1
|
Murugesan S, Saravanakumar L, Sadayappan S, Kannappan R, Sinkey RG, Tubinis MD, Tita AN, Jilling T, Berkowitz DE. Placental extracellular vesicles from women with severe preeclampsia alter calcium homeostasis in cardiomyocytes: an ex vivo study. Am J Physiol Cell Physiol 2025; 328:C128-C138. [PMID: 39652412 DOI: 10.1152/ajpcell.00409.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Women with severe preeclampsia (sPE) exhibit a heightened risk of postpartum cardiovascular disease compared with those with normotensive pregnancies (NTP). Although placental extracellular vesicles (EVs) play a crucial role in feto-maternal communication, their impact on cardiomyocytes, particularly in the context of sPE, remains unclear. This study investigated the effect of sPE-associated placental EVs (sPE-Plex EVs) on cardiomyocyte calcium dynamics. We hypothesized that sPE-Plex EV mediates cardiomyocyte dysfunction by disrupting calcium signaling. EVs were isolated from plasma and placental explant culture (Plex) using precipitation methods and confirmed as Plex EVs by placental alkaline phosphatase (PLAP) activity and electron microscopy. Moreover, confocal microscopy confirmed the uptake of plasma EVs in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and Plex EVs by human AC-16 cardiomyocyte (hAC-16CM) cells. hiPSC-CM cells treated with sPE-EVs and hAC-16CM cells treated with sPE-Plex EVs exhibited significantly lower levels of stromal interaction molecule 1 (STIM1) and phospholamban (PLN) proteins compared with those treated with normotensive controls EVs, as confirmed by Western blot analysis. Treatment with sPE-Plex EVs also resulted in the downregulation of STIM1 and PLN proteins in murine cardiomyocyte (mCM) cells compared with treatment with NTP-Plex EVs. Our findings suggest that both plasma EVs and Plex EVs from sPE may alter calcium signaling in cardiac cells by downregulating calcium sensor proteins (STIM1 and PLN). Therefore, plasma EVs and Plex EVs from sPE pregnancies have adverse effects by altering calcium dynamics in hiPSC-CM, hAC-16CM, and mCM compared with normotensive control and potential impairment of cardiomyocyte function ex vivo.NEW & NOTEWORTHY This study unveils a novel link between the placenta and PE-linked heart dysfunction. We isolated and characterized placental EVs from pregnancies with sPE and normotensive controls. These plasma sPE-EVs, and sPE-Plex EVs disrupt calcium signaling in heart cells, potentially via reduced STIM1 and PLN proteins. This suggests both plasma sPE-EVs and sPE-Plex EVs cargo drive these disruptive effects. Identifying these cargo molecules (miRNAs or proteins) holds promise for new PE therapies targeting cardiac dysfunction.
Collapse
Affiliation(s)
- Saravanakumar Murugesan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lakshmi Saravanakumar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Sakthivel Sadayappan
- Department of Cellular and Molecular Medicine, Sarver Heart Center, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Ramaswamy Kannappan
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Rachel G Sinkey
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michelle D Tubinis
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Alan N Tita
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dan E Berkowitz
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
3
|
Rajagopal S, Rosenberg PB. Overcoming Confounding to Characterize the Effects of Calcium Channel Blockers. FUNCTION 2023; 4:zqad054. [PMID: 37841524 PMCID: PMC10568197 DOI: 10.1093/function/zqad054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Paul B Rosenberg
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
4
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
5
|
Angulo J, Fernández A, Sevilleja-Ortiz A, Sánchez-Ferrer A, Rodríguez-Mañas L, El Assar M. Upregulation of Orai Channels Contributes to Aging-Related Vascular Alterations in Rat Coronary Arteries. Int J Mol Sci 2023; 24:13402. [PMID: 37686206 PMCID: PMC10487684 DOI: 10.3390/ijms241713402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular territories display heterogeneous sensitivity to the impacts of aging. The relevance of the STIM/Orai system to vascular function depends on the vascular bed. We aimed to evaluate the contribution of the STIM/Orai system to aging-related vascular dysfunction in rat coronary circulation. Vascular function was evaluated according to myography in coronary arteries from young (three-month-old) and older (twenty-month-old) rats. The effects of aging and STIM/Orai inhibition on the contraction and relaxation of the coronary arteries and on the protein expression of STIM-1, Orai1, and Orai3 in these vessels were determined. Aging-related hypercontractility to serotonin and endothelin-1 in arteries from male rats was reversed by STIM/Orai inhibition with YM-58483 or by specifically blocking the Orai1 channel with Synta66. The inhibitory effects of Synta66 on coronary vasoconstriction were also observed in older female rats. YM-58483 relaxed serotonin- but not KCl-contracted arteries from males. STIM/Orai inhibition improved defective endothelial vasodilations in aged arteries, even in the presence of NO synthase and cyclooxygenase inhibitors, but not in KCl-contracted segments. YM-58483 significantly enhanced relaxations to calcium-activated potassium channel stimulation in aged vessels. Increased protein expression of Orai1 and Orai3 was detected in arterial homogenates and sections from older rats. Upregulation of the Orai channel contributes to aging-related coronary dysfunction, revealing a potential target in reducing CVD risk.
Collapse
Affiliation(s)
- Javier Angulo
- Servicio de Histología, Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (A.F.); (A.S.-O.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Argentina Fernández
- Servicio de Histología, Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (A.F.); (A.S.-O.)
| | - Alejandro Sevilleja-Ortiz
- Servicio de Histología, Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (A.F.); (A.S.-O.)
| | - Alberto Sánchez-Ferrer
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, 28905 Getafe, Spain;
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Mariam El Assar
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, 28905 Getafe, Spain;
| |
Collapse
|
6
|
Familial 4p Interstitial Deletion Provides New Insights and Candidate Genes Underlying This Rare Condition. Genes (Basel) 2023; 14:genes14030635. [PMID: 36980907 PMCID: PMC10048360 DOI: 10.3390/genes14030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chromosome 4p deletions can lead to two distinct phenotypic outcomes: Wolf-–Hirschhorn syndrome (a terminal deletion at 4p16.3) and less frequently reported proximal interstitial deletions (4p11-p16). Proximal 4p interstitial deletions can result in mild to moderate intellectual disability, facial dysmorphisms, and a tall thin body habitus. To date, only 35 cases of proximal 4p interstitial deletions have been reported, and only two of these cases have been familial. The critical region for this syndrome has been narrowed down to 4p15.33-15.2, but the underlying causative genes remain unclear. In this study, we report the case of a 3-year-old female with failure to thrive, developmental and motor delays, and morphological features. The mother also had a 4p15.2-p14 deletion, and the proband was found to have a 13.4-Mb 4p15.2-p14 deletion by chromosome microarray analysis. The deleted region encompasses 16 genes, five of which have a high likelihood of contributing to the phenotype: PPARGC1A, DHX15, RBPJ, STIM2, and PCDH7. These findings suggest that multiple genes are involved in this rare proximal 4p interstitial deletion syndrome. This case highlights the need for healthcare providers to be aware of proximal 4p interstitial deletions and the potential phenotypic manifestations.
Collapse
|
7
|
Sevilleja-Ortiz A, El Assar M, García-Gómez B, La Fuente JM, Alonso-Isa M, Romero-Otero J, Martínez-Salamanca JI, Fernández A, Rodríguez-Mañas L, Angulo J. STIM/Orai Inhibition as a Strategy for Alleviating Diabetic Erectile Dysfunction Through Modulation of Rat and Human Penile Tissue Contractility and in vivo Potentiation of Erectile Responses. J Sex Med 2022; 19:1733-1749. [PMID: 36195535 DOI: 10.1016/j.jsxm.2022.08.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Stromal interaction molecule (STIM)/Orai calcium entry system appears to have a role in erectile dysfunction (ED) pathophysiology but its specific contribution to diabetic ED was not elucidated. AIM To evaluate STIM/Orai inhibition on functional alterations associated with diabetic ED in rat and human penile tissues and on in vivo erectile responses in diabetic rats. METHODS Rat corpus cavernosum (RCC) strips from nondiabetic (No DM) and streptozotocin-induced diabetic (DM) rats and human penile resistance arteries (HPRA) and corpus cavernosum (HCC) from ED patients undergoing penile prosthesis insertion were functionally evaluated in organ chambers and wire myographs. Erectile function in vivo in rats was assessed by intracavernosal pressure (ICP) responses to cavernous nerve electrical stimulation (CNES). Expression of STIM/Orai elements in HCC was determined by immunofluorescence and immunoblot. MAIN OUTCOME MEASURES Functional responses in RCC, HCC and HPRA and STIM/Orai protein expression in HCC. In vivo erectile responses to CNES. RESULTS Inhibition of Orai channels with YM-58483 (20 µM) significantly reduced adrenergic contractions in RCC but more effectively in DM. Thromboxane-induced and neurogenic contractions were reduced by STIM/Orai inhibition while defective endothelial, neurogenic and PDE5 inhibitor-induced relaxations were enhanced by YM-58483 (10 µM) in RCC from DM rats. In vivo, YM-58483 caused erections and attenuated diabetes-related impairment of erectile responses. YM-58483 potentiated the effects of PDE5 inhibition. In human tissues, STIM/Orai inhibition depressed adrenergic and thromboxane-induced contractions in ED patients more effectively in those with type 2 diabetes. Diabetes was associated with increased expression of Orai1 and Orai3 in ED patients. CLINICAL TRANSLATION Targeting STIM/Orai to alleviate diabetes-related functional alterations of penile vascular tissue could improve erectile function and potentiate therapeutic effects of PDE5 inhibitors in diabetic ED. STRENGTHS AND LIMITATIONS Improving effects of STIM/Orai inhibition on diabetes-related functional impairment was evidenced in vitro and in vivo in an animal model and validated in human tissues from ED patients. Functional findings were complemented with expression results. Main limitation was low numbers of human experiments due to limited human tissue availability. CONCLUSIONS STIM/Orai inhibition alleviated alterations of functional responses in vitro and improved erectile responses in vivo in diabetic rats, potentiating the effects of PDE5 inhibition. STIM/Orai inhibition was validated as a target to modulate functional alterations of human penile vascular tissue in diabetic ED where Orai1 and Orai3 channels were upregulated. STIM/Orai inhibition could be a potential therapeutic strategy to overcome poor response to conventional ED therapy in diabetic patients. Sevilleja-Ortiz A, El Assar M, García-Gómez B, et al. STIM/Orai Inhibition as a Strategy for Alleviating Diabetic Erectile Dysfunction Through Modulation of Rat and Human Penile Tissue Contractility and in vivo Potentiation of Erectile Responses. J Sex Med 2022;19:1733-1749.
