1
|
Nguyen DT, Desgagné M, Laniel A, Lavoie C, Boudreault PL. Diversity-oriented synthesis of second generation guanidinium-rich transporters toward cell-selective penetration. Bioorg Chem 2024; 154:108041. [PMID: 39672076 DOI: 10.1016/j.bioorg.2024.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Cell-penetrating peptides (CPPs) hold significant promise for intracellular delivery of various cargo molecules such as therapeutics. However, the lack of selectivity remains a critical challenge and limits the clinical application of CPPs. Using an automated peptide synthesizer, we generated a diversity-oriented library of 256 peptidomimetics containing four modified peptoid guanidine-bearing monomers incorporated alternatively with four α-amino acids. These α-amino acids were chosen to enhance lipophilic interactions with the cell membrane (Phe, 2Nal) or to bear pH-sensitive properties (His), which could enhance cancer cell selectivity. The synthesized library exhibits selective internalization, with an average selectivity index (SI) of 1.49 for HeLa cells in comparison to non-cancerous HEK293 cells. Compounds 155 and 187, containing three His residues and either Phe or 2Nal, show high cellular uptake in HeLa cells (64.6% and 75.7%, respectively) and possess an SI of 2.7 and 2.9, respectively, at the tested dose of 5 μM. Altogether, these findings highlight the use of diversity-oriented library synthesis to identify cell-permeable candidates as well as their potential for targeted cellular delivery and enhanced specificity.
Collapse
Affiliation(s)
- Duc Tai Nguyen
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Michael Desgagné
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Andréanne Laniel
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Christine Lavoie
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
2
|
Ravari NS, Sheikhlou MG, Goodarzi N, Kharazian B, Amini M, Atyabi F, Nasrollahi SA, Dinarvand R. Fabrication, characterization and evaluation of a new designed botulinum toxin-cell penetrating peptide nanoparticulate complex. Daru 2023; 31:1-12. [PMID: 37209247 PMCID: PMC10238362 DOI: 10.1007/s40199-023-00462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/02/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND To have a better and longer effect, botulinum neurotoxin (BoNT) is injected several times in a treatment course, which could increase side effects and cost. Some of the most cutting-edge strategies being investigated for proteins to their physiologic targets involve the reformulation of BoNT based on peptide-based delivery systems. For this purpose, cell-penetrating peptides (CPPs) are of particular interest because of their capacity to cross the biological membranes. OBJECTIVES A short and simple CPP sequence was used as a carrier to create nanocomplex particles from BoNT/A, with the purpose of increasing toxin entrapment by target cells, reducing diffusion, and increasing the duration of the effect. METHOD CPP-BoNT/A nanocomplexes were formed by polyelectrolyte complex (PEC) method, considering the anionic structure of botulinum toxin and the cationic CPP sequence. The cellular toxicity, and absorption profile of the complex nanoparticles were evaluated, and the digit abduction score (DAS) was used to assess the local muscle weakening efficacy of BoNT/A and CPP-BoNT/A. RESULTS The provided optimized polyelectrolyte complex nanoparticles had a 244 ± 20 nm particle size and 0.28 ± 0.04 PdI. In cellular toxicity, CPP-BoNT/A nanocomplexes as extended-release formulations of BoNT/A showed that nanocomplexes had a more toxic effect than BoNT/A. Furthermore, the comparison of weakening effectiveness on muscle was done among nanoparticles and free toxin on mice based on the digit abduction score (DAS) method, and nanocomplexes had a slower onset effect and a longer duration of action than toxin. CONCLUSION Using PEC method allowed us to form nanocomplex from proteins, and peptides without a covalent bond and harsh conditions. The muscle-weakening effect of toxin in CPP-BoNT/A nanocomplexes showed acceptable efficacy and extended-release pattern.
Collapse
Affiliation(s)
- Nazanin Shabani Ravari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 141556451, Iran
| | - Maryam Ghareh Sheikhlou
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 141556451, Iran
| | - Navid Goodarzi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614315, Iran
| | - Bahar Kharazian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614315, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 141556451, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 141556451, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614315, Iran
| | - Saman A Nasrollahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, 1416613675, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 141556451, Iran.
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614315, Iran.
| |
Collapse
|
3
|
Cardon S, Hervis YP, Bolbach G, Lopin-Bon C, Jacquinet JC, Illien F, Walrant A, Ravault D, He B, Molina L, Burlina F, Lequin O, Joliot A, Carlier L, Sagan S. A cationic motif upstream Engrailed2 homeodomain controls cell internalization through selective interaction with heparan sulfates. Nat Commun 2023; 14:1998. [PMID: 37032404 PMCID: PMC10083169 DOI: 10.1038/s41467-023-37757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
Engrailed2 (En2) is a transcription factor that transfers from cell to cell through unconventional pathways. The poorly understood internalization mechanism of this cationic protein is proposed to require an initial interaction with cell-surface glycosaminoglycans (GAGs). To decipher the role of GAGs in En2 internalization, we have quantified the entry of its homeodomain region in model cells that differ in their content in cell-surface GAGs. The binding specificity to GAGs and the influence of this interaction on the structure and dynamics of En2 was also investigated at the amino acid level. Our results show that a high-affinity GAG-binding sequence (RKPKKKNPNKEDKRPR), upstream of the homeodomain, controls En2 internalization through selective interactions with highly-sulfated heparan sulfate GAGs. Our data underline the functional importance of the intrinsically disordered basic region upstream of En2 internalization domain, and demonstrate the critical role of GAGs as an entry gate, finely tuning homeoprotein capacity to internalize into cells.
Collapse
Affiliation(s)
- Sébastien Cardon
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Yadira P Hervis
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Gérard Bolbach
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne University, MS3U platform, 75005, Paris, France
| | | | | | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Astrid Walrant
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Delphine Ravault
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Bingwei He
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Laura Molina
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Fabienne Burlina
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Olivier Lequin
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France
| | - Alain Joliot
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Ludovic Carlier
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 75005, Paris, France.
| |
Collapse
|
4
|
Yousef M, Szabó I, Murányi J, Illien F, Soltész D, Bató C, Tóth G, Batta G, Nagy P, Sagan S, Bánóczi Z. Cell-Penetrating Dabcyl-Containing Tetraarginines with Backbone Aromatics as Uptake Enhancers. Pharmaceutics 2022; 15:pharmaceutics15010141. [PMID: 36678772 PMCID: PMC9864790 DOI: 10.3390/pharmaceutics15010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Cell-penetrating peptides represent an emerging class of carriers capable of effective cellular delivery. This work demonstrates the preparation and investigation of efficient CPPs. We have already shown that the presence of 4-((4-(dimethylamino)phenyl)azo)benzoic acid (Dabcyl) and Trp greatly increase the uptake of oligoarginines. This work is a further step in that direction. We have explored the possibility of employing unnatural, aromatic amino acids, to mimic Trp properties and effects. The added residues allow the introduction of aromaticity, not as a side-chain group, but rather as a part of the sequence. The constructs presented exceptional internalization on various cell lines, with an evident structure-activity relationship. The CPPs were investigated for their entry mechanisms, and our peptides exploit favorable pathways, yet one of the peptides relies highly on direct penetration. Confocal microscopy studies have shown selectivity towards the cell lines, by showing diffuse uptake in FADU cells, while vesicular uptake takes place in SCC-25 cell line. These highly active CPPs have proved their applicability in cargo delivery by successfully delivering antitumor drugs into MCF-7 and MDA-MB-231 cells. The modifications in the sequences allow the preparation of short yet highly effective constructs able to rival the penetration of well-known CPPs such as octaarginine (Arg8).
