1
|
Lin J, Meng H, Shafeng N, Li J, Sun H, Yang X, Chen Z, Hou S. Exploring the pathophysiological mechanisms and wet biomarkers of VPS13A disease. Front Neurol 2024; 15:1482936. [PMID: 39659962 PMCID: PMC11628379 DOI: 10.3389/fneur.2024.1482936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
VPS13A disease (also known as Chorea-Acanthocytosis, ChAc) is a representative subtype of the neuroacanthocytosis (NA) syndromes, characterized by neurodegeneration in the central nervous system and acanthocytosis in peripheral blood. It is a rare autosomal recessive genetic disorder caused by loss-of-function variants in the VPS13A gene, which is currently the only known pathogenic gene for ChAc. VPS13A protein is a member of novel bridge-like lipid transfer proteins family located at membrane contact sites, forming direct channels for lipid transport. The specific mechanism underlying how the loss of VPS13A function leads to the hematological and neurological phenotypes of the disease remains unclear. Here we present a review of recent studies on VPS13A protein and ChAc, focusing on the potential role of the VPS13A protein in pathophysiology of ChAc and also review the known and potential wet biomarkers of ChAc to enhance our comprehension of this rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuai Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Alkahtani S, Alkahtane AA, Stournaras C, Alarifi S. Chorein sensitive microtubule organization in tumor cells. PeerJ 2023; 11:e16074. [PMID: 37744224 PMCID: PMC10517657 DOI: 10.7717/peerj.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background The purpose of this study is to analyzed the involvement of chorein in microtubules organization of three types of malignant; rhabdomyosarcoma tumor cells (ZF), rhabdomyosarcoma cells (RH30), and rhabdomyosarcoma cells (RD). ZF are expressing high chorein levels. Previous studies revealed that chorein protein silencing in ZF tumor cells persuaded apoptotic response followed by cell death. In addition, in numerous malignant and non-malignant cells this protein regulates actin cytoskeleton structure and cellular signaling. However, the function of chorein protein in microtubular organization is yet to be established. Methods In a current research study, we analyzed the involvement of chorein in microtubules organization by using three types of malignant rhabdomyosarcoma cells. We have applied confocal laser-scanning microscopy to analyze microtubules structure and RT-PCR to examine cytoskeletal gene transcription. Results We report here that in rhabdomyosarcoma cells (RH30), chorein silencing induced disarrangement of microtubular network. This was documented by laser scanning microscopy and further quantified by FACS analysis. Interestingly and in agreement with previous reports, tubulin gene transcription in RH cells was unchanged upon silencing of chorein protein. Equally, confocal analysis showed minor disordered microtubules organization with evidently weakened staining in rhabdomyosarcoma cells (RD and ZF) after silencing of chorein protein. Conclusion These results disclose that chorein silencing induces considerable structural disorganization of tubulin network in RH30 human rhabdomyosarcoma tumor cells. Additional studies are now needed to establish the role of chorein in regulating cytoskeleton architecture in tumor cells.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhong Z, Wang Z, Xie X, Tian S, Wang F, Wang Q, Ni S, Pan Y, Xiao Q. Evaluation of the Genetic Diversity, Population Structure and Selection Signatures of Three Native Chinese Pig Populations. Animals (Basel) 2023; 13:2010. [PMID: 37370521 DOI: 10.3390/ani13122010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Indigenous pig populations in Hainan Province live in tropical climate conditions and a relatively closed geographical environment, which has contributed to the formation of some excellent characteristics, such as heat tolerance, strong disease resistance and excellent meat quality. Over the past few decades, the number of these pig populations has decreased sharply, largely due to a decrease in growth rate and poor lean meat percentage. For effective conservation of these genetic resources (such as heat tolerance, meat quality and disease resistance), the whole-genome sequencing data of 78 individuals from 3 native Chinese pig populations, including Wuzhishan (WZS), Tunchang (TC) and Dingan (DA), were obtained using a 150 bp paired-end platform, and 25 individuals from two foreign breeds, including Landrace (LR) and Large White (LW), were downloaded from a public database. A total of 28,384,282 SNPs were identified, of which 27,134,233 SNPs were identified in native Chinese pig populations. Both genetic diversity statistics and linkage disequilibrium (LD) analysis indicated that indigenous pig populations displayed high genetic diversity. The result of population structure implied the uniqueness of each native Chinese pig population. The selection signatures were detected between indigenous pig populations and foreign breeds by using the population differentiation index (FST) method. A total of 359 candidate genes were identified, and some genes may affect characteristics such as immunity (IL-2, IL-21 and ZFYVE16), adaptability (APBA1), reproduction (FGF2, RNF17, ADAD1 and HIPK4), meat quality (ABCA1, ADIG, TLE4 and IRX5), and heat tolerance (VPS13A, HSPA4). Overall, the findings of this study will provide some valuable insights for the future breeding, conservation and utilization of these three Chinese indigenous pig populations.
Collapse
Affiliation(s)
- Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Shuaishuai Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Feifan Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Qishan Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shiheng Ni
- Animal Husbandry Technology Extending Stations of Hainan Province, Haikou 570203, China
| | - Yuchun Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Zhong ZQ, Li R, Wang Z, Tian SS, Xie XF, Wang ZY, Na W, Wang QS, Pan YC, Xiao Q. Genome-wide scans for selection signatures in indigenous pigs revealed candidate genes relating to heat tolerance. Animal 2023; 17:100882. [PMID: 37406393 DOI: 10.1016/j.animal.2023.100882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Heat stress is a major problem that constrains pig productivity. Understanding and identifying adaptation to heat stress has been the focus of recent studies, and the identification of genome-wide selection signatures can provide insights into the mechanisms of environmental adaptation. Here, we generated whole-genome re-sequencing data from six Chinese indigenous pig populations to identify genomic regions with selection signatures related to heat tolerance using multiple methods: three methods for intra-population analyses (Integrated Haplotype Score, Runs of Homozygosity and Nucleotide diversity Analysis) and three methods for inter-population analyses (Fixation index (FST), Cross-population Composite Likelihood Ratio and Cross-population Extended Haplotype Homozygosity). In total, 1 966 796 single nucleotide polymorphisms were identified in this study. Genetic structure analyses and FST indicated differentiation among these breeds. Based on information on the location environment, the six breeds were divided into heat and cold groups. By combining two or more approaches for selection signatures, outlier signals in overlapping regions were identified as candidate selection regions. A total of 163 candidate genes were identified, of which, 29 were associated with heat stress injury and anti-inflammatory effects. These candidate genes were further associated with 78 Gene Ontology functional terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways in enrichment analysis (P < 0.05). Some of these have clear relevance to heat resistance, such as the AMPK signalling pathway and the mTOR signalling pathway. The results improve our understanding of the selection mechanisms responsible for heat resistance in pigs and provide new insights of introgression in heat adaptation.