Collapse
Affiliation(s)
- Alejandro Sevilleja-Ortiz
- Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal, Madrid, Spain; Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Borja García-Gómez
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - José M La Fuente
- Serviço de Urologia, Hospital Geral de Santo Antonio, Porto, Portugal
| | - Manuel Alonso-Isa
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | | | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Zhang L, Zhou MY, Kuang SJ, Qin XY, Cai YJ, Chen SZ, Li SM, Rao F, Yang H, Deng CY. Differential role of STIM1 in calcium handling in coronary and intrarenal arterial smooth muscles. Eur J Pharmacol 2022; 937:175386. [DOI: 10.1016/j.ejphar.2022.175386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
9
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
11
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
STIM1 is a core trigger of airway smooth muscle remodeling and hyperresponsiveness in asthma. Proc Natl Acad Sci U S A 2022; 119:2114557118. [PMID: 34949717 PMCID: PMC8740694 DOI: 10.1073/pnas.2114557118] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Stromal-interacting molecule 1 (STIM1) proteins are essential for the function of store-operated Ca2+ entry (SOCE). Using transcriptomics, metabolomics, imaging, and inducible smooth muscle–specific STIM1 knockout mice expressing genetically encoded Ca2+ sensors, we reveal a crucial function of STIM1 in airway remodeling and airway hyperresponsiveness in asthma. STIM1-mediated Ca2+ oscillations in airway smooth muscle (ASM) cells are critical for ASM remodeling through metabolic and transcriptional reprogramming and cytokine secretion, including IL-6. These effects are driven by Ca2+-dependent activation of the transcription factor isoform NFAT4 specifically in ASM. Our data provide evidence that ASM STIM1 and SOCE are central triggers of asthma manifestations and advocate for the future use of STIM1 as a molecular target in asthma therapy. Airway remodeling and airway hyperresponsiveness are central drivers of asthma severity. Airway remodeling is a structural change involving the dedifferentiation of airway smooth muscle (ASM) cells from a quiescent to a proliferative and secretory phenotype. Here, we show up-regulation of the endoplasmic reticulum Ca2+ sensor stromal-interacting molecule 1 (STIM1) in ASM of asthmatic mice. STIM1 is required for metabolic and transcriptional reprogramming that supports airway remodeling, including ASM proliferation, migration, secretion of cytokines and extracellular matrix, enhanced mitochondrial mass, and increased oxidative phosphorylation and glycolytic flux. Mechanistically, STIM1-mediated Ca2+ influx is critical for the activation of nuclear factor of activated T cells 4 and subsequent interleukin-6 secretion and transcription of pro-remodeling transcription factors, growth factors, surface receptors, and asthma-associated proteins. STIM1 drives airway hyperresponsiveness in asthmatic mice through enhanced frequency and amplitude of ASM cytosolic Ca2+ oscillations. Our data advocates for ASM STIM1 as a target for asthma therapy.
Collapse
|
13
|
Sevilleja-Ortiz A, El Assar M, García-Rojo E, García-Gómez B, Fernández A, Sánchez-Ferrer A, La Fuente JM, Romero-Otero J, Rodríguez-Mañas L, Angulo J. Ageing-induced hypercontractility is related to functional enhancement of STIM/Orai and upregulation of Orai 3 in rat and human penile tissue. Mech Ageing Dev 2021; 200:111590. [PMID: 34699858 DOI: 10.1016/j.mad.2021.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
The role of STIM/Orai calcium entry system on vascular ageing has not been elucidated. We aimed to evaluate the influence of ageing on STIM/Orai signalling and its role on ageing-induced alterations of contractile function in rat corpus cavernosum (RCC) and human penile resistance arteries (HPRA) and corpus cavernosum (HCC). RCC was obtained from 3 months-old and 20 months-old animals. HPRA and HCC were obtained from organ donors of varied ages without history of erectile dysfunction. Aging was associated with enhanced norepinephrine (NE)- and thromboxane analogue (U46619)-induced contractions in RCC which were significantly inhibited by the STIM/Orai inhibitor, YM-58483 (20 μM). Other STIM/Orai inhibitor, 2-aminoethyldiphenylborate also reduced NE-induced contractions in RCC from aged rats. YM-58483 significantly reduced neurogenic contractions and potentiated neurogenic relaxations in RCC from aged rats. In HCC and HPRA, NE-induced contractions were significantly enhanced in older subjects (>65 years-old) but YM-58483 completely reversed ageing-related hypercontractility. Ageing did not modify STIM-1 and Orai1 protein expressions but Orai3 was significantly overexpressed in cavernosal tissue from old rats and older subjects. Contribution of STIM/Orai to cavernosal contraction increases with ageing together with increased expression of Orai3. Orai inhibition could be a potential therapeutic strategy to reduce ageing-related impact on vascular/erectile function.
Collapse
Affiliation(s)
- Alejandro Sevilleja-Ortiz
- Department of Histology-Research, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain
| | - Esther García-Rojo
- Department of Urology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain
| | - Borja García-Gómez
- Department of Urology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain; Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Argentina Fernández
- Department of Histology-Research, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alberto Sánchez-Ferrer
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, Getafe, Spain
| | - José M La Fuente
- Department of Urology, Hospital Geral Santo Antonio, Porto, Portugal
| | - Javier Romero-Otero
- Department of Urology, Hospital Universitario HM Sanchinarro, HM Hospitales, Madrid, Spain; Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Javier Angulo
- Department of Histology-Research, Unidad de Investigación Traslacional en Cardiología (UFV-IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
14
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Cai Y, Yao H, Sun Z, Wang Y, Zhao Y, Wang Z, Li L. Role of NFAT in the Progression of Diabetic Atherosclerosis. Front Cardiovasc Med 2021; 8:635172. [PMID: 33791348 PMCID: PMC8006278 DOI: 10.3389/fcvm.2021.635172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) is a transcription factor with a multidirectional regulatory function, that is widely expressed in immune cells, including cells in the cardiovascular system, and non-immune cells. A large number of studies have confirmed that calcineurin/NFAT signal transduction is very important in the development of vascular system and cardiovascular system during embryonic development, and plays some role in the occurrence of vascular diseases such as atherosclerosis, vascular calcification, and hypertension. Recent in vitro and in vivo studies have shown that NFAT proteins and their activation in the nucleus and binding to DNA-related sites can easily ɨnduce the expression of downstream target genes that participate in the proliferation, migration, angiogenesis, and vascular inflammation of vascular wall related cells in various pathophysiological states. NFAT expression is regulated by various signaling pathways, including CD137-CD137L, and OX40-OX40L pathways. As a functionally diverse transcription factor, NFAT interacts with a large number of signaling molecules to modulate intracellular and extracellular signaling pathways. These NFAT-centered signaling pathways play important regulatory roles in the progression of atherosclerosis, such as in vascular smooth muscle cell phenotypic transition and migration, endothelial cell injury, macrophage-derived foam cell formation, and plaque calcification. NFAT and related signaling pathways provide new therapeutic targets for vascular diseases such as atherosclerosis. Hence, further studies of the mechanism of NFAT in the occurrence and evolution of atherosclerosis remain crucial.
Collapse
Affiliation(s)
- Yaoyao Cai
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haipeng Yao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunyun Zhao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020; 91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.