Collapse
Affiliation(s)
- Mo’ath Yousef
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), 1117 Budapest, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
- MTA-SE Pathobiochemistry Research Group, 1094 Budapest, Hungary
| | - Françoise Illien
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Dóra Soltész
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Csaba Bató
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
| | - Gabriella Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gyula Batta
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sandrine Sagan
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Eötvös L. University, 1117 Budapest, Hungary
- Correspondence:
| |
Collapse
|
5
|
Tashima T. Delivery of Drugs into Cancer Cells Using Antibody-Drug Conjugates Based on Receptor-Mediated Endocytosis and the Enhanced Permeability and Retention Effect. Antibodies (Basel) 2022; 11:antib11040078. [PMID: 36546903 PMCID: PMC9774242 DOI: 10.3390/antib11040078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Innumerable people worldwide die of cancer every year, although pharmaceutical therapy has actualized many benefits in human health. For background, anti-cancer drug development is difficult due to the multifactorial pathogenesis and complicated pathology of cancers. Cancer cells excrete hydrophobic low-molecular anti-cancer drugs by overexpressed efflux transporters such as multiple drug resistance 1 (MDR1) at the apical membrane. Mutation-driven drug resistance is also developed in cancer. Moreover, the poor distribution of drug to cancer cells is a serious problem, because patients suffer from off-target side effects. Thus, highly selective and effective drug delivery into solid cancer cells across the membrane should be established. It is known that substances (10-100 nm in diameter) such as monoclonal antibodies (mAbs) (approximately 14.2 nm in diameter) or nanoparticles spontaneously gather in solid tumor stroma or parenchyma through the capillary endothelial fenestration, ranging from 200-2000 nm, in neovasculatures due to the enhanced permeability and retention (EPR) effect. Furthermore, cancer antigens, such as HER2, Nectin-4, or TROP2, highly selectively expressed on the surface of cancer cells act as a receptor for receptor-mediated endocytosis (RME) using mAbs against such antigens. Thus, antibody-drug conjugates (ADCs) are promising anti-cancer pharmaceutical agents that fulfill accurate distribution due to the EPR effect and due to antibody-antigen binding and membrane permeability owing to RME. In this review, I introduce the implementation and possibility of highly selective anti-cancer drug delivery into solid cancer cells based on the EPR effect and RME using anti-cancer antigens ADCs with payloads through suitable linkers.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
6
|
Muñoz-Gacitúa D, Guzman F, Weiss-López B. Insights into the equilibrium structure and translocation mechanism of TP1, a spontaneous membrane-translocating peptide. Sci Rep 2022; 12:19880. [PMID: 36400938 PMCID: PMC9674684 DOI: 10.1038/s41598-022-23631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Crossing the cellular membrane is one of the main barriers during drug discovery; many potential drugs are rejected for their inability to integrate into the intracell fluid. Although many solutions have been proposed to overcome this barrier, arguably the most promising solution is the use of cell-penetrating peptides. Recently, an array of hydrophobic penetrating peptides was discovered via high throughput screening which proved to be able to cross the membrane passively, and although these peptides proved to be effective at penetrating the cell, the details behind the underlying mechanism of this process remain unknown. In this study, we developed a method to find the equilibrium structure at the transmembrane domain of TP1, a hydrophobic penetrating peptide. In this method, we selectively deuterium-label amino acids in the peptidic chain, and employ results of [Formula: see text]H-NMR spectroscopy to find a molecular dynamics simulation of the peptide that reproduces the experimental results. Effectively finding the equilibrium orientation and dynamics of the peptide in the membrane. We employed this equilibrium structure to simulate the entire translocation mechanism and found that after the peptide reaches its equilibrium structure, it must undergo a two-step mechanism in order to completely translocate the membrane, each step involving the flip-flop of each arginine residue in the peptide. This leads us to conclude that the RLLR motif is essential for the translocating activity of the peptide.
Collapse
Affiliation(s)
- Diego Muñoz-Gacitúa
- Laboratorio de Fisicoquímica Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Fanny Guzman
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, 2460355, Valparaíso, Chile
| | - Boris Weiss-López
- Laboratorio de Fisicoquímica Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Maeng J, Lee K. Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol 2022; 13:1068495. [PMID: 36452220 PMCID: PMC9703138 DOI: 10.3389/fphar.2022.1068495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The intranasal route has emerged as a promising strategy that can direct delivery of drugs into the systemic circulation because the high-vascularized nasal cavity, among other advantages, avoids the hepatic first-pass metabolism. The nose-to-brain pathway provides a non-invasive alternative to other routes for the delivery of macromolecular therapeutics. A great variety of methodologies has been developed to enhance the efficiency of transepithelial translocation of macromolecules. Among these, the use of cell-penetrating peptides (CPPs), short protein transduction domains (PTDs) that facilitate the intracellular transport of various bioactive molecules, has become an area of extensive research in the intranasal delivery of peptides and proteins either to systemic or to brain compartments. Some CPPs have been applied for the delivery of peptide antidiabetics, including insulin and exendin-4, for treating diabetes and Alzheimer's disease. This review highlights the current status of CPP-driven intranasal delivery of peptide drugs and its potential applicability as a universal vehicle in the nasal drug delivery.
Collapse
Affiliation(s)
| | - Kyunglim Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
8
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
9
|
Bechtella L, Chalouhi E, Milán Rodríguez P, Cosset M, Ravault D, Illien F, Sagan S, Carlier L, Lequin O, Fuchs PFJ, Sachon E, Walrant A. Structural Bases for the Involvement of Phosphatidylinositol-4,5-bisphosphate in the Internalization of the Cell-Penetrating Peptide Penetratin. ACS Chem Biol 2022; 17:1427-1439. [PMID: 35608167 DOI: 10.1021/acschembio.1c00974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-penetrating peptides cross cell membranes through various parallel internalization pathways. Herein, we analyze the role of the negatively charged lipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the internalization of Penetratin. Contributions of both inner leaflet and outer leaflet pools of PI(4,5)P2 were revealed by quantifying the internalization of Penetratin in cells treated with PI(4,5)P2 binders. Studies on model systems showed that Penetratin has a strong affinity for PI(4,5)P2 and interacts selectively with this lipid, even in the presence of other negatively charged lipids, as demonstrated by affinity photo-crosslinking experiments. Differential scanning calorimetry experiments showed that Penetratin induces lateral segregation in PI(4,5)P2-containing liposomes, which was confirmed by coarse-grained molecular dynamics simulations. NMR experiments indicated that Penetratin adopts a stabilized helical conformation in the presence of PI(4,5)P2-containing membranes, with an orientation parallel to the bilayer plane, which was also confirmed by all-atom simulations. NMR and photo-crosslinking experiments also suggest a rather shallow insertion of the peptide in the membrane. Put together, our findings suggest that PI(4,5)P2 is a privileged interaction partner for Penetratin and that it plays an important role in Penetratin internalization.
Collapse
Affiliation(s)
- Leïla Bechtella
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Edward Chalouhi
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Paula Milán Rodríguez
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Marine Cosset
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Delphine Ravault
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Françoise Illien
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Sandrine Sagan
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Ludovic Carlier
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Olivier Lequin
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Patrick F. J. Fuchs
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
- Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne Université, MS3U platform, UFR 926, UFR 927, Paris 75005, France
| | - Astrid Walrant
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
10
|
Mechanisms of selective monocyte targeting by liposomes functionalized with a cationic, arginine-rich lipopeptide. Acta Biomater 2022; 144:96-108. [PMID: 35314364 DOI: 10.1016/j.actbio.2022.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 01/01/2023]
Abstract
Stimulation of monocytes with immunomodulating agents can harness the immune system to treat a long range of diseases, including cancers, infections and autoimmune diseases. To this end we aimed to develop a monocyte-targeting delivery platform based on cationic liposomes, which can be utilized to deliver immunomodulators and thus induce monocyte-mediated immune responses while avoiding off-target side-effects. The cationic liposome design is based on functionalizing the liposomal membrane with a cholesterol-anchored tri-arginine peptide (TriArg). We demonstrate that TriArg liposomes can target monocytes with high specificity in both human and murine blood and that this targeting is dependent on the content of TriArg in the liposomal membrane. In addition, we show that the mechanism of selective monocyte targeting involves the CD14 co-receptor, and selectivity is compromised when the TriArg content is increased, resulting in complement-mediated off-target uptake in granulocytes. The presented mechanistic findings of uptake by peripheral blood leukocytes may guide the design of future drug delivery systems utilized for immunotherapy. STATEMENT OF SIGNIFICANCE: Monocytes are attractive targets for immunotherapies of cancers, infections and autoimmune diseases. Specific delivery of immunostimulatory drugs to monocytes is typically achieved using ligand-targeted drug delivery systems, but a simpler approach is to target monocytes using cationic liposomes. To achieve this, however, a deep understanding of the mechanisms governing the interactions of cationic liposomes with monocytes and other leukocytes is required. We here investigate these interactions using liposomes incorporating a cationic arginine-rich lipopeptide. We demonstrate that monocyte targeting can be achieved by fine-tuning the lipopeptide content in the liposomes. Additionally, we reveal that the CD14 receptor is involved in the targeting process, whereas the complement system is not. These mechanistic findings are critical for future design of monocyte-targeting liposomal therapies.
Collapse
|
11
|
Behzadi M, Eghtedardoost M, Bagheri M. Endocytosis Involved d-Oligopeptide of Tryptophan and Arginine Displays Ordered Nanostructures and Cancer Cell Stereoselective Toxicity by Autophagy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14928-14943. [PMID: 35319877 DOI: 10.1021/acsami.1c23846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their self-aggregation propensity and selective interaction with the anionic membranes, the peptides rich in tryptophan (Trp) and arginine (Arg) are considered for the development of novel anticancer therapeutics. However, the structural insights from the perspective of backbone chirality and spatial orientation of side chains into the selective toxicity of peptides are limited. Here, we investigated the selectivity and cellular uptake of HHC36, a Trp/Arg-rich nonapeptide, and its d-enantiomer (allDHHC36) and a retroinverso analogue in the lung A549 and breast MDA-MB-231 cancer cells. We realized that the d-peptides can specifically induce autophagy at nontoxic concentrations only in the A549 cells supported from the LC 3-II immunostaining expression in the vicinity of the nucleus and the ultrastructural analysis revealing the autophagosome formation. The autophagic flux was also remarkable in the cells exposed to d-peptides at a far lower concentration in synergism with doxorubicin (DOX). In marked contrast, nonselective cell death was observed only if a high amount of HHC36 was applied. HHC36 tended to irregular collagen-like fibrils relative to allDHHC36 that distinctly formed higher-order coiled nanostructures. Interestingly, the short d-peptide fragments were generated in a harsh oxidative condition. Compared with the direct membrane transduction of HHC36, the entry of d-peptides into the lung cancer cells was controlled by endocytosis through the contribution of heparan sulfate proteoglycans (HSPGs) and cholesterol (CHO). However, both l- and d-peptides feasibly crossed the membrane and localized inside the S-phase-arrested cell nucleus. This suggested the likelihood of peptide intercalation with DNA that might differently appear in selective and/or nonselective deaths. These results unraveled the d-handedness-selective toxicity of a self-assembling Trp/Arg-rich sequence that is dependent on the cell type from the aspects of the density of anionic charges and CHO in the outer leaflet of the plasma membrane, as well as the intracellular redox imbalance that may drive the formation of toxic peptide nanostructure fragments.
