1
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Wang W, Garcia C, Shao F, Cohen JA, Bai Y, Fine A, Ai X. Lung dopaminergic nerves facilitate the establishment of T H2 resident memory cells in early life. J Allergy Clin Immunol 2023; 152:386-399. [PMID: 36841266 PMCID: PMC10440294 DOI: 10.1016/j.jaci.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Allergic asthma develops from allergen exposure in early childhood and progresses into adulthood. The central mediator of progressive allergic asthma is allergen-specific, TH2-resident memory cells (TRMs). Although the crosstalk between nerves and immune cells plays an established role in acute allergic inflammation, whether nerves facilitate the establishment of TH2-TRMs in the immature lung following early life allergen exposure is unknown. OBJECTIVES The aim of this study was to identify nerve-derived signals that act in TH2 effector cells to regulate the tissue residency in the immature lung. METHODS Following neonatal allergen exposure, allergen-specific TH2-TRMs were tracked temporally and spatially in relationship to developing sympathetic nerves in the lung. Functional mediators of dopamine signaling in the establishment of TH2-TRMs were identified by in vitro bulk RNA-sequencing of dopamine-treated TH2 cells followed by in vivo assessment of candidate genes using adoptive transfer of TH2 cells with viral gene knockdown. RESULTS This study found that sympathetic nerves produce dopamine and reside in proximity to TH2 effector cells during the contraction phase following neonatal allergen exposure. Dopamine signals via DRD4 on TH2 cells to elevate IL2RA and epigenetically facilitate type 2 cytokine expression. Blockade of dopamine-DRD4 signaling following neonatal allergen exposure impairs lung residence of TH2 cells and ameliorates anamnestic inflammation in adults. CONCLUSIONS These results demonstrate that maturing sympathetic nerves enable a dopamine-enriched lung environment in early life that promotes the establishment of allergen-specific TH2-TRMs. The dopamine-DRD4 axis may provide a therapeutic target to modify allergic asthma progression from childhood to adulthood.
Collapse
Affiliation(s)
- Wei Wang
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass.
| | - Carolyn Garcia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Fengzhi Shao
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Jonathan A Cohen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Yan Bai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass
| | - Alan Fine
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Mass
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, Mass.
| |
Collapse
|
3
|
Pan Y, Liu Y. Echinacoside alleviates airway remodeling and inflammation in an ovalbumin-induced neonatal mouse model of asthma by modulating the SIRT1-NF-κB pathway. Allergol Immunopathol (Madr) 2023; 51:71-77. [PMID: 37422782 DOI: 10.15586/aei.v51i4.859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/13/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Echinacoside (ECH) has been reported to have anti-inflammatory and anti-immune effects, and may be effective for treating asthma. This study aimed to investigate the effect of ECH on asthma. METHODS A mouse model of asthma was established by ovalbumin (OVA) induction, and the effect of ECH on airway remodeling in mice was evaluated using the Periodic Acid-Schiff stain and enzyme-linked immunosorbent serologic assay (ELISA). Additionally, the effect of ECH on collagen deposition in asthmatic mice was assessed using Western blotting (WB) analysis, and response to airway inflammation was evaluated by ELISA. The signaling pathway regulated by ECH was also investigated using WB. RESULTS Our findings demonstrated that ECH restored OVA-induced increase in mucin, -immunoglobulin E, and respiratory resistance. ECH also alleviated OVA-induced collagen -deposition, including collagen I, collagen III, alpha smooth muscle actin, and epithelial (E)-cadherin. Moreover, ECH restored the elevated levels of interleukin (IL)-13, IL-17, and the increased -number of macrophages, eosinophils, lymphocytes, and neutrophills induced by OVA. ECH mainly exerted its regulatory effects by modulating the silent mating type information regulation 2 homolog 1 (Sirtuin 1/SIRT1)-nuclear factor kappa B (NF-κB) signaling pathway in the mouse models of asthma. CONCLUSION This study highlights the therapeutic potential of ECH for attenuating airway remodeling and inflammation in an OVA-induced neonatal mouse model of asthma through the modulation of SIRT1/NF-κB pathway.
Collapse
Affiliation(s)
- Yunbo Pan
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, China
| | - Yijun Liu
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Yongchuan, Chongqing, China;
| |
Collapse
|
4
|
Wilburn AN, McAlees JW, Haslam DB, Graspeuntner S, Schmudde I, Laumonnier Y, Rupp J, Chougnet CA, Deshmukh H, Zacharias WJ, König P, Lewkowich IP. Delayed Microbial Maturation Durably Exacerbates Th17-driven Asthma in Mice. Am J Respir Cell Mol Biol 2023; 68:498-510. [PMID: 36622830 PMCID: PMC10174167 DOI: 10.1165/rcmb.2022-0367oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.
Collapse
Affiliation(s)
| | | | | | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Inken Schmudde
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology
- German Center for Infection Research (DZIF), partner-site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany; and
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - William J. Zacharias
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Peter König
- Institute of Anatomy, and
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Ian P. Lewkowich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of Immunobiology
| |
Collapse
|
5
|
Zhang N, Xu J, Jiang C, Lu S. Neuro-Immune Regulation in Inflammation and Airway Remodeling of Allergic Asthma. Front Immunol 2022; 13:894047. [PMID: 35784284 PMCID: PMC9245431 DOI: 10.3389/fimmu.2022.894047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a common chronic inflammation of the airways and causes airway remodeling eventually. For a long time, investigators have been focusing on the immunological mechanism of asthma. However, in recent years, the role of neuro-regulation in the occurrence of asthma has gradually attracted investigators’ attention. In this review, we firstly describe neuro-immune regulation in inflammation of allergic asthma from two aspects: innate immunity and adaptive immunity. Secondly, we introduce neuro-immune regulation in airway remodeling of asthma. Finally, we prospect the role of pulmonary neuroendocrine cells in the development of asthma. In general, the amount of researches is limited. Further researches on the neural regulation during the occurrence of asthma will help us clarify the mechanism of asthma more comprehensively and find more effective ways to prevent and control asthma.