Collapse
Affiliation(s)
- Z Q Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - R Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Z Wang
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - S S Tian
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - X F Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Z Y Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - W Na
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China
| | - Q S Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Y C Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China; Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Q Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Amiri Ghanatsaman Z, Ayatolahi Mehrgardi A, Asadollahpour Nanaei H, Esmailizadeh A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Sci Rep 2023; 13:8722. [PMID: 37253766 DOI: 10.1038/s41598-023-35973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
During the process of animal domestication, both natural and artificial selection cause variation in allele frequencies among populations. Identifying genomic areas of selection in domestic animals may aid in the detection of genomic areas linked to ecological and economic traits. We studied genomic variation in 140 worldwide goat individuals, including 75 Asian, 30 African and 35 European goats. We further carried out comparative population genomics to detect genomic regions under selection for adaptability to harsh conditions in local Asian ecotypes and also milk production traits in European commercial breeds. In addition, we estimated the genetic distances among 140 goat individuals. The results showed that among all studied goat groups, local breeds from West and South Asia emerged as an independent group. Our search for selection signatures in local goats from West and South Asia revealed candidate genes related to adaptation to hot climate (HSPB6, HSF4, VPS13A and NBEA genes) and immune response (IL7, IL5, IL23A and LRFN5) traits. Furthermore, selection signatures in European commercial goats involved several milk production related genes, such as VPS13C, NCAM2, TMPRSS15, CSN3 and ABCG2. The identified candidate genes could be the fundamental genetic resource for enhancement of goat production and environmental-adaptive traits, and as such they should be used in goat breeding programs to select more efficient breeds.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Ahmad Ayatolahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| |
Collapse
|
6
|
Kaminska J, Soczewka P, Rzepnikowska W, Zoladek T. Yeast as a Model to Find New Drugs and Drug Targets for VPS13-Dependent Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23095106. [PMID: 35563497 PMCID: PMC9104724 DOI: 10.3390/ijms23095106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-acanthocytosis. The pathogenesis of these diseases is poorly understood, and no effective treatment is available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could be studied in model organisms, including yeast, where one VPS13 gene is present. In this review, we summarize advancements obtained using yeast. In recent studies, vps13Δ and vps13-I2749 yeast mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating calcineurin activity. In addition, vps13Δ suppression was achieved by using calcineurin inhibitors. The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1, CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing an increase in the intracellular iron content. Moreover, among the identified chemical suppressors were copper ionophores, which require a functional iron uptake system for activity, and flavonoids, which bind iron. These findings point at areas for further investigation in a higher eukaryotic model of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for these diseases.
Collapse
Affiliation(s)
- Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Piotr Soczewka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
| | - Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.K.); (P.S.)
- Correspondence:
| |
Collapse
|
7
|
Asadollahi H, Vaez Torshizi R, Ehsani A, Masoudi AA. An association of CEP78, MEF2C, VPS13A and ARRDC3 genes with survivability to heat stress in an F 2 chicken population. J Anim Breed Genet 2022; 139:574-582. [PMID: 35218583 DOI: 10.1111/jbg.12675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
Abstract
Heat stress is a serious problem in the poultry industry. An effective tool for improving heat tolerance can be genomic selection based on single nucleotide polymorphisms. This study was performed to identify genomic regions controlling survivability to heat stress in a population of F2 chickens that accidentally experienced acute heat stress, using Illumina 60K Chicken SNP Bead Chip. After quality control in markers, 47,730 SNPs remained for genome-wide association study (GWAS). The GWAS results indicated that markers Gga_rs16111480 (p = 8.503e-08), GGaluGA354375 (p = 5.99e-07) and Gga_rs14748694 (p = 7.085e-07) located on Z chromosome showed significant association with heat stress tolerance trait. The Gga_rs16111480 marker was located inside the CEP78 gene. The marker GGaluGA354375 was located inside the LOC101752071 gene and next to the MEF2C gene. The Gga_rs14748694 marker was adjacent to LOC101752071 and MEF2C genes. Moreover, the SNP maker of Gga_rs16111480 was located on 243 kb downstream of the VPS13A gene, and the GGaluGA354375 and Gga_rs14748694 SNPs were located on 947 kb and 888 kb downstream of the ARRDC3 gene, respectively. The results of this study suggest that apart from the gene LOC101752071, which its function was unknown, each of the two MEF2C and CEP78 genes were found to be closely related to heat stress resistance in bird.
Collapse
Affiliation(s)
- Hamed Asadollahi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Alireza Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Bastioli G, Regoni M, Cazzaniga F, De Luca CMG, Bistaffa E, Zanetti L, Moda F, Valtorta F, Sassone J. Animal Models of Autosomal Recessive Parkinsonism. Biomedicines 2021; 9:biomedicines9070812. [PMID: 34356877 PMCID: PMC8301401 DOI: 10.3390/biomedicines9070812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. The neuropathological hallmark of the disease is the loss of dopamine neurons of the substantia nigra pars compacta. The clinical manifestations of PD are bradykinesia, rigidity, resting tremors and postural instability. PD patients often display non-motor symptoms such as depression, anxiety, weakness, sleep disturbances and cognitive disorders. Although, in 90% of cases, PD has a sporadic onset of unknown etiology, highly penetrant rare genetic mutations in many genes have been linked with typical familial PD. Understanding the mechanisms behind the DA neuron death in these Mendelian forms may help to illuminate the pathogenesis of DA neuron degeneration in the more common forms of PD. A key step in the identification of the molecular pathways underlying DA neuron death, and in the development of therapeutic strategies, is the creation and characterization of animal models that faithfully recapitulate the human disease. In this review, we outline the current status of PD modeling using mouse, rat and non-mammalian models, focusing on animal models for autosomal recessive PD.
Collapse
Affiliation(s)
- Guendalina Bastioli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Maria Regoni
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federico Cazzaniga
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Chiara Maria Giulia De Luca
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Edoardo Bistaffa
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Letizia Zanetti
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.C.); (C.M.G.D.L.); (E.B.); (F.M.)