Collapse
Affiliation(s)
- Malihe Behzadi
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Marzieh Eghtedardoost
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| | - Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran
| |
Collapse
|
12
|
Trofimenko E, Grasso G, Heulot M, Chevalier N, Deriu MA, Dubuis G, Arribat Y, Serulla M, Michel S, Vantomme G, Ory F, Dam LC, Puyal J, Amati F, Lüthi A, Danani A, Widmann C. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. eLife 2021; 10:69832. [PMID: 34713805 PMCID: PMC8639150 DOI: 10.7554/elife.69832] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes ‘megapolarized’, this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Mathieu Heulot
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadja Chevalier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marco A Deriu
- PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Gilles Dubuis
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sebastien Michel
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Florine Ory
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Linh Chi Dam
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML (University Center of Legal Medicine), Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Yousef M, Szabó I, Biri‐Kovács B, Szeder B, Illien F, Sagan S, Bánóczi Z. Modification of Short Non‐Permeable Peptides to Increase Cellular Uptake and Cytostatic Activity of Their Conjugates. ChemistrySelect 2021. [DOI: 10.1002/slct.202103150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mo'ath Yousef
- Department of Organic Chemistry Eötvös L. University Budapest Hungary
| | - Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry Eötvös Loránd Research Network (ELKH) Budapest Hungary
| | - Beáta Biri‐Kovács
- MTA-ELTE Research Group of Peptide Chemistry Eötvös Loránd Research Network (ELKH) Budapest Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences Institute of Enzymology Budapest Hungary
| | - Françoise Illien
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Sandrine Sagan
- Sorbonne Université École normale supérieure PSL University CNRS Laboratoire des biomolécules, LBM 75005 Paris France
| | - Zoltán Bánóczi
- Department of Organic Chemistry Eötvös L. University Budapest Hungary
| |
Collapse
|
14
|
Zhang B, Chi L. Chondroitin Sulfate/Dermatan Sulfate-Protein Interactions and Their Biological Functions in Human Diseases: Implications and Analytical Tools. Front Cell Dev Biol 2021; 9:693563. [PMID: 34422817 PMCID: PMC8377502 DOI: 10.3389/fcell.2021.693563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are linear anionic polysaccharides that are widely present on the cell surface and in the cell matrix and connective tissue. CS and DS chains are usually attached to core proteins and are present in the form of proteoglycans (PGs). They not only are important structural substances but also bind to a variety of cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillary glycoproteins to execute series of important biological functions. CS and DS exhibit variable sulfation patterns and different sequence arrangements, and their molecular weights also vary within a large range, increasing the structural complexity and diversity of CS/DS. The structure-function relationship of CS/DS PGs directly and indirectly involves them in a variety of physiological and pathological processes. Accumulating evidence suggests that CS/DS serves as an important cofactor for many cell behaviors. Understanding the molecular basis of these interactions helps to elucidate the occurrence and development of various diseases and the development of new therapeutic approaches. The present article reviews the physiological and pathological processes in which CS and DS participate through their interactions with different proteins. Moreover, classic and emerging glycosaminoglycan (GAG)-protein interaction analysis tools and their applications in CS/DS-protein characterization are also discussed.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Konate K, Josse E, Tasic M, Redjatti K, Aldrian G, Deshayes S, Boisguérin P, Vivès E. WRAP-based nanoparticles for siRNA delivery: a SAR study and a comparison with lipid-based transfection reagents. J Nanobiotechnology 2021; 19:236. [PMID: 34380479 PMCID: PMC8359084 DOI: 10.1186/s12951-021-00972-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Recently, we designed novel amphipathic cell-penetrating peptides, called WRAP, able to transfer efficiently siRNA molecules into cells. In order to gain more information about the relationship between amino acid composition, nanoparticle formation and cellular internalization of these peptides composed of only three amino acids (leucine, arginine and tryptophan), we performed a structure–activity relationship (SAR) study. First, we compared our WRAP1 and WRAP5 peptides with the C6M1 peptide also composed of the same three amino acids and showing similar behaviors in siRNA transfection. Afterwards, to further define the main determinants in the WRAP activity, we synthesized 13 new WRAP analogues harboring different modifications like the number and location of leucine and arginine residues, the relative location of tryptophan residues, as well as the role of the α-helix formation upon proline insertions within the native WRAP sequence. After having compared the ability of these peptides to form peptide-based nanoparticles (PBNs) using different biophysical methods and to induce a targeted gene silencing in cells, we established the main sequential requirements of the amino acid composition of the WRAP peptide. In addition, upon measuring the WRAP-based siRNA transfection ability into cells compared to several non-peptide transfection agents available on the markets, we confirmed that WRAP peptides induced an equivalent level of targeted gene silencing but in most of the cases with lower cell toxicity as clearly shown in clonogenic assays. ![]()
Collapse
Affiliation(s)
- Karidia Konate
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Emilie Josse
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Milana Tasic
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Karima Redjatti
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Gudrun Aldrian
- Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsière, 34184, Montpellier CEDEX 4, France
| | - Sébastien Deshayes
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Prisca Boisguérin
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France
| | - Eric Vivès
- PhyMedExp - Université de Montpellier, INSERM U1046, CNRS UMR 9214, CHU Arnaud de Villeneuve, 371 av. doyen Giraud, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
16
|
Nasiri F, Atanaki FF, Behrouzi S, Kavousi K, Bagheri M. CpACpP: In Silico Cell-Penetrating Anticancer Peptide Prediction Using a Novel Bioinformatics Framework. ACS OMEGA 2021; 6:19846-19859. [PMID: 34368571 PMCID: PMC8340416 DOI: 10.1021/acsomega.1c02569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 05/12/2023]
Abstract
Cell-penetrating anticancer peptides (Cp-ACPs) are considered promising candidates in solid tumor and hematologic cancer therapies. Current approaches for the design and discovery of Cp-ACPs trust the expensive high-throughput screenings that often give rise to multiple obstacles, including instrumentation adaptation and experimental handling. The application of machine learning (ML) tools developed for peptide activity prediction is importantly of growing interest. In this study, we applied the random forest (RF)-, support vector machine (SVM)-, and eXtreme gradient boosting (XGBoost)-based algorithms to predict the active Cp-ACPs using an experimentally validated data set. The model, CpACpP, was developed on the basis of two independent cell-penetrating peptide (CPP) and anticancer peptide (ACP) subpredictors. Various compositional and physiochemical-based features were combined or selected using the multilayered recursive feature elimination (RFE) method for both data sets. Our results showed that the ACP subclassifiers obtain a mean performance accuracy (ACC) of 0.98 with an area under curve (AUC) ≈ 0.98 vis-à-vis the CPP predictors displaying relevant values of ∼0.94 and ∼0.95 via the hybrid-based features and independent data sets, respectively. Also, the predicting evaluation of Cp-ACPs gave accuracies of ∼0.79 and 0.89 on a series of independent sequences by applying our CPP and ACP classifiers, respectively, which leaves the performance of our predictors better than the earlier reported ACPred, mACPpred, MLCPP, and CPPred-RF. The described consensus-based fusion method additionally reached an AUC of 0.94 for the prediction of Cp-ACP (http://cbb1.ut.ac.ir/CpACpP/Index).