Collapse
|
18
|
Johnson MT, Gudlur A, Zhang X, Xin P, Emrich SM, Yoast RE, Courjaret R, Nwokonko RM, Li W, Hempel N, Machaca K, Gill DL, Hogan PG, Trebak M. L-type Ca 2+ channel blockers promote vascular remodeling through activation of STIM proteins. Proc Natl Acad Sci U S A 2020; 117:17369-17380. [PMID: 32641503 PMCID: PMC7382247 DOI: 10.1073/pnas.2007598117] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Voltage-gated L-type Ca2+ channel (Cav1.2) blockers (LCCBs) are major drugs for treating hypertension, the preeminent risk factor for heart failure. Vascular smooth muscle cell (VSMC) remodeling is a pathological hallmark of chronic hypertension. VSMC remodeling is characterized by molecular rewiring of the cellular Ca2+ signaling machinery, including down-regulation of Cav1.2 channels and up-regulation of the endoplasmic reticulum (ER) stromal-interacting molecule (STIM) Ca2+ sensor proteins and the plasma membrane ORAI Ca2+ channels. STIM/ORAI proteins mediate store-operated Ca2+ entry (SOCE) and drive fibro-proliferative gene programs during cardiovascular remodeling. SOCE is activated by agonists that induce depletion of ER Ca2+, causing STIM to activate ORAI. Here, we show that the three major classes of LCCBs activate STIM/ORAI-mediated Ca2+ entry in VSMCs. LCCBs act on the STIM N terminus to cause STIM relocalization to junctions and subsequent ORAI activation in a Cav1.2-independent and store depletion-independent manner. LCCB-induced promotion of VSMC remodeling requires STIM1, which is up-regulated in VSMCs from hypertensive rats. Epidemiology showed that LCCBs are more associated with heart failure than other antihypertensive drugs in patients. Our findings unravel a mechanism of LCCBs action on Ca2+ signaling and demonstrate that LCCBs promote vascular remodeling through STIM-mediated activation of ORAI. Our data indicate caution against the use of LCCBs in elderly patients or patients with advanced hypertension and/or onset of cardiovascular remodeling, where levels of STIM and ORAI are elevated.
Collapse
Affiliation(s)
- Martin T Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Aparna Gudlur
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ping Xin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Scott M Emrich
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Robert M Nwokonko
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Wei Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nadine Hempel
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033;
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
19
|
[Pt(O,O'-acac)(γ-acac)(DMS)]: Alternative Strategies to Overcome Cisplatin-Induced Side Effects and Resistance in T98G Glioma Cells. Cell Mol Neurobiol 2020; 41:563-587. [PMID: 32430779 DOI: 10.1007/s10571-020-00873-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CDDP) is one of the most effective chemotherapeutic agents, used for the treatment of diverse tumors, including neuroblastoma and glioblastoma. CDDP induces cell death through different apoptotic pathways. Despite its clinical benefits, CDDP causes several side effects and drug resistance.[Pt(O,O'-acac)(γ-acac)(DMS)], namely PtAcacDMS, a new platinum(II) complex containing two acetylacetonate (acac) and a dimethylsulphide (DMS) in the coordination sphere of metal, has been recently synthesized and showed 100 times higher cytotoxicity than CDDP. Additionally, PtAcacDMS was associated to a decreased neurotoxicity in developing rat central nervous system, also displaying great antitumor and antiangiogenic activity both in vivo and in vitro. Thus, based on the knowledge that several chemotherapeutics induce cancer cell death through an aberrant increase in [Ca2+]i, in the present in vitro study we compared CDDP and PtAcacDMS effects on apoptosis and intracellular Ca2+ dynamics in human glioblastoma T98G cells, applying a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, electron microscopy, Western blotting, qRT-PCR, and epifluorescent Ca2+ imaging. The results confirmed that (i) platinum compounds may induce cell death through an aberrant increase in [Ca2+]i and (ii) PtAcacDMS exerted stronger cytotoxic effect than CDDP, associated to a larger increase in resting [Ca2+]i. These findings corroborate the use of PtAcacDMS as a promising approach to improve Pt-based chemotherapy against gliomas, either by inducing a chemosensitization or reducing chemoresistance in cell lineages resilient to CDDP treatment.
Collapse
|
20
|
Bendiks L, Geiger F, Gudermann T, Feske S, Dietrich A. Store-operated Ca 2+ entry in primary murine lung fibroblasts is independent of classical transient receptor potential (TRPC) channels and contributes to cell migration. Sci Rep 2020; 10:6812. [PMID: 32321939 PMCID: PMC7176639 DOI: 10.1038/s41598-020-63677-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
Stromal interaction molecules (STIM1, 2) are acting as sensors for Ca2+ in intracellular stores and activate Orai channels at the plasma membrane for store-operated Ca2+ entry (SOCE), while classical transient receptor potential (TRPC) channel mediate receptor-operated Ca2+ entry (ROCE). Several reports, however, indicate a role for TRPC in SOCE in certain cell types. Here, we analyzed Ca2+ influx and cell function in TRPC1/6-deficient (TRPC1/6-/-) and STIM1/2- deficient (STIM1/2ΔpmLF) primary murine lung fibroblasts (pmLF). As expected, SOCE was decreased in STIM1/2- deficient pmLF and ROCE was decreased in TRPC1/6-/- pmLF compared to control cells. By contrast, SOCE was not significantly different in TRPC1/6-/- pmLF and ROCE was similar in STIM1/2-deficient pmLF compared to Wt cells. Most interestingly, cell proliferation, migration and nuclear localization of nuclear factor of activated T-cells (NFATc1 and c3) were decreased after ablation of STIM1/2 proteins in pmLF. In conclusion, TRPC1/6 channels are not involved in SOCE and STIM1/2 deficiency resulted in decreased cell proliferation and migration in pmLF.
Collapse
Affiliation(s)
- Larissa Bendiks
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Fabienne Geiger
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany.
| |
Collapse
|
21
|
Yang H, Chen XY, Kuang SJ, Zhou MY, Zhang L, Zeng Z, Liu L, Wu FL, Zhang MZ, Mai LP, Yang M, Xue YM, Rao F, Deng CY. Abnormal Ca 2+ handling contributes to the impairment of aortic smooth muscle contractility in Zucker diabetic fatty rats. J Mol Cell Cardiol 2020; 141:82-92. [PMID: 32222458 DOI: 10.1016/j.yjmcc.2020.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Vascular dysfunction is a common pathological basis for complications in individuals affected by diabetes. Previous studies have established that endothelial dysfunction is the primary contributor to vascular complications in type 2 diabetes (T2DM). However, the role of vascular smooth muscle cells (VSMCs) in vascular complications associated with T2DM is still not completely understood. The aim of this study is to explore the potential mechanisms associated with Ca2+ handling dysfunction and how this dysfunction contributes to diabetic vascular smooth muscle impairment. The results indicated that endothelium-dependent vasodilation was impaired in diabetic aortae, but endothelium-independent vasodilation was not altered. Various vasoconstrictors such as phenylephrine, U46619 and 5-HT could induce vasoconstriction in a concentration-dependent manner, such that the dose-response curve was parallel shifted to the right in diabetic aortae, compared to the control. Vasoconstrictions mediated by L-type calcium (Cav1.2) channels were attenuated in diabetic aortae, but effects mediated by store-operated calcium (SOC) channels were enhanced. Intracellular Ca2+ concentration ([Ca2+]i) in VSMCs was detected by Fluo-4 calcium fluorescent probes, and demonstrated that SOC-mediated Ca2+ entry was increased in diabetic VSMCs. VSMC-specific knockout of STIM1 genes decreased SOC-mediated and phenylephrine-induced vasoconstrictive response in mice aortae. Additionally, Orai1 expression was up-regulated, Cav1.2 expression was downregulated, and the phenotypic transformation of diabetic VSMCs was determined in diabetic aortae. The overexpression of Orai1 markedly promoted the OPN expression of VSMCs, whereas SKF96365 (SOC channel blocker) reversed the phenotypic transformation of diabetic VSMCs. Our results demonstrated that the vasoconstriction response of aortic smooth muscle was weakened in type 2 diabetic rats, which was related to the downregulation of the Cav1.2 channel and the up-regulation of the SOC channel signaling pathway.
Collapse
Affiliation(s)
- Hui Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiao-Yan Chen
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Su-Juan Kuang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Yuan Zhou
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of biological science and engineering, South China University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of biological science and engineering, South China University of Technology, Guangzhou 510006, China
| | - Zheng Zeng
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Fei-Long Wu
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Meng-Zhen Zhang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Li-Ping Mai
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu-Mei Xue
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Fang Rao
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Chun-Yu Deng
- Guangdong Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
22
|
Wang H, Gao XY, Rao F, Yang H, Wang ZY, Liu L, Kuang SJ, Wu Q, Deng CY, Xu JS. Mechanism of contractile dysfunction induced by serotonin in coronary artery in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2165-2176. [DOI: 10.1007/s00210-020-01813-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 01/31/2023]
|
23
|
Avila-Medina J, Mayoral-González I, Galeano-Otero I, Redondo PC, Rosado JA, Smani T. Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:489-504. [PMID: 31646522 DOI: 10.1007/978-3-030-12457-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Isabel Mayoral-González
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Surgery, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
24
|
Tran QK. Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System. Front Endocrinol (Lausanne) 2020; 11:568203. [PMID: 33133016 PMCID: PMC7550652 DOI: 10.3389/fendo.2020.568203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
17β-Estradiol (E2) is the main estrogenic hormone in the body and exerts many cardiovascular protective effects. Via three receptors known to date, including estrogen receptors α (ERα) and β (ERβ) and the G protein-coupled estrogen receptor 1 (GPER, aka GPR30), E2 regulates numerous calcium-dependent activities in cardiovascular tissues. Nevertheless, effects of E2 and its receptors on components of the calcium signaling machinery (CSM), the underlying mechanisms, and the linked functional impact are only beginning to be elucidated. A picture is emerging of the reciprocality between estrogen biology and Ca2+ signaling. Therein, E2 and GPER, via both E2-dependent and E2-independent actions, moderate Ca2+-dependent activities; in turn, ERα and GPER are regulated by Ca2+ at the receptor level and downstream signaling via a feedforward loop. This article reviews current understanding of the effects of E2 and its receptors on the cardiovascular CSM and vice versa with a focus on mechanisms and combined functional impact. An overview of the main CSM components in cardiovascular tissues will be first provided, followed by a brief review of estrogen receptors and their Ca2+-dependent regulation. The effects of estrogenic agonists to stimulate acute Ca2+ signals will then be reviewed. Subsequently, E2-dependent and E2-independent effects of GPER on components of the Ca2+ signals triggered by other stimuli will be discussed. Finally, a case study will illustrate how the many mechanisms are coordinated to moderate Ca2+-dependent activities in the cardiovascular system.
