1
|
Kamal M, Shanmuganathan M, Kroezen Z, Joanisse S, Britz-McKibbin P, Parise G. Senescent myoblasts exhibit an altered exometabolome that is linked to senescence-associated secretory phenotype signaling. Am J Physiol Cell Physiol 2025; 328:C440-C451. [PMID: 39726265 DOI: 10.1152/ajpcell.00880.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibers. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle. In the present investigation, we examined the intracellular and extracellular metabolome of C2C12 myoblasts using a bleomycin (BLEO)-mediated model of DNA damage-induced senescence. We also evaluated the relationship between the senescent metabolic phenotype and SASP signaling through molecular and network-based analyses. Senescent myoblasts exhibited a significantly altered extracellular metabolome (i.e., exometabolome), including increased secretion of several aging-associated metabolites. Four of these metabolites-trimethylamine-N-oxide (TMAO), xanthine, choline, and oleic acid-were selected for individual dose-response experiments to determine whether they could drive the senescence phenotype. Although most of the tested metabolites did not independently alter senescence markers, oleic acid treatment of healthy myoblasts significantly upregulated the SASP genes Ccl2, Cxcl12, and Il33 (p < 0.05). A gene-metabolite interaction network further revealed that oleic acid was one of the most interconnected metabolites to key senescence-associated genes. Notably, oleic acid interacted with several prominent SASP genes, suggesting a potential epigenetic effect between this monounsaturated fatty acid and SASP regulation. In summary, the exometabolome, particularly oleic acid, is implicated in SASP signaling within senescent myoblasts.NEW & NOTEWORTHY Cellular senescence and its accompanying secretory phenotype [i.e., the senescence-associated secretory phenotype (SASP)] have been linked to the aging-associated dysfunction of skeletal muscle, yet little is known about this phenomenon in satellite cells. We report that senescent myoblasts experience a significantly altered extracellular metabolome primarily characterized by the substantial release of nonesterified fatty acids. Targeted evaluation of several extracellular senescence-associated metabolites reveals a potential epigenetic role for long-chain fatty acids, particularly oleic acid, in regulating SASP-related gene expression.
Collapse
Affiliation(s)
- Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachery Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Sophie Joanisse
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Lin WH, Tzeng CY, Kao FC, Tsao CW, Li N, Wu CC, Lee SH, Huang KF, Hu WW, Chen SL. The proliferation and differentiation of skeletal muscle stem cells are enhanced in a bioreactor. Biotechnol Bioeng 2025; 122:95-109. [PMID: 39369338 DOI: 10.1002/bit.28857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T3, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.
Collapse
Affiliation(s)
- Wei-Hsuan Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing, and Management, Miaoli, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Fan-Che Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Huei Lee
- Department of Electric Engineering, Chien Hsin University of Science and Technology, Taoyuan, Taiwan
| | - Kai-Fan Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Jiwan NC, Appell CR, Sterling R, Shen CL, Luk HY. The Effect of Geranylgeraniol and Ginger on Satellite Cells Myogenic State in Type 2 Diabetic Rats. Curr Issues Mol Biol 2024; 46:12299-12310. [PMID: 39590324 PMCID: PMC11592527 DOI: 10.3390/cimb46110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with increased inflammation and reactive oxygen species (ROS) in muscles, leading to basal satellite cell (SC) myogenic impairment (i.e., reduction in SC pool), which is critical for maintaining skeletal muscle mass. T2D may contribute to muscle atrophy, possibly due to reductions in the SC pool. Geranylgeraniol (GGOH) and ginger can reduce inflammation and enhance SC myogenesis in damaged muscles, thereby alleviating muscle atrophy; however, their effect on basal SC myogenic state and muscle mass in T2D rats is limited. Rats consumed a control diet (CON), high-fat diet with 35 mg/kg of streptozotocin (HFD), a HFD with 800 mg/kg body weight of GGOH (GG), or a HFD with 0.75% ginger root extract (GRE). In the eighth week, their soleus muscles were analyzed for Pax7, MyoD, and MSTN gene and protein expression, SC myogenic state, and muscle cross-sectional area (CSA). The HFD group had a significantly lower number of Pax7+/MyoD- and Pax7+/MSTN+ cells, less Pax7 and MyoD gene expression, and less MyoD and MSTN protein expression, with a smaller CSA than the CON group. Compared to the GG and GRE groups, the HFD group had a significantly lower number of Pax7+/MSTN+ cells, less MyoD protein expression, and smaller CSA. The GRE group also had a significantly lower number of Pax7-/MyoD+ and greater MSTN protein expression than the HFD group. Nevertheless, the CON group had a significantly greater number of Pax7+/MyoD- than the GG and GRE groups, and a greater number of Pax7-/MyoD+ cells than the GRE group with a larger CSA than the GG group. GGOH and ginger persevered muscle CSA, possibly through increased MyoD and the ability to maintain the SC pool in T2D rats.
Collapse
Affiliation(s)
- Nigel C. Jiwan
- Department of Kinesiology, Hope College, Holland, MI 49423, USA;
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Casey R. Appell
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Raoul Sterling
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Hui-Ying Luk
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79406, USA; (C.R.A.); (R.S.)
| |
Collapse
|
4
|
Betz MW, De Brandt J, Aussieker T, Monsegue AP, Houtvast DCJ, Gehlert S, Verdijk LB, van Loon LJC, Gosker HR, Langen RJC, Derave W, Burtin C, Spruit MA, Snijders T. Muscle fibre satellite cells are located at a greater distance from capillaries in patients with COPD compared with healthy controls. ERJ Open Res 2024; 10:00203-2024. [PMID: 39351378 PMCID: PMC11440426 DOI: 10.1183/23120541.00203-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 10/04/2024] Open
Abstract
Background COPD is a disease characterised by skeletal muscle dysfunction. A spatial relationship exists between satellite cells and muscle fibre capillaries, which has been suggested to be of major importance for satellite cell function. In the present study we compared the spatial relationship between satellite cells and capillaries in patients with COPD and age-matched healthy older adults. Methods Muscle biopsies were obtained from the vastus lateralis of n=18 patients with COPD (8 female, 10 male; age 66±5 years, mild-to-severe airflow obstruction) and n=18 age-, sex- and body mass index-matched healthy control adults (8 female, 10 male; age 68±5 years). Immunohistochemistry was used to assess type I/II muscle fibre size, distribution, myonuclear content, satellite cell number and fibre capillarisation. In addition, type I/II muscle fibre satellite cell distance to its nearest capillary was assessed. Results The percentage of type II muscle fibres was significantly greater in patients with COPD (62±10%) compared with controls (50±12%, p<0.05). Muscle fibre capillarisation was significantly lower in patients with COPD compared with controls (p<0.05). While satellite cell content was not different between groups, type I and type II satellite cell distance to its nearest capillary was significantly greater in patients with COPD (type I: 21.3±4.8 µm; type II: 26.7±9.3 µm) compared with controls (type I: 16.1±3.5 µm; type II: 22.7±5.8 µm; p<0.05). Conclusion Satellite cells are located at a greater distance from their nearest capillary in patients with COPD compared with age-matched controls. This increased distance could play a role in impaired satellite cell function in patients with COPD.
Collapse
Affiliation(s)
- Milan W Betz
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Jana De Brandt
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Thorben Aussieker
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Alejandra P Monsegue
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Dion C J Houtvast
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Sebastian Gehlert
- Department for Biosciences of Sports, Institute for Sport Science, University of Hildesheim, Hildesheim, Germany
| | - Lex B Verdijk
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Luc J C van Loon
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| | - Harry R Gosker
- NUTRIM, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Ramon J C Langen
- NUTRIM, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, The Netherlands
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Chris Burtin
- Faculty of Rehabilitation Sciences, REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Martijn A Spruit
- NUTRIM, Maastricht University Medical Centre+, Department of Respiratory Medicine, Maastricht, The Netherlands
- Department of Research and Education, CIRO+, Horn, The Netherlands
| | - Tim Snijders
- NUTRIM Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Department of Human Biology, Maastricht, The Netherlands
| |
Collapse
|
5
|
Espino-Gonzalez E, Dalbram E, Mounier R, Gondin J, Farup J, Jessen N, Treebak JT. Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metab 2024; 36:1204-1236. [PMID: 38490209 DOI: 10.1016/j.cmet.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rémi Mounier
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, Inserm U1315, Univ Lyon, Lyon, France
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark; Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
6
|
Zhang L, Wang X, Xia G, Huang J, Wen Z, Liang C, Cao X, Zhou Y, Wu S. YAP maintains cartilage stem/progenitor cell homeostasis in osteoarthritis. J Orthop Translat 2024; 46:79-90. [PMID: 38817242 PMCID: PMC11137389 DOI: 10.1016/j.jot.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 06/01/2024] Open
Abstract