Collapse
Affiliation(s)
- Farid Nasiri
- Peptide
Chemistry Laboratory, Department of Biochemistry, Institute of Biochemistry
and Biophysics (IBB), University of Tehran, Tehran 14176-14335, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Saman Behrouzi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Kaveh Kavousi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Mojtaba Bagheri
- Peptide
Chemistry Laboratory, Department of Biochemistry, Institute of Biochemistry
and Biophysics (IBB), University of Tehran, Tehran 14176-14335, Iran
| |
Collapse
|
17
|
Revealing the importance of carrier-cargo association in delivery of insulin and lipidated insulin. J Control Release 2021; 338:8-21. [PMID: 34298056 DOI: 10.1016/j.jconrel.2021.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Delivery of therapeutic peptides upon oral administration is highly desired and investigations report that the cell-penetrating peptide (CPP) penetratin and its analogues shuffle and penetramax show potential as carriers to enhance insulin delivery. Exploring this, the specific aim of the present study was to understand the impact that their complexation with a lipidated or non-lipidated therapeutic cargo would have on the delivery, to evaluate the effect of differences in membrane interactions in vitro and in vivo, as well as to deduce the mode of action leading to enhanced delivery. Fundamental biophysical aspects were studied by a range of orthogonal methods. Transepithelial permeation of therapeutic peptide was evaluated using the Caco-2 cell culture model supplemented with epithelial integrity measurements, real-time assessment of the carrier peptide effects on cell viability and on mode of action. Pharmacokinetic and pharmacodynamic (PK/PD) parameters were evaluated following intestinal administration to rats and tissue effects were investigated by histology. The biophysical studies revealed complexation of insulin with shuffle and penetramax, but not with penetratin. This corresponded to enhanced transepithelial permeation of insulin, but not of lipidated insulin, when in physical mixture with shuffle or penetramax. The addition of shuffle and penetramax was associated with a lowering of Caco-2 cell monolayer integrity and viability, where the lowering of cell viability was immediate, but reversible. Insulin delivery in rats was enhanced by shuffle and penetramax and accompanied by a 10-20-fold decrease in blood glucose with immediate effect on the intestinal mucosa. In conclusion, shuffle and penetramax, but not penetratin, demonstrated to be potential candidates as carriers for transmucosal delivery of insulin upon oral administration, and their effect depended on association with both cargo and cell membrane. Interestingly, the present study provides novel mechanistic insight that peptide carrier-induced cargo permeation points towards enhancement via the paracellular route in the tight epithelium. This is different from the anticipated belief being that it is the cell-penetrating capability that facilitate transepithelial cargo permeation via a transcellular route.
Collapse
|
18
|
Hango CR, Backlund CM, Davis HC, Posey ND, Minter LM, Tew GN. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity. Biomacromolecules 2021; 22:2850-2863. [PMID: 34156837 DOI: 10.1021/acs.biomac.1c00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine-block-arginine), poly(phenylalanine-block-arginine), and poly(tryptophan-block-arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations. Due to the added hydrophobicity imparted by the polymer backbone as compared to the polypeptide backbone, side-chain functionality was not a universal predictor of carrier performance. Rather, overall carrier hydrophobicity predicted the top performers for both internalization and activity of protein cargoes, regardless of backbone identity. Furthermore, comparison of protein uptake and function revealed carriers which facilitated high gene recombination despite remarkably low Cre internalization, leading us to formalize the concept of intracellular availability (IA) of the delivered cargo. IA, a measure of cargo activity per quantity of cargo internalized, provides valuable insight into the physical relationship between cellular internalization and bioavailability, which can be affected by bottlenecks such as endosomal escape and cargo release. Importantly, carriers with maximal IA existed within a narrow hydrophobicity window, more hydrophilic than those exhibiting maximal cargo uptake. Hydrophobicity may be used as a scaffold-independent predictor of protein uptake, function, and IA, enabling identification of new, effective carriers which would be overlooked by uptake-based screening methods.
Collapse
Affiliation(s)
- Christopher R Hango
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
19
|
Szabó I, Illien F, Dókus LE, Yousef M, Baranyai Z, Bősze S, Ise S, Kawano K, Sagan S, Futaki S, Hudecz F, Bánóczi Z. Influence of the Dabcyl group on the cellular uptake of cationic peptides: short oligoarginines as efficient cell-penetrating peptides. Amino Acids 2021; 53:1033-1049. [PMID: 34032919 PMCID: PMC8241751 DOI: 10.1007/s00726-021-03003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022]
Abstract
Cell-penetrating peptides (CPPs) are promising delivery vehicles. These short peptides can transport wide range of cargos into cells, although their usage has often limitations. One of them is the endosomatic internalisation and thus the vesicular entrapment. Modifications which increases the direct delivery into the cytosol is highly researched area. Among the oligoarginines the longer ones (n > 6) show efficient internalisation and they are well-known members of CPPs. Herein, we describe the modification of tetra- and hexaarginine with (4-((4-(dimethylamino)phenyl)azo)benzoyl) (Dabcyl) group. This chromophore, which is often used in FRET system increased the internalisation of both peptides, and its effect was more outstanding in case of hexaarginine. The modified hexaarginine may enter into cells more effectively than octaarginine, and showed diffuse distribution besides vesicular transport already at low concentration. The attachment of Dabcyl group not only increases the cellular uptake of the cell-penetrating peptides but it may affect the mechanism of their internalisation. Their conjugates with antitumor drugs were studied on different cells and showed antitumor activity.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Françoise Illien
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Levente E Dókus
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Mo'ath Yousef
- Department of Organic Chemistry, Eötvös L. University, Pázmány P. Setany 1/A, Budapest, 1117, Hungary
| | - Zsuzsa Baranyai
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
| | - Shoko Ise
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kenichi Kawano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös L. University, Budapest, Hungary
- Department of Organic Chemistry, Eötvös L. University, Pázmány P. Setany 1/A, Budapest, 1117, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Eötvös L. University, Pázmány P. Setany 1/A, Budapest, 1117, Hungary.
| |
Collapse
|
20
|
Kim GC, Cheon DH, Lee Y. Challenge to overcome current limitations of cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140604. [PMID: 33453413 DOI: 10.1016/j.bbapap.2021.140604] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The penetration of biological membranes is a prime obstacle for the delivery of pharmaceutical drugs. Cell-penetrating peptide (CPP) is an efficient vehicle that can deliver various cargos across the biological membranes. Since the discovery, CPPs have been rigorously studied to unveil the underlying penetrating mechanism as well as to exploit CPPs for various biomedical applications. This review will focus on the various strategies to overcome current limitations regarding stability, selectivity, and efficacy of CPPs.
Collapse
Affiliation(s)
- Gyu Chan Kim
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae Hee Cheon
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yan Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
21
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
22
|
Tissue-Specific Delivery of CRISPR Therapeutics: Strategies and Mechanisms of Non-Viral Vectors. Int J Mol Sci 2020; 21:ijms21197353. [PMID: 33027946 PMCID: PMC7583726 DOI: 10.3390/ijms21197353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing system has been the focus of intense research in the last decade due to its superior ability to desirably target and edit DNA sequences. The applicability of the CRISPR-Cas system to in vivo genome editing has acquired substantial credit for a future in vivo gene-based therapeutic. Challenges such as targeting the wrong tissue, undesirable genetic mutations, or immunogenic responses, need to be tackled before CRISPR-Cas systems can be translated for clinical use. Hence, there is an evident gap in the field for a strategy to enhance the specificity of delivery of CRISPR-Cas gene editing systems for in vivo applications. Current approaches using viral vectors do not address these main challenges and, therefore, strategies to develop non-viral delivery systems are being explored. Peptide-based systems represent an attractive approach to developing gene-based therapeutics due to their specificity of targeting, scale-up potential, lack of an immunogenic response and resistance to proteolysis. In this review, we discuss the most recent efforts towards novel non-viral delivery systems, focusing on strategies and mechanisms of peptide-based delivery systems, that can specifically deliver CRISPR components to different cell types for therapeutic and research purposes.
Collapse
|
23
|
Ohgita T, Takechi-Haraya Y, Okada K, Matsui S, Takeuchi M, Saito C, Nishitsuji K, Uchimura K, Kawano R, Hasegawa K, Sakai-Kato K, Akaji K, Izutsu KI, Saito H. Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183403. [DOI: 10.1016/j.bbamem.2020.183403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
|
24
|
Kuo PH, Teng YH, Cin AL, Han W, Huang PW, Wang LHC, Chou YT, Yang JL, Tseng YL, Kao M, Chang MDT. Heparan sulfate targeting strategy for enhancing liposomal drug accumulation and facilitating deep distribution in tumors. Drug Deliv 2020; 27:542-555. [PMID: 32241176 PMCID: PMC7170378 DOI: 10.1080/10717544.2020.1745326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs), such as liposomes, effectively evade the severe toxicity of unexpected accumulation and passively shuttle drugs into tumor tissues by enhanced permeability and retention. In the case of non-small cell lung cancer and pancreatic ductal adenocarcinoma, cancer-associated fibroblasts promote the aggregation of a gel-like extracellular matrix that forms a physical barrier in the desmoplastic stroma of the tumor. These stroma are composed of protein networks and glycosaminoglycans (GAGs) that greatly compromise tumor-penetrating performance, leading to insufficient extravasation and tissue penetration of NPs. Moreover, the presence of heparan sulfate (HS) and related proteoglycans on the cell surface and tumor extracellular matrix may serve as molecular targets for NP-mediated drug delivery. Here, a GAG-binding peptide (GBP) with high affinity for HS and high cell-penetrating activity was used to develop an HS-targeting delivery system. Specifically, liposomal doxorubicin (L-DOX) was modified by post-insertion with the GBP. We show that the in vitro uptake of L-DOX in A549 lung adenocarcinoma cells increased by GBP modification. Cellular uptake of GBP-modified L-DOX (L-DOX-GBP) was diminished in the presence of extracellular HS but not in the presence of other GAGs, indicating that the interaction with HS is critical for the cell surface binding of L-DOX-GBP. The cytotoxicity of doxorubicin positively correlated with the molecular composition of GBP. Moreover, GBP modification improved the in vivo distribution and anticancer efficiency of L-DOX, with enhanced desmoplastic targeting and extensive distribution. Taken together, GBP modification may greatly improve the tissue distribution and delivery efficiency of NPs against HS-abundant desmoplastic stroma-associated neoplasm.