Collapse
|
25
|
Gamage TH, Lengle E, Gunnes G, Pullisaar H, Holmgren A, Reseland JE, Merckoll E, Corti S, Mizobuchi M, Morales RJ, Tsiokas L, Tjønnfjord GE, Lacruz RS, Lyngstadaas SP, Misceo D, Frengen E. STIM1 R304W in mice causes subgingival hair growth and an increased fraction of trabecular bone. Cell Calcium 2019; 85:102110. [PMID: 31785581 DOI: 10.1016/j.ceca.2019.102110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Calcium signaling plays a central role in bone development and homeostasis. Store operated calcium entry (SOCE) is an important calcium influx pathway mediated by calcium release activated calcium (CRAC) channels in the plasma membrane. Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum calcium sensing protein important for SOCE. We generated a mouse model expressing the STIM1 R304W mutation, causing Stormorken syndrome in humans. Stim1R304W/R304W mice showed perinatal lethality, and the only three animals that survived into adulthood presented with reduced growth, low body weight, and thoracic kyphosis. Radiographs revealed a reduced number of ribs in the Stim1R304W/R304W mice. Microcomputed tomography data revealed decreased cortical bone thickness and increased trabecular bone volume fraction in Stim1R304W/R304W mice, which had thinner and more compact bone compared to wild type mice. The Stim1R304W/+ mice showed an intermediate phenotype. Histological analyses showed that the Stim1R304W/R304W mice had abnormal bone architecture, with markedly increased number of trabeculae and reduced bone marrow cavity. Homozygous mice showed STIM1 positive osteocytes and osteoblasts. These findings highlight the critical role of the gain-of-function (GoF) STIM1 R304W protein in skeletal development and homeostasis in mice. Furthermore, the novel feature of bilateral subgingival hair growth on the lower incisors in the Stim1R304W/R304W mice and 25 % of the heterozygous mice indicate that the GoF STIM1 R304W protein also induces an abnormal epithelial cell fate.
Collapse
Affiliation(s)
- Thilini H Gamage
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Emma Lengle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Else Merckoll
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Stefania Corti
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| | | | | | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, USA
| | - Staale P Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
26
|
Pichavaram P, Yin W, Evanson KW, Jaggar JH, Mancarella S. Elevated plasma catecholamines functionally compensate for the reduced myogenic tone in smooth muscle STIM1 knockout mice but with deleterious cardiac effects. Cardiovasc Res 2019; 114:668-678. [PMID: 29360991 DOI: 10.1093/cvr/cvy015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/18/2018] [Indexed: 02/05/2023] Open
Abstract
Aims Stromal interaction molecule 1 (STIM1) has emerged as an important player in the regulation of growth and proliferation of smooth muscle cells. Therefore, we hypothesized that STIM1 plays a crucial role in the maintenance of vascular integrity. The objective of this study was to evaluate whether reduced expression of STIM1 could modify the structure and function of the vasculature, leading to changes in blood pressure (BP). Methods and results Smooth muscle-specific STIM1 knockout (sm-STIM1 KO) in mice resulted in arteries with ∼80% reduced STIM1 protein expression as compared with control mice. Mesenteric vessels exposed to increasing transmural pressure revealed attenuated myogenic reactivity and reduced vasoconstrictor response to phenylephrine in sm-STIM1 KO arteries. BP monitored via telemetry in sm-STIM1 KO and matched controls did not reveal differences. However, heart rate was significantly increased in sm-STIM1 KO mice. Consistent with these findings, plasma catecholamine levels were higher in sm-STIM1 KO than in control mice. Increased sympathetic activity in sm-STIM1 KO mice was unmasked by apha1-adrenergic receptor inhibitor (prazosin) and by treatment with the ganglion-blocking agent, hexamethonium. Both treatments resulted in a greater reduction of BP in sm-STIM1 KO mice. Cytoskeleton of cultured smooth muscle cells was studied by immunocytochemistry using specific antibodies. Staining for actin and vinculin revealed significant alterations in the cytoskeletal architecture of cells isolated from sm-STIM1 KO arteries. Finally, although sm-STIM1 KO mice were protected from Ang II-induced hypertension, such treatment resulted in significant fibrosis and a rapid deterioration of cardiac function. Conclusions STIM1 deletion in smooth muscle results in attenuated myogenic tone and cytoskeletal defects with detrimental effects on the mechanical properties of arterial tissue. Although BP is maintained by elevated circulating catecholamine, this compensatory stimulation has a deleterious long-term effect on the myocardium.
Collapse
Affiliation(s)
- Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Sciences Center, 71 South Manassas Street, Memphis, TN 38163, USA
| | - Wen Yin
- Department of Physiology, University of Tennessee Health Sciences Center, 71 South Manassas Street, Memphis, TN 38163, USA.,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kirk W Evanson
- Department of Physiology, University of Tennessee Health Sciences Center, 71 South Manassas Street, Memphis, TN 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Sciences Center, 71 South Manassas Street, Memphis, TN 38163, USA
| | - Salvatore Mancarella
- Department of Physiology, University of Tennessee Health Sciences Center, 71 South Manassas Street, Memphis, TN 38163, USA
| |
Collapse
|
27
|
Numaga-Tomita T, Shimauchi T, Oda S, Tanaka T, Nishiyama K, Nishimura A, Birnbaumer L, Mori Y, Nishida M. TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential-dependent coupling with PTEN. FASEB J 2019; 33:9785-9796. [PMID: 31162976 DOI: 10.1096/fj.201802811r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vascular smooth muscle cells (VSMCs) play critical roles in the stability and tonic regulation of vascular homeostasis. VSMCs can switch back and forth between highly proliferative synthetic and fully differentiated contractile phenotypes in response to changes in the vessel environment. Although abnormal phenotypic switching of VSMCs is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty, how control of VSMC phenotypic switching is dysregulated in pathologic conditions remains obscure. We found that inhibition of canonical transient receptor potential 6 (TRPC6) channels facilitated contractile differentiation of VSMCs through plasma membrane hyperpolarization. TRPC6-deficient VSMCs exhibited more polarized resting membrane potentials and higher protein kinase B (Akt) activity than wild-type VSMCs in response to TGF-β1 stimulation. Ischemic stress elicited by oxygen-glucose deprivation suppressed TGF-β1-induced hyperpolarization and VSMC differentiation, but this effect was abolished by TRPC6 deletion. TRPC6-mediated Ca2+ influx and depolarization coordinately promoted the interaction of TRPC6 with lipid phosphatase and tensin homolog deleted from chromosome 10 (PTEN), a negative regulator of Akt activation. Given the marked up-regulation of TRPC6 observed in vascular disorders, our findings suggest that attenuation of TRPC6 channel activity in pathologic VSMCs could be a rational strategy to maintain vascular quality control by fine-tuning of VSMC phenotypic switching.-Numaga-Tomita, T., Shimauchi, T., Oda, S., Tanaka, T., Nishiyama, K., Nishimura, A., Birnbaumer, L., Mori, Y., Nishida, M. TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential-dependent coupling with PTEN.
Collapse
Affiliation(s)
- Takuro Numaga-Tomita
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI, School of Life Science, The Graduate University for Advanced Studies, Aichi, Japan
| | - Tsukasa Shimauchi
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Oda
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI, School of Life Science, The Graduate University for Advanced Studies, Aichi, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
| | - Kazuhiro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akiyuki Nishimura
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Lutz Birnbaumer
- National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, Research Triangle Park, North Carolina, USA.,Institute for Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences, Aichi, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan.,SOKENDAI, School of Life Science, The Graduate University for Advanced Studies, Aichi, Japan.,Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Johnson M, Trebak M. ORAI channels in cellular remodeling of cardiorespiratory disease. Cell Calcium 2019; 79:1-10. [PMID: 30772685 DOI: 10.1016/j.ceca.2019.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023]
Abstract
Cardiorespiratory disease, which includes systemic arterial hypertension, restenosis, atherosclerosis, pulmonary arterial hypertension, asthma, and chronic obstructive pulmonary disease (COPD) are highly prevalent and devastating diseases with limited therapeutic modalities. A common pathophysiological theme to these diseases is cellular remodeling, which is contributed by changes in expression and activation of ion channels critical for either excitability or growth. Calcium (Ca2+) signaling and specifically ORAI Ca2+ channels have emerged as significant regulators of smooth muscle, endothelial, epithelial, platelet, and immune cell remodeling. This review details the dysregulation of ORAI in cardiorespiratory diseases, and how this dysregulation of ORAI contributes to cellular remodeling.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
29
|
Gamage TH, Gunnes G, Lee RH, Louch WE, Holmgren A, Bruton JD, Lengle E, Kolstad TRS, Revold T, Amundsen SS, Dalen KT, Holme PA, Tjønnfjord GE, Christensen G, Westerblad H, Klungland A, Bergmeier W, Misceo D, Frengen E. STIM1 R304W causes muscle degeneration and impaired platelet activation in mice. Cell Calcium 2018; 76:87-100. [PMID: 30390422 DOI: 10.1016/j.ceca.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/21/2022]
Abstract
STIM1 and ORAI1 regulate store-operated Ca2+ entry (SOCE) in most cell types, and mutations in these proteins have deleterious and diverse effects. We established a mouse line expressing the STIM1 R304 W gain-of-function mutation causing Stormorken syndrome to explore effects on organ and cell physiology. While STIM1 R304 W was lethal in the homozygous state, surviving mice presented with reduced growth, skeletal muscle degeneration, and reduced exercise endurance. Variable STIM1 expression levels between tissues directly impacted cellular SOCE capacity. In contrast to patients with Stormorken syndrome, STIM1 was downregulated in fibroblasts from Stim1R304W/R304W mice, which maintained SOCE despite constitutive protein activity. In studies using foetal liver chimeras, STIM1 protein was undetectable in homozygous megakaryocytes and platelets, resulting in impaired platelet activation and absent SOCE. These data indicate that downregulation of STIM1 R304 W effectively opposes the gain-of-function phenotype associated with this mutation, and highlight the importance of STIM1 in skeletal muscle development and integrity.
