1
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2025; 83:e1209-e1224. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
2
|
Huang CC, Wang CH, Yeh HY, Tsai HC, Yang CW, Li TH, Su CW, Yang YY, Lin HC, Hou MC. Peroxisome Proliferator-Activated Receptor α/γ and Cannabinoid Receptor 2 Agonist Attenuated Nonalcoholic Steatohepatitis Exosome-Related Abnormalities in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:188-203. [PMID: 39490440 DOI: 10.1016/j.ajpath.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
This study explored the mechanisms and effects of 1 month of peroxisome proliferator-activated receptor (PPAR)α/γ agonist aleglitazar (10 mg/kg per day) or cannabinoid receptor 2 (CB2R) agonist JWH015 (3 mg/kg per day), alone or combined, on visceral adipose tissue (VAT)-derived extracellular vesicle (EV) release and associated systemic/VAT inflammation, decreased VAT capillary density/fibrosis, and intestinal inflammation/hyperpermeability in nonalcoholic steatohepatitis (NASH) mice. High EV release from VAT of NASH mice was associated with severe systemic/VAT/intestinal inflammation, reduced capillary network of VAT, and intestinal hyperpermeability. Combined JWH015 with aleglitazar treatment suppressed high-fat diet-induced obesity/adiposity, inhibited VAT expansion, reduced VAT inflammation/fibrosis, normalized VAT capillary network, and attenuated intestinal mucosal injury, inflammation, and hyperpermeability in NASH + aleglitazar + JWH015 mice. The inhibition of adipose tissue (AT)-derived EV release and hypoxia-inducible factor (HIF)1α levels in AT-derived EV, normalization of CB2R, PPARα, PPARγ, PPARγ1, PPARγ2, tight junction proteins, vascular endothelial growth factor/CD31 expression, and down-regulation of HIF1α, monocyte chemoattractant protein-1, and transforming growth factor-β1 were observed in the VAT and intestine of the NASH + aleglitazar + jwh015 group. In vitro experiments revealed that PPARα/γ and CB2R activation attenuated NASH AT-derived EV-induced pathogenic changes in the J774/SVEC4-10/Caco2/3T3-L1 cell system. This study suggested that VAT-derived EVs contribute to the pathogenesis of NASH and that combined PPARα/γ and CB2R agonist treatment ameliorated the abovementioned abnormalities of NASH mice.
Collapse
Affiliation(s)
- Chia-Chang Huang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Ching-Hsiang Wang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hsiao-Yun Yeh
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Hung-Cheng Tsai
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan; Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ching-Wen Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Tzu-Hao Li
- Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Foundation Hospital, Taipei City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei City, Taiwan
| | - Chien-Wei Su
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ying-Ying Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.
| | - Han-Chieh Lin
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan; Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| |
Collapse
|
3
|
Ma C, Xu X, Qin S, Zhou J. Screening of biomarkers in acute radiation enteritis based on microbiome and clustering methods. BMC Microbiol 2024; 24:463. [PMID: 39516773 PMCID: PMC11545530 DOI: 10.1186/s12866-024-03620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Radiation enteritis (RE) is a common complication of radiotherapy for abdominal and pelvic tumors, adversely affecting treatment outcomes and patients' quality of life. Gut microbiome alterations may contribute to RE development, but the underlying pathogenic factors are not fully understood. This study aimed to characterize the intestinal microbial changes associated with RE and severe acute radiation enteritis (SARE) and to identify predictive biomarkers. METHODS We enrolled 50 cervical cancer patients undergoing radiotherapy and 15 healthy women (controls). Stool samples were collected at the baseline and during weeks 2, 4, and 6 of radiotherapy, and then analyzed using 16 S rDNA sequencing and bioinformatics. RESULTS Although the Bacteroidetes/Firmicutes (B/F) ratio was higher in patients with RE or SARE, it alone could not predict these conditions. Three enterotypes were identified based on dominant genera: Blautia (enterotype 1), Escherichia-Shigella (enterotype 2), and Faecalibacterium (enterotype 3). A decrease in Blautia and an increase in Escherichia-Shigella and Faecalibacterium were correlated with RE and SARE. Univariate logistic regression revealed that the Faecalibacterium enterotype at the baseline was associated with a 4.4-fold higher risk of developing SARE (odds ratio 5.400; P = 0.017). The Escherichia-Shigella enterotype was also linked to increased SARE incidence. CONCLUSION These findings suggest that while single bacterial genera or the B/F ratio are insufficient predictors, enterotype classification may serve as a potential biomarker for predicting SARE in patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Chenying Ma
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiaoting Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Songbing Qin
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Juying Zhou
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Tsounis EP, Aggeletopoulou I, Mouzaki A, Triantos C. Creeping Fat in the Pathogenesis of Crohn's Disease: An Orchestrator or a Silent Bystander? Inflamm Bowel Dis 2023; 29:1826-1836. [PMID: 37260352 DOI: 10.1093/ibd/izad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 06/02/2023]
Abstract
Although the phenomenon of hypertrophied adipose tissue surrounding inflamed bowel segments in Crohn's disease has been described since 1932, the mechanisms mediating the creeping fat formation and its role in the pathogenesis of the disease have not been fully unraveled. Recent advances demonstrating the multiple actions of adipose tissue beyond energy storage have brought creeping fat to the forefront of scientific research. In Crohn's disease, dysbiosis and transmural injury compromise the integrity of the intestinal barrier, resulting in an excessive influx of intraluminal microbiota and xenobiotics. The gut and peri-intestinal fat are in close anatomic relationship, implying a direct reciprocal immunologic relationship, whereas adipocytes are equipped with an arsenal of innate immunity sensors that respond to invading stimuli. As a result, adipocytes and their progenitor cells undergo profound immunophenotypic changes, leading to adipose tissue remodeling and eventual formation of creeping fat. Indeed, creeping fat is an immunologically active organ that synthesizes various pro- and anti-inflammatory cytokines, profibrotic mediators, and adipokines that serve as paracrine/autocrine signals and regulate immune responses. Therefore, creeping fat appears to be involved in inflammatory signaling, which explains why it has been associated with a higher severity or complicated phenotype of Crohn's disease. Interestingly, there is growing evidence for an alternative immunomodulatory function of creeping fat as a second barrier that prevents an abnormal systemic inflammatory response at the expense of an increasingly proliferating profibrotic environment. Further studies are needed to clarify how this modified adipose tissue exerts its antithetic effect during the course of Crohn's disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
5
|
Kim HR, Ingram JL, Que LG. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J Asthma Allergy 2023; 16:481-499. [PMID: 37181453 PMCID: PMC10171222 DOI: 10.2147/jaa.s402340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.
Collapse
Affiliation(s)
- Haein R Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Yanping W, Gao X, Cheng Y, Liu M, Liao S, Zhou J, Hao J, Jiang G, Lu Y, Qu T, Qin B, Cheng Y. The interaction between obesity and visceral hypersensitivity. J Gastroenterol Hepatol 2023; 38:370-377. [PMID: 36478286 DOI: 10.1111/jgh.16083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Obesity has been a worldwide problem associated with numerous chronic diseases such as cardiovascular disease, type 2 diabetes, and metabolic disorders. It may also play a role in visceral hypersensitivity, contributing to irritable bowel syndrome. (i) Adipose tissue secretes various inflammatory mediators, causing intestinal hyperpermeability and nerve endings activation. (ii) Obesity and gastrointestinal microbiota could affect each other, and microbial metabolites can increase sensitivity of the colon. (iii) Vitamin D deficiency contributes to both fat accumulation and disruption of the intestinal mucosal barrier. (iv) Brain-gut axis may be another bridge from obesity to visceral hypersensitivity.
Collapse
Affiliation(s)
- Wu Yanping
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuefen Gao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yizun Cheng
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mi Liu
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siyu Liao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhou
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaming Hao
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gemeng Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixuan Lu
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianyao Qu
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Qin
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Cheng
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
8
|
Lavallee CM, Bruno A, Ma C, Raman M. The Role of Intermittent Fasting in the Management of Nonalcoholic Fatty Liver Disease: A Narrative Review. Nutrients 2022; 14:4655. [PMID: 36364915 PMCID: PMC9657169 DOI: 10.3390/nu14214655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/30/2023] Open
Abstract
Intermittent fasting is a non-pharmacological dietary approach to management of obesity and metabolic syndrome, involving periodic intervals of complete or near-complete abstinence from food and energy-containing fluids. This dietary strategy has recently gained significant popularity in mainstream culture and has been shown to induce weight loss in humans, reduce gut and systemic inflammation, and improve gut microbial diversity and dysbiosis (largely in animal models). It has been hypothesized that intermittent fasting could be beneficial in the management of nonalcoholic fatty liver disease, given the condition's association with obesity. This review summarizes protocols, potential mechanisms of action, and evidence for intermittent fasting in nonalcoholic fatty liver disease. It also highlights practical considerations for implementing intermittent fasting in clinical practice. A search of the literature for English-language articles related to intermittent fasting or time-restricted feeding and liver disease was completed in PubMed and Google Scholar. Potential mechanisms of action for effects of intermittent fasting included modulation of circadian rhythm, adipose tissue and adipokines, gut microbiome, and autophagy. Preclinical, epidemiological, and clinical trial data suggested clinical benefits of intermittent fasting on metabolic and inflammatory markers in humans. However, there was a paucity of evidence of its effects in patients with nonalcoholic fatty liver disease. More clinical studies are needed to determine mechanisms of action and to evaluate safety and efficacy of intermittent fasting in this population.