Collapse
Affiliation(s)
- Ping-Hsueh Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hsien Teng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ann-Lun Cin
- Operations Center for Industry Collaboration, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen Han
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Jia-Ling Yang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Minhsiung Kao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Margaret Dah-Tsyr Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
25
|
Development of lipid membrane based assays to accurately predict the transfection efficiency of cell-penetrating peptide-based gene nanoparticles. Int J Pharm 2020; 580:119221. [DOI: 10.1016/j.ijpharm.2020.119221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 12/24/2022]
|
26
|
Meloni BP, Mastaglia FL, Knuckey NW. Cationic Arginine-Rich Peptides (CARPs): A Novel Class of Neuroprotective Agents With a Multimodal Mechanism of Action. Front Neurol 2020; 11:108. [PMID: 32158425 PMCID: PMC7052017 DOI: 10.3389/fneur.2020.00108] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as carrier molecules for the delivery of other putative neuroprotective agents across the blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence that the neuroprotective efficacy of many, if not all these other agents delivered using a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually be mediated largely by the properties of the carrier molecule, with overall efficacy further enhanced according to the amino acid composition of the cargo peptide, in particular its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action of CARPs we also consider studies using CCPPs fused to a putative neuroprotective peptide. We review the history of CARPs in neuroprotection and discuss in detail the intrinsic biological properties that may contribute to their cytoprotective effects and their usefulness as a broad-acting class of neuroprotective drugs.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Neville W Knuckey
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
27
|
Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183098. [DOI: 10.1016/j.bbamem.2019.183098] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022]
|
28
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
29
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
30
|
Neuberg P, Wagner A, Remy JS, Kichler A. Design and evaluation of ionizable peptide amphiphiles for siRNA delivery. Int J Pharm 2019; 566:141-148. [PMID: 31125716 DOI: 10.1016/j.ijpharm.2019.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
Small interfering RNAs (siRNAs) can down-regulate the expression of a target mRNA molecule in a sequence-specific manner, making them an attractive new class of drugs with broad potential for the treatment of diverse human diseases. Here, we report the synthesis of a series of cationic amphiphiles which were obtained by the coupling of amino acids and dipeptides onto a lipidic double chain. The new amphiphiles presenting a peptidic motif on a short hydrophilic spacer group were evaluated for selective gene silencing through RNA interference. Our results show that tryptophan residues boost siRNA delivery in an unexpected manner. The silencing experiments performed with very low concentrations of siRNA showed that the best formulations could induce significant death of tumor cells after silencing of polo-like kinase 1 which is implicated in cell cycle progression. In addition, these Trp containing peptide amphiphiles were highly efficient siRNA delivery vectors even in presence of competing serum proteins.
Collapse
Affiliation(s)
- Patrick Neuberg
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France; 3Bio, CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Alain Wagner
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Jean-Serge Remy
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France.
| | - Antoine Kichler
- 3Bio, CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France.
| |
Collapse
|
31
|
Amoura M, Illien F, Joliot A, Guitot K, Offer J, Sagan S, Burlina F. Head to tail cyclisation of cell-penetrating peptides: impact on GAG-dependent internalisation and direct translocation. Chem Commun (Camb) 2019; 55:4566-4569. [PMID: 30931466 DOI: 10.1039/c9cc01265f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of cyclic lipidated oligo-Arg cell penetrating peptides were synthesised with varied macrocycle size and lipid chain anchoring site. The study of their cellular uptake revealed different structural requirements to promote efficient glycosaminoglycan-dependent endocytosis and direct translocation.
Collapse
Affiliation(s)
- Mehdi Amoura
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ruczyński J, Rusiecka I, Turecka K, Kozłowska A, Alenowicz M, Gągało I, Kawiak A, Rekowski P, Waleron K, Kocić I. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci Rep 2019; 9:3247. [PMID: 30824786 PMCID: PMC6397271 DOI: 10.1038/s41598-019-40103-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2019] [Indexed: 12/23/2022] Open
Abstract
In the presented study, transportan 10 (TP10), an amphipathic cell penetrating peptide (CPP) with high translocation activity, was conjugated with vancomycin (Van), which is known for poor access to the intracellular bacteria and the brain. The antibacterial activity of the conjugates was tested on selected clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus sp. It turned out that all of them had superior antimicrobial activity in comparison to that of free Van, which became visible particularly against clinical MRSA strains. Furthermore, one of the conjugates was tested against MRSA - infected human cells. With respect to them, this compound showed high bactericidal activity. Next, the same conjugate was screened for its capacity to cross the blood brain barrier (BBB). Therefore, qualitative and quantitative analyses of the conjugate's presence in the mouse brain slices were carried out after its iv administration. They indicated the conjugate's presence in the brain in amount >200 times bigger than that of Van. The conjugates were safe with respect to erythrocyte toxicity (erythrocyte lysis assay). Van in the form of a conjugate with TP10 acquires superior pharmacodynamic and pharmacokinetic.
Collapse
Affiliation(s)
- Jarosław Ruczyński
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland.
| | - Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Magdalena Alenowicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Piotr Rekowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Debowa 23, 80-204, Gdansk, Poland
| |
Collapse
|
33
|
Ohgita T, Takechi-Haraya Y, Nadai R, Kotani M, Tamura Y, Nishikiori K, Nishitsuji K, Uchimura K, Hasegawa K, Sakai-Kato K, Akaji K, Saito H. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:541-549. [DOI: 10.1016/j.bbamem.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/17/2018] [Accepted: 12/13/2018] [Indexed: 11/15/2022]
|
34
|
Sebastiao M, Quittot N, Marcotte I, Bourgault S. Glycosaminoglycans Induce Amyloid Self-Assembly of a Peptide Hormone by Concerted Secondary and Quaternary Conformational Transitions. Biochemistry 2019; 58:1214-1225. [PMID: 30720275 DOI: 10.1021/acs.biochem.8b01206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloids are polypeptide supramolecular assemblies that have been historically associated with numerous pathologies. Nonetheless, recent studies have identified many amyloid structures that accomplish vital physiological functions. Interestingly, amyloid fibrils, either pathological or functional, have been reported to be consistently associated with other biomolecules such as RNA and glycosaminoglycans (GAGs). These linear polyanions, RNA and GAGs, have also demonstrated an inherent ability to accelerate and/or promote amyloid formation. GAGs, including heparan sulfate, are highly charged polysaccharides that may have essential roles in the storage of peptide hormones in the form of amyloids. In this study, we evaluated the ability of sulfated GAGs to promote the self-assembly of the peptide (neuro)hormone PACAP27 and investigated the secondary and quaternary conformational transitions associated with the amyloidogenic process. PACAP27 readily self-assembled into insoluble, α-helix-rich globular particulates in the presence of sulfated GAGs, which gradually condensed and disappeared as nontoxic β-sheet-rich amyloid fibrils were formed. By designing a PACAP27 derivative for which helical folding was hindered, we observed that the α-helix-to-β-sheet conformational transition within the amorphous particulates constitutes the rate-limiting step of primary nucleation events. The proposed mechanism of GAG-induced self-assembly within insoluble particulates appears to be fundamentally different from usual amyloidogenic systems, which commonly implicates the formation of soluble prefibrillar proteospecies. Overall, this study provides new insights into the mechanistic details involved in the formation of functional amyloids catalyzed by polyanions, such as the assembly of nuclear amyloid bodies and the storage of peptide hormones.
Collapse
Affiliation(s)
- Mathew Sebastiao
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| | - Noe Quittot
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| | - Isabelle Marcotte
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| | - Steve Bourgault
- Department of Chemistry , Université du Québec à Montréal , C.P. 8888, Succursale Centre-Ville , Montreal H3C 3P8 , Canada.,Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO , Université Laval , Québec G1V 0A6 , Canada
| |
Collapse
|
35
|
Konate K, Dussot M, Aldrian G, Vaissière A, Viguier V, Neira IF, Couillaud F, Vivès E, Boisguerin P, Deshayes S. Peptide-Based Nanoparticles to Rapidly and Efficiently "Wrap 'n Roll" siRNA into Cells. Bioconjug Chem 2019; 30:592-603. [PMID: 30586303 DOI: 10.1021/acs.bioconjchem.8b00776] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Delivery of small interfering RNA (siRNA) as a therapeutic tool is limited due to critical obstacles such as the cellular barrier, the negative charges of the siRNA molecule, and its instability in serum. Several siRNA delivery systems have been constructed using cell-penetrating peptides (CPPs) since the CPPs have shown a high potential for oligonucleotide delivery into the cells, especially by forming nanoparticles. In this study, we have developed a new family of short (15mer or 16mer) tryptophan-(W) and arginine-(R) rich Amphipathic Peptides (WRAP) able to form stable nanoparticles and to enroll siRNA molecules into cells. The lead peptides, WRAP1 and WRAP5, form defined nanoparticles smaller than 100 nm as characterized by biophysical methods. Furthermore, they have several benefits as oligonucleotide delivery tools such as the rapid encapsulation of the siRNA, the efficient siRNA delivery in several cell types, and the high gene silencing activity, even in the presence of serum. In conclusion, we have designed a new family of CPPs specifically dedicated for siRNA delivery through nanoparticle formation. Our results indicate that the WRAP family has significant potential for the safe, efficient, and rapid delivery of siRNA for diverse applications.