Background The cartilage stem/progenitor cells (CSPC) play a critical role in maintaining cartilage homeostasis. However, the effects of phenotypic fluctuations of CSPC on cartilage degeneration and the role of CSPC in the pathogenesis of OA is largely unknown. Methods The cartilage samples of 3 non-OA and 10 OA patients were collected. Human CSPC (hCSPC) derived from these patients were isolated, identified, and evaluated for cellular functions. Additionally, chondrocytes derived from OA patients were isolated. The effect of Yes-associated protein (YAP) expression on hCSPC was investigated in vitro. The OA rat model was established by Hulth's method. Lentivirus-mediated YAP (Lv-YAP) or lentivirus-mediated YAP RNAi (Lv-YAP-RNAi) was injected intra-articularly to modulate YAP expression in rat joints. In addition, allogeneic rat CSPC (rCSPC) overexpressing or silencing YAP were transplanted by intra-articularly injection. We also evaluated the functions of rCSPC and the OA-related cartilage phenotype in the rat model. Finally, the transcriptome of OA rCSPC overexpressing YAP was examined to explore the potential downstream targets of YAP in rCSPC. Results hCSPC derived from OA patients exhibited differential chondrogenesis capacity. Among them, a subset of hCSPC showed pronounced dysfunction, including impaired chondrogenic differentiation, inhibition of proliferation and migration, and downregulation of lubricin. Additionally, YAP was lowly expressed in quiescent non-OA hCSPC, upregulated in activated OA hCSPC, but significantly downregulated in dysfunctional OA hCSPC. Notably, the overexpression of YAP in OA hCSPC improved the proliferation, lubricin production, cell migration, and senescence, while silencing YAP had the opposite effect. In vivo, upregulation of YAP in the joint delayed OA progression and improved the cartilage regeneration capacity of rCSPC. Using transcriptomic analysis, we found that YAP may regulate rCSPC function by upregulating Baculoviral IAP repeat-containing 2 (BIRC2). Importantly, the knockdown of BIRC2 partly blocked the regulation of YAP on the CSPC function. Conclusion Dysfunction of CSPC compromises the intrinsic repair capacity of cartilage and impairs cartilage homeostasis in OA. Notably, the transcriptional co-activator YAP plays a critical role in maintaining CSPC function through potential target gene BIRC2. The Translational Potential of this Article In this study, we observed targeting the YAP-BIRC2 axis improved the CSPC function and restored the cartilage homeostasis in OA. This study provides a potential stem cell-modifying OA therapy.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Orthopaedics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, 410005, China
| | - Xinxing Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guang Xia
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Junjie Huang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zi Wen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Chi Liang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yong Zhou
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
7
|
Wilhelmsen A, Stephens FB, Bennett AJ, Karagounis LG, Jones SW, Tsintzas K. Skeletal muscle myostatin mRNA expression is upregulated in aged human adults with excess adiposity but is not associated with insulin resistance and ageing. GeroScience 2024; 46:2033-2049. [PMID: 37801203 PMCID: PMC10828472 DOI: 10.1007/s11357-023-00956-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Myostatin negatively regulates skeletal muscle growth and appears upregulated in human obesity and associated with insulin resistance. However, observations are confounded by ageing, and the mechanisms responsible are unknown. The aim of this study was to delineate between the effects of excess adiposity, insulin resistance and ageing on myostatin mRNA expression in human skeletal muscle and to investigate causative factors using in vitro models. An in vivo cross-sectional analysis of human skeletal muscle was undertaken to isolate effects of excess adiposity and ageing per se on myostatin expression. In vitro studies employed human primary myotubes to investigate the potential involvement of cross-talk between subcutaneous adipose tissue (SAT) and skeletal muscle, and lipid-induced insulin resistance. Skeletal muscle myostatin mRNA expression was greater in aged adults with excess adiposity than age-matched adults with normal adiposity (2.0-fold higher; P < 0.05) and occurred concurrently with altered expression of genes involved in the maintenance of muscle mass but did not differ between younger and aged adults with normal adiposity. Neither chronic exposure to obese SAT secretome nor acute elevation of fatty acid availability (which induced insulin resistance) replicated the obesity-mediated upregulation of myostatin mRNA expression in vitro. In conclusion, skeletal muscle myostatin mRNA expression is uniquely upregulated in aged adults with excess adiposity and insulin resistance but not by ageing alone. This does not appear to be mediated by the SAT secretome or by lipid-induced insulin resistance. Thus, factors intrinsic to skeletal muscle may be responsible for the obesity-mediated upregulation of myostatin, and future work to establish causality is required.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | - Andrew J Bennett
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Leonidas G Karagounis
- Mary MacKillop Institute for Health Research (MMIHR), Melbourne, Australian Catholic University, Melbourne, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
8
|
Kamal M, Joanisse S, Parise G. Bleomycin-treated myoblasts undergo p21-associated cellular senescence and have severely impaired differentiation. GeroScience 2024; 46:1843-1859. [PMID: 37751045 PMCID: PMC10828175 DOI: 10.1007/s11357-023-00929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
As we age, the ability to regenerate and repair skeletal muscle damage declines, partially due to increasing dysfunction of muscle resident stem cells-satellite cells (SC). Recent evidence implicates cellular senescence, which is the irreversible arrest of proliferation, as a potentiator of SC impairment during aging. However, little is known about the role of senescence in SC, and there is a large discrepancy in senescence classification within skeletal muscle. The purpose of this study was to develop a model of senescence in skeletal muscle myoblasts and identify how common senescence-associated biomarkers respond. Low-passage C2C12 myoblasts were treated with bleomycin or vehicle and then evaluated for cytological and molecular senescence markers, proliferation status, cell cycle kinetics, and differentiation potential. Bleomycin treatment caused double-stranded DNA breaks, which upregulated p21 mRNA and protein, potentially through NF-κB and senescence-associated super enhancer (SASE) signaling (p < 0.01). Consequently, cell proliferation was abruptly halted due to G2/M-phase arrest (p < 0.01). Bleomycin-treated myoblasts displayed greater senescence-associated β-galactosidase staining (p < 0.01), which increased over several days. These myoblasts remained senescent following 6 days of differentiation and had significant impairments in myotube formation (p < 0.01). Furthermore, our results show that senescence can be maintained despite the lack of p16 gene expression in C2C12 myoblasts. In conclusion, bleomycin treatment provides a valid model of damage-induced senescence that was associated with elevated p21, reduced myoblast proliferation, and aberrant cell cycle kinetics, while confirming that a multi-marker approach is needed for the accurate classification of senescence within skeletal muscle.
Collapse
Affiliation(s)
- Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sport Medicine Research Centre, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Li DCW, Rudloff S, Langer HT, Norman K, Herpich C. Age-Associated Differences in Recovery from Exercise-Induced Muscle Damage. Cells 2024; 13:255. [PMID: 38334647 PMCID: PMC10854791 DOI: 10.3390/cells13030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding the intricate mechanisms governing the cellular response to resistance exercise is paramount for promoting healthy aging. This narrative review explored the age-related alterations in recovery from resistance exercise, focusing on the nuanced aspects of exercise-induced muscle damage in older adults. Due to the limited number of studies in older adults that attempt to delineate age differences in muscle discovery, we delve into the multifaceted cellular influences of chronic low-grade inflammation, modifications in the extracellular matrix, and the role of lipid mediators in shaping the recovery landscape in aging skeletal muscle. From our literature search, it is evident that aged muscle displays delayed, prolonged, and inefficient recovery. These changes can be attributed to anabolic resistance, the stiffening of the extracellular matrix, mitochondrial dysfunction, and unresolved inflammation as well as alterations in satellite cell function. Collectively, these age-related impairments may impact subsequent adaptations to resistance exercise. Insights gleaned from this exploration may inform targeted interventions aimed at enhancing the efficacy of resistance training programs tailored to the specific needs of older adults, ultimately fostering healthy aging and preserving functional independence.
Collapse
Affiliation(s)
- Donna Ching Wah Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Stefan Rudloff
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Geriatrics and Medical Gerontology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13347 Berlin, Germany
| |
Collapse
|
10
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
11
|
Lim C, McKendry J, Giacomin T, Mcleod JC, Ng SY, Currier BS, Coletta G, Phillips SM. Fortetropin supplementation prevents the rise in circulating myostatin but not disuse-induced muscle atrophy in young men with limb immobilization: A randomized controlled trial. PLoS One 2023; 18:e0286222. [PMID: 37220119 DOI: 10.1371/journal.pone.0286222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Supplementation with Fortetropin® (FOR), a naturally occurring component from fertilized egg yolks, reduces circulating myostatin concentration. We hypothesized that FOR would mitigate muscle atrophy during immobilization. We examined the effect of FOR supplementation on muscle size and strength during 2-wk of single-leg immobilization and recovery. Twenty-four healthy young men (22 ± 2 yrs; BMI = 24.3 ± 2.9 kg/m2) were randomly allocated to either a Fortetropin® supplement (FOR-SUPP, n = 12) group consuming 19.8 g/d of FOR or placebo (PLA-SUPP, n = 12) group consuming energy- and macronutrient-matched cheese powder for 6-wk. The 6-wk period consisted of 2-wk run-in, 2-wk single-leg immobilization, and 2-wk recovery phase returning to habitual physical activities. Ultrasonography, dual-energy X-ray absorptiometry, muscle biopsies and isometric peak torque assessments were performed prior to and following each phase (days 1, 14, 28, and 42) to measure vastus lateralis and muscle fiber cross-section area (CSA), leg lean mass (LM), and muscular strength. Blood samples were taken on days 1 and 42 for measurement of plasma myostatin concentration, which increased in PLA-SUPP (4221 ± 541 pg/mL to 6721 ± 864 pg/mL, P = 0.013) but not in FOR-SUPP (5487 ± 489 pg/mL to 5383 ± 781 pg/mL, P = 0.900). After the immobilization phase, vastus lateralis CSA, LM, and isometric peak torque were decreased by 7.9 ± 1.7% (P < 0.001), -1.6 ± 0.6% (P = 0.037), and -18.7 ± 2.7% (P < 0.001) respectively, with no difference between groups. The decreased peak torque was recovered after 2-wk of normal activity (vs. day 1, P = 0.129); however, CSA and LM were not recovered (vs. day 1, P < 0.001 and P = 0.003, respectively), with no differences between groups. Supplementation with FOR prevented the rise in circulating myostatin but not disuse-induced muscle atrophy in young men after 2-wk of single-leg immobilization.
