adhesive, expressed decreased levels of thrombospondin-2, tenascin-C, and osteopontin, and increased fibronectin. Furthermore, we showed lungs from PEDF-/- mice exhibited increased expression of macrophage marker F4/80, along with increased thickness of the vascular walls, consistent with a proinflammatory phenotype. Together, our data suggest that the PEDF expression makes significant contribution to modulation of the inflammatory and angiogenic phenotype of the lung endothelium.
Collapse
Affiliation(s)
- Eui Seok Shin
- Dept. of Ophthalmology and Visual Sciences, Univ. of Wisconsin, 600 Highland Ave., K6/458 CSC, Madison, WI 53792-4673.
| | | | | |
Collapse
|
33
|
Chauveau A, Tonnerre P, Pabois A, Gavlovsky PJ, Chatelais M, Coupel S, Charreau B. Endothelial cell activation and proliferation modulate NKG2D activity by regulating MICA expression and shedding. J Innate Immun 2013; 6:89-104. [PMID: 23860405 DOI: 10.1159/000351605] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 04/23/2013] [Indexed: 12/13/2022] Open
Abstract
MICA are major histocompatibility complex class I-related molecules, expressed by endothelial cells (ECs), that may be targets for alloantibodies and NKG2D-expressing natural killer (NK) and T effector cells in organ allografts. This study shows that basal levels of MICA expressed on vascular ECs is sufficient to functionally modulate the expression and activity of the immunoreceptor NKG2D in allogeneic NK cells. We found that MICA expression is differentially regulated at the EC surface in response to cytokines. TNFα upregulates MICA while IFNγ significantly decreases MICA at the EC surface. Both cytokines induce the release of soluble MICA by ECs. Modulation of NKG2D correlates with the MICA level on the EC surface. Glycosylation and metalloproteinase activities account for major post-transcriptional mechanisms controlling MICA level and the function in ECs. Our results indicate that, in addition to the NFκB pathway, the mitogen-activated protein kinase pathways JNK, ERK1/2 and p38 are key signaling pathways in the control of MICA by the cytokines. Finally, we show that EC proliferation mediated by FGF-2 or wound healing increases the MICA level. Together, our data suggest that inflammation and proliferation regulate endothelial MICA expression and shedding, enabling ECs to modulate NKG2D activity on effector NK and T cells, and provide further evidence of a role for ECs in immunoregulation.
Collapse
Affiliation(s)
- Annabelle Chauveau
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Centre de Recherche en Transplantation et Immunologie, Laboratoire d'Excellence Transplantex, Centre Européen des Sciences de la Transplantation et Immunothérapie, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Université de Nantes, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Rao M. Cardiovascular and Kidney Disease Traits—Pleiotropic or Just Polygenic? Am J Kidney Dis 2013; 61:851-4. [DOI: 10.1053/j.ajkd.2013.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 11/11/2022]
|
35
|
Olden M, Teumer A, Bochud M, Pattaro C, Köttgen A, Turner ST, Rettig R, Chen MH, Dehghan A, Bastardot F, Schmidt R, Vollenweider P, Schunkert H, Reilly MP, Fornage M, Launer LJ, Verwoert GC, Mitchell GF, Bis JC, O'Donnell CJ, Cheng CY, Sim X, Siscovick DS, Coresh J, Kao WHL, Fox CS, O'Seaghdha CM. Overlap between common genetic polymorphisms underpinning kidney traits and cardiovascular disease phenotypes: the CKDGen consortium. Am J Kidney Dis 2013; 61:889-98. [PMID: 23474010 DOI: 10.1053/j.ajkd.2012.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/21/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic kidney disease is associated with cardiovascular disease. We tested for evidence of a shared genetic basis to these traits. STUDY DESIGN We conducted 2 targeted analyses. First, we examined whether known single-nucleotide polymorphisms (SNPs) underpinning kidney traits were associated with a series of vascular phenotypes. Additionally, we tested whether vascular SNPs were associated with markers of kidney damage. Significance was set to 1.5×10(-4) (0.05/325 tests). SETTING & PARTICIPANTS Vascular outcomes were analyzed in participants from the AortaGen (20,634), CARDIoGRAM (86,995), CHARGE Eye (15,358), CHARGE IMT (31,181), ICBP (69,395), and NeuroCHARGE (12,385) consortia. Tests for kidney outcomes were conducted in up to 67,093 participants from the CKDGen consortium. PREDICTOR We used 19 kidney SNPs and 64 vascular SNPs. OUTCOMES & MEASUREMENTS Vascular outcomes tested were blood pressure, coronary artery disease, carotid intima-media thickness, pulse wave velocity, retinal venular caliber, and brain white matter lesions. Kidney outcomes were estimated glomerular filtration rate and albuminuria. RESULTS In general, we found that kidney disease variants were not associated with vascular phenotypes (127 of 133 tests were nonsignificant). The one exception was rs653178 near SH2B3 (SH2B adaptor protein 3), which showed direction-consistent association with systolic (P = 9.3 ×10(-10)) and diastolic (P = 1.6 ×10(-14)) blood pressure and coronary artery disease (P = 2.2 ×10(-6)), all previously reported. Similarly, the 64 SNPs associated with vascular phenotypes were not associated with kidney phenotypes (187 of 192 tests were nonsignificant), with the exception of 2 high-correlated SNPs at the SH2B3 locus (P = 1.06 ×10(-07) and P = 7.05 ×10(-08)). LIMITATIONS The combined effect size of the SNPs for kidney and vascular outcomes may be too low to detect shared genetic associations. CONCLUSIONS Overall, although we confirmed one locus (SH2B3) as associated with both kidney and cardiovascular disease, our primary findings suggest that there is little overlap between kidney and cardiovascular disease risk variants in the overall population. The reciprocal risks of kidney and cardiovascular disease may not be genetically mediated, but rather a function of the disease milieu itself.