Collapse
Affiliation(s)
| | - Andreina Bruno
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Christopher Ma
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Maitreyi Raman
- Department of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Zhang H, Zheng Y, Zha X, Liu X, Ma Y, Loor JJ, Elsabagh M, Wang M, Wang H, Jiang H. Dietary N-carbamylglutamate and L-arginine supplementation improves redox status and suppresses apoptosis in the colon of intrauterine growth-retarded suckling lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:359-368. [PMID: 36329684 PMCID: PMC9618968 DOI: 10.1016/j.aninu.2022.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 01/09/2023]
Abstract
Previous studies have revealed that dietary N-carbamylglutamate (NCG) or L-arginine (Arg) improves small intestinal integrity and immune function in suckling Hu lambs that have experienced intrauterine growth retardation (IUGR). Whether these nutrients alter redox status and apoptosis in the colon of IUGR lambs is still unknown. This study, therefore, aimed at investigating whether dietary supplementation of Arg or NCG alters colonic redox status, apoptosis and endoplasmic reticulum (ER) stress and the underlying mechanism of these alterations in IUGR suckling Hu lambs. Forty-eight 7-d old Hu lambs, including 12 with normal birth weight (4.25 ± 0.14 kg) and 36 with IUGR (3.01 ± 0.12 kg), were assigned to 4 treatment groups (n = 12 each; 6 males and 6 females) for 3 weeks. The treatment groups were control (CON), IUGR, IUGR + Arg and IUGR + NCG. Relative to IUGR lambs, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) content, as well as proliferation index, were higher (P < 0.05) whereas reactive oxygen species (ROS), malondialdehyde (MDA) levels and apoptotic cell numbers were lower (P < 0.05) in colonic tissue for both IUGR + Arg and NCG lambs. Both mRNA and protein levels of C/EBP homologous protein 10 (CHOP10), B-cell lymphoma/leukaemia 2 (Bcl-2) -associated X protein (Bax), apoptosis antigen 1 (Fas), activating transcription factor 6 (ATF6), caspase 3, and glucose-regulated protein 78 (GRP78) were lower (P < 0.05) while glutathione peroxidase 1 (GPx1), Bcl-2 and catalase (CAT) levels were higher (P < 0.05) in colonic tissue for IUGR + Arg and IUGR + NCG lambs compared with IUGR lambs. Based on our results, dietary NCG or Arg supplementation can improve colonic redox status and suppress apoptosis via death receptor-dependent, mitochondrial and ER stress pathways in IUGR suckling lambs.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey,Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Honghua Jiang
- Department of Pediatrics, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China,Corresponding author.
| |
Collapse
|
10
|
Suau R, Pardina E, Domènech E, Lorén V, Manyé J. The Complex Relationship Between Microbiota, Immune Response and Creeping Fat in Crohn's Disease. J Crohns Colitis 2022; 16:472-489. [PMID: 34528668 DOI: 10.1093/ecco-jcc/jjab159] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last decade, there has been growing interest in the pathological involvement of hypertrophic mesenteric fat attached to the serosa of the inflamed intestinal segments involved in Crohn's disease [CD], known as creeping fat. In spite of its protective nature, creeping fat harbours an aberrant inflammatory activity which, in an already inflamed intestine, may explain why creeping fat is associated with a greater severity of CD. The transmural inflammation of CD facilitates the interaction of mesenteric fat with translocated intestinal microorganisms, contributing to activation of the immune response. This may be not the only way in which microorganisms alter the homeostasis of this fatty tissue: intestinal dysbiosis may also impair xenobiotic metabolism. All these CD-related alterations have a functional impact on nuclear receptors such as the farnesoid X receptor or the peroxisome proliferator-activated receptor γ, which are implicated in regulation of the immune response, adipogenesis and the maintenance of barrier function, as well as on creeping fat production of inflammatory-associated cells such as adipokines. The dysfunction of creeping fat worsens the inflammatory course of CD and may favour intestinal fibrosis and fistulizing complications. However, our current knowledge of the pathophysiology and pathogenic role of creeping fat is controversial and a better understanding might provide new therapeutic targets for CD. Here we aim to review and update the key cellular and molecular alterations involved in this inflammatory process that link the pathological components of CD with the development of creeping fat.
Collapse
Affiliation(s)
- Roger Suau
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Eva Pardina
- Biochemistry and Molecular Biomedicine Department, University of Barcelona, Barcelona (Catalonia), Spain
| | - Eugeni Domènech
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain.,Gastroenterology Department, 'Germans Trias i Pujol' University Hospital, Badalona (Catalonia), Spain
| | - Violeta Lorén
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Josep Manyé
- IBD Research Group, 'Germans Trias i Pujol' Research Institute (IGTP), Badalona (Catalonia), Spain.,Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
| |
Collapse
|
11
|
Rivero-Gutiérrez B, Arredondo-Amador M, Gámez-Belmonte R, Sánchez de Medina F, Martínez-Augustin O. Leptin-resistant Zucker rats with trinitrobenzene sulfonic acid colitis present a reduced inflammatory response but enhanced epithelial damage. Am J Physiol Gastrointest Liver Physiol 2021; 321:G157-G170. [PMID: 34132111 DOI: 10.1152/ajpgi.00367.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of leptin in the development of intestinal inflammation remains controversial, since proinflammatory and anti-inflammatory effects have been described. This study describes the effect of the absence of leptin signaling in intestinal inflammation. Experimental colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to lean and obese Zucker rats (n = 10). Effects on inflammation and mucosal barrier were studied. Bacterial translocation and LPS concentration were evaluated together with colonic permeability to 4-kDa FITC-dextran. Obese Zucker rats showed a lower intestinal myeloperoxidase and alkaline phosphatase activity, reduced alkaline phosphatase sensitivity to levamisole, and diminished colonic expression of Nos2, Tnf, and Il6, indicating attenuated intestinal inflammation, associated with attenuated STAT3, AKT, and ERK signaling in the colonic tissue. S100a8 and Cxcl1 mRNA levels were maintained, suggesting that in the absence of leptin signaling neutrophil activation rather than infiltration is hampered. Despite the lower inflammatory response, leptin resistance enhanced intestinal permeability, reflecting an increased epithelial damage. This was shown by augmented LPS presence in the portal vein of colitic obese Zucker rats, associated with induction of tissue nonspecific alkaline phosphatase, LPS-binding protein, and CD14 hepatic expression (involved in LPS handling). This was linked to decreased ZO-1 immunoreactivity in tight junctions and lower occludin expression. Our results indicate that obese Zucker rats present an attenuated inflammatory response to TNBS, but increased intestinal epithelial damage allowing the passage of bacterial antigens.NEW & NOTEWORTHY Obese Zucker rats, which are resistant to leptin, exhibit a diminished inflammatory response in the trinitrobenzenesulfonic acid (TNBS) model of colitis, suggesting leptin role is proinflammatory. At the same time, obese Zucker rats present a debilitated intestinal barrier function, with increased translocation of LPS. Zucker rats present a dual response in the TNBS model of rat colitis.
Collapse
Affiliation(s)
- Belén Rivero-Gutiérrez
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - María Arredondo-Amador
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| |
Collapse
|
12
|
Protective effects of Antarctic krill oil in dextran sulfate sodium-induced ulcerative colitis mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
13
|
Chang ML, Yang Z, Yang SS. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. Int J Mol Sci 2020; 21:E8308. [PMID: 33167521 PMCID: PMC7663948 DOI: 10.3390/ijms21218308] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a highly dynamic endocrine tissue and constitutes a central node in the interorgan crosstalk network through adipokines, which cause pleiotropic effects, including the modulation of angiogenesis, metabolism, and inflammation. Specifically, digestive cancers grow anatomically near adipose tissue. During their interaction with cancer cells, adipocytes are reprogrammed into cancer-associated adipocytes and secrete adipokines to affect tumor cells. Moreover, the liver is the central metabolic hub. Adipose tissue and the liver cooperatively regulate whole-body energy homeostasis via adipokines. Obesity, the excessive accumulation of adipose tissue due to hyperplasia and hypertrophy, is currently considered a global epidemic and is related to low-grade systemic inflammation characterized by altered adipokine regulation. Obesity-related digestive diseases, including gastroesophageal reflux disease, Barrett's esophagus, esophageal cancer, colon polyps and cancer, non-alcoholic fatty liver disease, viral hepatitis-related diseases, cholelithiasis, gallbladder cancer, cholangiocarcinoma, pancreatic cancer, and diabetes, might cause specific alterations in adipokine profiles. These patterns and associated bases potentially contribute to the identification of prognostic biomarkers and therapeutic approaches for the associated digestive diseases. This review highlights important findings about altered adipokine profiles relevant to digestive diseases, including hepatic, pancreatic, gastrointestinal, and biliary tract diseases, with a perspective on clinical implications and mechanistic explorations.