Collapse
Affiliation(s)
- Ning Zhang
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jing Xu
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Congshan Jiang
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Congshan Jiang, ; Shemin Lu,
| |
Collapse
|
6
|
Bai Y, Ai X. Utilizing the Precision-Cut Lung Slice to Study the Contractile Regulation of Airway and Intrapulmonary Arterial Smooth Muscle. J Vis Exp 2022:10.3791/63932. [PMID: 35604150 PMCID: PMC11147671 DOI: 10.3791/63932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Smooth muscle cells (SMC) mediate the contraction of the airway and the intrapulmonary artery to modify airflow resistance and pulmonary circulation, respectively, hence playing a critical role in the homeostasis of the pulmonary system. Deregulation of SMC contractility contributes to several pulmonary diseases, including asthma and pulmonary hypertension. However, due to limited tissue access and a lack of culture systems to maintain in vivo SMC phenotypes, molecular mechanisms underlying the deregulated SMC contractility in these diseases remain fully identified. The precision-cut lung slice (PCLS) offers an ex vivo model that circumvents these technical difficulties. As a live, thin lung tissue section, the PCLS retains SMC in natural surroundings and allows in situ tracking of SMC contraction and intracellular Ca2+ signaling that regulates SMC contractility. Here, a detailed mouse PCLS preparation protocol is provided, which preserves intact airways and intrapulmonary arteries. This protocol involves two essential steps before subjecting the lung lobe to slicing: inflating the airway with low-melting-point agarose through the trachea and infilling pulmonary vessels with gelatin through the right ventricle. The PCLS prepared using this protocol can be used for bioassays to evaluate Ca2+-mediated contractile regulation of SMC in both the airway and the intrapulmonary arterial compartments. When applied to mouse models of respiratory diseases, this protocol enables the functional investigation of SMC, thereby providing insight into the underlying mechanism of SMC contractility deregulation in diseases.
Collapse
Affiliation(s)
- Yan Bai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School;
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
7
|
Bai Y, Guedes AGP, Krishnan R, Ai X. CD38 plays an age-related role in cholinergic deregulation of airway smooth muscle contractility. J Allergy Clin Immunol 2022; 149:1643-1654.e8. [PMID: 34800431 PMCID: PMC9081122 DOI: 10.1016/j.jaci.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Allergen-induced airway hyperresponsiveness in neonatal mice, but not adult mice, is caused by elevated innervation and consequent cholinergic hyperstimulation of airway smooth muscle (ASM). Whether this inflammation-independent mechanism contributes to ASM hypercontraction in childhood asthma warrants investigation. OBJECTIVE We aimed to establish the functional connection between cholinergic stimulation and ASM contractility in different human age groups. METHODS First, we used a neonatal mouse model of asthma to identify age-related mediators of cholinergic deregulation of ASM contractility. Next, we conducted validation and mechanistic studies in primary human ASM cells and precision-cut lung slices from young (<5 years old) and adult (>20 years old) donor lungs. Finally, we evaluated the therapeutic potential of the identified cholinergic signaling mediators using culture models of human ASM hypercontraction. RESULTS ASM hypercontraction due to cholinergic deregulation in early postnatal life requires CD38. Mechanistically, cholinergic signaling activates the phosphatidylinositol 3-kinase/protein kinase B pathway in immature ASM cells to upregulate CD38 levels, thereby augmenting the Ca2+ response to contractile agonists. Strikingly, this early-life, CD38-mediated ASM hypercontraction is not alleviated by the β-agonist formoterol. CONCLUSIONS The acetylcholine-phosphatidylinositol 3-kinase/protein kinase B-CD38 axis is a critical mechanism of airway hyperresponsiveness in early postnatal life. Targeting this axis may provide a tailored treatment for children at high risk for allergic asthma.
Collapse
Affiliation(s)
- Yan Bai
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass; Department of Pediatrics, Division of Neonatology and Newborn Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass.
| | - Alonso G P Guedes
- Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St Paul, Minn
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Mass
| | - Xingbin Ai
- Department of Pediatrics, Division of Neonatology and Newborn Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass.
| |
Collapse
|
8
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
9
|
Shapiro CO, Proskocil BJ, Oppegard LJ, Blum ED, Kappel NL, Chang CH, Fryer AD, Jacoby DB, Costello RW, Drake MG. Airway Sensory Nerve Density Is Increased in Chronic Cough. Am J Respir Crit Care Med 2021; 203:348-355. [PMID: 32809840 DOI: 10.1164/rccm.201912-2347oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rationale: Chronic cough is characterized by frequent urges to cough and a heightened sensitivity to inhaled irritants. Airway sensory nerves trigger cough. We hypothesized that sensory nerve density is increased in chronic cough, which may contribute to excessive and persistent coughing.Objectives: To measure airway nerve density (axonal length) and complexity (nerve branching, neuropeptide expression) in humans with and without chronic cough.Methods: Bronchoscopic human airway biopsies were immunolabeled for nerves and the sensory neuropeptide substance P. Eosinophil peroxidase was also quantified given previous reports showing associations between eosinophils and nerve density. Three-dimensional image z-stacks of epithelium and subepithelium were generated using confocal microscopy, and from these z-stacks, total nerve length, the number of nerve branch points, substance P expression, and eosinophil peroxidase were quantified within each airway compartment.Measurements and Main Results: Nerve length and the number of branch points were significantly increased in epithelium, but not subepithelium, in chronic cough compared with healthy airways. Substance P expression was scarce and was similar in chronic cough and healthy airways. Nerve length and branching were not associated with eosinophil peroxidase nor with demographics such as age and sex in either group.Conclusions: Airway epithelial sensory nerve density is increased in chronic cough, suggesting sensory neuroplasticity contributes to cough hypersensitivity.