Collapse
Affiliation(s)
- Karidia Konate
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Marion Dussot
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Gudrun Aldrian
- Sys2Diag , UMR 9005-CNRS/ALCEDIAG , 1682 Rue de la Valsière , 34184 Montpellier Cedex 4, France
| | - Anaïs Vaissière
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Véronique Viguier
- Université de Montpellier , Place Eugène Bataillon , 34095 Montpellier , France
| | - Isabel Ferreiro Neira
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie) , Université de Bordeaux , 146 rue Leo Saignat , 33076 Bordeaux , France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie) , Université de Bordeaux , 146 rue Leo Saignat , 33076 Bordeaux , France
| | - Eric Vivès
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| | - Sébastien Deshayes
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237 , Université de Montpellier , 1919 Route de Mende , 34293 Montpellier Cedex 5, France
| |
Collapse
|
36
|
Singh T, Murthy ASN, Yang HJ, Im J. Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug Deliv 2018; 25:1996-2006. [PMID: 30799658 PMCID: PMC6319457 DOI: 10.1080/10717544.2018.1543366] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/05/2022] Open
Abstract
The plasma membrane is a large barrier to systemic drug delivery into cells, and it limits the efficacy of drug cargo. This issue has been overcome using cell-penetrating peptides (CPPs). CPPs are short peptides (6-30 amino acid residues) that are potentially capable of intracellular penetration to deliver drug molecules. CPPs broadened biomedical applications and provide a means to deliver a range of biologically active molecules, such as small molecules, proteins, imaging agents, and pharmaceutical nanocarriers, across the plasma membrane with high efficacy and low toxicity. This review is focused on the versatility of CPPs and advanced approaches for siRNA delivery.
Collapse
Affiliation(s)
- Tejinder Singh
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Akula S. N. Murthy
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Hye-Jin Yang
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | - Jungkyun Im
- Department of Chemical Engineering, Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
37
|
Hydrophobic Amino Acid Tryptophan Shows Promise as a Potential Absorption Enhancer for Oral Delivery of Biopharmaceuticals. Pharmaceutics 2018; 10:pharmaceutics10040182. [PMID: 30308982 PMCID: PMC6321321 DOI: 10.3390/pharmaceutics10040182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have great potential to efficiently deliver drug cargos across cell membranes without cytotoxicity. Cationic arginine and hydrophobic tryptophan have been reported to be key component amino acids for cellular internalization of CPPs. We recently found that l-arginine could increase the oral delivery of insulin in its single amino acid form. Therefore, in the present study, we evaluated the ability of another key amino acid, tryptophan, to enhance the intestinal absorption of biopharmaceuticals. We demonstrated that co-administration with l-tryptophan significantly facilitated the oral and intestinal absorption of the peptide drug insulin administered to rats. Furthermore, l-tryptophan exhibited the ability to greatly enhance the intestinal absorption of other peptide drugs such as glucagon-like peptide-1 (GLP-1), its analog Exendin-4 and macromolecular hydrophilic dextrans with molecular weights ranging from 4000 to 70,000 g/mol. However, no intermolecular interaction between insulin and l-tryptophan was observed and no toxic alterations to epithelial cellular integrity-such as changes to cell membranes, cell viability, or paracellular tight junctions-were found. This suggests that yet to be discovered inherent biological mechanisms are involved in the stimulation of insulin absorption by co-administration with l-tryptophan. These results are the first to demonstrate the significant potential of using the single amino acid l-tryptophan as an effective and versatile bioavailability enhancer for the oral delivery of biopharmaceuticals.
Collapse
|
38
|
Dianati V, Kwiatkowska A, Couture F, Desjardins R, Dory YL, Day R. Increasing C-Terminal Hydrophobicity Improves the Cell Permeability and Antiproliferative Activity of PACE4 Inhibitors against Prostate Cancer Cell Lines. J Med Chem 2018; 61:8457-8467. [DOI: 10.1021/acs.jmedchem.8b01144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vahid Dianati
- Département de Chimie, Faculté des Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Anna Kwiatkowska
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Frédéric Couture
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Roxane Desjardins
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Département de Chimie, Faculté des Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Robert Day
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
39
|
Nisakar D, Vij M, Pandey T, Natarajan P, Sharma R, Mishra S, Ganguli M. Deciphering the Role of Chondroitin Sulfate in Increasing the Transfection Efficiency of Amphipathic Peptide-Based Nanocomplexes. ACS Biomater Sci Eng 2018; 5:45-55. [PMID: 33405865 DOI: 10.1021/acsbiomaterials.8b00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosaminoglycans, both cell-surface and exogenous, can interfere with DNA delivery efficiency of nonviral carrier systems. In this work, we report an extensive comparative study to explore the effect of exogenously added chondroitin sulfate on biophysical characteristics, cellular uptake, transfection efficiency, and intracellular trafficking of nanocomplexes formed using primary and secondary amphipathic peptides developed in our laboratory. Our results indicate that the presence of exogenous chondroitin sulfate exhibits differential enhancement in transfection efficiency of the amphipathic peptides depending upon their chemical nature. The enhancement was more pronounced in primary amphipathic peptide-based nanocomplexes as compared to the secondary counterpart. This difference can be attributed to possible alteration of the intracellular entry pathway in addition to increased extracellular stability, less cellular toxicity, and assistance in nuclear accumulation. These results imply potential use of glycosaminoglycans such as chondroitin sulfate to improve the transfection efficiency of primary amphipathic peptides for possible in vivo applications.
Collapse
Affiliation(s)
- Daniel Nisakar
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Manika Vij
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Tanuja Pandey
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Poornemaa Natarajan
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India
| | - Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi 110020, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|
40
|
Gao PF, Liu YX, Zhang L, Zhang S, Li HW, Wu Y, Wu L. Cell receptor screening for human papillomavirus invasion by using a polyoxometalate-peptide assembly as a probe. J Colloid Interface Sci 2017; 514:407-414. [PMID: 29278796 DOI: 10.1016/j.jcis.2017.12.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
The present study constructed a competitive recognition system using cell receptor screening for human papillomavirus (HPV) invasion by using the hybrid-assembly of polyoxometalates (POMs) and cationic peptides as a platform. The fine tuning both of the surface charge of POMs and peptide sequence were precisely performed to develop a luminescence switch of POMs, leading to the establishment of a ternary system to identify which types of glycosaminoglycans (GAGs) are potential cell receptors for HPV infection. In addition, the method was successfully applied to construct a hybrid-assembly with the recombined HPV 16 L1 pentamers from Escherichia coli and perform GAGs screening, which validated the system's potential for practical applications. In particular, the intrinsic mechanism for each competitive partner in the system was explained well by using isothermal titration calorimetry (ITC) and time-resolved fluorescence spectra. The present method will be helpful to extend the protocol to other systems by using peptides and POMs with similar properties, and ultimately, we hope it will promote the development of anti-viral agents.
Collapse
Affiliation(s)
- Peng-Fan Gao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Yu-Xue Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Simin Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
41
|
Walrant A, Cardon S, Burlina F, Sagan S. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons? Acc Chem Res 2017; 50:2968-2975. [PMID: 29172443 DOI: 10.1021/acs.accounts.7b00455] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living organisms have to maintain a stable balance in molecules and ions in the changing environment in which they are living, a process known as homeostasis. At the level of cells, the plasma membrane has a major role in homeostasis, since this hydrophobic film prevents passive diffusion of large and hydrophilic molecules between the extracellular and intracellular milieu. Living organisms have evolved with highly sophisticated transport systems to control exchanges across this barrier: import of nutrients and fuel essential for their survival; recognition of chemical or physical messengers allowing information interchanges with surrounding cells. Besides specialized proteins, endocytosis mechanisms at the level of the lipid bilayer can transport molecules from the outside across the cell membrane, in an energy-dependent manner. The cell membrane is highly heterogeneous in its molecular composition (tens of different lipids, proteins, polysaccharides, and combinations of these) and dynamic with bending, deformation, and elastic properties that depend on the local composition of membrane domains. Many viruses, microorganisms, and toxins exploit the plasma membrane to enter into cells. Chemists develop strategies to target the plasma membrane with molecules capable of circumventing this hydrophobic barrier, in particular to transport and deliver nonpermeable drugs in cells for biotechnological or pharmaceutical purposes. Drug delivery systems are numerous and include lipid-, sugar-, protein-, and peptide-based delivery systems, since these biomolecules generally have good biocompatibility, biodegradability, environmental sustainability, cost effectiveness, and availability. Among those, cell-penetrating peptides (CPPs), reported for the first time in the early 1990s, are attracting major interest not only as potential drug delivery systems but also at the level of fundamental research. It was indeed demonstrated very early that these peptides, which generally correspond to highly cationic sequences, can still cross the cell membrane at 4 °C, a temperature at which all active transport and endocytosis pathways are totally inhibited. Therefore, how these charged hydrophilic peptides cross the hydrophobic membrane barrier is of utmost interest as a pure basic and physicochemical question. In this Account, we focus on cationic cell-penetrating peptides (CPPs) and the way they cross cell membranes. We summarize the history of this field that emerged around 20 years ago. CPPs were indeed first identified as protein-transduction domains from the human immunodeficiency virus (HIV) TAT protein and the Antennapedia homeoprotein, a transcription factor from Drosophila. We highlight our contribution to the elucidation of CPP internalization pathways, in particular translocation, which implies perturbation and reorganization of the lipid bilayer, and endocytosis depending on sulfated glycosaminoglycans. We show a particular role of Trp (indole side chain) and Arg (guanidinium side chain), which are essential amino acids for CPP internalization. Interactions with the cell-surface are not only Coulombic; H-bonds and hydrophobic interactions contribute also significantly to CPP entry. The capacity of CPPs to cross cell membrane is not related to their strength of membrane binding. Finally, we present optimized methods based on mass spectrometry and fluorescence spectroscopy that allow unequivocal quantification of CPPs inside cells or bound to the outer leaflet of the membrane, and discuss some limitations of the technique of flow cytometry that we have recently highlighted.