Collapse
Affiliation(s)
- Ming-Ling Chang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Zinger Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei 10630, Taiwan;
| |
Collapse
|
14
|
|
15
|
Bahlouli W, Breton J, Lelouard M, L'Huillier C, Tirelle P, Salameh E, Amamou A, Atmani K, Goichon A, Bôle-Feysot C, Ducrotté P, Ribet D, Déchelotte P, Coëffier M. Stress-induced intestinal barrier dysfunction is exacerbated during diet-induced obesity. J Nutr Biochem 2020; 81:108382. [PMID: 32417626 DOI: 10.1016/j.jnutbio.2020.108382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/21/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Obesity and irritable bowel syndrome (IBS) are two major public health issues. Interestingly previous data report a marked increase of IBS prevalence in morbid obese subjects compared with non-obese subjects but underlying mechanisms remain unknown. Obesity and IBS share common intestinal pathophysiological mechanisms such as gut dysbiosis, intestinal hyperpermeability and low-grade inflammatory response. We thus aimed to evaluate the link between obesity and IBS using different animal models. Male C57Bl/6 mice received high fat diet (HFD) for 12 weeks and were then submitted to water avoidance stress (WAS). In response to WAS, HFD mice exhibited higher intestinal permeability and plasma corticosterone concentration than non-obese mice. We were not able to reproduce a similar response both in ob/ob mice and in leptin-treated non-obese mice. In addition, metformin, a hypoglycemic agent, limited fasting glycaemia both in unstressed and WAS diet-induced obese mice but only partially restored colonic permeability in unstressed HFD mice. Metformin failed to improve intestinal permeability in WAS HFD mice. Finally, cecal microbiota transplantation from HFD mice in antibiotics-treated recipient mice did not reproduce the effects observed in stressed HFD mice. In conclusion, stress induced a more marked intestinal barrier dysfunction in diet-induced obese mice compared with non-obese mice that seems to be independent of leptin, glycaemia and gut microbiota. These data should be further confirmed and the role of the dietary composition should be studied.
Collapse
Affiliation(s)
- Wafa Bahlouli
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Jonathan Breton
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Mauranne Lelouard
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Clément L'Huillier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Pauline Tirelle
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Emmeline Salameh
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Asma Amamou
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Karim Atmani
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Alexis Goichon
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Christine Bôle-Feysot
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Philippe Ducrotté
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France; Department of Gastroenterology, Rouen University Hospital, 76183 Rouen, France
| | - David Ribet
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France; Department of Nutrition, Rouen University Hospital, 76183 Rouen, France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM UMR 1073 "Nutrition, inflammation and gut-brain axis", 76183 Rouen, France; Institute of Research and Innovation in Biomedicine (IRIB), UNIROUEN, 76183 Rouen, France; Department of Nutrition, Rouen University Hospital, 76183 Rouen, France.
| |
Collapse
|
16
|
Grases-Pintó B, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Burleigh S, Fåk Hållenius F, Prykhodko O, Pérez-Cano FJ, Franch À. Influence of Leptin and Adiponectin Supplementation on Intraepithelial Lymphocyte and Microbiota Composition in Suckling Rats. Front Immunol 2019; 10:2369. [PMID: 31708912 PMCID: PMC6795087 DOI: 10.3389/fimmu.2019.02369] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Dietary components in early life play a role in both microbiota and intestinal immune system maturation in mammalian species. Adipokines, as endogenously produced hormones from breast milk, may have an impact on this process. The aim of the present study was to establish the influence of leptin and adiponectin supplementation during suckling on the intraepithelial lymphocyte composition, intestinal barrier function, intestinal gene expression, and gut microbiota in rat. For this purpose, newborn Wistar rats were supplemented daily with leptin, adiponectin, or whey protein concentrate during the first 21 days of life. Lymphocyte composition was established by immunofluorescence staining and flow cytometry analysis; intestinal gene expression by real-time PCR and cecal microbiota were analyzed through 16S rRNA gene sequencing. Although leptin and adiponectin were able to increase the Tc TCRαβ+ and NKT cell proportion, they decreased the NK cell percentage in IEL. Moreover, adipokine supplementation differentially modified CD8+ IEL. While the supplementation of leptin increased the proportion of CD8αα+ IEL (associated to a more intestinal phenotype), adiponectin enhanced that of CD8αβ+ (related to a peripheral phenotype). Furthermore, both adipokines enhanced the gene expression of TNF-α, MUC-2, and MUC-3, and decreased that of FcRn. In addition, the adipokine supplementations decreased the abundance of the Proteobacteria phylum and the presence of Blautia. Moreover, leptin-supplemented animals had lower relative abundance of Sutterella and a higher proportion of Clostridium genus, among others. However, supplementation with adiponectin resulted in lower abundance of the Roseburia genus and a higher proportion of the Enterococcus genus. In conclusion, the supplementation with leptin and adiponectin throughout the suckling period had an impact on both the IEL composition and the gut microbiota pattern, suggesting a modulatory role of these adipokines on the development of intestinal functionality.
Collapse
Affiliation(s)
- Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Maria J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Stephen Burleigh
- Food for Health Science Centre, Lund University, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Frida Fåk Hållenius
- Food for Health Science Centre, Lund University, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Olena Prykhodko
- Food for Health Science Centre, Lund University, Lund, Sweden.,Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain.,Research Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), Santa Coloma de Gramenet, Spain
| |
Collapse
|
17
|
Grases-Pintó B, Torres-Castro P, Marín-Morote L, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Franch À. Leptin and EGF Supplementation Enhance the Immune System Maturation in Preterm Suckling Rats. Nutrients 2019; 11:nu11102380. [PMID: 31590415 PMCID: PMC6836246 DOI: 10.3390/nu11102380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022] Open
Abstract
In preterm newborns the immaturity of the immune system is remarkable, with reduced innate and adaptive immune responses. Many bioactive compounds in breast milk, such as growth factors and adipokines, contribute to the immune system’s maturation in early life. However, studies on the immunoregulatory activity in preterm neonates are practically nonexistent. The aim of the present study was to determine whether a nutritional supplementation in early life with leptin or epidermal growth factor (EGF) was able to promote the maturation of the systemic and intestinal immune system in preterm conditions. For this purpose, premature rats were daily supplemented by oral gavage with leptin or EGF. Term and Preterm groups receiving vehicle were used as controls. Preterm rats showed deficiencies compared to full-term ones, such as lower body weights, erythrocyte counts, plasma IgG and IgM concentrations and B cell percentages, and higher values of Th and Tc TCRαβ+ cells in mesenteric lymph nodes, and intestinal permeability, among others. However, leptin and EGF supplementation were able to revert some of these deficiencies and to improve the premature immune system’s development. These results suggest that leptin and EGF are involved in enhancing the maturation of the systemic and intestinal immune system in preterm conditions.
Collapse
Affiliation(s)
- Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Paulina Torres-Castro
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Lidia Marín-Morote
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Mar Abril-Gil
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - María J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
18
|
Exogenous leptin reinforces intestinal barrier function and protects from colitis. Pharmacol Res 2019; 147:104356. [DOI: 10.1016/j.phrs.2019.104356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
|
19
|
Huang S, Li N, Liu C, Li T, Wang W, Jiang L, Li Z, Han D, Tao S, Wang J. Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth. J Microbiol 2019; 57:748-758. [PMID: 31187413 DOI: 10.1007/s12275-019-8690-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Intrauterine growth restriction (IUGR) predisposes newborns to inflammatory and metabolic disturbance. Disequilibrium of gut microbiota in early life has been implicated in the incidence of inflammation and metabolic diseases in adulthood. This study aimed to investigate the difference in gut microbiota colonization, cytokines and plasma metabolome between IUGR and normal birth weight (NBW) piglets in early life. At birth, reduced (P < 0.05) body, jejunum, and ileum weights, as well as decreased (P < 0.05) small intestinal villi and increased (P < 0.05) ileal crypt depth were observed in IUGR piglets compared with their NBW counterparts. Imbalanced inflammatory and plasma metabolome profile was observed in IUGR piglets. Furthermore, altered metabolites were mainly involved in fatty acid metabolism and inflammatory response. At 12 h after birth and after suckling colostrum, reduced (P < 0.05) postnatal growth and the small intestinal maturation retardation (P < 0.05) continued in IUGR piglets in comparison with those in NBW littermates. Besides, the gut microbiota structure was significantly altered by IUGR. Importantly, the disruption of the inflammatory profile and metabolic status mainly involved the pro-inflammatory cytokines (IL-1β and IFN-γ) and amino acid metabolism. Moreover, spearman correlation analysis showed that the increased abundance of Escherichia-Shigella and decreased abundance of Clostridium_sensu_stricto_1 in IUGR piglets was closely associated with the alterations of slaughter weight, intestinal morphology, inflammatory cytokines, and plasma metabolites. Collectively, IUGR significantly impairs small intestine structure, modifies gut microbiota colonization, and disturbs inflammatory and metabolic profiles during the first 12 h after birth. The unbalanced gut microbiota mediated by IUGR contributes to the development of inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Cong Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, 100193, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
20
|
Gao XJ, Tang B, Liang HH, Yi L, Wei ZG. The protective effect of nigeglanine on dextran sulfate sodium-induced experimental colitis in mice and Caco-2 cells. J Cell Physiol 2019; 234:23398-23408. [PMID: 31169313 DOI: 10.1002/jcp.28909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 01/17/2023]
Abstract
Ulcerative colitis (UC) was a nonspecific inflammatory disease. The treatment of UC is imperative. The present study aimed to investigate the effect of nigeglanine on dextran sulfate sodium-induced UC in experimental mice and Caco-2 cells and define the underlying mechanism. The nigeglanine was shown a significant protective effect on the colon, significantly reduced the weight and colon length loss and inhibited intestinal epithelial cell damage. Nigeglanine also reduced proinflammatory factors and increased anti-inflammatory factor production. The results indicate that nigeglanine suppresses the nuclear factor kappa B and mitogen-activated protein kinases pathways in addition to NLRP3 inflammasome action, inhibiting colon epithelial cell pyroptosis. Surprisingly, ZO-1 and occludin protein levels increased with nigeglanine treatment, suggesting that nigeglanine plays a protective role in barrier integrity, reducing colitis progression. The present study suggests that dietary therapy with nigeglanine may be a useful treatment for prophylaxis and palliative UC.