Collapse
Affiliation(s)
- Clare O Shapiro
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Laura J Oppegard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Nicole L Kappel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Christopher H Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| |
Collapse
|
10
|
Pincus AB, Fryer AD, Jacoby DB. Mini review: Neural mechanisms underlying airway hyperresponsiveness. Neurosci Lett 2021; 751:135795. [PMID: 33667601 DOI: 10.1016/j.neulet.2021.135795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Neural changes underly hyperresponsiveness in asthma and other airway diseases. Afferent sensory nerves, nerves within the brainstem, and efferent parasympathetic nerves all contribute to airway hyperresponsiveness. Inflammation plays a critical role in these nerve changes. Chronic inflammation and pre-natal exposures lead to increased airway innervation and structural changes. Acute inflammation leads to shifts in neurotransmitter expression of afferent nerves and dysfunction of M2 muscarinic receptors on efferent nerve endings. Eosinophils and macrophages drive these changes through release of inflammatory mediators. Novel tools, including optogenetics, two photon microscopy, and optical clearing and whole mount microscopy, allow for improved studies of the structure and function of airway nerves and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Alexandra B Pincus
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA.
| | - Allison D Fryer
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| | - David B Jacoby
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| |
Collapse
|
11
|
van den Berg MPM, Nijboer-Brinksma S, Bos IST, van den Berge M, Lamb D, van Faassen M, Kema IP, Gosens R, Kistemaker LEM. The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs. Respir Res 2021; 22:48. [PMID: 33557843 PMCID: PMC7871391 DOI: 10.1186/s12931-021-01638-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background Asthma is a chronic respiratory disease in which the nervous system plays a central role. Sensory nerve activation, amongst others via Transient Receptor Potential Ankyrin 1 (TRPA1) channels, contributes to asthma characteristics including cough, bronchoconstriction, mucus secretion, airway hyperresponsiveness (AHR) and inflammation. In the current study, we evaluated the efficacy of the novel TRPA1 antagonist BI01305834 against AHR and inflammation in guinea-pig models of asthma. Methods First, a pilot study was performed in a guinea-pig model of allergic asthma to find the optimal dose of BI01305834. Next, the effect of BI01305834 on (1) AHR to inhaled histamine after the early and late asthmatic reaction (EAR and LAR), (2) magnitude of EAR and LAR and (3) airway inflammation was assessed. Precision-cut lung slices and trachea strips were used to investigate the bronchoprotective and bronchodilating-effect of BI01305834. Statistical evaluation of differences of in vivo data was performed using a Mann–Whitney U test or One-way nonparametric Kruskal–Wallis ANOVA, for ex vivo data One- or Two-way ANOVA was used, all with Dunnett’s post-hoc test where appropriate. Results A dose of 1 mg/kg BI01305834 was selected based on AHR and exposure data in blood samples from the pilot study. In the subsequent study, 1 mg/kg BI01305834 inhibited AHR after the EAR, and the development of EAR and LAR elicited by ovalbumin in ovalbumin-sensitized guinea pigs. BI01305834 did not inhibit allergen-induced total and differential cells in the lavage fluid and interleukin-13 gene expression in lung homogenates. Furthermore, BI01305834 was able to inhibit allergen and histamine-induced airway narrowing in guinea-pig lung slices, without affecting histamine release, and reverse allergen-induced bronchoconstriction in guinea-pig trachea strips. Conclusions TRPA1 inhibition protects against AHR and the EAR and LAR in vivo and allergen and histamine-induced airway narrowing ex vivo, and reverses allergen-induced bronchoconstriction independently of inflammation. This effect was partially dependent upon histamine, suggesting a neuronal and possible non-neuronal role for TRPA1 in allergen-induced bronchoconstriction.
Collapse
Affiliation(s)
- Mariska P M van den Berg
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Susan Nijboer-Brinksma
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Lamb
- Immunology + Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Lu RA, Zeki AA, Ram-Mohan S, Nguyen N, Bai Y, Chmiel K, Pecic S, Ai X, Krishnan R, Ghosh CC. Inhibiting Airway Smooth Muscle Contraction Using Pitavastatin: A Role for the Mevalonate Pathway in Regulating Cytoskeletal Proteins. Front Pharmacol 2020; 11:469. [PMID: 32435188 PMCID: PMC7218099 DOI: 10.3389/fphar.2020.00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Despite maximal use of currently available therapies, a significant number of asthma patients continue to experience severe, and sometimes life-threatening bronchoconstriction. To fill this therapeutic gap, we examined a potential role for the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor, pitavastatin. Using human airway smooth muscle (ASM) cells and murine precision-cut lung slices, we discovered that pitavastatin significantly inhibited basal-, histamine-, and methacholine (MCh)-induced ASM contraction. This occurred via reduction of myosin light chain 2 (MLC2) phosphorylation, and F-actin stress fiber density and distribution, in a mevalonate (MA)- and geranylgeranyl pyrophosphate (GGPP)-dependent manner. Pitavastatin also potentiated the ASM relaxing effect of a simulated deep breath, a beneficial effect that is notably absent with the β2-agonist, isoproterenol. Finally, pitavastatin attenuated ASM pro-inflammatory cytokine production in a GGPP-dependent manner. By targeting all three hallmark features of ASM dysfunction in asthma—contraction, failure to adequately relax in response to a deep breath, and inflammation—pitavastatin may represent a unique asthma therapeutic.