Collapse
Affiliation(s)
- Astrid Walrant
- Sorbonne Universités, UPMC Univ. Paris 06, École normale
supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules
(LBM), 4 place Jussieu, 75005 Paris, France
| | - Sébastien Cardon
- Sorbonne Universités, UPMC Univ. Paris 06, École normale
supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules
(LBM), 4 place Jussieu, 75005 Paris, France
| | - Fabienne Burlina
- Sorbonne Universités, UPMC Univ. Paris 06, École normale
supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules
(LBM), 4 place Jussieu, 75005 Paris, France
| | - Sandrine Sagan
- Sorbonne Universités, UPMC Univ. Paris 06, École normale
supérieure, PSL Research University, CNRS, Laboratoire des Biomolécules
(LBM), 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
42
|
Fleissner F, Pütz S, Schwendy M, Bonn M, Parekh SH. Measuring Intracellular Secondary Structure of a Cell-Penetrating Peptide in Situ. Anal Chem 2017; 89:11310-11317. [DOI: 10.1021/acs.analchem.7b01895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Frederik Fleissner
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Sabine Pütz
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Mischa Schwendy
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| | - Sapun H. Parekh
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, D-55128 Mainz, Germany
| |
Collapse
|
43
|
Dos Santos C, Hamadat S, Le Saux K, Newton C, Mazouni M, Zargarian L, Miro-Padovani M, Zadigue P, Delbé J, Hamma-Kourbali Y, Amiche M. Studies of the antitumor mechanism of action of dermaseptin B2, a multifunctional cationic antimicrobial peptide, reveal a partial implication of cell surface glycosaminoglycans. PLoS One 2017; 12:e0182926. [PMID: 28797092 PMCID: PMC5552233 DOI: 10.1371/journal.pone.0182926] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Dermaseptin-B2 (DRS-B2) is a multifunctional cationic antimicrobial peptide (CAP) isolated from frog skin secretion. We previously reported that DRS-B2 possesses anticancer and antiangiogenic activities in vitro and in vivo. In the present study, we evaluated the antiproliferative activity of DRS-B2 on numerous tumor cell lines, its cell internalization and studies of its molecular partners as well as their influences on its structure. Confocal microscopy using ([Alexa594]-(Cys0)-DRS-B2) shows that in sensitive human tumor cells (PC3), DRS-B2 seems to accumulate rapidly at the cytoplasmic membranes and enters the cytoplasm and the nucleus, while in less sensitive tumor cells (U87MG), DRS-B2 is found packed in vesicles at the cell membrane. Furthermore FACS analysis shows that PC3 cells viability decreases after DRS-B2 treatment while U87 MG seems to be unaffected. However, "pull down" experiments performed with total protein pools from PC3 or U87MG cells and the comparison between the antiproliferative effect of DRS-B2 and its synthetic analog containing all D-amino acids suggest the absence of a stereo-selective protein receptor. Pretreatment of PC3 cells with sodium chlorate, decreases the antiproliferative activity of DRS-B2. This activity is partially restored after addition of exogenous chondroitin sulfate C (CS-C). Moreover, we demonstrate that at nanomolar concentrations CS-C potentiates the antiproliferative effect of DRS-B2. These results highlight the partial implication of glycosaminoglycans in the mechanism of antiproliferative action of DRS-B2. Structural analysis of DRS-B2 by circular dichroism in the presence of increasing concentration of CS-C shows that DRS-B2 adopts an α-helical structure. Finally, structure-activity-relationship studies suggest a key role of the W residue in position 3 of the DRS-B2 sequence for its antiproliferative activity.
Collapse
Affiliation(s)
- Célia Dos Santos
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
| | - Sabah Hamadat
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
- University Paris Est Créteil, Créteil, France
| | - Karen Le Saux
- University Paris Est Créteil, Créteil, France
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Clara Newton
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
- University Paris Est Créteil, Créteil, France
| | - Meriem Mazouni
- Laboratoire (CRRET), EAC 7149 CNRS, University Paris Est Créteil, Créteil, France
- University Paris Est Créteil, Créteil, France
| | - Loussiné Zargarian
- BPA, CNRS UMR 8113 Bâtiment IDA, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Mickael Miro-Padovani
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Patricia Zadigue
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Jean Delbé
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Yamina Hamma-Kourbali
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
| | - Mohamed Amiche
- Mondor Institute of Biomedical Research, INSERM U955 Team 7, School of Medicine, University Paris Est Créteil, Créteil, France
- * E-mail: ,
| |
Collapse
|
44
|
Identification of a conformational heparin-recognition motif on the peptide hormone secretin: key role for cell surface binding. Biochem J 2017; 474:2249-2260. [PMID: 28536157 DOI: 10.1042/bcj20170035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/30/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022]
Abstract
Secretin is a peptide hormone that exerts pleiotropic physiological functions by specifically binding to its cognate membrane-bound receptor. The membrane catalysis model of peptide-receptor interactions states that soluble peptidic ligands initially interact with the plasma membrane. This interaction increases the local concentration and structures the peptide, enhancing the rate of receptor binding. However, this model does not consider the dense network of glycosaminoglycans (GAGs) at the surface of eukaryotic cells. These sulfated polysaccharide chains are known to sequester numerous proteic signaling molecules. In the present study, we evaluated the interaction between the peptide hormone secretin and sulfated GAGs and its contribution to cell surface binding. Using GAG-deficient cells and competition experiments with soluble GAGs, we observed by confocal microscopy and flow cytometry that GAGs mediate the sequestration of secretin at the cell surface. Isothermal titration calorimetry and surface plasmon resonance revealed that secretin binds to heparin with dissociation constants ranging between 0.9 and 4 μM. By designing secretin derivatives with a restricted conformational ensemble, we observed that this interaction is mediated by the presence of a specific conformational GAG-recognition motif that decorates the surface of the peptide upon helical folding. The present study identifies secretin as a novel GAG-binding polypeptide and opens new research direction on the functional role of GAGs in the biology of secretin.
Collapse
|
45
|
Meloni BP, Milani D, Cross JL, Clark VW, Edwards AB, Anderton RS, Blacker DJ, Knuckey NW. Assessment of the Neuroprotective Effects of Arginine-Rich Protamine Peptides, Poly-Arginine Peptides (R12-Cyclic, R22) and Arginine-Tryptophan-Containing Peptides Following In Vitro Excitotoxicity and/or Permanent Middle Cerebral Artery Occlusion in Rats. Neuromolecular Med 2017; 19:271-285. [PMID: 28523591 DOI: 10.1007/s12017-017-8441-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/12/2017] [Indexed: 12/22/2022]
Abstract
We have demonstrated that arginine-rich and poly-arginine peptides possess potent neuroprotective properties with arginine content and peptide positive charge being particularly critical for neuroprotective efficacy. In addition, the presence of other amino acids within arginine-rich peptides, as well as chemical modifications, peptide length and cell-penetrating properties also influence the level of neuroprotection. Against this background, we have examined the neuroprotective efficacy of arginine-rich protamine peptides, a cyclic (R12-c) poly-arginine peptide and a R22 poly-arginine peptide, as well as arginine peptides containing tryptophan or other amino acids (phenylalanine, tyrosine, glycine or leucine) in in vitro glutamic acid excitotoxicity and in vivo rat permanent middle cerebral artery occlusion models of stroke. In vitro studies demonstrated that protamine and poly-arginine peptides (R12-c, R22) were neuroprotective. Arginine-tryptophan-containing peptides were highly neuroprotective, with R12W8a being the most potent arginine-rich peptide identified in our laboratory. Peptides containing phenylalanine or tyrosine substituted in place of tryptophan in R12W8a were also highly neuroprotective, whereas leucine, and in particular glycine substitutions, decreased peptide efficacy. In vivo studies with protamine administered intravenously at 1000 nmol/kg 30 min after MCAO significantly reduced infarct volume and cerebral oedema by 22.5 and 38.6%, respectively. The R12W8a peptide was highly toxic when administered intravenously at 300 or 100 nmol/kg and ineffective at reducing infarct volume when administered at 30 nmol/kg 30 min after MCAO, unlike R18 (30 nmol/kg), which significantly reduced infarct volume by 20.4%. However, both R12W8a and R18 significantly reduced cerebral oedema by 19.8 and 42.2%, respectively. Protamine, R12W8a and R18 also reduced neuronal glutamic acid-induced calcium influx. These findings further highlight the neuroprotective properties of arginine-rich peptides and support the view that they represent a new class of neuroprotective agent.