Collapse
Affiliation(s)
- Xue-Jiao Gao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Bin Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Hui-Huang Liang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Li Yi
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| | - Zi-Gong Wei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, Hubei, PR China
| |
Collapse
|
21
|
Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem Biophys Res Commun 2018; 509:395-401. [PMID: 30594393 DOI: 10.1016/j.bbrc.2018.12.144] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine (METH) is a psychostimulant with severe neurotoxicity, which is related to an increase of blood-brain barrier (BBB) permeability. However, the exact mechanisms have not been fully illuminated. In the present study, male Sprague Dawley rats were treated with METH or saline with 8 injections (i.p.) at 12-h intervals and sacrificed 24 h after the last METH injection. To evaluate BBB permeability, 6 rats were administered with Evans blue (EB) by tail vein injection 1 h prior to sacrifice. EB levels significantly increased in both left and right frontal lobes in METH-treated rats, suggesting increase of BBB permeability, which was proved by the rearrangement of F-actin cytoskeleton and decreased expressions of tight junction (TJ) proteins in hippocampus. Over-expressions of RhoA, ROCK, myosin light chain (MLC), cofilin, phosphorylation (p)-MLC, p-cofilin and matrix metalloproteinase (MMP)-9 were observed, indicating activated RhoA/ROCK pathway. Rat brain microvascular endothelial cells (RBMECs) were isolated and treated with inhibitors of RhoA and ROCK followed by METH. Pretreatments of the inhibitors significantly decreased expressions of RhoA, ROCK, MLC, cofilin, p-MLC and p-cofilin, increased expressions of TJ proteins, suppressed F-actin cytoskeleton rearrangement and reduced the permeability of RBMECs. These results suggested that METH increased BBB permeability through activating the RhoA/ROCK pathway, which resulted in F-actin cytoskeleton rearrangement and down-regulation of TJ proteins.
Collapse
|
22
|
Adipose Tissue-Derived Biomarkers of Intestinal Barrier Functions for the Characterization of Diarrhoea-Predominant IBS. DISEASE MARKERS 2018; 2018:1827937. [PMID: 30622656 PMCID: PMC6304194 DOI: 10.1155/2018/1827937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Background Alterations of the small-intestinal permeability (s-IP) might play an essential role in a subgroup of diarrhoea-predominant IBS (D-IBS) patients. Goals (a) To analyse in D-IBS patients the symptom profile in relation to the altered (+) or not (−) s-IP using the Gastrointestinal Symptom Rating Scale (GSRS). (b) To assess the circulating levels of the adipokines IL-6, IL-8, TNF-α, leptin, and adiponectin, along with LPS, TLR-4, neurotensin, and brain-derived neurotrophic factor (BDNF). The frequency distribution of SNPs at the loci for the investigated molecules and leptin receptor was evaluated. Study The study included 34 D-IBS patients and 17 healthy controls (HC). s-IP permeability was assayed by high-performance liquid chromatography determination in the urine of the lactulose to mannitol ratio. Concentrations of IL-6, IL-8, TNF-α, LPS, TLR-4, leptin, adiponectin, neurotensin, and BDNF were assayed by ELISA. Screening of genetic variants was done employing the restriction fragment length polymorphism-polymerase chain reaction method. Results D-IBS(−) patients had a significantly higher GSRS cluster pain and diarrhoea profile than D-IBS(+) ones. Significant correlations were found between the symptoms clusters and immune activation and inflammation markers. The levels of adipo(cyto)kines in D-IBS(+) patients were higher than those of controls, and IL-6 levels correlated with those of LPS. Leptin and BDNF were significantly higher, and neurotensin levels were significantly lower in D-IBS(+) than in controls. No differences were found in the frequency distribution of genotypes among the study groups. Conclusions Results from this study could be of some help in the characterization of the D-IBS and highlight the contribution of an altered intestinal barrier in the pathogenesis of this syndrome. Besides, a role could be ascribed to molecules secreted by the visceral adipose tissue that can impact on barrier functions.
Collapse
|
23
|
Wu Z, Tan J, Chi Y, Zhang F, Xu J, Song Y, Cong X, Wu N, Liu Y. Mesenteric adipose tissue contributes to intestinal barrier integrity and protects against nonalcoholic fatty liver disease in mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G659-G670. [PMID: 29902065 DOI: 10.1152/ajpgi.00079.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral adipose tissue (VAT) is related to nonalcoholic fatty liver disease (NAFLD). However, the role of mesenteric adipose tissue (MAT), part of the VAT, in NAFLD is unclear. In the present study, we monitored the liver and four depots of the VAT in high-fat diet (HFD)-feeding mice at multiple time points (4, 8, and 12 wk). The MAT had become inflamed by the eighth week of HFD feeding, earlier than other depots of VAT. Furthermore, MAT removal after 8 wk of HFD resulted in more severe steatosis and more foci of inflammation infiltration, as well as higher NAFLD activity scores. Consistent with these findings, the mRNA expression of proinflammatory cytokines and lipid anabolism genes was increased in the livers of inflamed MAT-removal mice. MAT removal also injured the intestinal barrier and promoted intestinal inflammation. The bacterial load translocated to the liver and circulating levels of lipopolysaccharide were also evaluated in inflamed MAT-removal mice. In a coculture experiment involving adipocytes and intestinal epithelial cells, mRNA expression of zonula occludens-1 (ZO-1), and occludin in CT-26 cells was upregulated and permeability of monolayer Caco-2 cells was elevated under stimulation from adipocytes or inflamed adipocytes. Taken together, these results demonstrated that MAT removal damaged the intestinal barrier and aggravated NAFLD and that MAT inflammation may be a compensatory response to protect the liver by maintaining the intestinal barrier. NEW & NOTEWORTHY The mesenteric adipose tissue (MAT) lies between the gut and liver and plays a critical role in hepatic metabolic diseases. In the present study, we found that the MAT was prone to inflammation in high-fat diet-fed mice. Removal of the inflamed MAT resulted in more hepatic inflammation, lipid accumulation, and decreased glucose tolerance. Furthermore, we showed that the MAT contributed to intestinal barrier integrity, thus clarifying why MAT removal aggravated nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jiang Tan
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yujing Chi
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Feng Zhang
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Jun Xu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Yang Song
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| | - Xu Cong
- Hepatology Institute, Peking University People's Hospital, Beijing, People's Republic of China
| | - Na Wu
- Central Laboratory & Institute of Clinical Molecular Biology Peking University People's Hospital , Beijing , People's Republic of China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital , Beijing , People's Republic of China.,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital , Beijing , People's Republic of China
| |
Collapse
|
24
|
Aubert P, Oleynikova E, Rizvi H, Ndjim M, Le Berre-Scoul C, Grohard PA, Chevalier J, Segain JP, Le Drean G, Neunlist M, Boudin H. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring. FASEB J 2018; 33:770-781. [DOI: 10.1096/fj.201800079r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Philippe Aubert
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Elena Oleynikova
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Hina Rizvi
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Marième Ndjim
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Catherine Le Berre-Scoul
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Pierre Antoine Grohard
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Julien Chevalier
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Jean-Pierre Segain
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Gwenola Le Drean
- Institute National de la Recherche Agronomique (INRA) Unité Mixte de Recherche 1280Physiologie des Adaptations Nutritionnelles (PhAN)Institut des Maladies de l'Appareil Digestif Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Michel Neunlist
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| | - Helene Boudin
- The Enteric Nervous System in Gut and Brain DisordersINSERMUniversité de Nantes Nantes France
- Centre de Recherche en Nutrition Humaine Grand Ouest Nantes France
| |
Collapse
|
25
|
Wang X, Zhang X, Hu L, Li H. Exogenous leptin affects sperm parameters and impairs blood testis barrier integrity in adult male mice. Reprod Biol Endocrinol 2018; 16:55. [PMID: 29855380 PMCID: PMC5984414 DOI: 10.1186/s12958-018-0368-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/09/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Serum leptin levels are augmented in obese infertile men and in men with azoospermia. They also correlate inversely with sperm concentration, motility and normal forms. The mechanisms underlying the adverse effects of excess leptin on male reproductive function remain unclear. The present study aimed to evaluate the effects of exogenous leptin on sperm parameters in mice and to explore the underlying mechanisms. METHODS We treated normal adult male mice with saline, 0.1, 0.5 or 3 mg/kg leptin daily for 2 weeks. After treatment, serum leptin levels, serum testosterone levels, sperm parameters and testicular cell apoptosis were evaluated. Blood testis barrier integrity and the expression of tight junction-associated proteins in testes were also assessed. We further verified the direct effects of leptin on tight junction-associated proteins in Sertoli cells and the possible leptin signaling pathways involved in this process. RESULTS After treatment, there were no significant differences in body weights, reproductive organ weights, serum leptin levels and serum testosterone levels between leptin-treated mice and control mice. Administration of 3 mg/kg leptin reduced sperm concentration, motility and progressive motility while increasing the percentage of abnormal sperm and testicular cell apoptosis. Mice treated with 3 mg/kg leptin also had impaired blood testis barrier integrity, which was related to decreased tight junction-associated proteins in testes. Leptin directly reduced tight junction-associated proteins in Sertoli cells, JAK2/STAT, PI3K and ERK pathways were suggested to be involved in this process. CONCLUSIONS Exogenous leptin negatively affects sperm parameters and impairs blood testis barrier integrity in mice. Leptin reduced tight junction-associated proteins in Sertoli cells, indicating that leptin has a direct role in impairing blood testis barrier integrity. Given the function of blood testis barrier in maintaining normal spermatogenesis, leptin-induced blood testis barrier impairment may be one of the mechanisms contributing to male subfertility and infertility.