Collapse
Affiliation(s)
- Thilini H Gamage
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Norway
| | - Robert Hugh Lee
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, USA
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo Norway
| | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Emma Lengle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Terje R Selnes Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo Norway
| | - Tobias Revold
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Norway
| | | | | | - Pål Andre Holme
- Department of Haematology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Erland Tjønnfjord
- Department of Haematology, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo Norway
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Arne Klungland
- Department of Molecular Medicine, Oslo University Hospital, Norway
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, USA
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
30
|
Huang TY, Lin YH, Chang HA, Yeh TY, Chang YH, Chen YF, Chen YC, Li CC, Chiu WT. STIM1 Knockout Enhances PDGF-Mediated Ca 2+ Signaling through Upregulation of the PDGFR⁻PLCγ⁻STIM2 Cascade. Int J Mol Sci 2018; 19:ijms19061799. [PMID: 29912163 PMCID: PMC6032054 DOI: 10.3390/ijms19061799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/24/2023] Open
Abstract
Platelet-derived growth factor (PDGF) has mitogenic and chemotactic effects on fibroblasts. An increase in intracellular Ca2+ is one of the first events that occurs following the stimulation of PDGF receptors (PDGFRs). PDGF activates Ca2+ elevation by activating the phospholipase C gamma (PLCγ)-signaling pathway, resulting in ER Ca2+ release. Store-operated Ca2+ entry (SOCE) is the major form of extracellular Ca2+ influx following depletion of ER Ca2+ stores and stromal interaction molecule 1 (STIM1) is a key molecule in the regulation of SOCE. In this study, wild-type and STIM1 knockout mouse embryonic fibroblasts (MEF) cells were used to investigate the role of STIM1 in PDGF-induced Ca2+ oscillation and its functions in MEF cells. The unexpected findings suggest that STIM1 knockout enhances PDGFR–PLCγ–STIM2 signaling, which in turn increases PDGF-BB-induced Ca2+ elevation. Enhanced expressions of PDGFRs and PLCγ in STIM1 knockout cells induce Ca2+ release from the ER store through PLCγ–IP3 signaling. Moreover, STIM2 replaces STIM1 to act as the major ER Ca2+ sensor in activating SOCE. However, activation of PDGFRs also activate Akt, ERK, and JNK to regulate cellular functions, such as cell migration. These results suggest that alternative switchable pathways can be observed in cells, which act downstream of the growth factors that regulate Ca2+ signaling.
Collapse
Affiliation(s)
- Tzu-Yu Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Tzu-Ying Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ya-Han Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Yi-Fan Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chun-Chun Li
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
31
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Nishimoto M, Mizuno R, Fujita T, Isshiki M. Stromal interaction molecule 1 modulates blood pressure via NO production in vascular endothelial cells. Hypertens Res 2018; 41:506-514. [DOI: 10.1038/s41440-018-0045-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 01/19/2023]
|
33
|
Avila-Medina J, Mayoral-Gonzalez I, Dominguez-Rodriguez A, Gallardo-Castillo I, Ribas J, Ordoñez A, Rosado JA, Smani T. The Complex Role of Store Operated Calcium Entry Pathways and Related Proteins in the Function of Cardiac, Skeletal and Vascular Smooth Muscle Cells. Front Physiol 2018; 9:257. [PMID: 29618985 PMCID: PMC5872157 DOI: 10.3389/fphys.2018.00257] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiac, skeletal, and smooth muscle cells shared the common feature of contraction in response to different stimuli. Agonist-induced muscle's contraction is triggered by a cytosolic free Ca2+ concentration increase due to a rapid Ca2+ release from intracellular stores and a transmembrane Ca2+ influx, mainly through L-type Ca2+ channels. Compelling evidences have demonstrated that Ca2+ might also enter through other cationic channels such as Store-Operated Ca2+ Channels (SOCCs), involved in several physiological functions and pathological conditions. The opening of SOCCs is regulated by the filling state of the intracellular Ca2+ store, the sarcoplasmic reticulum, which communicates to the plasma membrane channels through the Stromal Interaction Molecule 1/2 (STIM1/2) protein. In muscle cells, SOCCs can be mainly non-selective cation channels formed by Orai1 and other members of the Transient Receptor Potential-Canonical (TRPC) channels family, as well as highly selective Ca2+ Release-Activated Ca2+ (CRAC) channels, formed exclusively by subunits of Orai proteins likely organized in macromolecular complexes. This review summarizes the current knowledge of the complex role of Store Operated Calcium Entry (SOCE) pathways and related proteins in the function of cardiac, skeletal, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | | | - Alejandro Dominguez-Rodriguez
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| | | | - Juan Ribas
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
| | - Antonio Ordoñez
- CIBERCV, Madrid, Spain.,Department of Surgery, University of Seville, Sevilla, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.,Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío, CSIC, University of Seville, Sevilla, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
34
|
Furukawa Y, Haruyama N, Nikaido M, Nakanishi M, Ryu N, Oh-Hora M, Kuremoto K, Yoshizaki K, Takano Y, Takahashi I. Stim1 Regulates Enamel Mineralization and Ameloblast Modulation. J Dent Res 2017; 96:1422-1429. [PMID: 28732182 DOI: 10.1177/0022034517719872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Loss-of-function mutations in the Ca2+ release-activated Ca2+ channel genes ORAI1 and STIM1 abolish store-operated Ca2+ entry (SOCE) and result in ectodermal dysplasia with amelogenesis imperfecta. However, because of the limited availability of patient tissue, analyses of enamel mineralization or possible changes in ameloblast function or morphology have not been possible. Here, we generated mice with ectodermal tissue-specific deletion of Stim1 ( Stim1 cKO [conditional knockout]), Stim2 ( Stim2 cKO), and Stim1 and Stim2 ( Stim1/2 cKO) and analyzed their enamel phenotypes as compared with those of control ( Stim1/2fl/fl) animals. Ablation of Stim1 and Stim1/2 but not Stim2 expression resulted in chalky enamel and severe attrition at the incisor tips and molar cusps. Stim1 and Stim1/2 cKO, but not Stim2 cKO, demonstrated inferior enamel mineralization with impaired structural integrity, whereas the shape of the teeth and enamel thickness appeared to be normal in all animals. The gene expression levels of the enamel matrix proteins Amelx and Ambn and the enamel matrix proteases Mmp20 and Klk4 were not altered by the abrogation of SOCE in Stim1/2 cKO mice. The morphology of ameloblasts during the secretory and maturation stages was not significantly altered in either the incisors or molars of the cKO animals. However, in Stim1 and Stim1/2 cKO incisors, the alternating modulation of maturation-stage ameloblasts between the smooth- and ruffle-ended cell types continued beyond the regular cycle and extended to the areas corresponding to the zone of postmodulation ameloblasts in the teeth of control animals. These results indicate that SOCE is essential for proper enamel mineralization, in which Stim1 plays a critical role during the maturation process.