Collapse
Affiliation(s)
- Robin A Lu
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sumati Ram-Mohan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nhan Nguyen
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kenneth Chmiel
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, United States
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chandra C Ghosh
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Dragunas G, Woest ME, Nijboer S, Bos ST, van Asselt J, de Groot AP, Vohlídalová E, Vermeulen CJ, Ditz B, Vonk JM, Koppelman GH, van den Berge M, Ten Hacken NHT, Timens W, Munhoz CD, Prakash YS, Gosens R, Kistemaker LEM. Cholinergic neuroplasticity in asthma driven by TrkB signaling. FASEB J 2020; 34:7703-7717. [PMID: 32277855 PMCID: PMC7302963 DOI: 10.1096/fj.202000170r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Parasympathetic neurons in the airways control bronchomotor tone. Increased activity of cholinergic neurons are mediators of airway hyperresponsiveness (AHR) in asthma, however, mechanisms are not elucidated. We describe remodeling of the cholinergic neuronal network in asthmatic airways driven by brain‐derived neurotrophic factor (BDNF) and Tropomyosin receptor kinase B (TrkB). Human bronchial biopsies were stained for cholinergic marker vesicular acetylcholine transporter (VAChT). Human lung gene expression and single nucleotide polymorphisms (SNP) in neuroplasticity‐related genes were compared between asthma and healthy patients. Wild‐type (WT) and mutated TrkB knock‐in mice (Ntrk2tm1Ddg/J) with impaired BDNF signaling were chronically exposed to ovalbumin (OVA). Neuronal VAChT staining and airway narrowing in response to electrical field stimulation in precision cut lung slices (PCLS) were assessed. Increased cholinergic fibers in asthmatic airway biopsies was found, paralleled by increased TrkB gene expression in human lung tissue, and SNPs in the NTRK2 [TrkB] and BDNF genes linked to asthma. Chronic allergen exposure in mice resulted in increased density of cholinergic nerves, which was prevented by inhibiting TrkB. Increased nerve density resulted in AHR in vivo and in increased nerve‐dependent airway reactivity in lung slices mediated via TrkB. These findings show cholinergic neuroplasticity in asthma driven by TrkB signaling and suggest that the BDNF‐TrkB pathway may be a potential target.
Collapse
Affiliation(s)
- Guilherme Dragunas
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | - Manon E Woest
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Susan Nijboer
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janet van Asselt
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anne P de Groot
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eva Vohlídalová
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Corneel J Vermeulen
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Benedikt Ditz
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Epidemiology, UMCG, Groningen, the Netherlands
| | - Gerard H Koppelman
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatric Pulmonology and Pediatric Allergology, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital, Groningen, the Netherlands
| | - Maarten van den Berge
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Nick H T Ten Hacken
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pulmonary Diseases, UMCG, Groningen, the Netherlands
| | - Wim Timens
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pathology, UMCG, Groningen, the Netherlands
| | - Carolina D Munhoz
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Lebold KM, Drake MG, Hales-Beck LB, Fryer AD, Jacoby DB. IL-5 Exposure In Utero Increases Lung Nerve Density and Airway Reactivity in Adult Offspring. Am J Respir Cell Mol Biol 2020; 62:493-502. [PMID: 31821769 PMCID: PMC7110978 DOI: 10.1165/rcmb.2019-0214oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Asthma is characterized by airway hyperreactivity and inflammation. In the lungs, parasympathetic and sensory nerves control airway tone and induce bronchoconstriction. Dysregulation of these nerves results in airway hyperreactivity. Humans with eosinophilic asthma have significantly increased sensory nerve density in airway epithelium, suggesting that type 2 cytokines and inflammatory cells promote nerve growth. Similarly, mice with congenital airway eosinophilia also have airway hyperreactivity and increased airway sensory nerve density. Here, we tested whether this occurs during development. We show that transgenic mice that overexpress IL-5, a cytokine required for eosinophil hematopoiesis, give birth to wild-type offspring that have significantly increased airway epithelial nerve density and airway hyperreactivity that persists into adulthood. These effects are caused by in utero exposure to maternal IL-5 and resulting fetal eosinophilia. Allergen exposure of these adult wild-type offspring results in severe airway hyperreactivity, leading to fatal reflex bronchoconstriction. Our results demonstrate that fetal exposure to IL-5 is a developmental origin of airway hyperreactivity, mediated by hyperinnervation of airway epithelium.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Lauren B Hales-Beck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
15
|
Wang T, Zhou Q, Shang Y. MiRNA-451a inhibits airway remodeling by targeting Cadherin 11 in an allergic asthma model of neonatal mice. Int Immunopharmacol 2020; 83:106440. [PMID: 32234673 DOI: 10.1016/j.intimp.2020.106440] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/29/2020] [Accepted: 03/21/2020] [Indexed: 12/29/2022]
Abstract
Airway remodeling happens in childhood asthma, in parallel with, but not necessarily subsequent to, airway inflammation. The differentiation of airway epithelial cells into myofibroblasts via epithelial-mesenchymal-transition (EMT) is one of the mechanisms underlying airway remodeling. This study aimed at identifying novel molecules involved in pediatric asthma-associated airway remodeling. Asthma model was established by challenging C57BL/6 mouse pups with ovalbumin (OVA). We found that the expression of Cadherin 11 (CDH11), a type II cadherin, was increased by OVA treatments in the airway epithelium. Our earlier microarray data suggested miRNA-451a-5p (miRNA-451a) as a potential regulator of CDH11. In contrast to CDH11, miRNA-451a expression decreased in the asthmatic lung. MiRNA-451a was then packaged into a lentivirus vector and systematically given to the asthmatic pups. Our data indicated that OVA-induced infiltration of inflammatory cells, including eosnophils, neutrophils, macrophages and lymphocytes, was reduced by miRNA-451a over-expression. EMT was initiated in asthmatic mice as demonstrated by increased alpha-smooth muscle actin (α-SMA) positive cells present in airway epithelium, which was inhibited by miRNA-451a. CDH11 elevation in vivo was also inhibited by miRNA-451a. Dual-Luciferase analysis further showed CDH11 as a novel valid target of miRNA-451a. Additionally, in vitro, EMT was triggered in human 16HBE airway epithelial cells by pro-fibrotic transforming growth factor β (TGF-β). Corresponding to the anti-EMT effects observed in vivo, miRNA-451a also inhibited TGF-β-induced collagen deposition in cultured airway epithelial cells by targeting in CDH11. In summary, our study demonstrates that the deregulated miRNA-451a-CDH11 axis contributes to airway remodeling in childhood asthma.