Collapse
Affiliation(s)
- Xiaotong Wang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoke Zhang
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- grid.412719.8Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Lian Hu
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Honggang Li
- 0000 0004 0368 7223grid.33199.31Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
26
|
Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction. J Nutr Biochem 2018; 55:104-112. [DOI: 10.1016/j.jnutbio.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
27
|
Liu DR, Xu XJ, Yao SK. Increased intestinal mucosal leptin levels in patients with diarrhea-predominant irritable bowel syndrome. World J Gastroenterol 2018; 24:46-57. [PMID: 29358881 PMCID: PMC5757124 DOI: 10.3748/wjg.v24.i1.46] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/08/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To measure the leptin levels in patients with diarrhea-predominant irritable bowel syndrome (IBS-D) and analyze the relationship of leptin with clinical features, visceral sensitivity, mast cells, and nerve fibers.
METHODS Forty-two patients with IBS-D fulfilling the Rome III criteria and 20 age- and sex-matched healthy controls underwent clinical and psychological evaluations using validated questionnaires (including IBS Symptom Severity Scale, IBS-specific Quality of Life, Hamilton Anxiety Scale, and Hamilton Depression Scale), along with colonoscopy, colonic mucosal biopsy, and visceral sensitivity testing. Serum leptin levels were assayed using enzyme-linked immunosorbent assay. Mucosal leptin expression and localization were evaluated using immunohistochemistry and immunofluorescence. Mucosal leptin mRNA levels were quantified using quantitative real-time reverse transcription polymerase chain reaction. Mast cell counts and activation rates were investigated by toluidine blue staining. Correlation analyses between these parameters were performed.
RESULTS There were no statistically significant differences in age, gender, or body mass index between the IBS-D group and the control group. The median IBS Symptom Severity Scale score in the IBS-D group was 225.0 (range, 100-475). IBS-D patients had significantly increased anxiety [IBS-D: median, 6.5; interquartile range (IQR), 3.3; control: median, 2.0; IQR, 2.0; P < 0.001] and depression (IBS-D: median, 7.0; IQR, 3.0; control: median, 3.0; IQR, 2.0; P < 0.001) scores. IBS-D patients had significantly lower first sensation threshold (IBS-D: median, 50.6; IQR, 25.9; control: median, 80.5; IQR, 18.6; P < 0.001), defecation sensation threshold (IBS-D: median, 91.5; IQR, 29.3; control: median, 155.0; IQR, 21.1; P < 0.001) and maximum tolerable threshold (IBS-D: median, 163.2; IQR, 71.2; control: median, 226.2; IQR, 39.3; P < 0.001). Mucosal leptin expression, as reflected by integrated optical density (IBS-D: median, 4424.71; IQR, 4533.63; control: median, 933.65; IQR, 888.10; P < 0.001), leptin mRNA expression (IBS-D: median, 1.1226; IQR, 1.6351; control: median, 0.8947; IQR, 0.4595; P = 0.009), and mast cell activation rate (IBS-D: median, 71.2%; IQR, 12.9%; control group: median, 59.4%; IQR, 18.88%; P < 0.001) were significantly increased in IBS-D patients. The colocalization of leptin and leptin receptors was observed on mast cells and PGP9.5-positive nerve fibers in the intestinal mucosa. Also, leptin expression was positively correlated with anxiety, depression, and the mast cell activation rate, but negatively correlated with the defecation sensation threshold and the maximum tolerance threshold during visceral sensitivity testing (adjusted P < 0.0038).
CONCLUSION Increased levels of mucosal leptin may interact with mast cells and the nervous system to contribute to the pathogenesis of IBS-D.
Collapse
Affiliation(s)
- De-Rong Liu
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Juan Xu
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
28
|
Zou Y, Ma L, Zhao Y, Zhang S, Zhou C, Cai Y. Inhibition of Rho kinase protects against colitis in mice by attenuating intestinal epithelial barrier dysfunction via MLC and the NF-κB pathway. Int J Mol Med 2017; 41:430-438. [PMID: 29115372 DOI: 10.3892/ijmm.2017.3197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the role of Rho kinase (also known as ROCK) inhibitor in 2,4,6-trinitrobenzene sulfonic acid induced mouse colitis; and to elucidate the underlying mechanism of ROCK1/ROCK2 inhibition in enhancing intestinal epithelial barrier (IEB) function. A specific inhibitor of ROCK, Y-27632, was used to examine the role of ROCK in mouse colitis models. ROCK1 and ROCK2 were silenced respectively using RNA interference in Caco-2 cells. The expression of tight junction proteins and the downstream molecules of ROCK were assessed. Y-27632 alleviated colonic inflammation and decreased intestinal permeability. ROCK-myosin light chain (MLC) and ROCK-NF-κB pathway were activated in colitis and inhibited by Y-27632. In vitro, ROCK1 RNAi primarily downregulated the phosphorylation of myosin phosphatase-targeting subunit-1 (MYPT-1) and MLC, while ROCK2 RNAi inhibited phosphorylation of nuclear factor-κB (NF-κB). In conclusion, the results suggested that the ROCK inhibitor alleviated colitis and IEB dysfunction. Inhibition of phospho-MYPT-1 and MLC by ROCK1 knockout or inhibition of NF-κB phosphorylation by ROCK2 knockout may be the underlying mechanisms.
Collapse
Affiliation(s)
- Yanting Zou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Lili Ma
- Endoscopy Center, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yuan Zhao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Chaohui Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| | - Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200032, P.R. China
| |
Collapse
|
29
|
Mustafi D, Fernandez S, Markiewicz E, Fan X, Zamora M, Mueller J, Brady MJ, Conzen SD, Karczmar GS. MRI reveals increased tumorigenesis following high fat feeding in a mouse model of triple-negative breast cancer. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3758. [PMID: 28661075 PMCID: PMC5764539 DOI: 10.1002/nbm.3758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/17/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
High animal fat consumption is associated with an increase in triple-negative breast cancer (TNBC) risk. Based on previous MRI studies demonstrating the feasibility of detecting very early non-palpable mammary cancers in simian virus 40 large T antigen (SV40TAg) mice, we examined the effect of dietary fat fed from weaning to young adulthood in this model of TNBC. Virgin female C3(1)SV40TAg mice (n = 16) were weaned at 3-4 weeks of age and then fed either a low fat diet (LFD) (n = 8, 3.7 kcal/g; 17.2% kcal from vegetable oil) or a high animal fat diet (HAFD) (n = 8, 5.3 kcal/g; 60% kcal from lard). After 8 weeks on the diet (12 weeks of age), fast spin echo MR images of inguinal mammary glands were acquired at 9.4 T. Following in vivo MRI, mice were sacrificed and inguinal mammary glands were excised and formalin fixed for ex vivo MRI. 3D volume-rendered MR images were then correlated with mammary gland histology to assess the glandular parenchyma and tumor burden. Using in vivo MRI, an average of 3.88 ± 1.03 tumors were detected per HAFD-fed mouse compared with an average of 1.25 ± 1.16 per LFD-fed mouse (p < 0.007). Additionally, the average tumor volume was significantly higher following HAFD feeding (0.53 ± 0.45 mm3 ) compared with LFD feeding (0.20 ± 0.08 mm3 , p < 0.02). Analysis of ex vivo MR and histology images demonstrated that HAFD mouse mammary glands had denser parenchyma, irregular and enlarged ducts, dilated blood vessels, increased white adipose tissue, and increased tumor invasion. MRI and histological studies of the SV40TAg mice demonstrated that HAFD feeding also resulted in higher cancer incidence and larger mammary tumors. Unlike other imaging methods for assessing environmental effects on mammary cancer growth, MRI allows routine serial measurements and reliable detection of small cancers as well as accurate tumor volume measurements and assessment of the three-dimensional distribution of tumors over time.