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (G.B.); (M.R.); (L.Z.); (F.V.)
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence:
| |
Collapse
|
9
|
Hook SC, Chadt A, Heesom KJ, Kishida S, Al-Hasani H, Tavaré JM, Thomas EC. TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes. Sci Rep 2020; 10:17953. [PMID: 33087848 PMCID: PMC7578007 DOI: 10.1038/s41598-020-74661-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins involved in the spaciotemporal regulation of GLUT4 trafficking represent potential therapeutic targets for the treatment of insulin resistance and type 2 diabetes. A key regulator of insulin- and exercise-stimulated glucose uptake and GLUT4 trafficking is TBC1D1. This study aimed to identify proteins that regulate GLUT4 trafficking and homeostasis via TBC1D1. Using an unbiased quantitative proteomics approach, we identified proteins that interact with TBC1D1 in C2C12 myotubes including VPS13A and VPS13C, the Rab binding proteins EHBP1L1 and MICAL1, and the calcium pump SERCA1. These proteins associate with TBC1D1 via its phosphotyrosine binding (PTB) domains and their interactions with TBC1D1 were unaffected by AMPK activation, distinguishing them from the AMPK regulated interaction between TBC1D1 and AMPKα1 complexes. Depletion of VPS13A or VPS13C caused a post-transcriptional increase in cellular GLUT4 protein and enhanced cell surface GLUT4 levels in response to AMPK activation. The phenomenon was specific to GLUT4 because other recycling proteins were unaffected. Our results provide further support for a role of the TBC1D1 PTB domains as a scaffold for a range of Rab regulators, and also the VPS13 family of proteins which have been previously linked to fasting glycaemic traits and insulin resistance in genome wide association studies.
Collapse
Affiliation(s)
- Sharon C Hook
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Alexandra Chadt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kate J Heesom
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jeremy M Tavaré
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Elaine C Thomas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
10
|
Hosseinzadeh Z, Hauser S, Singh Y, Pelzl L, Schuster S, Sharma Y, Höflinger P, Zacharopoulou N, Stournaras C, Rathbun DL, Zrenner E, Schöls L, Lang F. Decreased Na +/K + ATPase Expression and Depolarized Cell Membrane in Neurons Differentiated from Chorea-Acanthocytosis Patients. Sci Rep 2020; 10:8391. [PMID: 32439941 PMCID: PMC7242441 DOI: 10.1038/s41598-020-64845-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 04/17/2020] [Indexed: 02/03/2023] Open
Abstract
Loss of function mutations of the chorein-encoding gene VPS13A lead to chorea-acanthocytosis (ChAc), a neurodegenerative disorder with accelerated suicidal neuronal cell death, which could be reversed by lithium. Chorein upregulates the serum and glucocorticoid inducible kinase SGK1. Targets of SGK1 include the Na+/K+-ATPase, a pump required for cell survival. To explore whether chorein-deficiency affects Na+/K+ pump capacity, cortical neurons were differentiated from iPSCs generated from fibroblasts of ChAc patients and healthy volunteers. Na+/K+ pump capacity was estimated from K+-induced whole cell outward current (pump capacity). As a result, the pump capacity was completely abolished in the presence of Na+/K+ pump-inhibitor ouabain (100 µM), was significantly smaller in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (24 hours 2 mM). The effect of lithium was reversed by SGK1-inhibitor GSK650394 (24 h 10 µM). Transmembrane potential (Vm) was significantly less negative in ChAc neurons than in control neurons, and was significantly increased in ChAc neurons by lithium treatment (2 mM, 24 hours). The effect of lithium on Vm was virtually abrogated by ouabain. Na+/K+ α1-subunit transcript levels and protein abundance were significantly lower in ChAc neurons than in control neurons, an effect reversed by lithium treatment (2 mM, 24 hours). In conclusion, consequences of chorein deficiency in ChAc include impaired Na+/K+ pump capacity.
Collapse
Affiliation(s)
- Zohreh Hosseinzadeh
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.,Department of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lisann Pelzl
- Transfusion Medicine, Medical Faculty, Eberhard Karl University, Tübingen, Germany
| | - Stefanie Schuster
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Yamini Sharma
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Philip Höflinger
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece.,Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Daniel L Rathbun
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany.,Department Ophthalmology, Bionics and Vision, Henry Ford Hospital, Henry Ford, United States
| | - Eberhart Zrenner
- Department of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Combined Dendritic and Axonal Deterioration Are Responsible for Motoneuronopathy in Patient-Derived Neuronal Cell Models of Chorea-Acanthocytosis. Int J Mol Sci 2020; 21:ijms21051797. [PMID: 32151030 PMCID: PMC7084777 DOI: 10.3390/ijms21051797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Chorea acanthocytosis (ChAc), an ultra-rare devastating neurodegenerative disease, is caused by mutations in the VPS13A gene, which encodes for the protein chorein. Affected patients suffer from chorea, orofacial dyskinesia, epilepsy, parkinsonism as well as peripheral neuropathy. Although medium spinal neurons of the striatum are mainly affected, other regions are impaired as well over the course of the disease. Animal studies as well as studies on human erythrocytes suggest Lyn-kinase inhibition as valuable novel opportunity to treat ChAc. In order to investigate the peripheral neuropathy aspect, we analyzed induced pluripotent stem cell derived midbrain/hindbrain cell cultures from ChAc patients in vitro. We observed dendritic microtubule fragmentation. Furthermore, by using in vitro live cell imaging, we found a reduction in the number of lysosomes and mitochondria, shortened mitochondria, an increase in retrograde transport and hyperpolarization as measured with the fluorescent probe JC-1. Deep phenotyping pointed towards a proximal axonal deterioration as the primary axonal disease phenotype. Interestingly, pharmacological interventions, which proved to be successful in different models of ChAc, were ineffective in treating the observed axonal phenotypes. Our data suggests that treatment of this multifaceted disease might be cell type and/or neuronal subtype specific, and thus necessitates precision medicine in this ultra-rare disease.