Collapse
Affiliation(s)
- Changhyun Lim
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - James McKendry
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Taylor Giacomin
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Sean Y Ng
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Brad S Currier
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Giulia Coletta
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Wang J, Mogensen AMG, Thybo F, Brandbyge M, Brorson J, van Hall G, Agergaard J, de Paoli FV, Miller BF, Bøtker HE, Farup J, Vissing K. Low-load blood flow-restricted resistance exercise produces fiber type-independent hypertrophy and improves muscle functional capacity in older individuals. J Appl Physiol (1985) 2023; 134:1047-1062. [PMID: 36825645 PMCID: PMC11684990 DOI: 10.1152/japplphysiol.00789.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Low-load blood flow-restricted resistance exercise (BFRRE) constitutes an effective means to produce skeletal muscle hypertrophy. Nonetheless, its applicability to counteract the age-related skeletal muscle decay at a cellular level, is not clear. Therefore, we investigated the effect of BFRRE on muscle fiber morphology, integrated muscle protein synthesis, muscle stem cells (MuSCs), myonuclear content, and muscle functional capacity in healthy older individuals. Twenty-three participants with a mean age of 66 yr (56-75 yr) were randomized to 6 wk of supervised BFRRE (3 sessions per week) or non-exercise control (CON). Biopsies were collected from the vastus lateralis before and after the intervention. Immunofluorescent microscopy was utilized to assess muscle fiber type-specific cross-sectional area (CSA) as well as MuSC and myonuclear content. Deuterium oxide was orally administered throughout the intervention period, enabling assessment of integrated myofibrillar and connective tissue protein fractional synthesis rate (FSR). BFRRE produced uniform ∼20% increases in the fiber CSA of both type I and type II fibers (P < 0.05). This occurred concomitantly with improvements in both maximal muscle strength and strength-endurance capacity but in the absence of increased MuSC content and myonuclear addition. The observed muscle fiber hypertrophy was not mirrored by increases in either myofibrillar or connective tissue FSR. In conclusion, BFRRE proved effective in stimulating skeletal muscle growth and increased muscle function in older individuals, which advocates for the use of BFRRE as a countermeasure of age-related deterioration of skeletal muscle mass and function.NEW & NOTEWORTHY We provide novel insight, that as little as 6 wk of low-load blood flow-restricted resistance exercise (BFRRE) produces pronounced fiber type-independent hypertrophy, alongside improvements across a broad range of muscle functional capacity in older individuals. Notably, since these results were obtained with a modest exercise volume and in a very time-efficient manner, BFRRE may represent a potent exercise strategy to counteract age-related muscle decay.
Collapse
Affiliation(s)
- Jakob Wang
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Frederik Thybo
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Jonas Brorson
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health & Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Agergaard
- Center for Healthy Aging, Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
- Oklahoma City VA, Oklahoma City, Oklahoma, United States
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
13
|
Pax7 + Satellite Cells in Human Skeletal Muscle After Exercise: A Systematic Review and Meta-analysis. Sports Med 2023; 53:457-480. [PMID: 36266373 DOI: 10.1007/s40279-022-01767-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Skeletal muscle has extraordinary regenerative capabilities against challenge, mainly owing to its resident muscle stem cells, commonly identified by Pax7+, which expediently donate nuclei to the regenerating multinucleated myofibers. This local reserve of stem cells in damaged muscle tissues is replenished by undifferentiated bone marrow stem cells (CD34+) permeating into the surrounding vascular system. OBJECTIVE The purpose of the study was to provide a quantitative estimate for the changes in Pax7+ muscle stem cells (satellite cells) in humans following an acute bout of exercise until 96 h, in temporal relation to circulating CD34+ bone marrow stem cells. A subgroup analysis of age was also performed. METHODS Four databases (Web of Science, PubMed, Scopus, and BASE) were used for the literature search until February 2022. Pax7+ cells in human skeletal muscle were the primary outcome. Circulating CD34+ cells were the secondary outcome. The standardized mean difference (SMD) was calculated using a random-effects meta-analysis. Subgroup analyses were conducted to examine the influence of age, training status, type of exercise, and follow-up time after exercise. RESULTS The final search identified 20 studies for Pax7+ cells comprising a total of 370 participants between the average age of 21 and 74 years and 26 studies for circulating CD34+ bone marrow stem cells comprising 494 participants between the average age of 21 and 67 years. Only one study assessed Pax7+ cells immediately after aerobic exercise and showed a 32% reduction in exercising muscle followed by a fast repletion to pre-exercise level within 3 h. A large effect on increasing Pax7+ cell content in skeletal muscles was observed 24 h after resistance exercise (SMD = 0.89, p < 0.001). Pax7+ cells increased to ~ 50% above pre-exercise level 24-72 h after resistance exercise. For a subgroup analysis of age, a large effect (SMD = 0.81, p < 0.001) was observed on increasing Pax7+ cells in exercised muscle among adults aged > 50 years, whereas adults at younger age presented a medium effect (SMD = 0.64, p < 0.001). Both resistance exercise and aerobic exercise showed a medium overall effect in increasing circulating CD34+ cells (SMD = 0.53, p < 0.001), which declined quickly to the pre-exercise baseline level after exercise within 6 h. CONCLUSIONS An immediate depletion of Pax7+ cells in exercising skeletal muscle concurrent with a transient release of CD34+ cells suggest a replenishment of the local stem cell reserve from bone marrow. A protracted Pax7+ cell expansion in the muscle can be observed during 24-72 h after resistance exercise. This result provides a scientific basis for exercise recommendations on weekly cycles allowing for adequate recovery time. Exercise-induced Pax7+ cell expansion in muscle remains significant at higher age, despite a lower stem cell reserve after age 50 years. More studies are required to confirm whether Pax7+ cell increment can occur after aerobic exercise. CLINICAL TRIAL REGISTRATION Registered at the International Prospective Register of Systematic Reviews (PROSPERO) [identification code CRD42021265457].
Collapse
|
14
|
Rahmati M, McCarthy JJ, Malakoutinia F. Myonuclear permanence in skeletal muscle memory: a systematic review and meta-analysis of human and animal studies. J Cachexia Sarcopenia Muscle 2022; 13:2276-2297. [PMID: 35961635 PMCID: PMC9530508 DOI: 10.1002/jcsm.13043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| | - John J. McCarthy
- Department of PhysiologyUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Fatemeh Malakoutinia
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human SciencesLorestan UniversityKhorramabadIran
| |
Collapse
|
15
|
Viecelli C, Ewald CY. The non-modifiable factors age, gender, and genetics influence resistance exercise. FRONTIERS IN AGING 2022; 3:1005848. [PMID: 36172603 PMCID: PMC9510838 DOI: 10.3389/fragi.2022.1005848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 06/13/2023]
Abstract
Muscle mass and force are key for movement, life quality, and health. It is well established that resistance exercise is a potent anabolic stimulus increasing muscle mass and force. The response of a physiological system to resistance exercise is composed of non-modifiable (i.e., age, gender, genetics) and modifiable factors (i.e., exercise, nutrition, training status, etc.). Both factors are integrated by systemic responses (i.e., molecular signaling, genetic responses, protein metabolism, etc.), consequently resulting in functional and physiological adaptations. Herein, we discuss the influence of non-modifiable factors on resistance exercise: age, gender, and genetics. A solid understanding of the role of non-modifiable factors might help to adjust training regimes towards optimal muscle mass maintenance and health.
Collapse
Affiliation(s)
- Claudio Viecelli
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Collin Y. Ewald
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
16
|
LIM CHANGHYUN, NUNES EVERSONA, CURRIER BRADS, MCLEOD JONATHANC, THOMAS AARONCQ, PHILLIPS STUARTM. An Evidence-Based Narrative Review of Mechanisms of Resistance Exercise-Induced Human Skeletal Muscle Hypertrophy. Med Sci Sports Exerc 2022; 54:1546-1559. [PMID: 35389932 PMCID: PMC9390238 DOI: 10.1249/mss.0000000000002929] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays a critical role in physical function and metabolic health. Muscle is a highly adaptable tissue that responds to resistance exercise (RE; loading) by hypertrophying, or during muscle disuse, RE mitigates muscle loss. Resistance exercise training (RET)-induced skeletal muscle hypertrophy is a product of external (e.g., RE programming, diet, some supplements) and internal variables (e.g., mechanotransduction, ribosomes, gene expression, satellite cells activity). RE is undeniably the most potent nonpharmacological external variable to stimulate the activation/suppression of internal variables linked to muscular hypertrophy or countering disuse-induced muscle loss. Here, we posit that despite considerable research on the impact of external variables on RET and hypertrophy, internal variables (i.e., inherent skeletal muscle biology) are dominant in regulating the extent of hypertrophy in response to external stimuli. Thus, identifying the key internal skeletal muscle-derived variables that mediate the translation of external RE variables will be pivotal to determining the most effective strategies for skeletal muscle hypertrophy in healthy persons. Such work will aid in enhancing function in clinical populations, slowing functional decline, and promoting physical mobility. We provide up-to-date, evidence-based perspectives of the mechanisms regulating RET-induced skeletal muscle hypertrophy.
Collapse
Affiliation(s)
- CHANGHYUN LIM
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - EVERSON A. NUNES
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
- Department of Physiological Science, Federal University of Santa Catarina, Florianópolis, Santa-Catarina, BRAZIL
| | - BRAD S. CURRIER
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - JONATHAN C. MCLEOD
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - AARON C. Q. THOMAS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| | - STUART M. PHILLIPS
- Department of Kinesiology, McMaster University, Hamilton, Ontario, CANADA
| |
Collapse
|
17
|
Effects of GH on the Aging Process in Several Organs: Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23147848. [PMID: 35887196 PMCID: PMC9318627 DOI: 10.3390/ijms23147848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In order to investigate the possible beneficial effects of GH administration on the aging process, 24-month-old rats of both sexes and 10-month-old SAMP8 mice were used. Male rats showed increased fat content and decreased lean body mass together with enhanced vasoconstriction and reduced vasodilation of their aortic rings compared to young adult animals. Chronic GH treatment for 10 weeks increased lean body mass and reduced fat weight together with inducing an enhancement of the vasodilatory response by increasing eNOS and a reduction of the constrictory responses. Old SAMP8 male mice also showed insulin resistance together with a decrease in insulin production by the endocrine pancreas and a reduced expression of differentiation parameters. GH treatment decreased plasma levels and increased pancreatic production of insulin and restored differentiation parameters in these animals. Ovariectomy plus low calcium diet in rabbits induced osteoporosis Titanium implants inserted into these rabbit tibiae showed after one month lesser bone to implant (BIC) surface and bone mineral density (BMD). Local application of GH in the surgical opening was able to increase BIC in the osteoporotic group. The hippocampus of old rats showed a reduction in the number of neurons and also in neurogenesis compared to young ones, together with an increase of caspases and a reduction of Bcl-2. GH treatment was able to enhance significantly only the total number of neurons. In conclusion, GH treatment was able to show beneficial effects in old animals on all the different organs and metabolic functions studied.