Collapse
Affiliation(s)
- Tianyue Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Qianlan Zhou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
16
|
Barrios J, Kho AT, Aven L, Mitchel JA, Park JA, Randell SH, Miller LA, Tantisira KG, Ai X. Pulmonary Neuroendocrine Cells Secrete γ-Aminobutyric Acid to Induce Goblet Cell Hyperplasia in Primate Models. Am J Respir Cell Mol Biol 2020; 60:687-694. [PMID: 30571139 DOI: 10.1165/rcmb.2018-0179oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucus overproduction is a major contributor to morbidity and mortality in asthma. Mucus overproduction is induced by orchestrated actions of multiple factors that include inflammatory cytokines and γ-aminobutyric acid (GABA). GABA is produced only by pulmonary neuroendocrine cells (PNECs) in the mouse lung. Recent studies in a neonatal mouse model of allergic inflammation have shown that PNECs play an essential role in mucus overproduction by GABA hypersecretion. Whether PNECs mediate dysregulated GABA signaling for mucus overproduction in asthma is unknown. In this study, we characterized the cellular source of GABA in the lungs of nonhuman primates and humans and assessed GABA secretion and signaling in primate disease models. We found that like in mice, PNECs were the major source of GABA in primate lungs. In addition, an infant nonhuman primate model of asthma exhibited an increase in GABA secretion. Furthermore, subjects with asthma had elevated levels of expression of a subset of GABA type α (GABAα) and type β (GABAβ) receptors in airway epithelium compared with those of healthy control subjects. Last, employing a normal human bronchial epithelial cell model of preinduced mucus overproduction, we showed pharmaceutical blockade of GABAα and GABAβ receptor signaling reversed the effect of IL-13 on MUC5AC gene expression and goblet cell proliferation. Together, our data demonstrate an evolutionarily conserved intraepithelial GABA signaling that, in concert with IL-13, plays an essential role in mucus overproduction. Our findings may offer new strategies to ameliorate mucus overproduction in patients with asthma by targeting PNEC secretion and GABA signaling.
Collapse
Affiliation(s)
- Juliana Barrios
- 1 The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Alvin T Kho
- 2 The Channing Division of Network Medicine, and
| | - Linh Aven
- 1 The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Jennifer A Mitchel
- 3 Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jin-Ah Park
- 3 Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Scott H Randell
- 4 Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | - Lisa A Miller
- 5 Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California
| | | | - Xingbin Ai
- 6 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
Wang W, Cohen JA, Wallrapp A, Trieu KG, Barrios J, Shao F, Krishnamoorthy N, Kuchroo VK, Jones MR, Fine A, Bai Y, Ai X. Age-Related Dopaminergic Innervation Augments T Helper 2-Type Allergic Inflammation in the Postnatal Lung. Immunity 2019; 51:1102-1118.e7. [PMID: 31757673 DOI: 10.1016/j.immuni.2019.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/28/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
Abstract
Young children are more susceptible to developing allergic asthma than adults. As neural innervation of the peripheral tissue continues to develop after birth, neurons may modulate tissue inflammation in an age-related manner. Here we showed that sympathetic nerves underwent a dopaminergic-to-adrenergic transition during post-natal development of the lung in mice and humans. Dopamine signaled through a specific dopamine receptor (DRD4) to promote T helper 2 (Th2) cell differentiation. The dopamine-DRD4 pathway acted synergistically with the cytokine IL-4 by upregulating IL-2-STAT5 signaling and reducing inhibitory histone trimethylation at Th2 gene loci. In murine models of allergen exposure, the dopamine-DRD4 pathway augmented Th2 inflammation in the lungs of young mice. However, this pathway operated marginally after sympathetic nerves became adrenergic in the adult lung. Taken together, the communication between dopaminergic nerves and CD4+ T cells provides an age-related mechanism underlying the susceptibility to allergic inflammation in the early lung.
Collapse
Affiliation(s)
- Wei Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonathan A Cohen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Kenneth G Trieu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Juliana Barrios
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Fengzhi Shao
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nandini Krishnamoorthy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew R Jones
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alan Fine
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; The West Roxbury Veteran's Hospital, West Roxbury, MA, USA
| | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Kistemaker LEM, Prakash YS. Airway Innervation and Plasticity in Asthma. Physiology (Bethesda) 2019; 34:283-298. [PMID: 31165683 PMCID: PMC6863372 DOI: 10.1152/physiol.00050.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Airway nerves represent a mechanistically and therapeutically important aspect that requires better highlighting in the context of diseases such as asthma. Altered structure and function (plasticity) of afferent and efferent airway innervation can contribute to airway diseases. We describe established anatomy, current understanding of how plasticity occurs, and contributions of plasticity to asthma, focusing on target-derived growth factors (neurotrophins). Perspectives toward novel treatment strategies and future research are provided.