Collapse
|
12
|
Kwon HW. Inhibitory Effects of Ginsenoside Ro on Clot Retraction through Suppressing PI3K/Akt Signaling Pathway in Human Platelets. Prev Nutr Food Sci 2019; 24:56-63. [PMID: 31008097 PMCID: PMC6456239 DOI: 10.3746/pnf.2019.24.1.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/29/2018] [Indexed: 02/02/2023] Open
Abstract
Glycoprotein IIb/IIIa (αIIb/β3) is the most abundant integrin on platelet surfaces, which is involved in interaction between platelets, and triggers an intracellular signaling cascade, platelet shape changes, granule secretion, and clot retraction. In this study, we evaluated the effect of ginsenoside Ro (G-Ro) on the binding of fibronectin and fibrinogen to αIIb/β3 and clot retraction. We found that G-Ro inhibited thrombin-induced platelet aggregation dose-dependently and attenuated the fibronectin-, and fibrinogen-binding to αIIb/β3 through the dephosphorylation of phosphoinositide 3-kinase p85 and Akt, which influence clot retraction, reflecting the intensification of thrombus. We observed that G-Ro is involved in αIIb/β3 in human platelets. These results suggest that G-Ro is beneficial, inhibiting fibronectin adhesion, fibrinogen binding, and clot retraction. Therefore, G-Ro in Panax ginseng may prevent platelet aggregation-mediated thrombotic disease.
Collapse
Affiliation(s)
- Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, Far East University, Chungbuk 27601, Korea
| |
Collapse
|
13
|
Muñoz-Braceras S, Tornero-Écija AR, Vincent O, Escalante R. VPS13A is closely associated with mitochondria and is required for efficient lysosomal degradation. Dis Model Mech 2019; 12:dmm036681. [PMID: 30709847 PMCID: PMC6398486 DOI: 10.1242/dmm.036681] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the VPS13 family are associated with various human diseases. In particular, the loss of function of VPS13A leads to chorea-acanthocytosis (ChAc), a rare neurodegenerative disease without available curative treatments. Autophagy has been considered a promising therapeutic target because the absence of VPS13A causes a defective autophagy flux. However, the mechanistic details of this deficiency are unknown. Here, we identified Rab7A as an interactor of one of the VPS13 family members in Dictyostelium discoideum and showed that this interaction is conserved between the human homologs VPS13A and RAB7A in HeLa cells. As RAB7A is a key player in endosome trafficking, we addressed the possible function of VPS13A in endosome dynamics and lysosome degradation. Our results suggest that the decrease in autophagy observed in the absence of VPS13A may be the result of a more general defect in endocytic trafficking and lysosomal degradation. Unexpectedly, we found that VPS13A is closely localized to mitochondria, suggesting that the role of VPS13A in the endolysosomal pathway might be related to inter-organelle communication. We show that VPS13A localizes at the interface between mitochondria-endosomes and mitochondria-endoplasmic reticulum and that the presence of membrane contact sites is altered in the absence of VPS13A. Based on these findings, we propose that therapeutic strategies aimed at modulating the endolysosomal pathway could be beneficial in the treatment of ChAc.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sandra Muñoz-Braceras
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| | - Alba R Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols, Department of Experimental Models of Human Diseases, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma Madrid (UAM), 28029-Madrid, Spain
| |
Collapse
|
14
|
Yeshaw WM, van der Zwaag M, Pinto F, Lahaye LL, Faber AI, Gómez-Sánchez R, Dolga AM, Poland C, Monaco AP, van IJzendoorn SC, Grzeschik NA, Velayos-Baeza A, Sibon OC. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. eLife 2019; 8:43561. [PMID: 30741634 PMCID: PMC6389287 DOI: 10.7554/elife.43561] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/10/2019] [Indexed: 02/03/2023] Open
Abstract
The VPS13A gene is associated with the neurodegenerative disorder Chorea Acanthocytosis. It is unknown what the consequences are of impaired function of VPS13A at the subcellular level. We demonstrate that VPS13A is a peripheral membrane protein, associated with mitochondria, the endoplasmic reticulum and lipid droplets. VPS13A is localized at sites where the endoplasmic reticulum and mitochondria are in close contact. VPS13A interacts with the ER residing protein VAP-A via its FFAT domain. Interaction with mitochondria is mediated via its C-terminal domain. In VPS13A-depleted cells, ER-mitochondria contact sites are decreased, mitochondria are fragmented and mitophagy is decreased. VPS13A also localizes to lipid droplets and affects lipid droplet motility. In VPS13A-depleted mammalian cells lipid droplet numbers are increased. Our data, together with recently published data from others, indicate that VPS13A is required for establishing membrane contact sites between various organelles to enable lipid transfer required for mitochondria and lipid droplet related processes.
Collapse
Affiliation(s)
- Wondwossen M Yeshaw
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne van der Zwaag
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Francesco Pinto
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liza L Lahaye
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anita Ie Faber
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rubén Gómez-Sánchez
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Conor Poland
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom.,Office of the President, Tufts University, Medford, United States
| | - Sven Cd van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicola A Grzeschik
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Ody Cm Sibon
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Soczewka P, Kolakowski D, Smaczynska-de Rooij I, Rzepnikowska W, Ayscough KR, Kaminska J, Zoladek T. Yeast-model-based study identified myosin- and calcium-dependent calmodulin signalling as a potential target for drug intervention in chorea-acanthocytosis. Dis Model Mech 2019; 12:dmm.036830. [PMID: 30635263 PMCID: PMC6361151 DOI: 10.1242/dmm.036830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Chorea-acanthocytosis (ChAc) is a rare neurodegenerative disease associated with mutations in the human VPS13A gene. The mechanism of ChAc pathogenesis is unclear. A simple yeast model was used to investigate the function of the single yeast VSP13 orthologue, Vps13. Vps13, like human VPS13A, is involved in vesicular protein transport, actin cytoskeleton organisation and phospholipid metabolism. A newly identified phenotype of the vps13Δ mutant, sodium dodecyl sulphate (SDS) hypersensitivity, was used to screen a yeast genomic library for multicopy suppressors. A fragment of the MYO3 gene, encoding Myo3-N (the N-terminal part of myosin, a protein involved in the actin cytoskeleton and in endocytosis), was isolated. Myo3-N protein contains a motor head domain and a linker. The linker contains IQ motifs that mediate the binding of calmodulin, a negative regulator of myosin function. Amino acid substitutions that disrupt the interaction of Myo3-N with calmodulin resulted in the loss of vps13Δ suppression. Production of Myo3-N downregulated the activity of calcineurin, a protein phosphatase regulated by calmodulin, and alleviated some defects in early endocytosis events. Importantly, ethylene glycol tetraacetic acid (EGTA), which sequesters calcium and thus downregulates calmodulin and calcineurin, was a potent suppressor of vps13Δ. We propose that Myo3-N acts by sequestering calmodulin, downregulating calcineurin and increasing activity of Myo3, which is involved in endocytosis and, together with Osh2/3 proteins, functions in endoplasmic reticulum-plasma membrane contact sites. These results show that defects associated with vps13Δ could be overcome, and point to a functional connection between Vps13 and calcium signalling as a possible target for chemical intervention in ChAc. Yeast ChAc models may uncover the underlying pathological mechanisms, and may also serve as a platform for drug testing. This article has an associated First Person interview with the first author of the paper. Summary: Using the vps13Δ strain, a yeast model of the neurodegenerative disorder chorea-acanthocytosis, we found that its defects can be overcome by reduction of calcineurin activity and/or type-I-myosin activation.