Collapse
Affiliation(s)
- Y Furukawa
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,2 Institute of Decision Science Program for Sustainable Society, Kyushu University, Fukuoka, Japan
| | - N Haruyama
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Nikaido
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Nakanishi
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - N Ryu
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Oh-Hora
- 3 Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - K Kuremoto
- 4 Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - K Yoshizaki
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y Takano
- 5 Department of Cell Biology and Neuroscience, School of Medicine, Juntendo University, Tokyo, Japan
| | - I Takahashi
- 1 Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth, and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Altered mitochondrial function, capacitative calcium entry and contractions in the aorta of hypertensive rats. J Hypertens 2017; 35:1594-1608. [PMID: 28403042 DOI: 10.1097/hjh.0000000000001360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE It has been suggested that Ca entry through store-operated Ca channels (SOCs) is regulated by a dynamic interplay between the endoplasmic reticulum Ca stores and the mitochondria. These relationships drive the activation and inactivation of SOCs, yet it remains unclear whether this regulation of SOCs by mitochondria is altered in the aorta of spontaneously hypertensive rats (SHRs). METHODS We performed a thorough study of the mitochondrial membrane potential, the ability of mitochondria to deal with cytosolic Ca, capacitative Ca entry (CCE), and stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator 1 (orai1) protein expression, as well as the contractile capacity of aortic rings, in normotensive Wistar Kyoto rats (WKYs) and SHRs. RESULTS Changes were observed in aortic tissue and cultured vascular smooth muscle cells isolated from SHRs relative to WKYs, including more depolarized mitochondria, stronger CCE upon the addition of Ca, larger cytosolic Ca transients (cytosolic Ca concentration) or aortic ring contraction elicited by endoplasmic reticulum depletion and a significant increase in STIM1 protein expression but not of orai1. CONCLUSION These results suggest that the impaired Ca buffering capacity of partially depolarized mitochondria dysregulates CCE, leading to overfilling of the endoplasmic reticulum Ca store through enhanced STIM1/orai1 interactions and an increase in aorta contractions in SHRs. Thus, understanding the implications of the alterations to STIM1/orai1, and their relationship to mitochondria, may aid drug development and therapeutic strategies to treat hypertension, as well as its long-term sequelae in poorly controlled patients.
Collapse
|
36
|
The role of STIM1 and SOCE in smooth muscle contractility. Cell Calcium 2017; 63:60-65. [PMID: 28372809 DOI: 10.1016/j.ceca.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/20/2022]
Abstract
Contraction is a central feature for skeletal, cardiac and smooth muscle; this unique feature is largely dependent on calcium (Ca2+) signaling and therefore maintenance of internal Ca2+ stores. Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane protein that functions as a Ca2+ sensor for the activation store-operated calcium channels (SOCCs) on the plasma membrane in response to depleted internal sarco(endo)plasmic (S/ER) reticulum Ca2+ stores. STIM1 was initially characterized in non-excitable cells; however, evidence from both animal models and human mutations suggests a role for STIM1 in modulating Ca2+ homeostasis in excitable tissues as well. STIM1-dependent SOCE is particularly important in tissues undergoing sustained contraction, leading us to believe STIM1 may play a role in smooth muscle contraction. To date, the role of STIM1 in smooth muscle is unknown. In this review, we provide a brief overview of the role of STIM1-dependent SOCE in striated muscle and build off that knowledge to investigate whether STIM1 contributes to smooth muscle contractility. We conclude by discussing the translational implications of targeting STIM1 in the treatment of smooth muscle disorders.
Collapse
|
37
|
Kuang SJ, Qian JS, Yang H, Rao F, Chen XY, Zhang MZ, Shan ZX, Lin QX, Xue YM, Wu SL, Jiang L, Chen CB, Deng CY. The enhancement of TXA 2 receptors-mediated contractile response in intrarenal artery dysfunction in type 2 diabetic mice. Eur J Pharmacol 2017; 805:93-100. [PMID: 28286123 DOI: 10.1016/j.ejphar.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 11/28/2022]
Abstract
Thromboxane A2 (TXA2) has been implicated in the pathogenesis of diabetic vascular complications, although the underlying mechanism remains unclear. The present study investigated the alterations in TXA2 receptor signal transduction in type 2 diabetic renal arteries. The contraction of renal arterial rings in control (db/m+) mice and type 2 diabetic (db/db) mice was measured by a Multi Myograph System. Intracellular calcium concentration ([Ca2+]i) in vascular smooth muscle cells was measured by Fluo-4/AM dye and confocal laser scanning microscopy. Quantitative real-time PCR and Western blot analysis were used to determine gene and protein expression levels, respectively. A stable TXA2 mimic U46619 caused markedly stronger dose-dependent contractions in the renal arteries of db/db mice than in those of db/m+ mice. This response was completely blocked by a TXA2 receptor antagonist GR32191 and significantly inhibited by U73122. U46619-induced vasoconstriction was increased in the presence of nifedipine in db/db mice compared with that in db/m+ mice, whereas the response to U46619 did not differ between the two groups in the presence of SKF96365. Sarcoplasmic reticulum Ca2+ release-mediated and CaCl2-induced contractions did not differ between the two groups. In db/db mice, store-operated Ca2+(SOC) entry-mediated contraction in the renal arteries and SOC entry-mediated Ca2+ influx in smooth muscle cells were significantly increased. And the gene and protein expressions of TXA2 receptors, Orai1 and Stim1 were upregulated in the diabetic renal arteries. Therefore the enhancement of U46619-induced contraction was mediated by the upregulation of TXA2 receptors and downstream signaling in the diabetic renal arteries.
Collapse
Affiliation(s)
- Su-Juan Kuang
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jie-Sheng Qian
- Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Hui Yang
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Fang Rao
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Xiao-Yan Chen
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Meng-Zhen Zhang
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Zhi-Xin Shan
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Qiu-Xiong Lin
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Yu-Mei Xue
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Shu-Lin Wu
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Li Jiang
- Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Chun-Bo Chen
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| | - Chun-Yu Deng
- Guangdong Cardiovascular Institute, PR China; Department of Medical Research, Guangdong General Hospital, PR China; Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
38
|
Berna-Erro A, Jardin I, Salido GM, Rosado JA. Role of STIM2 in cell function and physiopathology. J Physiol 2017; 595:3111-3128. [PMID: 28087881 DOI: 10.1113/jp273889] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
An endoplasmic reticulum (ER)-resident protein that regulates cytosolic and ER free-Ca2+ concentration by induction of store-operated calcium entry: that is the original definition of STIM2 and its function. While its activity strongly depends on the amount of calcium stored in the ER, its function goes further, to intracellular signalling and gene expression. Initially under-studied owing to the prominent function of STIM1, STIM2 came to be regarded as vital in mice, gradually emerging as an important player in the nervous system, and cooperating with STIM1 in the immune system. STIM2 has also been proposed as a relevant player in pathological conditions related to ageing, Alzheimer's and Huntington's diseases, autoimmune disorders and cancer. The discovery of additional functions, together with new splicing forms with opposite roles, has clarified existing controversies about STIM2 function in SOCE. With STIM2 being essential for life, but apparently not for development, newly available data demonstrate a complex and still intriguing behaviour that this review summarizes, updating current knowledge of STIM2 function.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Isaac Jardin
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| | - Gines M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
39
|
Tanwar J, Trebak M, Motiani RK. Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:425-452. [PMID: 28900927 DOI: 10.1007/978-3-319-57732-6_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Store-operated Ca2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca2+ levels and transmits the message to plasma membrane Ca2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca2+ influx into the cells. This increase in cytosolic Ca2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Collapse
Affiliation(s)
- Jyoti Tanwar
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110020, India.
| |
Collapse
|
40
|
The STIM1-binding site nexus remotely controls Orai1 channel gating. Nat Commun 2016; 7:13725. [PMID: 27929067 PMCID: PMC5155162 DOI: 10.1038/ncomms13725] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023] Open
Abstract
The ubiquitously expressed Orai Ca2+ channels are gated through a unique process of intermembrane coupling with the Ca2+-sensing STIM proteins. Despite the significance of Orai1-mediated Ca2+ signals, how gating of Orai1 is triggered by STIM1 remains unknown. A widely held gating model invokes STIM1 binding directly to Orai1 pore-forming helix. Here we report that an Orai1 C-terminal STIM1-binding site, situated far from the N-terminal pore helix, alone provides the trigger that is necessary and sufficient for channel gating. We identify a critical ‘nexus' within Orai1 connecting the peripheral C-terminal STIM1-binding site to the Orai1 core helices. Mutation of the nexus transforms Orai1 into a persistently open state exactly mimicking the action of STIM1. We suggest that the Orai1 nexus transduces the STIM1-binding signal through a conformational change in the inner core helices, and that STIM1 remotely gates the Orai1 channel without the necessity for direct STIM1 contact with the pore-forming helix.
How plasma membrane Orai Ca2+ channels are activated by STIM proteins to activate Ca2+ signals is still not fully known. Here the authors show that a nexus region located at the Orai1 C-terminus allows channel gating without a direct interaction of STIM1 with the channel pore.
Collapse
|
41
|
Kassan M, Ait-Aissa K, Radwan E, Mali V, Haddox S, Gabani M, Zhang W, Belmadani S, Irani K, Trebak M, Matrougui K. Essential Role of Smooth Muscle STIM1 in Hypertension and Cardiovascular Dysfunction. Arterioscler Thromb Vasc Biol 2016; 36:1900-9. [PMID: 27470514 DOI: 10.1161/atvbaha.116.307869] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/12/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Chronic hypertension is the most critical risk factor for cardiovascular disease, heart failure, and stroke. APPROACH AND RESULTS Here we show that wild-type mice infused with angiotensin II develop hypertension, cardiac hypertrophy, perivascular fibrosis, and endothelial dysfunction with enhanced stromal interaction molecule 1 (STIM1) expression in heart and vessels. All these pathologies were significantly blunted in mice lacking STIM1 specifically in smooth muscle (Stim1(SMC-/-)). Mechanistically, STIM1 upregulation during angiotensin II-induced hypertension was associated with enhanced endoplasmic reticulum stress, and smooth muscle STIM1 was required for endoplasmic reticulum stress-induced vascular dysfunction through transforming growth factor-β and nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways. Accordingly, knockout mice for the endoplasmic reticulum stress proapoptotic transcriptional factor, CCAAT-enhancer-binding protein homologous protein (CHOP(-/-)), were resistant to hypertension-induced cardiovascular pathologies. Wild-type mice infused with angiotensin II, but not Stim1(SMC-/-) or CHOP(-/-) mice showed elevated vascular nicotinamide adenine dinucleotide phosphate oxidase activity and reduced phosphorylated endothelial nitric oxide synthase, cGMP, and nitrite levels. CONCLUSIONS Thus, smooth muscle STIM1 plays a crucial role in the development of hypertension and associated cardiovascular pathologies and represents a promising target for cardiovascular therapy.