Collapse
Affiliation(s)
- L E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen , Groningen , The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
19
|
Britt RD, Thompson MA, Wicher SA, Manlove LJ, Roesler A, Fang YH, Roos C, Smith L, Miller JD, Pabelick CM, Prakash YS. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma. FASEB J 2019; 33:3024-3034. [PMID: 30351991 PMCID: PMC6338659 DOI: 10.1096/fj.201801002r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/01/2018] [Indexed: 01/14/2023]
Abstract
Recent studies have demonstrated an effect of neurotrophins, particularly brain-derived neurotrophic factor (BDNF), on airway contractility [ via increased airway smooth muscle (ASM) intracellular calcium [Ca2+]i] and remodeling (ASM proliferation and extracellular matrix formation) in the context of airway disease. In the present study, we examined the role of BDNF in allergen-induced airway inflammation using 2 transgenic models: 1) tropomyosin-related kinase B (TrkB) conditional knockin (TrkBKI) mice allowing for inducible, reversible disruption of BDNF receptor kinase activity by administration of 1NMPP1, a PP1 derivative, and 2) smooth muscle-specific BDNF knockout (BDNFfl/fl/SMMHC11Cre/0) mice. Adult mice were intranasally challenged with PBS or mixed allergen ( Alternaria alternata, Aspergillus fumigatus, house dust mite, and ovalbumin) for 4 wk. Our data show that administration of 1NMPP1 in TrkBKI mice during the 4-wk allergen challenge blunted airway hyperresponsiveness (AHR) and reduced fibronectin mRNA expression in ASM layers but did not reduce inflammation per se. Smooth muscle-specific deletion of BDNF reduced AHR and blunted airway fibrosis but did not significantly alter airway inflammation. Together, our novel data indicate that TrkB signaling is a key modulator of AHR and that smooth muscle-derived BDNF mediates these effects during allergic airway inflammation.-Britt, R. D., Jr., Thompson, M. A., Wicher, S. A., Manlove, L. J., Roesler, A., Fang, Y.-H., Roos, C., Smith, L., Miller, J. D., Pabelick, C. M., Prakash, Y. S. Smooth muscle brain-derived neurotrophic factor contributes to airway hyperreactivity in a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Rodney D. Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Michael A. Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Logan J. Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Anne Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Yun-Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carolyn Roos
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Leslie Smith
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; and
| |
Collapse
|
20
|
Reznikov LR, Liao YSJ, Gu T, Davis KM, Kuan SP, Atanasova KR, Dadural JS, Collins EN, Guevara MV, Vogt K. Sex-specific airway hyperreactivity and sex-specific transcriptome remodeling in neonatal piglets challenged with intra-airway acid. Am J Physiol Lung Cell Mol Physiol 2018; 316:L131-L143. [PMID: 30407862 DOI: 10.1152/ajplung.00417.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute airway acidification is a potent stimulus of sensory nerves and occurs commonly with gastroesophageal reflux disease, cystic fibrosis, and asthma. In infants and adults, airway acidification can acutely precipitate asthma-like symptoms, and treatment-resistant asthma can be associated with gastroesophageal reflux disease. Airway protective behaviors, such as mucus secretion and airway smooth muscle contraction, are often exaggerated in asthma. These behaviors are manifested through activation of neural circuits. In some populations, the neural response to acid might be particularly important. For example, the immune response in infants is relatively immature compared with adults. Infants also have a high frequency of gastroesophageal reflux. Thus, in the current study, we compared the transcriptomes of an airway-nervous system circuit (e.g., tracheal epithelia, nodose ganglia, and brain stem) in neonatal piglets challenged with intra-airway acid. We hypothesized that the identification of parallel changes in the transcriptomes of two neutrally connected tissues might reveal the circuit response, and, hence, molecules important for the manifestation of asthma-like features. Intra-airway acid induced airway hyperreactivity and airway obstruction in male piglets. In contrast, female piglets displayed airway obstruction without airway hyperreactivity. Pairwise comparisons revealed parallel changes in genes directly implicated in airway hyperreactivity ( scn10a) in male acid-challenged piglets, whereas acid-challenged females exhibited parallel changes in genes associated with mild asthma ( stat 1 and isg15). These findings reveal sex-specific responses to acute airway acidification and highlight distinct molecules within a neural circuit that might be critical for the manifestation of asthma-like symptoms in pediatric populations.
Collapse
Affiliation(s)
- Leah R Reznikov
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Yan Shin J Liao
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida , Gainesville, Florida
| | - Katelyn M Davis
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Shin Ping Kuan
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Kalina R Atanasova
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Joshua S Dadural
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Emily N Collins
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Maria V Guevara
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | - Kevin Vogt
- Department of Physiological Sciences, University of Florida , Gainesville, Florida
| |
Collapse
|
21
|
Gosens R, Gross N. The mode of action of anticholinergics in asthma. Eur Respir J 2018; 52:13993003.01247-2017. [PMID: 30115613 PMCID: PMC6340638 DOI: 10.1183/13993003.01247-2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/09/2018] [Indexed: 01/25/2023]
Abstract
Acetylcholine binds to muscarinic receptors to play a key role in the pathophysiology of asthma, leading to bronchoconstriction, increased mucus secretion, inflammation and airway remodelling. Anticholinergics are muscarinic receptor antagonists that are used in the treatment of chronic obstructive pulmonary disease and asthma. Recent in vivo and in vitro data have increased our understanding of how acetylcholine contributes to the disease manifestations of asthma, as well as elucidating the mechanism of action of anticholinergics. This review assesses the latest literature on acetylcholine in asthma pathophysiology, with a closer look at its role in airway inflammation and remodelling. New insights into the mechanism of action of anticholinergics, their effects on airway remodelling, and a review of the efficacy and safety of long-acting anticholinergics in asthma treatment will also be covered, including a summary of the latest clinical trial data. Pre-clinical data suggest that anticholinergics can reduce acetylcholine-induced airway inflammation and remodellinghttp://ow.ly/xqAQ30loP8F
Collapse
Affiliation(s)
| | - Nicholas Gross
- University Medical Research LLC, St Francis Hospital, Hartford, CT, USA
| |
Collapse
|
22
|
Shaffo FC, Grodzki AC, Fryer AD, Lein PJ. Mechanisms of organophosphorus pesticide toxicity in the context of airway hyperreactivity and asthma. Am J Physiol Lung Cell Mol Physiol 2018; 315:L485-L501. [PMID: 29952220 PMCID: PMC6230874 DOI: 10.1152/ajplung.00211.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous epidemiologic studies have identified an association between occupational exposures to organophosphorus pesticides (OPs) and asthma or asthmatic symptoms in adults. Emerging epidemiologic data suggest that environmentally relevant levels of OPs may also be linked to respiratory dysfunction in the general population and that in utero and/or early life exposures to environmental OPs may increase risk for childhood asthma. In support of a causal link between OPs and asthma, experimental evidence demonstrates that occupationally and environmentally relevant OP exposures induce bronchospasm and airway hyperreactivity in preclinical models. Mechanistic studies have identified blockade of autoinhibitory M2 muscarinic receptors on parasympathetic nerves that innervate airway smooth muscle as one mechanism by which OPs induce airway hyperreactivity, but significant questions remain regarding the mechanism(s) by which OPs cause neuronal M2 receptor dysfunction and, more generally, how OPs cause persistent asthma, especially after developmental exposures. The goals of this review are to 1) summarize current understanding of OPs in asthma; 2) discuss mechanisms of OP neurotoxicity and immunotoxicity that warrant consideration in the context of OP-induced airway hyperreactivity and asthma, specifically, inflammatory responses, oxidative stress, neural plasticity, and neurogenic inflammation; and 3) identify critical data gaps that need to be addressed in order to better protect adults and children against the harmful respiratory effects of low-level OP exposures.