Collapse
|
18
|
Beaudry KM, Binet ER, Collao N, De Lisio M. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front Physiol 2022; 13:915390. [PMID: 35874517 PMCID: PMC9301335 DOI: 10.3389/fphys.2022.915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
Collapse
Affiliation(s)
| | | | - Nicolás Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Aguilera JA, Pourhashemi N, Sharpe CJ, Friesen B. Use it or lose it: Protecting aging muscles with lifelong recreational exercise. J Physiol 2022; 600:3397-3398. [PMID: 35759572 DOI: 10.1113/jp283338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Nicki Pourhashemi
- Department of Kinesiology, University of Toronto, Toronto, Ontario, Canada
| | - Cooper J Sharpe
- Department of Kinesiology, University of Toronto, Toronto, Ontario, Canada
| | - Beata Friesen
- Department of Kinesiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
21
|
Epigenetic clock and methylation studies in marsupials: opossums, Tasmanian devils, kangaroos, and wallabies. GeroScience 2022; 44:1825-1845. [PMID: 35449380 PMCID: PMC9213610 DOI: 10.1007/s11357-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/10/2022] [Indexed: 11/13/2022] Open
Abstract
The opossum (Monodelphis domestica), with its sequenced genome, ease of laboratory care and experimental manipulation, and unique biology, is the most used laboratory marsupial. Using the mammalian methylation array, we generated DNA methylation data from n = 100 opossum samples from the ear, liver, and tail. We contrasted postnatal development and later aging effects in the opossum methylome with those in mouse (Mus musculus, C57BL/6 J strain) and other marsupial species such as Tasmanian devil, kangaroos, and wallabies. While the opossum methylome is similar to that of mouse during postnatal development, it is distinct from that shared by other mammals when it comes to the age-related gain of methylation at target sites of polycomb repressive complex 2. Our immunohistochemical staining results provide additional support for the hypothesis that PRC2 activity increases with later aging in mouse tissues but remains constant in opossum tissues. We present several epigenetic clocks for opossums that are distinguished by their compatibility with tissue type (pan-tissue and blood clock) and species (opossum and human). Two dual-species human-opossum pan-tissue clocks accurately measure chronological age and relative age, respectively. The human-opossum epigenetic clocks are expected to provide a significant boost to the attractiveness of opossum as a biological model. Additional epigenetic clocks for Tasmanian devil, red kangaroos and other species of the genus Macropus may aid species conservation efforts.
Collapse
|
22
|
Prokopidis K, Giannos P, Witard OC, Peckham D, Ispoglou T. Aberrant mitochondrial homeostasis at the crossroad of musculoskeletal ageing and non-small cell lung cancer. PLoS One 2022; 17:e0273766. [PMID: 36067173 PMCID: PMC9447904 DOI: 10.1371/journal.pone.0273766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cachexia is accompanied by muscle atrophy, sharing multiple common catabolic pathways with sarcopenia, including mitochondrial dysfunction. This study investigated gene expression from skeletal muscle tissues of older healthy adults, who are at risk of age-related sarcopenia, to identify potential gene biomarkers whose dysregulated expression and protein interference were involved in non-small cell lung cancer (NSCLC). Screening of the literature resulted in 14 microarray datasets (GSE25941, GSE28392, GSE28422, GSE47881, GSE47969, GSE59880 in musculoskeletal ageing; GSE118370, GSE33532, GSE19804, GSE18842, GSE27262, GSE19188, GSE31210, GSE40791 in NSCLC). Differentially expressed genes (DEGs) were used to construct protein-protein interaction networks and retrieve clustering gene modules. Overlapping module DEGs were ranked based on 11 topological algorithms and were correlated with prognosis, tissue expression, and tumour purity in NSCLC. The analysis revealed that the dysregulated expression of the mammalian mitochondrial ribosomal proteins, Mitochondrial Ribosomal Protein S26 (MRPS26), Mitochondrial Ribosomal Protein S17 (MRPS17), Mitochondrial Ribosomal Protein L18 (MRPL18) and Mitochondrial Ribosomal Protein L51 (MRPL51) were linked to reduced survival and tumour purity in NSCLC while tissue expression of the same genes followed an opposite direction in healthy older adults. These results support a potential link between the mitochondrial ribosomal microenvironment in ageing muscle and NSCLC. Further studies comparing changes in sarcopenia and NSCLC associated cachexia are warranted.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, United Kingdom
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
23
|
Román E, Poca M, Amorós-Figueras G, Rosell-Ferrer J, Gely C, Nieto JC, Vidal S, Urgell E, Ferrero-Gregori A, Alvarado-Tapias E, Cuyàs B, Hernández E, Santesmases R, Guarner C, Escorsell À, Soriano G. Phase angle by electrical bioimpedance is a predictive factor of hospitalisation, falls and mortality in patients with cirrhosis. Sci Rep 2021; 11:20415. [PMID: 34650096 PMCID: PMC8516941 DOI: 10.1038/s41598-021-99199-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
The phase angle is a versatile measurement to assess body composition, frailty and prognosis in patients with chronic diseases. In cirrhosis, patients often present alterations in body composition that are related to adverse outcomes. The phase angle could be useful to evaluate prognosis in these patients, but data are scarce. The aim was to analyse the prognostic value of the phase angle to predict clinically relevant events such as hospitalisation, falls, and mortality in patients with cirrhosis. Outpatients with cirrhosis were consecutively included and the phase angle was determined by electrical bioimpedance. Patients were prospectively followed to determine the incidence of hospitalisations, falls, and mortality. One hundred patients were included. Patients with phase angle ≤ 4.6° (n = 31) showed a higher probability of hospitalisation (35% vs 11%, p = 0.003), falls (41% vs 11%, p = 0.001) and mortality (26% vs 3%, p = 0.001) at 2-year follow-up than patients with PA > 4.6° (n = 69). In the multivariable analysis, the phase angle and MELD-Na were independent predictive factors of hospitalisation and mortality. Phase angle was the only predictive factor for falls. In conclusion, the phase angle showed to be a predictive marker for hospitalisation, falls, and mortality in outpatients with cirrhosis.
Collapse
Affiliation(s)
- Eva Román
- Escola Universitària d'Infermeria EUI-Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Poca
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, 90, 08041, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Gerard Amorós-Figueras
- Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Rosell-Ferrer
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Juan C Nieto
- Research Institute IIB-Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Research Institute IIB-Sant Pau, Barcelona, Spain
| | - Eulàlia Urgell
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andreu Ferrero-Gregori
- INCLIVA Health Research Institute, Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Valencia, Spain
| | - Edilmar Alvarado-Tapias
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, 90, 08041, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Berta Cuyàs
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, 90, 08041, Barcelona, Spain
| | - Elvira Hernández
- Escola Universitària d'Infermeria EUI-Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosalia Santesmases
- Escola Universitària d'Infermeria EUI-Sant Pau, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Guarner
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, 90, 08041, Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Àngels Escorsell
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, 90, 08041, Barcelona, Spain
| | - German Soriano
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Mas Casanovas, 90, 08041, Barcelona, Spain.
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Nederveen JP, Betz MW, Snijders T, Parise G. The Importance of Muscle Capillarization for Optimizing Satellite Cell Plasticity. Exerc Sport Sci Rev 2021; 49:284-290. [PMID: 34547761 DOI: 10.1249/jes.0000000000000270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Satellite cells are essential for skeletal muscle regeneration, repair, and adaptation. The activity of satellite cells is influenced by their interactions with muscle-resident endothelial cells. We postulate that the microvascular network between muscle fibers plays a critical role in satellite cell function. Exercise-induced angiogenesis can mitigate the decline in satellite cell function with age.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre, Hamilton, ON, Canada
| | - Milan W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gianni Parise
- Department of Kinesiology, Faculty of Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
26
|
Abou Sawan S, Hodson N, Babits P, Malowany JM, Kumbhare D, Moore DR. Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females. J Appl Physiol (1985) 2021; 131:871-880. [PMID: 34264129 DOI: 10.1152/japplphysiol.00424.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Satellite cells (SC) play an integral role in the recovery from skeletal muscle damage and supporting muscle hypertrophy. Acute resistance exercise typically elevates type I and type II SC content 24-96 h post exercise in healthy young males, although comparable research in females is lacking. We aimed to elucidate whether sex-based differences exist in fiber type-specific SC content after resistance exercise in the untrained (UT) and trained (T) states. Ten young males (23.0 ± 4.0 yr) and females (23.0 ± 4.8 yr) completed an acute bout of resistance exercise before and after 8 wk of whole body resistance training. Muscle biopsies were taken from the vastus lateralis immediately before and 24 and 48 h after each bout to determine SC and myonuclear content by immunohistochemistry. Males had greater SC associated with type II fibers (P ≤ 0.03). There was no effect of acute resistance exercise on SC content in either fiber type (P ≥ 0.58) for either sex; however, training increased SC in type II fibers (P < 0.01) irrespective of sex. The change in mean 0-48 h type II SC was positively correlated with muscle fiber hypertrophy in type II fibers (r = 0.47; P = 0.035). Furthermore, the change in myonuclei per fiber was positively correlated with type I and type II fiber hypertrophy (both r = 0.68; P < 0.01). Our results suggest that SC responses to acute and chronic resistance exercise are similar in males and females and that SC and myonuclear accretion is related to training-induced muscle fiber hypertrophy.NEW & NOTEWORTHY We demonstrate that training-induced increase in SC content in type II fibers and myonuclear content in type I and II fibers is similar between males and females. Furthermore, these changes are related to the extent of muscle fiber hypertrophy. Thus, SC and myonuclear accretion appear to contribute to muscle hypertrophy irrespective of sex, highlighting the importance of these muscle stem cells in human skeletal muscle growth.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Paul Babits
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Allen SL, Quinlan JI, Dhaliwal A, Armstrong MJ, Elsharkawy AM, Greig CA, Lord JM, Lavery GG, Breen L. Sarcopenia in chronic liver disease: mechanisms and countermeasures. Am J Physiol Gastrointest Liver Physiol 2021; 320:G241-G257. [PMID: 33236953 PMCID: PMC8609568 DOI: 10.1152/ajpgi.00373.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sarcopenia, a condition of low muscle mass, quality, and strength, is commonly found in patients with cirrhosis and is associated with adverse clinical outcomes including reduction in quality of life, increased mortality, and posttransplant complications. In chronic liver disease (CLD), sarcopenia is most commonly defined through the measurement of the skeletal muscle index of the third lumbar spine. A major contributor to sarcopenia in CLD is the imbalance in muscle protein turnover, which likely occurs due to a decrease in muscle protein synthesis and an elevation in muscle protein breakdown. This imbalance is assumed to arise due to several factors including accelerated starvation, hyperammonemia, amino acid deprivation, chronic inflammation, excessive alcohol intake, and physical inactivity. In particular, hyperammonemia is a key mediator of the liver-gut axis and is known to contribute to mitochondrial dysfunction and an increase in myostatin expression. Currently, the use of nutritional interventions such as late-evening snacks, branched-chain amino acid supplementation, and physical activity have been proposed to help the management and treatment of sarcopenia. However, little evidence exists to comprehensively support their use in clinical settings. Several new pharmacological strategies, including myostatin inhibition and the nutraceutical Urolithin A, have recently been proposed to treat age-related sarcopenia and may also be of use in CLD. This review highlights the potential molecular mechanisms contributing to sarcopenia in CLD alongside a discussion of existing and potential new treatment strategies.