Collapse
Affiliation(s)
- Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Damian Kolakowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | | | - Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Kathryn R Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| |
Collapse
|
16
|
Baaten CCFMJ, Meacham S, de Witt SM, Feijge MAH, Adams DJ, Akkerman JWN, Cosemans JMEM, Grassi L, Jupe S, Kostadima M, Mattheij NJA, Prins MH, Ramirez-Solis R, Soehnlein O, Swieringa F, Weber C, White JK, Ouwehand WH, Heemskerk JWM. A synthesis approach of mouse studies to identify genes and proteins in arterial thrombosis and bleeding. Blood 2018; 132:e35-e46. [PMID: 30275110 PMCID: PMC6293874 DOI: 10.1182/blood-2018-02-831982] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022] Open
Abstract
Antithrombotic therapies reduce cardiovascular diseases by preventing arterial thrombosis and thromboembolism, but at expense of increased bleeding risks. Arterial thrombosis studies using genetically modified mice have been invaluable for identification of new molecular targets. Because of low sample sizes and heterogeneity in approaches or methodologies, a formal meta-analysis to compare studies of mice with single-gene defects encountered major limitations. To overcome these, we developed a novel synthesis approach to quantitatively scale 1514 published studies of arterial thrombus formation (in vivo and in vitro), thromboembolism, and tail-bleeding of genetically modified mice. Using a newly defined consistency parameter (CP), indicating the strength of published data, comparisons were made of 431 mouse genes, of which 17 consistently contributed to thrombus formation without affecting hemostasis. Ranking analysis indicated high correlations between collagen-dependent thrombosis models in vivo (FeCl3 injury or ligation/compression) and in vitro. Integration of scores and CP values resulted in a network of protein interactions in thrombosis and hemostasis (PITH), which was combined with databases of genetically linked human bleeding and thrombotic disorders. The network contained 2946 nodes linked to modifying genes of thrombus formation, mostly with expression in megakaryocytes. Reactome pathway analysis and network characteristics revealed multiple novel genes with potential contribution to thrombosis/hemostasis. Studies with additional knockout mice revealed that 4 of 8 (Apoe, Fpr2, Ifnar1, Vps13a) new genes were modifying in thrombus formation. The PITH network further: (i) revealed a high similarity of murine and human hemostatic and thrombotic processes and (ii) identified multiple new candidate proteins regulating these processes.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stuart Meacham
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Susanne M de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marion A H Feijge
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - David J Adams
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Jan-Willem N Akkerman
- Laboratory of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Luigi Grassi
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Steve Jupe
- EMBL-European Bioinformatics Institute, Cambridge, United Kingdom
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
| | - Nadine J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin H Prins
- Department of Clinical Epidemiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
- Department of Pathology, AMC, Amsterdam, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany; and
| | | | - Willem H Ouwehand
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Pruchnik H, Włoch A, Bonarska-Kujawa D, Kleszczyńska H. An In Vitro Study of the Effect of Cytotoxic Triorganotin Dimethylaminophenylazobenzoate Complexes on Red Blood Cells. J Membr Biol 2018; 251:735-745. [PMID: 30350012 PMCID: PMC6244762 DOI: 10.1007/s00232-018-0051-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/13/2018] [Indexed: 10/31/2022]
Abstract
Interactions of tributyltin (TBTA) and triphenyltin (TPhTA) 2-[4 (dimethylamino)phenylazo]benzoates, showing promising cytostatic activity against tumor cells, with erythrocytes and with erythrocyte membranes and model lipid membranes have been investigated. The effect of TBTA and TPhTA on the erythrocyte and its model membrane was investigated by the microscopic and spectroscopic methods. Interaction of tin complexes with the membrane was determined on the basis of hemolytic activity, changes induced in the shape of erythrocytes, as well as physicochemical parameters of the membrane, such as fluidity. The studies showed that the compounds in higher concentration induce hemolysis; however, TBTA is more toxic than TPhTA. Both TBTA and TPhTA induce morphological alterations in red blood cells-from discocytes to spherocytes and from discocytes to echinocytes. The results suggest that investigated complexes interact with the erythrocyte membrane, change its properties, and probably locate themselves in the hydrophilic part of the membrane, which agrees with conclusions drawn from investigation of erythrocyte membranes and model lipid membranes with the help of fluorescence and infrared spectroscopy.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Halina Kleszczyńska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
18
|
Peikert K, Danek A, Hermann A. Current state of knowledge in Chorea-Acanthocytosis as core Neuroacanthocytosis syndrome. Eur J Med Genet 2018; 61:699-705. [DOI: 10.1016/j.ejmg.2017.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022]
|
19
|
Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, Wheeler H, Reinisch KM, De Camilli P. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 2018; 217:3625-3639. [PMID: 30093493 PMCID: PMC6168267 DOI: 10.1083/jcb.201807019] [Citation(s) in RCA: 384] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Mutations in the human VPS13 genes are responsible for neurodevelopmental and neurodegenerative disorders including chorea acanthocytosis (VPS13A) and Parkinson's disease (VPS13C). The mechanisms of these diseases are unknown. Genetic studies in yeast hinted that Vps13 may have a role in lipid exchange between organelles. In this study, we show that the N-terminal portion of VPS13 is tubular, with a hydrophobic cavity that can solubilize and transport glycerolipids between membranes. We also show that human VPS13A and VPS13C bind to the ER, tethering it to mitochondria (VPS13A), to late endosome/lysosomes (VPS13C), and to lipid droplets (both VPS13A and VPS13C). These findings identify VPS13 as a lipid transporter between the ER and other organelles, implicating defects in membrane lipid homeostasis in neurological disorders resulting from their mutations. Sequence and secondary structure similarity between the N-terminal portions of Vps13 and other proteins such as the autophagy protein ATG2 suggest lipid transport roles for these proteins as well.