Collapse
Affiliation(s)
- Frances C Shaffo
- Department of Molecular Biosciences, University of California , Davis, California
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, University of California , Davis, California
| | - Allison D Fryer
- Pulmonary Critical Care Medicine, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California , Davis, California
| |
Collapse
|
23
|
Atanasova KR, Reznikov LR. Neuropeptides in asthma, chronic obstructive pulmonary disease and cystic fibrosis. Respir Res 2018; 19:149. [PMID: 30081920 PMCID: PMC6090699 DOI: 10.1186/s12931-018-0846-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
The nervous system mediates key airway protective behaviors, including cough, mucus secretion, and airway smooth muscle contraction. Thus, its involvement and potential involvement in several airway diseases has become increasingly recognized. In the current review, we focus on the contribution of select neuropeptides in three distinct airway diseases: asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. We present data on some well-studied neuropeptides, as well as call attention to a few that have not received much consideration. Because mucus hypersecretion and mucus obstruction are common features of many airway diseases, we place special emphasis on the contribution of neuropeptides to mucus secretion. Finally, we highlight evidence implicating involvement of neuropeptides in mucus phenotypes in asthma, COPD and cystic fibrosis, as well as bring to light knowledge that is still lacking in the field.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, PO Box 100144, Gainesville, FL, 32610, USA.
| |
Collapse
|
24
|
Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, Lashua A, Yu C, Klein BS, Locksley RM, Deutsch G, Sun X. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 2018; 360:eaan8546. [PMID: 29599193 PMCID: PMC6387886 DOI: 10.1126/science.aan8546] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/11/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Pulmonary neuroendocrine cells (PNECs) are rare airway epithelial cells whose function is poorly understood. Here we show that Ascl1-mutant mice that have no PNECs exhibit severely blunted mucosal type 2 response in models of allergic asthma. PNECs reside in close proximity to group 2 innate lymphoid cells (ILC2s) near airway branch points. PNECs act through calcitonin gene-related peptide (CGRP) to stimulate ILC2s and elicit downstream immune responses. In addition, PNECs act through the neurotransmitter γ-aminobutyric acid (GABA) to induce goblet cell hyperplasia. The instillation of a mixture of CGRP and GABA in Ascl1-mutant airways restores both immune and goblet cell responses. In accordance, lungs from human asthmatics show increased PNECs. These findings demonstrate that the PNEC-ILC2 neuroimmunological modules function at airway branch points to amplify allergic asthma responses.
Collapse
Affiliation(s)
- Pengfei Sui
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darin L Wiesner
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinhao Xu
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yan Zhang
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinwoo Lee
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven Van Dyken
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amber Lashua
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chuyue Yu
- Zhiyuan College, Shanghai JiaoTong University, Shanghai, China
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard M Locksley
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gail Deutsch
- Department of Laboratories, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA.
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Asthma is a chronic airway disease that affects more than 300 million people worldwide. Current treatment focuses on symptomatic relief by temporally dampening inflammation and relaxing the airway. Novel combative strategies against asthma and hopefully a cure are yet to be developed. The goal of this review is to summarize recent literature on neurotrophins (NTs) in experimental models and clinical settings of asthma research. RECENT FINDINGS We highlight studies of early phases of asthma that collectively reveal a profound impact of elevated NT levels following initial detrimental insults on long-term airway dysfunction. We hope this review will foster insights into the complex interaction between NTs, nerves, immune cells, and airway structural cells during a critical time window of development and disease susceptibility. Future studies are required to better understand the role of NTs in asthma pathophysiology and to evaluate whether NTs and their receptors may serve as new drug targets.
Collapse
Affiliation(s)
- Juliana Barrios
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA.
- Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Thorn Building, Rm. 905, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Patel KR, Bai Y, Trieu KG, Barrios J, Ai X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma. FASEB J 2017; 31:4335-4346. [PMID: 28619712 PMCID: PMC5602904 DOI: 10.1096/fj.201700186r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022]
Abstract
Asthma often progresses into adulthood from early-life episodes of adverse environmental exposures. However, how the injury to developing lungs contributes to the pathophysiology of persistent asthma remains poorly understood. In this study, we identified an age-related mechanism along the cholinergic nerve-airway smooth muscle (ASM) axis that underlies prolonged airway hyperreactivity (AHR) in mice. We showed that ASM continued to mature until ∼3 wk after birth. Coinciding with postnatal ASM maturation, there was a critical time window for the development of ASM hypercontractility after cholinergic stimulation. We found that allergen exposure in neonatal mice, but not in adult mice, elevated the level and activity of cholinergic nerves (termed neuroplasticity). We demonstrated that cholinergic neuroplasticity is necessary for the induction of persistent AHR after neonatal exposure during rescue assays in mice deficient in neuroplasticity. In addition, early intervention with cholinergic receptor muscarinic (ChRM)-3 blocker reversed the progression of AHR in the neonatal exposure model, whereas β2-adrenoceptor agonists had no such effect. Together, our findings demonstrate a functional relationship between cholinergic neuroplasticity and ASM contractile phenotypes that operates uniquely in early life to induce persistent AHR after allergen exposure. Targeting ChRM3 may have disease-modifying benefits in childhood asthma.-Patel, K. R., Bai, Y., Trieu, K. G., Barrios, J., Ai, X. Targeting acetylcholine receptor M3 prevents the progression of airway hyperreactivity in a mouse model of childhood asthma.