Collapse
Affiliation(s)
- Sophie L. Allen
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Jonathan I. Quinlan
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Amritpal Dhaliwal
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Matthew J. Armstrong
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Ahmed M. Elsharkawy
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,4Liver Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Carolyn A. Greig
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,3Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Gareth G. Lavery
- 2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,6Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom,7Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partner, Birmingham, United Kingdom
| | - Leigh Breen
- 1School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom,2National Institute for Health Research, Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom,5MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
García-Giménez JL, Mena-Molla S, Tarazona-Santabalbina FJ, Viña J, Gomez-Cabrera MC, Pallardó FV. Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1883. [PMID: 33672064 PMCID: PMC7919465 DOI: 10.3390/ijerph18041883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The main epigenetic features in aging are: reduced bulk levels of core histones, altered pattern of histone post-translational modifications, changes in the pattern of DNA methylation, replacement of canonical histones with histone variants, and altered expression of non-coding RNA. The identification of epigenetic mechanisms may contribute to the early detection of age-associated subclinical changes or deficits at the molecular and/or cellular level, to predict the development of frailty, or even more interestingly, to improve health trajectories in older adults. Frailty reflects a state of increased vulnerability to stressors as a result of decreased physiologic reserves, and even dysregulation of multiple physiologic systems leading to adverse health outcomes for individuals of the same chronological age. A key approach to overcome the challenges of frailty is the development of biomarkers to improve early diagnostic accuracy and to predict trajectories in older individuals. The identification of epigenetic biomarkers of frailty could provide important support for the clinical diagnosis of frailty, or more specifically, to the evaluation of its associated risks. Interventional studies aimed at delaying the onset of frailty and the functional alterations associated with it, would also undoubtedly benefit from the identification of frailty biomarkers. Specific to the article yet reasonably common within the subject discipline.
Collapse
Affiliation(s)
- José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | - Salvador Mena-Molla
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | | | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
29
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Román E, Parramón M, Flavià M, Gely C, Poca M, Gallego A, Santesmases R, Hernández E, Nieto JC, Urgell E, Alvarado-Tapias E, Vidal S, Ferrero-Gregori A, Vargas V, Guarner C, Soriano G. Frailty in outpatients with cirrhosis: A prospective observational study. Liver Int 2021; 41:357-368. [PMID: 33030788 DOI: 10.1111/liv.14694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIM Frailty is increasingly recognized as a major prognostic factor in cirrhosis in addition to conventional liver insufficiency scores. The aim was to compare the prevalence and characteristics of frailty between patients with cirrhosis and controls, and to analyse its prognostic value. METHODS We included outpatients with cirrhosis and age- and gender-matched non-cirrhotic controls. Frailty was defined according to the Fried frailty criteria. In patients with cirrhosis, we analysed the ability of the degree of frailty to predict a composite endpoint, consisting of hospitalization, admission to a long-term care centre, falls or death. RESULTS We included 135 patients with cirrhosis and 135 controls. The prevalence of frailty was higher among patients with cirrhosis: 35 (25.9%) frail, 74 (54.8%) pre-frail and 26 (19.2%) robust vs 14 (10.4%) frail, 67 (49.6%) pre-frail and 54 (40%) robust (P < .001) in controls. This difference was mainly as a result of decreased muscle strength in patients with cirrhosis. During follow-up, frail patients with cirrhosis showed a higher probability of composite endpoint, hospitalization and falls than pre-frail and robust cirrhotic patients but mortality was similar. MELD-Na score and frailty were independent predictive factors for hospitalization, frailty for falls, and MELD-Na score and albumin for survival. Vitamin D deficiency and increased cystatin C were associated with frailty. CONCLUSIONS Frailty was more frequent in outpatients with cirrhosis than in controls, mainly because of a decrease in muscle strength, and it could be a predictive factor for hospitalization and falls in these patients.
Collapse
Affiliation(s)
- Eva Román
- Escola Universitària d'Infermeria EUI-Sant Pau, Barcelona, Spain.,Department of Gastroenterology at Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Parramón
- Primary Care Center Passeig Maragall, Barcelona, Spain
| | | | | | - Maria Poca
- Department of Gastroenterology at Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo Gallego
- Department of Gastroenterology at Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rosalia Santesmases
- Escola Universitària d'Infermeria EUI-Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elvira Hernández
- Escola Universitària d'Infermeria EUI-Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan C Nieto
- Research Institute IIB-Sant Pau, Barcelona, Spain
| | | | - Edilmar Alvarado-Tapias
- Department of Gastroenterology at Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Research Institute IIB-Sant Pau, Barcelona, Spain
| | - Silvia Vidal
- Universitat Autònoma de Barcelona, Barcelona, Spain.,Research Institute IIB-Sant Pau, Barcelona, Spain.,Department of Immunology at Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andreu Ferrero-Gregori
- INCLIVA Health Research Institute, Valencia, Spain.,Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Valencia, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor Vargas
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain.,Liver Unit, Hospital Vall d'Hebron, Barcelona, Spain
| | - Carlos Guarner
- Department of Gastroenterology at Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - German Soriano
- Department of Gastroenterology at Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Kowalik S, Wiśniewska A, Kędzierski W, Janczarek I. Concentrations of Circulating Irisin and Myostatin in Race and Endurace Purebred Arabian Horses-Preliminary Study. Animals (Basel) 2020; 10:ani10122268. [PMID: 33271939 PMCID: PMC7760310 DOI: 10.3390/ani10122268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Irisin and myostatin are regulatory proteins produced by muscle cells. The aim of the study was to evaluate the effect of exercise on plasma irisin and myostatin concentrations in horses in different types of training (speed versus endurance). To find out, we tested 20 Arabian horses, submitted to the two different equestrian disciplines, and consequently different training regimes. The first group of horses realized a short-term, high-speed bout of exercise whereas the second group of horses were submitted to long-lasting, endurance effort. The obtained results showed that the single bout of exercise induced an increase in plasma myostatin concentration. Plasma irisin level decreased during the race season in racehorses. This means that irisin and myostatin may play a regulatory role in the maintenance of the energy balance processes. Abstract Skeletal muscle is considered to be the largest endocrine organ determining the maintenance of energy homeostasis. Adaptive changes in skeletal muscles in response to physical exercise influence the production as well as secretion of myokines, which are bioactive factors that play a crucial role in energy expenditure processes. The aim of the study was to investigate the impact of two different types of exercise on the circulating level of two of these, myostatin and irisin, in trained horses. Twenty purebred Arabian horses were involved in the study: 10 three-year-old horses trained on the racetrack and 10 endurance horses aged 7.4 ± 1.9 years. The horses from both groups were regularly trained throughout the entire season, during which they also participated in Polish National competitions. To assess the influence of the training sessions on plasma myostatin and irisin concentrations, blood samples taken at rest and 30 min after the end of exercise were analyzed. In the studied horses, the single bout of exercise did not influence plasma irisin but induced an increase in plasma myostatin concentration. In racehorses, plasma irisin concentration decreased with the length of the training season. Plasma myostatin was higher in endurance horses than in three-year-old racehorses. Lack of exercise-induced fluctuation in circulating irisin in studied horses suggests that myostatin released in response to exercise provides a negative feedback signal to irisin release.
Collapse
Affiliation(s)
- Sylwester Kowalik
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-033 Lublin, Poland;
| | - Anna Wiśniewska
- Department of Horse Breeding and Use, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland;
- Correspondence:
| | - Witold Kędzierski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, ul. Akademicka 12, 20-033 Lublin, Poland;
| | - Iwona Janczarek
- Department of Horse Breeding and Use, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
32
|
Lepley LK, Davi SM, Burland JP, Lepley AS. Muscle Atrophy After ACL Injury: Implications for Clinical Practice. Sports Health 2020; 12:579-586. [PMID: 32866081 DOI: 10.1177/1941738120944256] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Distinct from the muscle atrophy that develops from inactivity or disuse, atrophy that occurs after traumatic joint injury continues despite the patient being actively engaged in exercise. Recognizing the multitude of factors and cascade of events that are present and negatively influence the regulation of muscle mass after traumatic joint injury will likely enable clinicians to design more effective treatment strategies. To provide sports medicine practitioners with the best strategies to optimize muscle mass, the purpose of this clinical review is to discuss the predominant mechanisms that control muscle atrophy for disuse and posttraumatic scenarios, and to highlight how they differ. EVIDENCE ACQUISITION Articles that reported on disuse atrophy and muscle atrophy after traumatic joint injury were collected from peer-reviewed sources available on PubMed (2000 through December 2019). Search terms included the following: disuse muscle atrophy OR disuse muscle mass OR anterior cruciate ligament OR ACL AND mechanism OR muscle loss OR atrophy OR neurological disruption OR rehabilitation OR exercise. STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 5. RESULTS We highlight that (1) muscle atrophy after traumatic joint injury is due to a broad range of atrophy-inducing factors that are resistant to standard resistance exercises and need to be effectively targeted with treatments and (2) neurological disruptions after traumatic joint injury uncouple the nervous system from muscle tissue, contributing to a more complex manifestation of muscle loss as well as degraded tissue quality. CONCLUSION Atrophy occurring after traumatic joint injury is distinctly different from the muscle atrophy that develops from disuse and is likely due to the broad range of atrophy-inducing factors that are present after injury. Clinicians must challenge the standard prescriptive approach to combating muscle atrophy from simply prescribing physical activity to targeting the neurophysiological origins of muscle atrophy after traumatic joint injury.