Collapse
Affiliation(s)
- Modar Kassan
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Karima Ait-Aissa
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Eman Radwan
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Vishal Mali
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Samuel Haddox
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Mohanad Gabani
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Wei Zhang
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Souad Belmadani
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Kaikobad Irani
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.)
| | - Mohamed Trebak
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.).
| | - Khalid Matrougui
- From the Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, New Orleans, LA (M.K., K.M.); Department of Physiological Sciences, EVMS, Norfolk, VA (M.K., K.A.-A., E.R., V.M., S.H., S.B., K.M.); Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA (W.Z., M.T); and Department of Internal Medicine, University of Iowa, Iowa City (K.M., M.G., K.I.).
| |
Collapse
|
42
|
STIM1-dependent Ca(2+) microdomains are required for myofilament remodeling and signaling in the heart. Sci Rep 2016; 6:25372. [PMID: 27150728 PMCID: PMC4858716 DOI: 10.1038/srep25372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
In non-excitable cells stromal interaction molecule 1 (STIM1) is a key element in the generation of Ca(2+) signals that lead to gene expression, migration and cell proliferation. A growing body of literature suggests that STIM1 plays a key role in the development of pathological cardiac hypertrophy. However, the precise mechanisms involving STIM-dependent Ca(2+) signaling in the heart are not clearly established. Here, we have investigated the STIM1-associated Ca(2+) signals in cardiomyocytes and their relevance to pathological cardiac remodeling. We show that mice with inducible, cardiac-restricted, ablation of STIM1 exhibited left ventricular reduced contractility, which was corroborated by impaired single cell contractility. The spatial properties of STIM1-dependent Ca(2+) signals determine restricted Ca(2+) microdomains that regulate myofilament remodeling and activate spatially segregated pro-hypertrophic factors. Indeed, mice lacking STIM1 showed less adverse structural remodeling in response to pressure overload-induced cardiac hypertrophy. These results highlight how STIM1-dependent Ca(2+) microdomains have a major impact on intracellular Ca(2+) homeostasis, cytoskeletal remodeling and cellular signaling, even when excitation-contraction coupling is present.
Collapse
|
43
|
Stiber JA, Wu JH, Zhang L, Nepliouev I, Zhang ZS, Bryson VG, Brian L, Bentley RC, Gordon-Weeks PR, Rosenberg PB, Freedman NJ. The Actin-Binding Protein Drebrin Inhibits Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol 2016; 36:984-93. [PMID: 27013612 DOI: 10.1161/atvbaha.115.306140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton. APPROACH AND RESULTS Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer. CONCLUSIONS Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.
Collapse
Affiliation(s)
- Jonathan A Stiber
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.).
| | - Jiao-Hui Wu
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Lisheng Zhang
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Igor Nepliouev
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Zhu-Shan Zhang
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Victoria G Bryson
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Leigh Brian
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Rex C Bentley
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Phillip R Gordon-Weeks
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Paul B Rosenberg
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| | - Neil J Freedman
- From the Department of Medicine, Duke University Medical Center, Durham, NC (J.A.S., J.-H.W., L.Z., I.N., Z.-S.Z., V.G.B., L.B., P.B.R., N.J.F.); Department of Pathology, Duke University Medical Center, Durham, NC (R.C.B.); and MRC Centre for Developmental Neurobiology, King's College, London, UK (P.R.G.-W.)
| |
Collapse
|
44
|
Mudadu MA, Porto-Neto LR, Mokry FB, Tizioto PC, Oliveira PSN, Tullio RR, Nassu RT, Niciura SCM, Tholon P, Alencar MM, Higa RH, Rosa AN, Feijó GLD, Ferraz ALJ, Silva LOC, Medeiros SR, Lanna DP, Nascimento ML, Chaves AS, Souza ARDL, Packer IU, Torres RAA, Siqueira F, Mourão GB, Coutinho LL, Reverter A, Regitano LCA. Genomic structure and marker-derived gene networks for growth and meat quality traits of Brazilian Nelore beef cattle. BMC Genomics 2016; 17:235. [PMID: 26979536 PMCID: PMC4791965 DOI: 10.1186/s12864-016-2535-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample. RESULTS Our results indicate a lack of structuring between the individuals studied since principal component analyses were not able to differentiate families by its sires or by its ancestral lineages. The application of the AWM/PCIT methodology revealed a trio of transcription factors (comprising VDR, LHX9 and ZEB1) which in combination connected 66 genes through 359 edges and whose biological functions were inspected, some revealing to participate in biological growth processes in literature searches. CONCLUSIONS The diversity of the Nelore sample studied is not high enough to differentiate among families neither by sires nor by using the available ancestral lineage information. The gene networks constructed from the AWM/PCIT methodology were a useful alternative in characterizing genes and gene networks that were allegedly influential in growth and meat quality traits in Nelore cattle.
Collapse
Affiliation(s)
- Maurício A Mudadu
- Embrapa Agricultural Informatics, Av. André Tosello, 209, Campinas, SP, Brazil. .,Embrapa Southeast Livestock, Rodovia Washington Luiz, Km 234, São Carlos, SP, Brazil.
| | - Laercio R Porto-Neto
- Commonwealth Scientific and Industrial Research Organization - Agriculture, 306 Carmody Road, Brisbane, QLD, Australia
| | - Fabiana B Mokry
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, SP, Brazil
| | - Polyana C Tizioto
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, SP, Brazil
| | - Priscila S N Oliveira
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, SP, Brazil
| | - Rymer R Tullio
- Embrapa Southeast Livestock, Rodovia Washington Luiz, Km 234, São Carlos, SP, Brazil
| | - Renata T Nassu
- Embrapa Southeast Livestock, Rodovia Washington Luiz, Km 234, São Carlos, SP, Brazil
| | - Simone C M Niciura
- Embrapa Southeast Livestock, Rodovia Washington Luiz, Km 234, São Carlos, SP, Brazil
| | - Patrícia Tholon
- Embrapa Southeast Livestock, Rodovia Washington Luiz, Km 234, São Carlos, SP, Brazil
| | - Maurício M Alencar
- Embrapa Southeast Livestock, Rodovia Washington Luiz, Km 234, São Carlos, SP, Brazil
| | - Roberto H Higa
- Embrapa Agricultural Informatics, Av. André Tosello, 209, Campinas, SP, Brazil
| | - Antônio N Rosa
- Embrapa Beef Cattle, Av. Rádio Maia, 830, Campo Grande, MS, Brazil
| | - Gélson L D Feijó
- Embrapa Beef Cattle, Av. Rádio Maia, 830, Campo Grande, MS, Brazil
| | - André L J Ferraz
- State University of Mato Grosso do Sul, Rodovia Uems-Aquidauana km 12, Aquidauana, MS, Brazil
| | - Luiz O C Silva
- Embrapa Beef Cattle, Av. Rádio Maia, 830, Campo Grande, MS, Brazil
| | | | - Dante P Lanna
- Department of Animal Science, University of São Paulo, Av. Padua Dias, 11306, Piracicaba, SP, Brazil
| | - Michele L Nascimento
- Department of Animal Science, University of São Paulo, Av. Padua Dias, 11306, Piracicaba, SP, Brazil
| | - Amália S Chaves
- Department of Animal Science, University of São Paulo, Av. Padua Dias, 11306, Piracicaba, SP, Brazil
| | - Andrea R D L Souza
- Faculdade de Medicina Veterinaria e Zootecnia, Federal University of Mato Grosso do Sul, Av. Senador Filinto Müller, 2443, Campo Grande, MS, Brazil
| | - Irineu U Packer
- Department of Animal Science, University of São Paulo, Av. Padua Dias, 11306, Piracicaba, SP, Brazil
| | | | - Fabiane Siqueira
- Embrapa Beef Cattle, Av. Rádio Maia, 830, Campo Grande, MS, Brazil
| | - Gerson B Mourão
- Department of Animal Science, University of São Paulo, Av. Padua Dias, 11306, Piracicaba, SP, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo, Av. Padua Dias, 11306, Piracicaba, SP, Brazil
| | - Antonio Reverter
- Commonwealth Scientific and Industrial Research Organization - Agriculture, 306 Carmody Road, Brisbane, QLD, Australia
| | - Luciana C A Regitano
- Embrapa Southeast Livestock, Rodovia Washington Luiz, Km 234, São Carlos, SP, Brazil
| |
Collapse
|
45
|
Spinelli AM, Trebak M. Orai channel-mediated Ca2+ signals in vascular and airway smooth muscle. Am J Physiol Cell Physiol 2016; 310:C402-13. [PMID: 26718630 PMCID: PMC4796280 DOI: 10.1152/ajpcell.00355.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Orai (Orai1, Orai2, and Orai3) proteins form a family of highly Ca(2+)-selective plasma membrane channels that are regulated by stromal-interacting molecules (STIM1 and STIM2); STIM proteins are Ca(2+) sensors located in the membrane of the endoplasmic reticulum. STIM and Orai proteins are expressed in vascular and airway smooth muscle and constitute the molecular components of the ubiquitous store-operated Ca(2+) entry pathway that mediate the Ca(2+) release-activated Ca(2+) current. STIM/Orai proteins also encode store-independent Ca(2+) entry pathways in smooth muscle. Altered expression and function of STIM/Orai proteins have been linked to vascular and airway pathologies, including restenosis, hypertension, and atopic asthma. In this review we discuss our current understanding of Orai proteins and the store-dependent and -independent signaling pathways mediated by these proteins in vascular and airway smooth muscle. We also discuss the current studies linking altered expression and function of Orai proteins with smooth muscle-related pathologies.