Collapse
Affiliation(s)
- Devkumar Mustafi
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Sully Fernandez
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois 60637, USA
| | - Erica Markiewicz
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Marta Zamora
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jeffrey Mueller
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Matthew J. Brady
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, The University of Chicago, Chicago, Illinois 60637, USA
| | - Suzanne D. Conzen
- Department of Medicine, Section of Hematology and Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory S. Karczmar
- Department of Radiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
30
|
Khan N, Binder L, Pantakani DVK, Asif AR. MPA Modulates Tight Junctions' Permeability via Midkine/PI3K Pathway in Caco-2 Cells: A Possible Mechanism of Leak-Flux Diarrhea in Organ Transplanted Patients. Front Physiol 2017; 8:438. [PMID: 28694783 PMCID: PMC5483464 DOI: 10.3389/fphys.2017.00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
Mycophenolic acid (MPA) is prescribed to prevent allograft rejection in organ transplanted patients. However, its use is sporadically linked to leak flux diarrhea and other gastrointestinal (GI) disturbances in around 75% of patients through yet unknown mechanisms. Recently, we identified Midkine as a modulator of tight junctions (TJs) permeability in MPA treated Caco-2 monolayer. In the present study, we investigated the possible involvement of Midkine dependent PI3K pathway in alteration of TJs under MPA treatment. Caco-2 cells were grown as monolayer to develop TJs and were treated for 72 h with DMSO (control) or MPA in presence and absence of Midkine inhibitor (iMDK) or PI3K inhibitors (LY/AMG). Caco-2 monolayer integrity was assessed by transepithelial electrical resistance (TEER) and FITC-dextran assays. Our functional assays showed that PI3K inhibitors (LY/AMG) can significantly inhibit the compromised TJs integrity of MPA-treated Caco-2 cells monolayer. Chromatin immunoprecipitation analyses showed a significant epigenetic activation of Midkine, PI3K, Cdx-2, and Cldn-2 genes and epigenetic repression of Cldn-1 gene after MPA treatment. The MPA-induced epigenetic alterations were further confirmed by mRNA and protein expression analysis. Collectively, our data shows that PI3K pathway as the downstream target of Midkine which in turn modulates p38MAPK and pAKT signaling to alter TJs permeability in Caco-2 cell monolayers treated with MPA. These results highlight the possible use of either Midkine or PI3K inhibitors as therapeutic agents to prevent MPA induced GI disturbances.
Collapse
Affiliation(s)
- Niamat Khan
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and TechnologyKohat, Pakistan
| | - Lutz Binder
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - D V Krishna Pantakani
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical CenterGoettingen, Germany.,German Center for Cardiovascular Research, Partner Site GoettingenGoettingen, Germany
| |
Collapse
|
31
|
Abstract
The gastrointestinal alterations associated with the consumption of an obesogenic diet, such as inflammation, permeability impairment and oxidative stress, have been poorly explored in both diet-induced obesity (DIO) and genetic obesity. The aim of the present study was to examine the impact of an obesogenic diet on the gut health status of DIO rats in comparison with the Zucker (fa/fa) rat leptin receptor-deficient model of genetic obesity over time. For this purpose, female Wistar rats (n 48) were administered a standard or a cafeteria diet (CAF diet) for 12, 14·5 or 17 weeks and were compared with fa/fa Zucker rats fed a standard diet for 10 weeks. Morphometric variables, plasma biochemical parameters, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) levels in the ileum were assessed, as well as the expressions of proinflammatory genes (TNF-α and inducible nitric oxide synthase (iNOS)) and intestinal permeability genes (zonula occludens-1, claudin-1 and occludin). Both the nutritional model and the genetic obesity model showed increased body weight and metabolic alterations at the final time point. An increase in intestinal ROS production and MPO activity was observed in the gastrointestinal tracts of rats fed a CAF diet but not in the genetic obesity model. TNF-α was overexpressed in the ileum of both CAF diet and fa/fa groups, and ileal inflammation was associated with the degree of obesity and metabolic alterations. Interestingly, the 17-week CAF group and the fa/fa rats exhibited alterations in the expressions of permeability genes. Relevantly, in the hyperlipidic refined sugar diet model of obesity, the responses to chronic energy overload led to time-dependent increases in gut inflammation and oxidative stress.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The composition of activated adipose tissue with adipocytes secreting a broad spectrum of immune-modulatory adipokines next to adipose tissue-derived stromal cells and professional immune effector cells in the visceral fat creates a complex network of inflammatory processes shaping local immune responses in the adjacent inflamed intestinal mucosa. RECENT FINDINGS In Crohn's disease a particular phenomenon called 'creeping fat' can be observed. Here the hyperplastic mesenteric fat tissue not only grows around inflamed small intestinal segments but also furthermore affects the regulation of the mucosal immune system. Diverticular disease is highly prevalent in the western world but the knowledge about its immunopathology remains incomplete. Interestingly, adipose tissue also frequently covers the basolateral site of inflamed diverticula, hence locally reflecting the phenomenon seen in Crohn's disease. SUMMARY This review aims to summarize the current knowledge in which measures this intraabdominal fat participates in the regulation of intestinal inflammation with a particular focus on differences and possible parallels in Crohn's disease and diverticulitis. The available data allow for suggesting that each inflamed diverticula mechanistically reflects Crohn's disease on a miniature scale.
Collapse
|
33
|
Yi Z, Li Y, Liu D, Liu J, Li H. Extracellular HSP70/HSP70-PCs regulate hepatocarcinoma cell migration and invasion via RhoA. Oncol Lett 2016; 13:1095-1100. [PMID: 28454219 PMCID: PMC5403325 DOI: 10.3892/ol.2016.5551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
The effects of heat shock protein 70 (HSP70)/HSP70-peptide complexes (HSP70-PCs) on the invasion and metastasis ability of hepatocellular carcinoma (HCC) Huh-7 cells were investigated. Wound healing assay revealed that cells treated with HSP70/HSP70-PCs healed faster than negative control cells. HSP70/HSP70-PCs-treated cells also exhibited better migration ability and higher invasion ability than control cells. HSP70/HSP70-PCs treatment did not alter the messenger RNA (mRNA) or protein levels of matrix metalloproteinase-9; the opposite was true for Ras homolog family member A (RhoA) mRNA and protein levels. RNA interference of RhoA attenuated the migration of HSP70/HSP70-PCs-treated cells. The present findings indicate that regulation of HCC cell migration by HSP70/HSP70-PCs occurs via regulation of RhoA expression.
Collapse
Affiliation(s)
- Zhe Yi
- School of Stomatology, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China.,Department of Oncology, Tumor Angiogenesis and Microenvironment Laboratory (TAML), First Affiliated Hospital, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dan Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
34
|
Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochem Int 2016; 99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
|
35
|
Karrasch T, Schaeffler A. Adipokines and the role of visceral adipose tissue in inflammatory bowel disease. Ann Gastroenterol 2016; 29:424-438. [PMID: 27708507 PMCID: PMC5049548 DOI: 10.20524/aog.2016.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022] Open
Abstract
Recently, adipocytes have been recognized as actively participating in local and systemic immune responses via the secretion of peptides detectable in relevant levels in the systemic circulation, the so-called "adipo(cyto)kines". Multiple studies appearing within the last 10-15 years have focused on the possible impact of adipose tissue depots on inflammatory bowel disease (IBD). Consequently, various hypotheses regarding the role of different adipokines in inflammatory diseases in general and in intestinal inflammatory processes in particular have been developed and have been further refined in recent years. After a focused summary of the data reported concerning the impact of visceral adipose tissue on IBD, such as Crohn's disease and ulcerative colitis, our review focuses on recent developments indicating that adipocytes as part of the innate immune system actively participate in antimicrobial host defenses in the context of intestinal bacterial translocation, which are of utmost importance for the homeostasis of the whole organism. Modulators of adipose tissue function and regulators of adipokine secretion, as well as modifiers of adipocytic pattern recognition molecules, might represent future potential drug targets in IBD.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Internal Medicine III, Giessen University Hospital, Germany
| | - Andreas Schaeffler
- Department of Internal Medicine III, Giessen University Hospital, Germany
| |
Collapse
|
36
|
Suman S, Kumar S, Fornace AJ, Datta K. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine. Sci Rep 2016; 6:31853. [PMID: 27558773 PMCID: PMC4997262 DOI: 10.1038/srep31853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/21/2022] Open
Abstract
Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as 56Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of 56Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of 56Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamal Datta
- Department of Biochemistry and Molecular &Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This article assesses the role of the mesentery in Crohn's disease. RECENT FINDINGS The mesentery is centrally positioned both anatomically and physiologically. Overlapping mesenteric and submucosal mesenchymal contributions are important in the pathobiology of Crohn's disease. Mesenteric contributions explain the topographic distribution of Crohn's disease in general and mucosal disease in particular. Operative strategies that are mesenteric based (i.e. mesocolic excision) may reduce rates of postoperative recurrence. SUMMARY The net effect of mesenteric events in Crohn's disease is pathologic. This can be targeted by operative means. VIDEO ABSTRACT http://links.lww.com/COG/A18.