Collapse
Affiliation(s)
- Bruno P Meloni
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia. .,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia. .,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.
| | - Diego Milani
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,School of Heath Sciences, The University Notre Dame Australia, Fremantle, WA, Australia
| | - Jane L Cross
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Vince W Clark
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Adam B Edwards
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,School of Heath Sciences, The University Notre Dame Australia, Fremantle, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,School of Heath Sciences, The University Notre Dame Australia, Fremantle, WA, Australia
| | - David J Blacker
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia
| | - Neville W Knuckey
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
46
|
Vaissière A, Aldrian G, Konate K, Lindberg MF, Jourdan C, Telmar A, Seisel Q, Fernandez F, Viguier V, Genevois C, Couillaud F, Boisguerin P, Deshayes S. A retro-inverso cell-penetrating peptide for siRNA delivery. J Nanobiotechnology 2017; 15:34. [PMID: 28454579 PMCID: PMC5410048 DOI: 10.1186/s12951-017-0269-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/17/2017] [Indexed: 01/28/2023] Open
Abstract
Background Small interfering RNAs (siRNAs) are powerful tools to control gene expression. However, due to their poor cellular permeability and stability, their therapeutic development requires a specific delivery system. Among them, cell-penetrating peptides (CPP) have been shown to transfer efficiently siRNA inside the cells. Recently we developed amphipathic peptides able to self-assemble with siRNAs as peptide-based nanoparticles and to transfect them into cells. However, despite the great potential of these drug delivery systems, most of them display a low resistance to proteases. Results Here, we report the development and characterization of a new CPP named RICK corresponding to the retro-inverso form of the CADY-K peptide. We show that RICK conserves the main biophysical features of its L-parental homologue and keeps the ability to associate with siRNA in stable peptide-based nanoparticles. Moreover the RICK:siRNA self-assembly prevents siRNA degradation and induces inhibition of gene expression. Conclusions This new approach consists in a promising strategy for future in vivo application, especially for targeted anticancer treatment (e.g. knock-down of cell cycle proteins).RICK-based nanoparticles: RICK peptides and siRNA self-assemble in peptide-based nanoparticles to penetrate into the cells and to induce target protein knock-down. ![]() Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0269-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anaïs Vaissière
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Gudrun Aldrian
- Sys2Diag, UMR 9005-CNRS/ALCEDIAG, 1682 Rue de la Valsiere, 34184, Montpellier, France
| | - Karidia Konate
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Mattias F Lindberg
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Carole Jourdan
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Anthony Telmar
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Quentin Seisel
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Frédéric Fernandez
- Microscopie Électronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Véronique Viguier
- Microscopie Électronique et Analytique, Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Coralie Genevois
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076, Bordeaux, France
| | - Franck Couillaud
- EA 7435 IMOTION (Imagerie moléculaire et thérapies innovantes en oncologie), Université de Bordeaux, 146 rue Leo Saignat, 33076, Bordeaux, France
| | - Prisca Boisguerin
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Sébastien Deshayes
- Centre de Recherche de Biologie cellulaire de Montpellier, UMR 5237 CNRS, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
47
|
Meng Y, Wiseman JA, Nemtsova Y, Moore DF, Guevarra J, Reuhl K, Banks WA, Daneman R, Sleat DE, Lobel P. A Basic ApoE-Based Peptide Mediator to Deliver Proteins across the Blood-Brain Barrier: Long-Term Efficacy, Toxicity, and Mechanism. Mol Ther 2017; 25:1531-1543. [PMID: 28456380 DOI: 10.1016/j.ymthe.2017.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/26/2022] Open
Abstract
We have investigated delivery of protein therapeutics from the bloodstream into the brain using a mouse model of late-infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal disease due to deficiencies in tripeptidyl peptidase 1 (TPP1). Supraphysiological levels of TPP1 are delivered to the mouse brain by acute intravenous injection when co-administered with K16ApoE, a peptide that in trans mediates passage across the blood-brain barrier (BBB). Chronic treatment of LINCL mice with TPP1 and K16ApoE extended the lifespan from 126 to >294 days, diminished pathology, and slowed locomotor dysfunction. K16ApoE enhanced uptake of a fixable biotin tracer by brain endothelial cells in a dose-dependent manner, suggesting that its mechanism involves stimulation of endocytosis. Pharmacokinetic experiments indicated that K16ApoE functions without disrupting the BBB, with minimal effects on overall clearance or uptake by the liver and kidney. K16ApoE has a narrow therapeutic index, with toxicity manifested as lethargy and/or death in mice. To address this, we evaluated variant peptides but found that efficacy and toxicity are associated, suggesting that desired and adverse effects are mechanistically related. Toxicity currently precludes direct clinical application of peptide-mediated delivery in its present form but it remains a useful approach to proof-of-principle studies for biologic therapies to the brain in animal models.
Collapse
Affiliation(s)
- Yu Meng
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Wenzhou-Kean University, Wenzhou, Zhejiang 32050, China
| | - Jennifer A Wiseman
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jenieve Guevarra
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - William A Banks
- Geriatrics Research Education and Clinical Center, Department of Medicine, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98108, USA
| | - Richard Daneman
- Departments of Pharmacology and Neuroscience, University of California, San Diego, CA 92093, USA
| | - David E Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Kim WJ, Koo JH, Cho HJ, Lee JU, Kim JY, Lee HG, Lee S, Kim JH, Oh MS, Suh M, Shin EC, Ko JY, Sohn MH, Choi JM. Protein tyrosine phosphatase conjugated with a novel transdermal delivery peptide, astrotactin 1-derived peptide recombinant protein tyrosine phosphatase (AP-rPTP), alleviates both atopic dermatitis-like and psoriasis-like dermatitis. J Allergy Clin Immunol 2017; 141:137-151. [PMID: 28456618 DOI: 10.1016/j.jaci.2017.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) and psoriasis are the 2 most common chronic inflammatory skin diseases. There is an unmet medical need to overcome limitations for transcutaneous drug development posed by the skin barrier. OBJECTIVE We aimed to identify a novel transdermal delivery peptide and to develop a transcutaneously applicable immunomodulatory protein for treating AD and psoriasis. METHODS We identified and generated reporter proteins conjugated to astrotactin 1-derived peptide (AP), a novel transdermal delivery peptide of human origin, and analyzed the intracellular delivery efficiency of these proteins in mouse and human skin cells and tissues using multiphoton confocal microscopy. We also generated a recombinant therapeutic protein, AP-recombinant protein tyrosine phosphatase (rPTP), consisting of the phosphatase domain of the T-cell protein tyrosine phosphatase conjugated to AP. The immunomodulatory function of AP-rPTP was confirmed in splenocytes on cytokine stimulation and T-cell receptor stimulation. Finally, we confirmed the in vivo efficacy of AP-rPTP transdermal delivery in patients with oxazolone-induced contact hypersensitivity, ovalbumin-induced AD-like, and imiquimod-induced psoriasis-like skin inflammation models. RESULTS AP-conjugated reporter proteins exhibited significant intracellular transduction efficacy in keratinocytes, fibroblasts, and immune cells. In addition, transcutaneous administration of AP-dTomato resulted in significant localization into the dermis and epidermis in both mouse and human skin. AP-rPTP inhibited phosphorylated signal transducer and activator of transcription (STAT) 1, STAT3, and STAT6 in splenocytes and also regulated T-cell activation and proliferation. Transcutaneous administration of AP-rPTP through the paper-patch technique significantly ameliorated skin tissue thickening, inflammation, and cytokine expression in both AD-like and psoriasis-like dermatitis models. CONCLUSION We identified a 9-amino-acid novel transdermal delivery peptide, AP, and demonstrated its feasibility for transcutaneous biologic drug development. Moreover, AP-rPTP is a novel immunomodulatory drug candidate for human dermatitis.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hyun-Jung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Ji Yun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Sohee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea
| | - Jong Hoon Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Mi Seon Oh
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea; Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Joo Yeon Ko
- Department of Dermatology, College of Medicine, Hanyang University, Seoul, Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, Korea; Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Korea.
| |
Collapse
|
49
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
50
|
Ansari AS, Santerre PJ, Uludağ H. Biomaterials for polynucleotide delivery to anchorage-independent cells. J Mater Chem B 2017; 5:7238-7261. [DOI: 10.1039/c7tb01833a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Comparison of various chemical vectors used for polynucleotide delivery to mammalian anchorage-independent cells.
Collapse
Affiliation(s)
- Aysha S. Ansari
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Paul J. Santerre
- Institute of Biomaterials & Biomedical Engineering
- University of Toronto
- Toronto
- Canada
| | - Hasan Uludağ
- Department of Chemical & Materials Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|