Collapse
Affiliation(s)
- Nikit Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Marianna Leonzino
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| | - William Hancock-Cerutti
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Florian A Horenkamp
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - PeiQi Li
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Joshua A Lees
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Heather Wheeler
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| | - Karin M Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
20
|
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018; 74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany.
| | - Lisann Pelzl
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Andreas Hermann
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Germany & DZNE, German Center for Neurodegenerative Diseases, Research Site Dresden, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
21
|
Rzepnikowska W, Flis K, Muñoz-Braceras S, Menezes R, Escalante R, Zoladek T. Yeast and other lower eukaryotic organisms for studies of Vps13 proteins in health and disease. Traffic 2017; 18:711-719. [PMID: 28846184 DOI: 10.1111/tra.12523] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
Abstract
Human Vps13 proteins are associated with several diseases, including the neurodegenerative disorder Chorea-acanthocytosis (ChAc), yet the biology of these proteins is still poorly understood. Studies in Saccharomyces cerevisiae, Dictyostelium discoideum, Tetrahymena thermophila and Drosophila melanogaster point to the involvement of Vps13 in cytoskeleton organization, vesicular trafficking, autophagy, phagocytosis, endocytosis, proteostasis, sporulation and mitochondrial functioning. Recent findings show that yeast Vps13 binds to phosphatidylinositol lipids via 4 different regions and functions at membrane contact sites, enlarging the list of Vps13 functions. This review describes the great potential of simple eukaryotes to decipher disease mechanisms in higher organisms and highlights novel insights into the pathological role of Vps13 towards ChAc.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Neuronal Dysfunction in iPSC-Derived Medium Spiny Neurons from Chorea-Acanthocytosis Patients Is Reversed by Src Kinase Inhibition and F-Actin Stabilization. J Neurosci 2017; 36:12027-12043. [PMID: 27881786 DOI: 10.1523/jneurosci.0456-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 11/21/2022] Open
Abstract
Chorea-acanthocytosis (ChAc) is a fatal neurological disorder characterized by red blood cell acanthocytes and striatal neurodegeneration. Recently, severe cell membrane disturbances based on depolymerized cortical actin and an elevated Lyn kinase activity in erythrocytes from ChAc patients were identified. How this contributes to the mechanism of neurodegeneration is still unknown. To gain insight into the pathophysiology, we established a ChAc patient-derived induced pluripotent stem cell model and an efficient differentiation protocol providing a large population of human striatal medium spiny neurons (MSNs), the main target of neurodegeneration in ChAc. Patient-derived MSNs displayed enhanced neurite outgrowth and ramification, whereas synaptic density was similar to controls. Electrophysiological analysis revealed a pathologically elevated synaptic activity in ChAc MSNs. Treatment with the F-actin stabilizer phallacidin or the Src kinase inhibitor PP2 resulted in the significant reduction of disinhibited synaptic currents to healthy control levels, suggesting a Src kinase- and actin-dependent mechanism. This was underlined by increased G/F-actin ratios and elevated Lyn kinase activity in patient-derived MSNs. These data indicate that F-actin stabilization and Src kinase inhibition represent potential therapeutic targets in ChAc that may restore neuronal function. SIGNIFICANCE STATEMENT Chorea-acanthocytosis (ChAc) is a fatal neurodegenerative disease without a known cure. To gain pathophysiological insight, we newly established a human in vitro model using skin biopsies from ChAc patients to generate disease-specific induced pluripotent stem cells (iPSCs) and developed an efficient iPSC differentiation protocol providing striatal medium spiny neurons. Using patch-clamp electrophysiology, we detected a pathologically enhanced synaptic activity in ChAc neurons. Healthy control levels of synaptic activity could be restored by treatment of ChAc neurons with the F-actin stabilizer phallacidin and the Src kinase inhibitor PP2. Because Src kinases are involved in bridging the membrane to the actin cytoskeleton by membrane protein phosphorylation, our data suggest an actin-dependent mechanism of this dysfunctional phenotype and potential treatment targets in ChAc.
Collapse
|
23
|
Lithium Sensitive ORAI1 Expression, Store Operated Ca 2+ Entry and Suicidal Death of Neurons in Chorea-Acanthocytosis. Sci Rep 2017; 7:6457. [PMID: 28743945 PMCID: PMC5526875 DOI: 10.1038/s41598-017-06451-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chorea-Acanthocytosis (ChAc), a neurodegenerative disorder, results from loss-of-function-mutations of chorein-encoding gene VPS13A. In tumour cells chorein up-regulates ORAI1, a Ca2+-channel accomplishing store operated Ca2+-entry (SOCE) upon stimulation by STIM1. Furthermore SOCE could be up-regulated by lithium. The present study explored whether SOCE impacts on neuron apoptosis. Cortical neurons were differentiated from induced pluripotent stem cells generated from fibroblasts of ChAc patients and healthy volunteers. ORAI1 and STIM1 transcript levels and protein abundance were estimated from qRT-PCR and Western blotting, respectively, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, as well as apoptosis from annexin-V-binding and propidium-iodide uptake determined by flow cytometry. As a result, ORAI1 and STIM1 transcript levels and protein abundance and SOCE were significantly smaller and the percentage apoptotic cells significantly higher in ChAc neurons than in control neurons. Lithium treatment (2 mM, 24 hours) increased significantly ORAI1 and STIM1 transcript levels and protein abundance, an effect reversed by inhibition of Serum & Glucocorticoid inducible Kinase 1. ORAI1 blocker 2-APB (50 µM, 24 hours) significantly decreased SOCE, markedly increased apoptosis and abrogated the anti-apoptotic effect of lithium. In conclusion, enhanced neuronal apoptosis in ChAc at least partially results from decreased ORAI1 expression and SOCE, which could be reversed by lithium treatment.