Collapse
|
38
|
Sun J, Ren F, Xiong L, Zhao L, Guo H. Bovine lactoferrin suppresses high-fat diet induced obesity and modulates gut microbiota in C57BL/6J mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
39
|
Lloret-Linares C, Miyauchi E, Luo H, Labat L, Bouillot JL, Poitou C, Oppert JM, Laplanche JL, Mouly S, Scherrmann JM, Uchida Y, Tachikawa M, Terasaki T, Bergmann JF, Declèves X. Oral Morphine Pharmacokinetic in Obesity: The Role of P-Glycoprotein, MRP2, MRP3, UGT2B7, and CYP3A4 Jejunal Contents and Obesity-Associated Biomarkers. Mol Pharm 2016; 13:766-73. [DOI: 10.1021/acs.molpharmaceut.5b00656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Célia Lloret-Linares
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
- Assistance Publique-Hôpitaux
de Paris, Hôpital Lariboisière, Therapeutic Research
Unit, Department of Internal Medicine, Paris F-75010, France
| | - Eisuke Miyauchi
- Membrane
Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Huilong Luo
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
- Assistance Publique-Hôpitaux
de Paris, Hôpital Cochin, Pharmacokinetics and Pharmacochemistry
Unit, Paris F-75014, France
| | - Laurence Labat
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
- Assistance Publique-Hôpitaux
de Paris, Hôpital Cochin, Pharmacokinetics and Pharmacochemistry
Unit, Paris F-75014, France
| | - Jean-Luc Bouillot
- Assistance Publique-Hôpitaux
de Paris, Hôpital Ambroise Paré, Université Versailles
Saint Quentin, Department of Surgery, Boulogne 92100, France
| | - Christine Poitou
- Assistance Publique-Hôpitaux
de Paris, Groupe Hospitalier Pitié-Salpêtrière,
Service de Nutrition, Université Pierre et Marie Curie, Institut
cardiométabolisme et nutrition (ICAN), Paris F-75013, France
| | - Jean-Michel Oppert
- Assistance Publique-Hôpitaux
de Paris, Groupe Hospitalier Pitié-Salpêtrière,
Service de Nutrition, Université Pierre et Marie Curie, Institut
cardiométabolisme et nutrition (ICAN), Paris F-75013, France
| | - Jean-Louis Laplanche
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
| | - Stéphane Mouly
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
- Assistance Publique-Hôpitaux
de Paris, Hôpital Lariboisière, Therapeutic Research
Unit, Department of Internal Medicine, Paris F-75010, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
| | - Yasuo Uchida
- Membrane
Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Membrane
Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tetsuya Terasaki
- Membrane
Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Jean-François Bergmann
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
- Assistance Publique-Hôpitaux
de Paris, Hôpital Lariboisière, Therapeutic Research
Unit, Department of Internal Medicine, Paris F-75010, France
| | - Xavier Declèves
- Inserm, UMR-S
1144 Université Paris Descartes-Paris Diderot, Variabilité
de réponse aux psychotropes, Paris F-75010, France
- Assistance Publique-Hôpitaux
de Paris, Hôpital Cochin, Pharmacokinetics and Pharmacochemistry
Unit, Paris F-75014, France
| |
Collapse
|
40
|
Costanzo M, Cesi V, Prete E, Negroni A, Palone F, Cucchiara S, Oliva S, Leter B, Stronati L. Krill oil reduces intestinal inflammation by improving epithelial integrity and impairing adherent-invasive Escherichia coli pathogenicity. Dig Liver Dis 2016; 48:34-42. [PMID: 26493628 DOI: 10.1016/j.dld.2015.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/03/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Krill oil is a marine derived oil rich in phospholipids, astaxanthin and omega-3 fatty acids. Several studies have found benefits of krill oil against oxidative and inflammatory damage. AIMS We aimed at assessing the ability of krill oil to reduce intestinal inflammation by improving epithelial barrier integrity, increasing cell survival and reducing pathogenicity of adherent-invasive Escherichia coli. METHODS CACO2 and HT29 cells were exposed to cytomix (TNFα and IFNγ) to induce inflammation and co-exposed to cytomix and krill oil. E-cadherin, ZO-1 and F-actin levels were analyzed by immunofluorescence to assess barrier integrity. Scratch test was performed to measure wound healing. Cell survival was analyzed by flow cytometry. Adherent-invasive Escherichia coli LF82 was used for adhesion/invasion assay. RESULTS In inflamed cells E-cadherin and ZO-1 decreased, with loss of cell-cell adhesion, and F-actin polymerization increased stress fibres; krill oil restored initial conditions and improved wound healing, reduced bacterial adhesion/invasion in epithelial cells and survival within macrophages; krill oil reduced LF82-induced mRNA expression of pro-inflammatory cytokines. CONCLUSIONS Krill oil improves intestinal barrier integrity and epithelial restitution during inflammation and controls bacterial adhesion and invasion to epithelial cells. Thus, krill oil may represent an innovative tool to reduce intestinal inflammation.
Collapse
Affiliation(s)
| | - Vincenzo Cesi
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | - Enrica Prete
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | - Anna Negroni
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | | | - Salvatore Cucchiara
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Salvatore Oliva
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Beatrice Leter
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Laura Stronati
- Department of Radiobiology and Human Health, ENEA, Rome, Italy.
| |
Collapse
|
41
|
Yang B, Bostick RM, Tran HQ, Gewirtz AT, Campbell PT, Fedirko V. Circulating Biomarkers of Gut Barrier Function: Correlates and Nonresponse to Calcium Supplementation among Colon Adenoma Patients. Cancer Epidemiol Biomarkers Prev 2015; 25:318-26. [PMID: 26677212 DOI: 10.1158/1055-9965.epi-15-0488] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/21/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Gut barrier dysfunction contributes to several gastrointestinal disorders, including colorectal cancer, but factors associated with intestinal hyperpermeability have been minimally studied in humans. METHODS We tested the effects of two doses of calcium (1.0 or 2.0 g/d) on circulating biomarkers of gut permeability [anti-flagellin and anti-lipopolysaccharide (LPS) Ig, measured via ELISA] over a 4-month treatment period among colorectal adenoma patients in a randomized, double-blinded, placebo-controlled clinical trial (n = 193), and evaluated the factors associated with baseline levels of these biomarkers. RESULTS Baseline concentrations of anti-flagellin IgA and anti-LPS IgA were, respectively, statistically significantly proportionately higher by 11.8% and 14.1% among men, 31.3% and 39.8% among those with a body mass index ≥ 35 kg/m(2), and 19.9% and 22.0% among those in the upper relative to the lowest sex-specific tertile of waist circumference. A combined permeability score (the summed optical densities of all four biomarkers) was 24.3% higher among women in the upper tertile of plasma C-reactive protein (Ptrend < 0.01). We found no appreciable effects of supplemental calcium on anti-flagellin or anti-LPS Igs. CONCLUSIONS Our results suggest that (i) men and those with higher adiposity may have greater gut permeability, (ii) gut permeability and systemic inflammation may be directly associated with one another, and (iii) supplemental calcium may not modify circulating levels of gut permeability biomarkers within 4 months. IMPACT Our findings may improve the understanding of the factors that influence gut permeability to inform development of treatable biomarkers of risk for colorectal cancer and other health outcomes.
Collapse
Affiliation(s)
- Baiyu Yang
- Department of Epidemiology, Emory University, Atlanta, Georgia. Laney Graduate School, Emory University, Atlanta, Georgia
| | - Roberd M Bostick
- Department of Epidemiology, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Hao Quang Tran
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Peter T Campbell
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Veronika Fedirko
- Department of Epidemiology, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
42
|
Morais CA, de Rosso VV, Estadella D, Pisani LP. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem 2015; 33:1-7. [PMID: 27260462 DOI: 10.1016/j.jnutbio.2015.11.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022]
Abstract
The health benefits of consuming fruits that are rich in polyphenols, especially anthocyanins, have been the focus of recent in vitro and in vivo investigations. Thus, greater attention is being directed to the reduction of the inflammatory process associated with the intestinal microbiota and the mechanism underlying these effects because the microbiota has been closely associated with the metabolism of these compounds in the gastrointestinal tract. Further interest lies in the ability of these metabolites to modulate the growth of specific intestinal bacteria. Thus, this review examines studies involving the action of the anthocyanins that are present in many fruits and their effect in the modulating the inflammatory process associated with the interaction between the host and the gut microbiota. The findings of both in vitro and in vivo studies suggest a potential antiinflammatory effect of these compounds, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB. This effect is associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains.
Collapse
Affiliation(s)
- Carina Almeida Morais
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Veridiana Vera de Rosso
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Débora Estadella
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| |
Collapse
|
43
|
Grootaert C, Kamiloglu S, Capanoglu E, Van Camp J. Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health. Nutrients 2015; 7:9229-55. [PMID: 26569293 PMCID: PMC4663590 DOI: 10.3390/nu7115462] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/21/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are a diverse group of micronutrients from plant origin that may serve as antioxidants and that contribute to human health in general. More specifically, many research groups have investigated their protective effect against cardiovascular diseases in several animal studies and human trials. Yet, because of the excessive processing of the polyphenol structure by human cells and the residing intestinal microbial community, which results in a large variability between the test subjects, the exact mechanisms of their protective effects are still under investigation. To this end, simplified cell culture systems have been used to decrease the inter-individual variability in mechanistic studies. In this review, we will discuss the different cell culture models that have been used so far for polyphenol research in the context of cardiovascular diseases. We will also review the current trends in cell culture research, including co-culture methodologies. Finally, we will discuss the potential of these advanced models to screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and their metabolites.
Collapse
Affiliation(s)
- Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
| | - Senem Kamiloglu
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links, Ghent 653 B-9000, Belgium.
| |
Collapse
|
44
|
Morais CA, Oyama LM, de Moura Conrado R, de Rosso VV, do Nascimento CO, Pisani LP. Polyphenols-rich fruit in maternal diet modulates inflammatory markers and the gut microbiota and improves colonic expression of ZO-1 in offspring. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Li J, Cong X, Zhang Y, Xiang R, Mei M, Yang N, Su Y, Choi S, Park K, Zhang L, Wu L, Yu G. ZO-1 and -2 Are Required for TRPV1-Modulated Paracellular Permeability. J Dent Res 2015; 94:1748-56. [DOI: 10.1177/0022034515609268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The tight junction–based paracellular pathway plays an important role in saliva secretion. Zonula occludens (ZO) proteins are submembranous proteins of tight junction complex; however, their function in salivary epithelium is poorly understood. Here, we found that activation of transient receptor potential vanilloid subtype 1 (TRPV1) by capsaicin increased rat saliva secretion both in vivo and ex vivo. Meanwhile, TRPV1 activation enlarged the width of tight junctions between neighboring acinar cells, increased the paracellular flux of 4-kDa fluorescein isothiocyanate (FITC)-dextran in submandibular gland (SMG) tissues, and decreased transepithelial electric resistance (TER) in SMG-C6 cells. ZO-1, -2, and -3 were distributed principally to the apical lateral region of acinar cells in SMG tissues and continuously encircled the peripheries of SMG-C6 cells in the untreated condition. TRPV1 activation obviously diminished ZO-1 and -2 staining, but not ZO-3 or β-catenin, at the cell-cell contacts ex vivo and in vitro. Moreover, in untreated SMG-C6 cells, ZO-1 and -2 single or double knockdown by small interfering RNA (siRNA) increased the paracellular flux of 4-kDa FITC-dextran. In capsaicin-treated cells, ZO-1 and -2 single or double knockdown abolished, whereas their re-expression restored, the capsaicin-induced increase in paracellular permeability. Furthermore, TRPV1 activation increased RhoA activity, and inhibition of either RhoA or Rho kinase (ROCK) abolished the capsaicin-induced TER decrease as well as ZO-1 and -2 redistribution. These results indicate that ZO-1 and -2 play crucial roles in both basal salivary epithelial barrier function and TRPV1-modulated paracellular transport. RhoA-ROCK signaling pathway is responsible for TRPV1-modulated paracellular permeability as well as ZO-1 and -2 redistribution.