Collapse
Affiliation(s)
- Lindsey K Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven M Davi
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
| | - Julie P Burland
- Spaulding National Running Center, Harvard Medical School, Boston, Massachusetts
| | - Adam S Lepley
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Overfeeding and Substrate Availability, But Not Age or BMI, Alter Human Satellite Cell Function. Nutrients 2020; 12:nu12082215. [PMID: 32722351 PMCID: PMC7468931 DOI: 10.3390/nu12082215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Satellite cells (SC) aid skeletal muscle growth and regeneration. SC-mediated skeletal muscle repair can both be influenced by and exacerbate several diseases linked to a fatty diet, obesity, and aging. The purpose of this study was to evaluate the effects of different lifestyle factors on SC function, including body mass index (BMI), age, and high-fat overfeeding. For this study, SCs were isolated from the vastus lateralis of sedentary young (18–30 years) and sedentary older (60–80 years) men with varying BMIs (18–32 kg/m2), as well as young sedentary men before and after four weeks of overfeeding (OVF) (55% fat/ + 1000 kcal, n = 4). The isolated SCs were then treated in vitro with a control (5 mM glucose, 10% fetal bovine serum (FBS)) or a high substrate growth media (HSM) (10% FBS, 25 mM glucose, and 400 μM 2:1 oleate–palmitate). Cells were assessed on their ability to proliferate, differentiate, and fuel substrate oxidation after differentiation. The effect of HSM was measured as the percentage difference between SCs exposed to HSM compared to control media. In vitro SC function was not affected by donor age. OVF reduced SC proliferation rates (–19% p < 0.05) but did not influence differentiation. Cellular proliferation in response to HSM was correlated to the donor’s body mass index (BMI) (r2 = 0.6121, p < 0.01). When exposed to HSM, SCs from normal weight (BMI 18–25 kg/m2) participants exhibited reduced proliferation and fusion rates with increased fatty-acid oxidation (p < 0.05), while SCs from participants with higher BMIs (BMI 25–32 kg/m2) demonstrated enhanced proliferation in HSM. HSM reduced proliferation and fusion (p < 0.05) in SCs isolated from subjects before OVF, whereas HSM exposure accelerated proliferation and fusion in SCs collected following OVF. These results indicated that diet has a greater influence on SC function than age and BMI. Though age and BMI do not influence in vitro SC function when grown in controlled conditions, both factors influenced the response of SCs to substrate challenges, indicating age and BMI may mediate responses to diet.
Collapse
|
34
|
Joanisse S, Ashcroft S, Wilkinson DJ, Pollock RD, O'Brien KA, Phillips BE, Smith K, Lazarus NR, Harridge SDR, Atherton PJ, Philp A. High Levels of Physical Activity in Later Life Are Associated With Enhanced Markers of Mitochondrial Metabolism. J Gerontol A Biol Sci Med Sci 2020; 75:1481-1487. [PMID: 31942994 DOI: 10.1093/gerona/glaa005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 12/18/2022] Open
Abstract
The age-associated reduction in muscle mass is well characterized; however, less is known regarding the mechanisms responsible for the decline in oxidative capacity also observed with advancing age. The purpose of the current study was therefore to compare mitochondrial gene expression and protein content between young and old recreationally active, and older highly active individuals. Muscle biopsies were obtained from the vastus lateralis of young males (YG: 22 ± 3 years) and older (OG: 67 ± 2 years) males not previously engaged in formal exercise and older male master cyclists (OT: 65 ± 5 years) who had undertaken cycling exercise for 32 ± 17 years. Comparison of gene expression between YG, OG, and OT groups revealed greater expression of mitochondrial-related genes, namely, electron transport chain (ETC) complexes II, III, and IV (p < .05) in OT compared with YG and OG. Gene expression of mitofusion (MFN)-1/2, mitochondrial fusion genes, was greater in OT compared with OG (p < .05). Similarly, protein content of ETC complexes I, II, and IV was significantly greater in OT compared with both YG and OG (p < .001). Protein content of peroxisome proliferator-activated receptor gamma, coactivator 1 α (PGC-1α), was greater in OT compared with YG and OG (p < .001). Our results suggest that the aging process per se is not associated with a decline in gene expression and protein content of ETC complexes. Mitochondrial-related gene expression and protein content are substantially greater in OT, suggesting that exercise-mediated increases in mitochondrial content can be maintained into later life.
Collapse
Affiliation(s)
- Sophie Joanisse
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stephen Ashcroft
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Daniel J Wilkinson
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, UK
| | - Ross D Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, UK
| | - Katie A O'Brien
- Centre for Human and Applied Physiological Sciences, King's College London, UK
| | - Bethan E Phillips
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, UK
| | - Ken Smith
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, UK
| | - Norman R Lazarus
- Centre for Human and Applied Physiological Sciences, King's College London, UK
| | | | - Philip J Atherton
- Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, UK
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, NSW 2010, Australia
| |
Collapse
|
35
|
Snijders T, Aussieker T, Holwerda A, Parise G, Loon LJC, Verdijk LB. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiol (Oxf) 2020; 229:e13465. [PMID: 32175681 PMCID: PMC7317456 DOI: 10.1111/apha.13465] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Within the current paradigm of the myonuclear domain theory, it is postulated that a linear relationship exists between muscle fibre size and myonuclear content. The myonuclear domain is kept (relatively) constant by adding additional nuclei (supplied by muscle satellite cells) during muscle fibre hypertrophy and nuclear loss (by apoptosis) during muscle fibre atrophy. However, data from recent animal studies suggest that myonuclei that are added to support muscle fibre hypertrophy are not lost within various muscle atrophy models. Such myonuclear permanence has been suggested to constitute a mechanism allowing the muscle fibre to (re)grow more efficiently during retraining, a phenomenon referred to as "muscle memory." The concept of "muscle memory by myonuclear permanence" has mainly been based on data attained from rodent experimental models. Whether the postulated mechanism also holds true in humans remains largely ambiguous. Nevertheless, there are several studies in humans that provide evidence to potentially support or contradict (parts of) the muscle memory hypothesis. The goal of the present review was to discuss the evidence for the existence of "muscle memory" in both animal and human models of muscle fibre hypertrophy as well as atrophy. Furthermore, to provide additional insight in the potential presence of muscle memory by myonuclear permanence in humans, we present new data on previously performed exercise training studies. Finally, suggestions for future research are provided to establish whether muscle memory really exists in humans.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Thorben Aussieker
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Andy Holwerda
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences McMaster University Hamilton ON Canada
| | - Luc J. C. Loon
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | | |
Collapse
|
36
|
Mankhong S, Kim S, Moon S, Kwak HB, Park DH, Kang JH. Experimental Models of Sarcopenia: Bridging Molecular Mechanism and Therapeutic Strategy. Cells 2020; 9:E1385. [PMID: 32498474 PMCID: PMC7348939 DOI: 10.3390/cells9061385] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia has been defined as a progressive decline of skeletal muscle mass, strength, and functions in elderly people. It is accompanied by physical frailty, functional disability, falls, hospitalization, and mortality, and is becoming a major geriatric disorder owing to the increasing life expectancy and growing older population worldwide. Experimental models are critical to understand the pathophysiology of sarcopenia and develop therapeutic strategies. Although its etiologies remain to be further elucidated, several mechanisms of sarcopenia have been identified, including cellular senescence, proteostasis imbalance, oxidative stress, and "inflammaging." In this article, we address three main aspects. First, we describe the fundamental aging mechanisms. Next, we discuss both in vitro and in vivo experimental models based on molecular mechanisms that have the potential to elucidate the biochemical processes integral to sarcopenia. The use of appropriate models to reflect sarcopenia and/or its underlying pathways will enable researchers to understand sarcopenia and develop novel therapeutic strategies for sarcopenia. Lastly, we discuss the possible molecular targets and the current status of drug candidates for sarcopenia treatment. In conclusion, the development of experimental models for sarcopenia is essential to discover molecular targets that are valuable as biochemical biomarkers and/or therapeutic targets for sarcopenia.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Sujin Kim
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Sohee Moon
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon 22212, Korea; (H.-B.K.); (D.-H.P.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (S.M.); (S.K.); (S.M.)
- Institute of Sports & Arts Convergence (ISAC), Inha University, Incheon 22212, Korea
| |
Collapse
|
37
|
Nederveen JP, Joanisse S, Thomas ACQ, Snijders T, Manta K, Bell KE, Phillips SM, Kumbhare D, Parise G. Age‐related changes to the satellite cell niche are associated with reduced activation following exercise. FASEB J 2020; 34:8975-8989. [DOI: 10.1096/fj.201900787r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023]
Affiliation(s)
| | - Sophie Joanisse
- Department of Kinesiology McMaster University Hamilton ON Canada
| | | | - Tim Snijders
- Department of Kinesiology McMaster University Hamilton ON Canada
- Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Medical Center+ Maastricht the Netherlands
| | - Katherine Manta
- Department of Kinesiology McMaster University Hamilton ON Canada
| | - Kirsten E. Bell
- Department of Kinesiology McMaster University Hamilton ON Canada
| | | | | | - Gianni Parise
- Department of Kinesiology McMaster University Hamilton ON Canada
| |
Collapse
|
38
|
Abstract
Individuals that maintain healthy skeletal tissue tend to live healthier, happier lives as proper muscle function enables maintenance of independence and actuation of autonomy. The onset of skeletal muscle decline begins around the age of 30, and muscle atrophy is associated with a number of serious morbidities and mortalities. Satellite cells are responsible for regeneration of skeletal muscle and enter a reversible non-dividing state of quiescence under homeostatic conditions. In response to injury, satellite cells are able to activate and re-enter the cell cycle, creating new cells to repair and create nascent muscle fibres while preserving a small population that can return to quiescence for future regenerative demands. However, in aged muscle, satellite cells that experience prolonged quiescence will undergo programmed cellular senescence, an irreversible non-dividing state that handicaps the regenerative capabilities of muscle. This review examines how periodic activation and cycling of satellite cells through exercise can mitigate senescence acquisition and myogenic decline.