Collapse
|
24
|
Faggio C, Sureda A, Morabito S, Sanches-Silva A, Mocan A, Nabavi SF, Nabavi SM. Flavonoids and platelet aggregation: A brief review. Eur J Pharmacol 2017; 807:91-101. [DOI: 10.1016/j.ejphar.2017.04.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
|
25
|
Rzepnikowska W, Flis K, Kaminska J, Grynberg M, Urbanek A, Ayscough KR, Zoladek T. Amino acid substitution equivalent to human chorea-acanthocytosis I2771R in yeast Vps13 protein affects its binding to phosphatidylinositol 3-phosphate. Hum Mol Genet 2017; 26:1497-1510. [PMID: 28334785 PMCID: PMC5393151 DOI: 10.1093/hmg/ddx054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/09/2017] [Indexed: 12/16/2022] Open
Abstract
The rare human disorder chorea-acanthocytosis (ChAc) is caused by mutations in hVPS13A gene. The hVps13A protein interacts with actin and regulates the level of phosphatidylinositol 4-phosphate (PI4P) in the membranes of neuronal cells. Yeast Vps13 is involved in vacuolar protein transport and, like hVps13A, participates in PI4P metabolism. Vps13 proteins are conserved in eukaryotes, but their molecular function remains unknown. One of the mutations found in ChAc patients causes amino acids substitution I2771R which affects the localization of hVps13A in skeletal muscles. To dissect the mechanism of pathogenesis of I2771R, we created and analyzed a yeast strain carrying the equivalent mutation. Here we show that in yeast, substitution I2749R causes dysfunction of Vps13 protein in endocytosis and vacuolar transport, although the level of the protein is not affected, suggesting loss of function. We also show that Vps13, like hVps13A, influences actin cytoskeleton organization and binds actin in immunoprecipitation experiments. Vps13-I2749R binds actin, but does not function in the actin cytoskeleton organization. Moreover, we show that Vps13 binds phospholipids, especially phosphatidylinositol 3-phosphate (PI3P), via its SHR_BD and APT1 domains. Substitution I2749R attenuates this ability. Finally, the localization of Vps13-GFP is altered when cellular levels of PI3P are decreased indicating its trafficking within the endosomal membrane system. These results suggest that PI3P regulates the functioning of Vps13, both in protein trafficking and actin cytoskeleton organization. Attenuation of PI3P-binding ability in the mutant hVps13A protein may be one of the reasons for its mislocalization and disrupted function in cells of patients suffering from ChAc.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Agnieszka Urbanek
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Kathryn R Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
26
|
Drug-induced endovesiculation of erythrocytes is modulated by the dynamics in the cytoskeleton/membrane interaction. Blood Cells Mol Dis 2017; 64:15-22. [DOI: 10.1016/j.bcmd.2017.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/24/2022]
|
27
|
Honisch S, Yu W, Liu G, Alesutan I, Towhid ST, Tsapara A, Schleicher S, Handgretinger R, Stournaras C, Lang F. Chorein addiction in VPS13A overexpressing rhabdomyosarcoma cells. Oncotarget 2016; 6:10309-19. [PMID: 25871399 PMCID: PMC4496357 DOI: 10.18632/oncotarget.3582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Chorein encoded by VPS13A (vacuolar protein sorting-associated protein 13A) is defective in chorea-acanthocytosis. Chorein fosters neuronal cell survival, cortical actin polymerization and cell stiffness. In view of its anti-apoptotic effect in neurons, we explored whether chorein is expressed in cancer cells and influences cancer cell survival. RT-PCR was employed to determine transcript levels, specific siRNA to silence chorein, FACS analysis to follow apoptosis and Western blotting to quantify protein abundance. Chorein transcripts were detected in various cancer cell types. The mRNA coding for chorein and chorein protein were most abundant in drug resistant, poorly differentiated human rhabdomyosarcoma cells. Chorein silencing significantly reduced the ratio of phosphorylated (and thus activated) to total phosphoinositide 3 kinase (PI-3K), pointing to inactivation of this crucial pro-survival signaling molecule. Moreover, chorein silencing diminished transcript levels and protein expression of anti-apoptotic BCL-2 and enhanced transcript levels of pro-apoptotic Bax. Silencing of chorein in rhabdomyosarcoma cells was followed by mitochondrial depolarization, caspase 3 activation and stimulation of early and late apoptosis. In conclusion, chorein is expressed in various cancer cells. In cells with high chorein expression levels chorein silencing promotes apoptotic cell death, an effect paralleled by down-regulation of PI-3K activity and BCL-2/Bax expression ratio.
Collapse
Affiliation(s)
- Sabina Honisch
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Willi Yu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Guilai Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Syeda T Towhid
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Sabine Schleicher
- Department of Hematology and Oncology, Children's Hospital, University Hospital of Tuebingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, Children's Hospital, University Hospital of Tuebingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Physiology, University of Tübingen, Tübingen, Germany.,Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
28
|
Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, Lang F, Stournaras C, Föller M. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett 2016; 590:705-15. [DOI: 10.1002/1873-3468.12096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Abul Fajol
- Department of Physiology; University of Tübingen; Germany
| | - Sabina Honisch
- Department of Physiology; University of Tübingen; Germany
| | - Bingbing Zhang
- Department of Physiology; University of Tübingen; Germany
| | | | - Saad Alkahtani
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Saud Alarifi
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Florian Lang
- Department of Physiology; University of Tübingen; Germany
| | - Christos Stournaras
- Department of Physiology; University of Tübingen; Germany
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Michael Föller
- Institute of Agricultural and Nutritional Sciences; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
29
|
Park JS, Halegoua S, Kishida S, Neiman AM. A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins. PLoS One 2015; 10:e0124836. [PMID: 25915401 PMCID: PMC4411106 DOI: 10.1371/journal.pone.0124836] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/20/2015] [Indexed: 12/18/2022] Open
Abstract
The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s). While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4)P) levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4)P in membranes. To determine whether VPS13A affects PtdIns(4)P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4)P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4)P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals.