Collapse
Affiliation(s)
- J. Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - X. Cong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Y. Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - R.L. Xiang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - M. Mei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - N.Y. Yang
- Department of Pediatric Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Y.C. Su
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - S. Choi
- Department of Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - K. Park
- Department of Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - L.W. Zhang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China
| | - L.L. Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - G.Y. Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
46
|
RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:669-80. [PMID: 25791356 DOI: 10.1007/s00417-015-2985-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/21/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness in the working-age populations of developed countries, and effective treatments and prevention measures have long been the foci of study. Patients with DR invariably demonstrate impairments of the retinal microvascular endothelium. Many observational and preclinical studies have shown that angiogenesis and apoptosis play crucial roles in the pathogenesis of DR. Increasing evidence suggests that in DR, the small guanosine-5'-triphosphate-binding protein RhoA activates its downstream targets mammalian Diaphanous homolog 1 (mDia-1) and profilin-1, thus affecting important cellular functions, including cell morphology, motility, secretion, proliferation, and gene expression. However, the specific underlying mechanism of disease remains unclear. CONCLUSION This review focuses on the RhoA/mDia-1/profilin-1 signaling pathway that specifically triggers endothelial dysfunction in diabetic patients. Recently, RhoA and profilin-1 signaling has attracted a great deal of attention in the context of diabetes-related research. However, the precise molecular mechanism by which the RhoA/mDia-1/profilin-1 pathway is involved in progression of microvascular endothelial dysfunction (MVED) during DR has not been determined. This review briefly describes each feature of the cascade before exploring the most recent findings on how the pathway may trigger endothelial dysfunction in DR. When the underlying mechanisms are understood, novel therapies seeking to restore the endothelial homeostasis comprised in DR will become possible.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review summarizes current knowledge on the contribution of mesenteric adipose tissue in intestinal inflammation. We will describe the cellular and humoral characteristics of creeping fat, their potential impact for Crohn's disease and propose a working model for the critical interplay between the creeping fat and the inflamed intestine. RECENT FINDINGS Creeping fat can be distinguished from healthy adipose tissue by its distinctively small adipocytes, by a specific microenvironment defined by high levels of adipokines and by a dominant immune cell infiltration. In Crohn's disease transmural inflammation facilitates increased bacterial translocation into the creeping fat. Translocalizing antigens can directly activate (pre)adipocytes via innate receptors. Adipocyte-derived mediators modulate phenotype and function of innate and adaptive immune cells. Activated (pre)adipocytes and adipokine-modulated immune cells might support a degree of inflammatory activation within the creeping fat that allows competent immune defense against exogenous factors while preventing systemic inflammation. SUMMARY Fat tissue as an active organ in health and disease has been ignored for too long. The last few years of research provided evidence for the complex metabolic and immunological functions of adipose tissue. On the basis of the available data, creeping fat in Crohn's disease exerts a protective function by a localized anti-inflammatory effect, thus preventing a systemic inflammatory response.
Collapse
|
48
|
Penna-de-Carvalho A, Graus-Nunes F, Rabelo-Andrade J, Mandarim-de-Lacerda CA, Souza-Mello V. Enhanced pan-peroxisome proliferator-activated receptor gene and protein expression in adipose tissue of diet-induced obese mice treated with telmisartan. Exp Physiol 2014; 99:1663-78. [PMID: 25326526 DOI: 10.1113/expphysiol.2014.081596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Telmisartan has previously been used to target obesity, showing peroxisome proliferator-activated receptor (PPAR) β/δ-related effects in white adipose tissue (WAT). We sought to evaluate whether telmisartan enhances gene and protein expression of all PPAR isoforms in WAT and brown adipose tissue (BAT), as well as their downstream effects upon insulin resistance, adipokine profile and adaptive thermogenesis. Male C57BL/6 mice were fed standard chow (SC; 10% lipids) or high-fat diet (HF; 50% lipids) for 10 weeks. Animals were then randomly allocated into the following four groups: SC, SC-T, HF and HF-T. Telmisartan [10 mg (kg diet)(-1)] was administered for 4 weeks in the diet. Animals in the HF group were overweight and exhibited hypertension, insulin resistance, decreased energy expenditure, a pro-inflammatory adipokine profile and abnormal fat pad mass distribution. Animals in the HF group showed decreased expression of PPARα, β/δ and γ in WAT and BAT, resulting in impaired glucose uptake and insufficient thermogenesis. Due to the improvement in the adipokine profile and enhanced insulin sensitivity with adequate insulin-stimulated glucose uptake after treatment with telmisartan, the activation of all PPAR isoforms in WAT was beneficial. In BAT, telmisartan induced sustained sympathetic activation, because the β3-adrenergic receptor was induced by PPARβ/δ, while uncoupling protein 1 was induced by PPARα to promote thermogenesis. Telmisartan exerted anti-obesity effects through higher pan-PPAR gene and protein expression. Upon PPARα, β/δ and γ (pan-PPAR) agonism in adipose tissue of obese mice, telmisartan ameliorates inflammation and insulin resistance, as well as inducing non-shivering thermogenesis. Our results point to new therapeutic targets for the control of obesity and comorbidities through pan-PPAR-related effects.
Collapse
Affiliation(s)
- Aline Penna-de-Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Francielle Graus-Nunes
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Júlia Rabelo-Andrade
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Le Dréan G, Segain JP. Connecting metabolism to intestinal barrier function: The role of leptin. Tissue Barriers 2014; 2:e970940. [PMID: 25610758 DOI: 10.4161/21688362.2014.970940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022] Open
Abstract
Structure and function of the intestinal epithelial barrier (IEB) are dependent upon the integrity of junctional protein structures sealing the apical surface between epithelial cells. Tight junctions (TJ) and the surrounding apical F-actin cytoskeleton are involved in the regulation of paracellular permeability. The regulation of actin cytoskeleton organization by RhoA/Rho-kinase (ROCK) pathway plays an important role in TJ assembly and function. There is mounting evidence that the adipocyte-derived hormone leptin exerts pleiotropic effects on the intestinal epithelium including nutrient absorption, epithelial growth, inflammation and injury. Leptin activates multiple cell signaling pathways in intestinal epithelial cells (IEC) that can explain these pleiotropic effects. However, these pathways are also involved in the primary role of leptin that is the regulation of energy and glucose metabolism homeostasis. In this commentary, we examine how the interplay between leptin signaling pathways that regulate cell metabolism could impact upon IEB function.
Collapse
Key Words
- AMPK
- AMPK, AMP-activated protein kinase
- IEB, intestinal epithelial barrier
- IEC, intestinal epithelial cells
- JAK, Janus kinase
- JAK/STAT
- LepR-b, leptin receptor
- MEF, mouse embryonic fibroblast
- MLC, myosin light chain
- ROCK, Rho-kinase
- RhoA/ROCK
- STAT, signal transducer and activator of transcription
- TJ, tight junctions
- VAT, visceral adipose tissue
- barrier repair
- intestinal epithelial barrier
- leptin
- metabolism
- tight-junction
Collapse
Affiliation(s)
- Gwenola Le Dréan
- Université de Nantes; Institut des Maladies de l'Appareil Digestif (IMAD); Centre de Recherche en Nutrition Humaine du Grand Ouest (CRNH) ; Nantes, France ; CHU Hôtel-Dieu, Place Alexis Ricordeau ; Nantes, France
| | - Jean-Pierre Segain
- Université de Nantes; Institut des Maladies de l'Appareil Digestif (IMAD); Centre de Recherche en Nutrition Humaine du Grand Ouest (CRNH) ; Nantes, France ; CHU Hôtel-Dieu, Place Alexis Ricordeau ; Nantes, France
| |
Collapse
|
50
|
Kruis T, Batra A, Siegmund B. Bacterial translocation - impact on the adipocyte compartment. Front Immunol 2014; 4:510. [PMID: 24432024 PMCID: PMC3881001 DOI: 10.3389/fimmu.2013.00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/24/2013] [Indexed: 12/29/2022] Open
Abstract
Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn’s disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called “creeping fat.” The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system.
Collapse
Affiliation(s)
- Tassilo Kruis
- Department of Medicine I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Arvind Batra
- Department of Medicine I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Britta Siegmund
- Department of Medicine I (Gastroenterology, Rheumatology, Infectious Diseases), Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|