Collapse
Affiliation(s)
- Matthias Olden
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gery S, Koeffler HP. Role of the adaptor protein LNK in normal and malignant hematopoiesis. Oncogene 2012; 32:3111-8. [DOI: 10.1038/onc.2012.435] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Park SS, Kim MO, Yun SP, Ryu JM, Park JH, Seo BN, Jeon JH, Han HJ. C(16)-Ceramide-induced F-actin regulation stimulates mouse embryonic stem cell migration: involvement of N-WASP/Cdc42/Arp2/3 complex and cofilin-1/α-actinin. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:350-60. [PMID: 22989773 DOI: 10.1016/j.bbalip.2012.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 01/15/2023]
Abstract
Ceramide, a major structural element in the cellular membrane, is a key regulatory factor in various cellular behaviors that are dependent on ceramide-induced association of specific proteins. However, molecular mechanisms that regulate ceramide-induced embryonic stem cell (ESC) migration are still not well understood. Thus, we investigated the effect of ceramide on migration and its related signal pathways in mouse ESCs. Among ceramide species with different fatty acid chain lengths, C(16)-Cer increased migration of mouse ESCs in a dose- (≥1μM) and time-dependent (≥8h) manners, as determined by the cell migration assay. C(16)-Cer (10μM) increased protein-kinase C (PKC) phosphorylation. Subsequently, C(16)-Cer increased focal adhesion kinase (FAK) and Paxillin phosphorylation, which were inhibited by PKC inhibitor Bisindolylmaleimide I (1μM). When we examined for the downstream signaling molecules, C(16)-Cer activated small G protein (Cdc42) and increased the formation of complex with Neural Wiskott-Aldrich Syndrome Protein (N-WASP)/Cdc42/Actin-Related Protein 2/3 (Arp2/3). This complex formation was disrupted by FAK- and Paxillin-specific siRNAs. Furthermore, C(16)-Cer-induced increase of filamentous actin (F-actin) expression was inhibited by Cdc42-, N-WASP-, and Arp2/3-specific siRNAs, respectively. Indeed, C(16)-Cer increased cofilin-1/F-actin interaction or F-actin/α-actinin-1 and α-actinin-4 interactions in the cytoskeleton compartment, which was reversed by Cdc42-specific siRNA. Finally, C(16)-Cer-induced increase of cell migration was inhibited by knocking down each signal pathway-related molecules with siRNA or inhibitors. In conclusion, C(16)-Cer enhances mouse ESC migration through the regulation of PKC and FAK/Paxillin-dependent N-WASP/Cdc42/Arp2/3 complex formation as well as through promoting the interaction between cofilin-1 or α-actinin-1/-4 and F-actin.
Collapse
Affiliation(s)
- Su Shin Park
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Qin J, Wu C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr Opin Cell Biol 2012; 24:607-13. [PMID: 22763012 DOI: 10.1016/j.ceb.2012.06.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 01/18/2023]
Abstract
Integrin-linked kinase (ILK) is a widely expressed and evolutionally conserved component of cell-extracellular matrix (ECM) adhesions. Although initially named as a kinase, ILK contains an unusual pseudoactive site that is incapable of catalyzing phosphorylation. Instead, ILK acts as a central component of a heterotrimer (the PINCH-ILK-parvin complex) at ECM adhesions mediating interactions with a large number of proteins via multiple sites including its pseudoactive site. Through higher level protein-protein interactions, this scaffold links integrins to the actin cytoskeleton and catalytic proteins and thereby regulates focal adhesion assembly, cytoskeleton organization and signaling. This review summarizes recent advances in our understanding of the structure and functions of the PINCH-ILK-parvin complex, and discusses emerging new features of the molecular mechanisms by which it regulates diverse cellular, physiological and pathological processes.
Collapse
Affiliation(s)
- Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|