Collapse
Affiliation(s)
- Jae-Sook Park
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794–5215, United States of America
| | - Simon Halegoua
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, 11794–5230, United States of America
| | - Shosei Kishida
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890–8544, Japan
| | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794–5215, United States of America
- * E-mail:
| |
Collapse
|
30
|
|
31
|
Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W, Yang J, Yao X, Zhou L, Han L, Li J, Sun S, Xie X, Lai B, Su Y, Lu Y, Yang H, Huang T, Deng W, Nielsen R, Ren J, Huang L. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat Genet 2015; 47:217-25. [DOI: 10.1038/ng.3199] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/29/2014] [Indexed: 12/30/2022]
|
32
|
Borst O, Münzer P, Schmid E, Schmidt E, Russo A, Walker B, Yang W, Leibrock C, Szteyn K, Schmidt S, Elvers M, Faggio C, Shumilina E, Kuro‐o M, Gawaz M, Lang F. 1,25(OH)
2
vitamin D
3
‐dependent inhibition of platelet Ca
2+
signaling and thrombus formation in klotho‐deficient mice. FASEB J 2014; 28:2108-2119. [DOI: 10.1096/fj.13-239277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Oliver Borst
- Department of Cardiology and Cardiovascular MedicineUniversity of TübingenTübingenGermany
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Patrick Münzer
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Evi Schmid
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Eva‐Maria Schmidt
- Department of PhysiologyUniversity of TübingenTübingenGermany
- Department of Behavioral NeurobiologyUniversity of TübingenTübingenGermany
| | - Antonella Russo
- Department of PhysiologyUniversity of TübingenTübingenGermany
- Department of Biological and Environmental SciencesUniversity of MessinaSant'Agata‐MessinaItaly
| | - Britta Walker
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | - Wenting Yang
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | | | - Kalina Szteyn
- Department of PhysiologyUniversity of TübingenTübingenGermany
| | | | - Margitta Elvers
- Department of Cardiology and Cardiovascular MedicineUniversity of TübingenTübingenGermany
- Department of Clinical and Experimental HemostasisUniversity of DüsseldorfDüsseldorfGermany
| | - Caterina Faggio
- Department of Behavioral NeurobiologyUniversity of TübingenTübingenGermany
| | | | - Makoto Kuro‐o
- Department of PathologyUniversity of TexasDallasTexasUSA
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular MedicineUniversity of TübingenTübingenGermany
| | - Florian Lang
- Department of PhysiologyUniversity of TübingenTübingenGermany
| |
Collapse
|
33
|
Gowert NS, Donner L, Chatterjee M, Eisele YS, Towhid ST, Münzer P, Walker B, Ogorek I, Borst O, Grandoch M, Schaller M, Fischer JW, Gawaz M, Weggen S, Lang F, Jucker M, Elvers M. Blood platelets in the progression of Alzheimer's disease. PLoS One 2014; 9:e90523. [PMID: 24587388 PMCID: PMC3938776 DOI: 10.1371/journal.pone.0090523] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/31/2014] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by neurotoxic amyloid-ß plaque formation in brain parenchyma and cerebral blood vessels known as cerebral amyloid angiopathy (CAA). Besides CAA, AD is strongly related to vascular diseases such as stroke and atherosclerosis. Cerebrovascular dysfunction occurs in AD patients leading to alterations in blood flow that might play an important role in AD pathology with neuronal loss and memory deficits. Platelets are the major players in hemostasis and thrombosis, but are also involved in neuroinflammatory diseases like AD. For many years, platelets were accepted as peripheral model to study the pathophysiology of AD because platelets display the enzymatic activities to generate amyloid-ß (Aß) peptides. In addition, platelets are considered to be a biomarker for early diagnosis of AD. Effects of Aß peptides on platelets and the impact of platelets in the progression of AD remained, however, ill-defined. The present study explored the cellular mechanisms triggered by Aß in platelets. Treatment of platelets with Aß led to platelet activation and enhanced generation of reactive oxygen species (ROS) and membrane scrambling, suggesting enhanced platelet apoptosis. More important, platelets modulate soluble Aß into fibrillar structures that were absorbed by apoptotic but not vital platelets. This together with enhanced platelet adhesion under flow ex vivo and in vivo and platelet accumulation at amyloid deposits of cerebral vessels of AD transgenic mice suggested that platelets are major contributors of CAA inducing platelet thrombus formation at vascular amyloid plaques leading to vessel occlusion critical for cerebrovascular events like stroke.
Collapse
Affiliation(s)
- Nina S. Gowert
- Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lili Donner
- Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Madhumita Chatterjee
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität, Tübingen, Germany
| | - Yvonne S. Eisele
- Department of Cellular Neurology, Hertie-Institut for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Seyda T. Towhid
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Patrick Münzer
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Britta Walker
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Isabella Ogorek
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Oliver Borst
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität, Tübingen, Germany
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Maria Grandoch
- Institut für Pharmakologie u. Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard-Karls University, Tübingen, Germany
| | - Jens W. Fischer
- Institut für Pharmakologie u. Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Meinrad Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität, Tübingen, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie-Institut for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany
| | - Margitta Elvers
- Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich-Heine-University, Düsseldorf, Germany
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard-Karls-Universität, Tübingen, Germany
| |
Collapse
|
34
|
Shiokawa N, Nakamura M, Sameshima M, Deguchi A, Hayashi T, Sasaki N, Sano A. Chorein, the protein responsible for chorea-acanthocytosis, interacts with β-adducin and β-actin. Biochem Biophys Res Commun 2013; 441:96-101. [PMID: 24129186 DOI: 10.1016/j.bbrc.2013.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Chorea-acanthocytosis (ChAc) is an autosomal, recessive hereditary disease characterized by striatal neurodegeneration and acanthocytosis, and caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene. VPS13A encodes chorein whose physiological function at the molecular level is poorly understood. In this study, we show that chorein interacts with β-adducin and β-actin. We first compare protein expression in human erythrocyte membranes using proteomic analysis. Protein levels of β-adducin isoform 1 and β-actin are markedly decreased in erythrocyte membranes from a ChAc patient. Subsequent co-immunoprecipitation (co-IP) and reverse co-IP assays using extracts from chorein-overexpressing human embryonic kidney 293 (HEK293) cells, shows that β-adducin (isoforms 1 and 2) and β-actin interact with chorein. Immunocytochemical analysis using chorein-overexpressing HEK293 cells demonstrates co-localization of chorein with β-adducin and β-actin. In addition, immunoreactivity of β-adducin isoform 1 is significantly decreased in the striatum of gene-targeted ChAc-model mice. Adducin and actin are membrane cytoskeletal proteins, involved in synaptic function. Expression of β-adducin is restricted to the brain and hematopoietic tissues, corresponding to the main pathological lesions of ChAc, and thereby implicating β-adducin and β-actin in ChAc pathogenesis.
Collapse
Affiliation(s)
- Nari Shiokawa
- Department of Psychiatry, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|