Collapse
Affiliation(s)
- William Chen
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - David Datzkiw
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
39
|
Parise G, Murrant CL, Cocks M, Snijders T, Baum O, Plyley MJ. Capillary facilitation of skeletal muscle function in health and disease. Appl Physiol Nutr Metab 2020; 45:453-462. [DOI: 10.1139/apnm-2019-0416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Skeletal muscle is highly vascularized, with perfusion being tightly regulated to meet wide-ranging metabolic demands. For decades, the capillary supply has been explored mainly in terms of evaluating the capillary numbers and their function in the supply of oxygen and substrates and the removal of metabolic byproducts. This review will focus on recent discoveries concerning the role played by capillaries in facilitating other aspects of cell regulation and maintenance, in health and disease, as well as alterations during the aging process. Novelty Capillaries play a central role in the coordination of the vascular response that controls blood flow during contraction and the cellular responses to which they feed into. Nitric oxide is an important regulatory compound within the cardiovascular system, and a significant contributor to skeletal muscle capillary angiogenesis and vasodilatory response to agonists. The microvascular network between muscle fibres may play a critical role in the distribution of signalling factors necessary for optimal muscle satellite cell function.
Collapse
Affiliation(s)
- Gianni Parise
- McMaster University, Departments of Kinesiology and Medical Physics & Applied Radiation Science, Hamilton, ON L8S 4K1, Canada
| | - Coral L. Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Matthew Cocks
- Liverpool John Moores University, Research Institute for Sport and Exercise Sciences, Liverpool, L3 5UG, UK
| | - Tim Snijders
- Maastricht University, NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht 6200 MD, the Netherlands
| | - Oliver Baum
- Institute of Physiology, Charité-Universitäts medizin Berlin, Berlin D-10117, Germany
| | - Michael J. Plyley
- Brock University, Department of Kinesiology, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
40
|
Karlsen A, Soendenbroe C, Malmgaard-Clausen NM, Wagener F, Moeller CE, Senhaji Z, Damberg K, Andersen JL, Schjerling P, Kjaer M, Mackey AL. Preserved capacity for satellite cell proliferation, regeneration, and hypertrophy in the skeletal muscle of healthy elderly men. FASEB J 2020; 34:6418-6436. [PMID: 32167202 DOI: 10.1096/fj.202000196r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/30/2023]
Abstract
Blunted muscle hypertrophy and impaired regeneration with aging have been partly attributed to satellite cell (SC) dysfunction. However, true muscle regeneration has not yet been studied in elderly individuals. To investigate this, muscle injury was induced by 200 electrically stimulated (ES) eccentric contractions of the vastus lateralis (VL) of one leg in seven young (20-31 years) and 19 elderly men (60-73 years). This was followed by 13 weeks of resistance training (RT) for both legs to investigate the capacity for hypertrophy. Muscle biopsies were collected Pre- and Post-RT, and 9 days after ES, for immunohistochemistry and RT-PCR. Hypertrophy was assessed by MRI, DEXA, and immunohistochemistry. Overall, surprisingly comparable responses were observed between the young and elderly. Nine days after ES, Pax7+ SC number had doubled (P < .05), alongside necrosis and substantial changes in expression of genes related to matrix, myogenesis, and innervation (P < .05). Post-RT, VL cross-sectional area had increased in both legs (~15%, P < .05) and SCs/type II fiber had increased ~2-4 times more with ES+RT vs RT alone (P < .001). Together these novel findings demonstrate "youthful" regeneration and hypertrophy responses in human elderly muscle. Furthermore, boosting SC availability in healthy elderly men does not enhance the subsequent muscle hypertrophy response to RT.
Collapse
Affiliation(s)
- Anders Karlsen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Casper Soendenbroe
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Nikolaj M Malmgaard-Clausen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Wagener
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Casper Emil Moeller
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Zouhir Senhaji
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Kristine Damberg
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Jesper Løvind Andersen
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Abigail L Mackey
- Department of Orthopaedic Surgery M, Institute of Sports Medicine Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark.,Xlab, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Abiri B, Vafa M. The Role of Nutrition in Attenuating Age-Related Skeletal Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:297-318. [PMID: 32304039 DOI: 10.1007/978-3-030-42667-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The elderly population is increasing rapidly worldwide, and we are faced with the significant challenge for maintaining or improving physical activity, independence, and quality of life. Sarcopenia, the age-related decline of skeletal muscle mass, is characterized by loss of muscle quantity and quality resulting to a gradual slowing of movement, a decrease in strength and power, elevated risk of fall-related injury, and often frailty. Supplemental, hormonal, and pharmacological approaches have been attempted to attenuate sarcopenia but these have not achieved outstanding results. In this review, we summarize the current knowledge of nutrition-based therapies for counteracting sarcopenia.
Collapse
Affiliation(s)
- Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran. .,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
McKay BR, Nederveen JP, Fortino SA, Snijders T, Joanisse S, Kumbhare DA, Parise G. Brain-derived neurotrophic factor is associated with human muscle satellite cell differentiation in response to muscle-damaging exercise. Appl Physiol Nutr Metab 2019; 45:581-590. [PMID: 31661631 DOI: 10.1139/apnm-2019-0501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle satellite cell (SC) regulation is a complex process involving many key signalling molecules. Recently, the neurotrophin brain-derived neurotropic factor (BDNF) has implicated in SC regulation in animals. To date, little is known regarding the role of BDNF in human SC function in vivo. Twenty-nine males (age, 21 ± 0.5 years) participated in the study. Muscle biopsies from the thigh were obtained prior to a bout of 300 maximal eccentric contractions (Pre), and at 6 h, 24 h, 72 h, and 96 h postexercise. BDNF was not detected in any quiescent (Pax7+/MyoD-) SCs across the time-course. BDNF colocalized to 39% ± 5% of proliferating (Pax7+/MyoD+) cells at Pre, which increased to 84% ± 3% by 96 h (P < 0.05). BDNF was only detected in 13% ± 5% of differentiating (Pax7-/MyoD+) cells at Pre, which increased to 67% ± 4% by 96 h (P < 0.05). The number of myogenin+ cells increased 95% from Pre (1.6 ± 0.2 cells/100 myofibres (MF)) at 24 h (3.1 ± 0.3 cells/100 MF) and remained elevated until 96 h (cells/100 MF), P < 0.05. The proportion of BDNF+/myogenin+ cells was 26% ± 0.3% at Pre, peaking at 24 h (49% ± 3%, P < 0.05) and remained elevated at 96 h (P < 0.05). These data are the first to demonstrate an association between SC proliferation and differentiation and BDNF expression in humans in vivo, with BDNF colocalization to SCs increasing during the later stages of proliferation and early differentiation. Novelty BDNF is associated with SC response to muscle injury. BDNF was not detected in nonactivated (quiescent) SCs. BDNF is associated with late proliferation and early differentiation of SCs in vivo in humans.
Collapse
Affiliation(s)
- Bryon R McKay
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Joshua P Nederveen
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Stephen A Fortino
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tim Snijders
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada.,Department of Human Biology, Maastricht University, 6211 LK Maastricht, Netherlands
| | - Sophie Joanisse
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Dinesh A Kumbhare
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
43
|
Roh YH, Hong SW, Chung SW, Lee YS. Altered gene and protein expressions of vitamin D receptor in skeletal muscle in sarcopenic patients who sustained distal radius fractures. J Bone Miner Metab 2019; 37:920-927. [PMID: 30790083 DOI: 10.1007/s00774-019-00995-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022]
Abstract
Despite the presence of vitamin D receptor (VDR) in skeletal muscle cells, the relationship between VDR expressions and muscle mass or function has not been well studied. The purpose of this study was to compare VDR gene and protein expression in the forearm muscle between sarcopenic and non-sarcopenic individuals who have sustained distal radius fractures. Twenty samples of muscle tissue from sarcopenic patients (mean age 63.4 ± 8.1 years) and 20 age- and sex-matched control tissues (62.1 ± 7.9 years) were acquired from the edge of dissected pronator quadratus muscle during surgery for distal radius fractures. The mRNA expression levels of VDR as well as the myokines of interest that may be associated with muscle mass change (myogenin and myostatin) were analyzed with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, Western blot assay and immunohistochemistry for VDR were performed. Sarcopenic patients showed a significantly lower level of gene expression for VDR and myogenin, but a greater level of gene expression for myostatin than the controls according to qRT-PCR analysis. The density of VDR protein expressions was 2.1 times greater, while that of myostatin was 2.6 times lower, in the control group than in the sarcopenic group according to Western blot analysis. On immunohistochemical analysis, the density of the cells expressing VDR was significantly decreased in the sarcopenic patients. Sarcopenic patients who sustained distal radius fractures presented lower vitamin D receptor gene and protein expression in skeletal muscles compared to non-sarcopenic individuals.
Collapse
Affiliation(s)
- Young Hak Roh
- Department of Orthopaedic Surgery, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea.
| | - Seok Woo Hong
- Department of Orthopaedic Surgery, Ewha Womans University Medical Center, Ewha Womans University College of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, South Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 143-729, South Korea
| | - Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul, 143-729, South Korea
| |
Collapse
|
44
|
Karlsen A, Bechshøft RL, Malmgaard‐Clausen NM, Andersen JL, Schjerling P, Kjaer M, Mackey AL. Lack of muscle fibre hypertrophy, myonuclear addition, and satellite cell pool expansion with resistance training in 83-94-year-old men and women. Acta Physiol (Oxf) 2019; 227:e13271. [PMID: 30828982 DOI: 10.1111/apha.13271] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
AIMS To examine satellite cell and myonuclear content in very old (≥83 years) individuals, and the response to heavy resistance training. METHODS A group of very old men and women (Old, 83-94 years, n = 29) was randomized to 12 weeks of heavy resistance training or untrained controls. A group of young men who did not resistance train (Young, 19-27 years, n = 9) were included for comparison. RESULTS Compared to young men, prior to training the old men had smaller type II fibres (-38%, P < 0.001), lower satellite cell content (-52%, P < 0.001), smaller myonuclear domain (-30%, P < 0.001), and a trend for lower myonuclear content (-13%, P = 0.09). Old women were significantly different from old men for these parameters, except for satellite cell content. Resistance training had no effect on these parameters in these old men and women. Fibre-size specific analysis showed strong correlations between fibre size and myonuclei per fibre and between fibre size and myonuclear domain for both fibre types (r = 0.94-0.99, P < 0.0001). In contrast, muscle fibre perimeter per myonucleus seemed to be constant across the range in fibre size, particularly in type I fibres (r = -0.31, P = 0.17). CONCLUSIONS The present data demonstrate that type II fibre size, satellite cell content and myonuclear domain is significantly smaller in very old men compared to young men, while myonuclear content is less affected. These parameters were not improved with heavy resistance training at the most advanced stage of ageing.