Collapse
Affiliation(s)
- Amy M Spinelli
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
46
|
Niemeyer BA. Changing calcium: CRAC channel (STIM and Orai) expression, splicing, and posttranslational modifiers. Am J Physiol Cell Physiol 2016; 310:C701-9. [PMID: 26911279 DOI: 10.1152/ajpcell.00034.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A wide variety of cellular function depends on the dynamics of intracellular Ca(2+) signals. Especially for relatively slow and lasting processes such as gene expression, cell proliferation, and often migration, cells rely on the store-operated Ca(2+) entry (SOCE) pathway, which is particularly prominent in immune cells. SOCE is initiated by the sensor proteins (STIM1, STIM2) located within the endoplasmic reticulum (ER) registering the Ca(2+) concentration within the ER, and upon its depletion, cluster and trap Orai (Orai1-3) proteins located in the plasma membrane (PM) into ER-PM junctions. These regions become sites of highly selective Ca(2+) entry predominantly through Orai1-assembled channels, which, among other effector functions, is necessary for triggering NFAT translocation into the nucleus. What is less clear is how the spatial and temporal spread of intracellular Ca(2+) is shaped and regulated by differential expression of the individual SOCE genes and their splice variants, their heteromeric combinations and pre- and posttranslational modifications. This review focuses on principle mechanisms regulating expression, splicing, and targeting of Ca(2+) release-activated Ca(2+) (CRAC) channels.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
47
|
Saddouk FZ, Sun LY, Liu YF, Jiang M, Singer DV, Backs J, Van Riper D, Ginnan R, Schwarz JJ, Singer HA. Ca2+/calmodulin-dependent protein kinase II-γ (CaMKIIγ) negatively regulates vascular smooth muscle cell proliferation and vascular remodeling. FASEB J 2015; 30:1051-64. [PMID: 26567004 DOI: 10.1096/fj.15-279158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle (VSM) expresses calcium/calmodulin-dependent protein kinase II (CaMKII)-δ and -γ isoforms. CaMKIIδ promotes VSM proliferation and vascular remodeling. We tested CaMKIIγ function in vascular remodeling after injury. CaMKIIγ protein decreased 90% 14 d after balloon injury in rat carotid artery. Intraluminal transduction of adenovirus encoding CaMKIIγC rescued expression to 35% of uninjured controls, inhibited neointima formation (>70%), inhibited VSM proliferation (>60%), and increased expression of the cell-cycle inhibitor p21 (>2-fold). Comparable doses of CaMKIIδ2 adenovirus had no effect. Similar dynamics in CaMKIIγ mRNA and protein expression were observed in ligated mouse carotid arteries, correlating closely with expression of VSM differentiation markers. Targeted deletion of CaMKIIγ in smooth muscle resulted in a 20-fold increase in neointimal area, with a 3-fold increase in the cell proliferation index, no change in apoptosis, and a 60% decrease in p21 expression. In cultured VSM, CaMKIIγ overexpression induced p53 mRNA (1.7 fold) and protein (1.8-fold) expression; induced the p53 target gene p21 (3-fold); decreased VSM cell proliferation (>50%); and had no effect on expression of apoptosis markers. We conclude that regulated CaMKII isoform composition is an important determinant of the injury-induced vasculoproliferative response and that CaMKIIγ and -δ isoforms have nonequivalent, opposing functions.
Collapse
Affiliation(s)
- Fatima Z Saddouk
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Li-Yan Sun
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Yong Feng Liu
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Miao Jiang
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Diane V Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Dee Van Riper
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Roman Ginnan
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - John J Schwarz
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| | - Harold A Singer
- *Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA; and Department of Cardiology, Angiology and Pneumology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
Abstract
Stromal interaction molecules (STIM) 1 and 2 are sensors of the calcium concentration in the endoplasmic reticulum. Depletion of endoplasmic reticulum calcium stores activates STIM proteins which, in turn, bind and open calcium channels in the plasma membrane formed by the proteins ORAI1, ORAI2, and ORAI3. The resulting store-operated calcium entry (SOCE), mostly controlled by the principal components STIM1 and ORAI1, has been particularly characterized in immune cells. In the nervous system, all STIM and ORAI homologs are expressed. This review summarizes current knowledge on distribution and function of STIM and ORAI proteins in central neurons and glial cells, i.e. astrocytes and microglia. STIM2 is required for SOCE in hippocampal synapses and cortical neurons, whereas STIM1 controls calcium store replenishment in cerebellar Purkinje neurons. In microglia, STIM1, STIM2, and ORAI1 regulate migration and phagocytosis. The isoforms ORAI2 and ORAI3 are candidates for SOCE channels in neurons and astrocytes, respectively. Due to the role of SOCE in neuronal and glial calcium homeostasis, dysfunction of STIM and ORAI proteins may have consequences for the development of neurodegenerative disorders, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Kraft
- a Carl-Ludwig-Institute for Physiology, University of Leipzig ; Leipzig , Germany
| |
Collapse
|
49
|
Lindholm-Perry AK, Kern RJ, Kuehn LA, Snelling WM, Miles JR, Oliver WT, Freetly HC. Differences in transcript abundance of genes on BTA15 located within a region associated with gain in beef steers. Gene 2015; 572:42-48. [PMID: 26143118 DOI: 10.1016/j.gene.2015.06.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/24/2015] [Accepted: 06/28/2015] [Indexed: 01/26/2023]
Abstract
Using results from a previous GWAS, we chose to evaluate seven genes located within a 229Kb region on BTA15 for variation in RNA transcript abundance in a library of tissue samples that included adipose, liver, rumen papillae, spleen, muscle, and small intestine epithelial layers from the duodenum, ileum and jejunum collected from steers (n = 14) with positive and negative residual GN near mean dry matter intake (DMI). The genes evaluated were two olfactory receptor-like genes (LOC525033 and LOC618173), RRM1, STIM1, RHOG, PGAP2, and NUP98. The rumen papillae transcript abundance of RHOG was positively correlated with residual GN (P = 0.02) and ruminal STIM1 exhibited a trend towards an association with residual GN (P = 0.08). The transcript abundance of one olfactory receptor (LOC618173) in the ileum was also positively associated with residual GN (P = 0.02) and PGAP2 and LOC525033 in the ileum displayed trends for association with GN (P ≤ 0.1). To further evaluate the differential expression detected in the ileum and rumen of these animals, the transcript abundance of STIM1 and RHOG in the rumen and of PGAP2 and the olfactory receptors in the ileum were assessed in an additional group of 32 animals with divergent average daily gain (ADG) and average daily feed intake (ADFI) collected over two groups. The olfactory receptor, LOC525033, was not expressed in the ileum for the majority of these animals. Only RHOG showed a slight, but non-significant trend towards greater expression in animals with greater gain. We have detected differences in the transcript abundance of genes within this region in the rumen and ileum of animals selected for greater and less residual gain; however, we were unable to validate the expression of these genes in the larger group of cattle possibly due to the differences in phenotype or contemporary group.
Collapse
Affiliation(s)
| | - R J Kern
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - L A Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - W M Snelling
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - J R Miles
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - W T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| | - H C Freetly
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA.
| |
Collapse
|
50
|
Goswami A, Jesse CM, Chandrasekar A, Bushuven E, Vollrath JT, Dreser A, Katona I, Beyer C, Johann S, Feller AC, Grond M, Wagner S, Nikolin S, Troost D, Weis J. Accumulation of STIM1 is associated with the degenerative muscle fibre phenotype in ALS and other neurogenic atrophies. Neuropathol Appl Neurobiol 2015; 41:304-18. [DOI: 10.1111/nan.12164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/22/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Anand Goswami
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Christofer Marvin Jesse
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Akila Chandrasekar
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Eva Bushuven
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Jan Tilmann Vollrath
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Alice Dreser
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Istvan Katona
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Cordian Beyer
- Institute of Neuroanatomy; RWTH Aachen University; Aachen Germany
| | - Sonja Johann
- Institute of Neuroanatomy; RWTH Aachen University; Aachen Germany
| | - A. C. Feller
- Institute of Pathology; University Hospital Schleswig-Holstein; Lübeck Germany
| | - M. Grond
- Department of Neurology; District Hospital Siegen; Siegen Germany
| | - S. Wagner
- Department of Neurology; District Hospital Siegen; Siegen Germany
| | - Stefan Nikolin
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| | - Dirk Troost
- Division of Neuropathology; Department of Pathology, Academic Medical Centre; Amsterdam The Netherlands
| | - Joachim Weis
- Institute of Neuropathology; RWTH Aachen University and JARA Brain Translational Medicine; Aachen Germany
| |
Collapse
|