Collapse
Affiliation(s)
- Anders Karlsen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Rasmus L. Bechshøft
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Nikolaj M. Malmgaard‐Clausen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
| | - Jesper L. Andersen
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M Bispebjerg Hospital Copenhagen Denmark
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
45
|
Nederveen JP, Joanisse S, Snijders T, Thomas ACQ, Kumbhare D, Parise G. The influence of capillarization on satellite cell pool expansion and activation following exercise-induced muscle damage in healthy young men. J Physiol 2019; 596:1063-1078. [PMID: 29315567 DOI: 10.1113/jp275155] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Skeletal muscle stem cells (satellite cells) play a crucial role in repair and remodelling of muscle in response to exercise. Satellite cells are in close spatial proximity to muscle capillaries and therefore may be influenced by them. In this study, we describe the activation and expansion of the satellite cell pool in response to eccentric contraction-induced muscle damage in individuals with significantly different levels of muscle capillarization. Individuals with greater capillarization and capacity for muscle perfusion demonstrated enhanced activation and/or expansion of the satellite cell pool allowing for an accelerated recovery of muscle function. These results provide insight into the critical relationship between muscle capillarization and satellite cells during skeletal muscle repair. ABSTRACT Factors that determine the skeletal muscle satellite cell (SC) response remain incompletely understood. It is known, however, that SC activation status is closely related to the anatomical relationship between SCs and muscle capillaries. We investigated the impact of muscle fibre capillarization on the expansion and activation status of SCs following a muscle-damaging exercise protocol in healthy young men. Twenty-nine young men (21 ± 0.5 years) performed 300 unilateral eccentric contractions (180 deg s-1 ) of the knee extensors. Percutaneous muscle biopsies from the vastus lateralis and blood samples from the antecubital vein were taken prior to (Pre) exercise and at 6, 24, 72 and 96 h of post-exercise recovery. A comparison was made between subjects who had a relative low mixed muscle capillary-to-fibre perimeter exchange index (CFPE; Low group) and high mixed muscle CFPE index (High group) at baseline. Type I and type II muscle fibre size, myonuclear content, capillarization, and SC response were determined via immunohistochemistry. Overall, there was a significant correlation (r = 0.39; P < 0.05) between the expansion of SC content (change in total Pax7+ cells/100 myofibres) 24 h following eccentric exercise and mixed muscle CFPE index. There was a greater increase in activated SCs (MyoD+ /Pax7+ cells) in the High as compared to the Low CFPE group 72 h following eccentric exercise (P < 0.05). The current study provides further evidence that muscle fibre capillarization may play an important role in the activation and expansion of the SC pool during the process of skeletal muscle repair.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Kinesiology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sophie Joanisse
- Department of Kinesiology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Tim Snijders
- Department of Kinesiology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Aaron C Q Thomas
- Department of Kinesiology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, Toronto, Ontario M5G 2A2, Canada
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
46
|
Muyskens JB, Foote DM, Bigot NJ, Strycker LA, Smolkowski K, Kirkpatrick TK, Lantz BA, Shah SN, Mohler CG, Jewett BA, Owen EC, Dreyer HC. Cellular and morphological changes with EAA supplementation before and after total knee arthroplasty. J Appl Physiol (1985) 2019; 127:531-545. [PMID: 31343947 DOI: 10.1152/japplphysiol.00869.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Investigate the underlying cellular basis of muscle atrophy (Placebo) and atrophy reduction (essential amino acid supplementation, EAAs) in total knee arthroplasty (TKA) patients by examining satellite cells and other key histological markers of inflammation, recovery, and fibrosis. Forty-one subjects (53-76 yr) scheduled for TKA were randomized into two groups, ingesting 20 g of EAAs or placebo, twice-daily, for 7 days before TKA and for 6 wk after surgery. A first set of muscle biopsies was obtained from both legs before surgery in the operating room, and patients were randomly assigned and equally allocated to have two additional biopsies at either 1 or 2 wk after surgery. Biopsies were processed for gene expression and immunohistochemistry. Satellite cells were significantly higher in patients ingesting 20 g of essential amino acids twice daily for the 7 days leading up to surgery compared with Placebo (operative leg P = 0.03 for satellite cells/fiber and P = 0.05 for satellite cell proportions for Type I-associated cells and P = 0.05 for satellite cells/fiber for Type II-associated cells.) Myogenic regulatory factor gene expression was different between groups, with the Placebo Group having elevated MyoD expression at 1 wk and EAAs having elevated myogenin expression at 1 wk. M1 macrophages were more prevalent in Placebo than the EAAs Group. IL-6 and TNF-α transcripts were elevated postsurgery in both groups; however, TNF-α declined by 2 wk in the EAAs Group. EAAs starting 7 days before surgery increased satellite cells on the day of surgery and promoted a more favorable inflammatory environment postsurgery.NEW & NOTEWORTHY Clinical studies by our group indicate that the majority of muscle atrophy after total knee arthroplasty (TKA) in older adults occurs rapidly, within the first 2 wks. We have also shown that essential amino acid supplementation (EAAs) before and after TKA mitigates muscle atrophy; however, the mechanisms are unknown. These results suggest that satellite cell numbers are elevated with EAA ingestion before surgery, and after surgery, EAA ingestion positively influences markers of inflammation. Combined, these data may help inform further studies designed to address the accelerated sarcopenia that occurs in older adults after major surgery.
Collapse
Affiliation(s)
| | - Douglas M Foote
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Nathan J Bigot
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | | | | | | | - Brick A Lantz
- Slocum Center for Orthopedics and Sports Medicine, Eugene, Oregon
| | - Steven N Shah
- Slocum Center for Orthopedics and Sports Medicine, Eugene, Oregon
| | - Craig G Mohler
- Slocum Center for Orthopedics and Sports Medicine, Eugene, Oregon
| | - Brian A Jewett
- Slocum Center for Orthopedics and Sports Medicine, Eugene, Oregon
| | - Erin C Owen
- Slocum Research and Education Foundation, Eugene, Oregon
| | - Hans C Dreyer
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
47
|
Muscle mass and strength gains following 6 months of resistance type exercise training are only partly preserved within one year with autonomous exercise continuation in older adults. Exp Gerontol 2019; 121:71-78. [DOI: 10.1016/j.exger.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 01/10/2023]
|
48
|
Franco I, Fernandez-Gonzalo R, Vrtačnik P, Lundberg TR, Eriksson M, Gustafsson T. Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:157-200. [DOI: 10.1016/bs.ircmb.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
O’Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J 2018; 11:810-821. [PMID: 30524716 PMCID: PMC6275451 DOI: 10.1093/ckj/sfy052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle wasting is a common feature of chronic kidney disease (CKD) and is clinically relevant due to associations with quality of life, physical functioning, mortality and a number of comorbidities. Satellite cells (SCs) are a population of skeletal muscle progenitor cells responsible for accrual and maintenance of muscle mass by providing new nuclei to myofibres. Recent evidence from animal models and human studies indicates CKD may negatively affect SC abundance and function in response to stimuli such as exercise and damage. The aim of this review is to collate recent literature on the effect of CKD on SCs, with a particular focus on the myogenic response to exercise in this population. Exercise is widely recognized as important for the maintenance of healthy skeletal muscle mass and is increasingly advocated in the care of a number of chronic conditions. Therefore a greater understanding of the impact of uraemia upon SCs and the possible altered myogenic response in CKD is required to inform strategies to prevent uraemic cachexia.
Collapse
Affiliation(s)
- Tom F O’Sullivan
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester Trust, Leicester, UK
| | - Emma L Watson
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
50
|
Snijders T, Nederveen JP, Bell KE, Lau SW, Mazara N, Kumbhare DA, Phillips SM, Parise G. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. J Physiol 2018; 597:105-119. [PMID: 30370532 DOI: 10.1113/jp276260] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Skeletal muscle stem cells, termed satellite cells, play a crucial role in repair and remodelling of muscle in response to exercise An age-related decline in satellite cell number and/or function has been hypothesized to be a key factor in the development of sarcopenia and/or the blunted muscle fibre adaptive response to prolonged exercise training in older persons We report that performing prolonged exercise training improves the acute type II muscle fibre satellite cell response following a single bout of resistance exercise in older men. The observed improvement in muscle satellite function is associated with an increase in muscle fibre capillarization following exercise training suggesting a possible functional link between capillarization and satellite cell function. ABSTRACT Age-related type II muscle fibre atrophy is accompanied by a fibre type-specific decline in satellite cell number and function. Exercise training restores satellite cell quantity in older adults; however, whether it can restore the impaired satellite cell response to exercise in older adults remains unknown. Therefore we assessed the acute satellite cell response to a single exercise session before and after prolonged exercise training in older men. Fourteen older men (74 ± 8 years) participated in a 12-week exercise training programme (resistance exercise performed twice per week, high intensity interval training once per week). Before and after training, percutaneous biopsies from the vastus lateralis muscle were taken prior to and following 24 and 48 h of post-exercise recovery. Muscle fibre characteristics were evaluated by immunohistochemistry and mRNA expression by RT-PCR. Whereas no changes were observed in type II muscle fibres, type I muscle fibre satellite cell content increased significantly at 24 and 48 h after a single bout of resistance exercise before the exercise training programme (P < 0.01). Following the exercise training programme, both type I and type II muscle fibre satellite cell content increased significantly at 24 and 48 h after a single bout of resistance exercise (P < 0.05). The greater acute increase in type II muscle fibre satellite cell content at 24 h post-exercise recovery after training was correlated with an increase in type II muscle fibre capillarization (r = 0.671, P = 0.012). We show that the acute muscle satellite cell response following exercise can be improved by prolonged exercise training in older men.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1.,Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Joshua P Nederveen
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Kirsten E Bell
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Sean W Lau
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Nicole Mazara
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Dinesh A Kumbhare
- Toronto Rehabilitation Institute, University of Toronto, Toronto, Ontario, Canada, M5G 2A2
| | - Stuart M Phillips
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Gianni Parise
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|