Collapse
Affiliation(s)
- Kruti R Patel
- Division of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth G Trieu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana Barrios
- Pulmonary Division, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
27
|
Jiang Z, Knudsen NH, Wang G, Qiu W, Naing ZZC, Bai Y, Ai X, Lee CH, Zhou X. Genetic Control of Fatty Acid β-Oxidation in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2017; 56:738-748. [PMID: 28199134 PMCID: PMC5516290 DOI: 10.1165/rcmb.2016-0282oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 12/17/2022] Open
Abstract
Bioenergetics homeostasis is important for cells to sustain normal functions and defend against injury. The genetic controls of bioenergetics homeostasis, especially lipid metabolism, remain poorly understood in chronic obstructive pulmonary disease (COPD), the third leading cause of death in the world. Additionally, the biological function of most of the susceptibility genes identified from genome-wide association studies (GWASs) in COPD remains unclear. Here, we aimed to address (1) how fatty acid oxidation (FAO), specifically β-oxidation, a key lipid metabolism pathway that provides energy to cells, contributes to cigarette smoke (CS)-induced COPD; and (2) whether-and if so, how-FAM13A (family with sequence similarity 13 member A), a well-replicated COPD GWAS gene, modulates the FAO pathway. We demonstrated that CS induced expression of carnitine palmitoyltransferase 1A (CPT1A), a key mitochondrial enzyme for the FAO pathway, thereby enhancing FAO. Pharmacological inhibition of FAO by etomoxir blunted CS-induced reactive oxygen species accumulation and cell death in lung epithelial cells. FAM13A promoted FAO, possibly by interacting with and activating sirutin 1, and increasing expression of CPT1A. Furthermore, CS-induced cell death was reduced in lungs from Fam13a-/- mice. Our results suggest that FAM13A, the COPD GWAS gene, shapes the cellular metabolic response to CS exposure by promoting the FAO pathway, which may contribute to COPD development.
Collapse
Affiliation(s)
| | - Nelson H. Knudsen
- Departments of Genetics and Complex Diseases, and
- Nutrition, Division of Biological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, and
| | - Gang Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts
| | | | | | - Yan Bai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| | - Chih-Hao Lee
- Departments of Genetics and Complex Diseases, and
- Nutrition, Division of Biological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, and
| | - Xiaobo Zhou
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School
| |
Collapse
|
28
|
Barrios J, Patel KR, Aven L, Achey R, Minns MS, Lee Y, Trinkaus-Randall VE, Ai X. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion. FASEB J 2017; 31:4117-4128. [PMID: 28566470 DOI: 10.1096/fj.201700115r] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/15/2017] [Indexed: 12/13/2022]
Abstract
Pulmonary neuroendocrine cells (PNECs) are the only innervated airway epithelial cells. To what extent neural innervation regulates PNEC secretion and function is unknown. Here, we discover that neurotrophin 4 (NT4) plays an essential role in mucus overproduction after early life allergen exposure by orchestrating PNEC innervation and secretion of GABA. We found that PNECs were the only cellular source of GABA in airways. In addition, PNECs expressed NT4 as a target-derived mechanism underlying PNEC innervation during development. Early life allergen exposure elevated the level of NT4 and caused PNEC hyperinnervation and nodose neuron hyperactivity. Associated with aberrant PNEC innervation, the authors discovered that GABA hypersecretion was required for the induction of mucin Muc5ac expression. In contrast, NT4-/- mice were protected from allergen-induced mucus overproduction and changes along the nerve-PNEC axis without any defects in inflammation. Last, GABA installation restored mucus overproduction in NT4-/- mice after early life allergen exposure. Together, our findings provide the first evidence for NT4-dependent neural regulation of PNEC secretion of GABA in a neonatal disease model. Targeting the nerve-PNEC axis may be a valid treatment strategy for mucus overproduction in airway diseases, such as childhood asthma.-Barrios, J., Patel, K. R., Aven, L., Achey, R., Minns, M. S., Lee, Y., Trinkaus-Randall, V. E., Ai, X. Early life allergen-induced mucus overproduction requires augmented neural stimulation of pulmonary neuroendocrine cell secretion.
Collapse
Affiliation(s)
- Juliana Barrios
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kruti R Patel
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Linh Aven
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Rebecca Achey
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Martin S Minns
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yoonjoo Lee
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | - Xingbin Ai
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA;
| |
Collapse
|
29
|
Reznikov LR, Meyerholz DK, Adam RJ, Abou Alaiwa M, Jaffer O, Michalski AS, Powers LS, Price MP, Stoltz DA, Welsh MJ. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice. PLoS One 2016; 11:e0166089. [PMID: 27820848 PMCID: PMC5098826 DOI: 10.1371/journal.pone.0166089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/22/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma.
Collapse
Affiliation(s)
- Leah R. Reznikov
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David K. Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryan J. Adam
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Mahmoud Abou Alaiwa
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Omar Jaffer
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew S. Michalski
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Margaret P. Price
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - David A. Stoltz
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Pappajohn Biomedical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
31
|
Patel KR, Aven L, Shao F, Krishnamoorthy N, Duvall MG, Levy BD, Ai X. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life. Mucosal Immunol 2016; 9:1466-1476. [PMID: 26860818 PMCID: PMC4980297 DOI: 10.1038/mi.2016.11] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Asthma often progresses from early episodes of insults. How early-life events connect to long-term airway dysfunction remains poorly understood. We demonstrated previously that increased neurotrophin 4 (NT4) levels following early-life allergen exposure cause persistent changes in airway smooth muscle (ASM) innervation and airway hyper-reactivity (AHR) in mice. Herein, we identify pulmonary mast cells as a key source of aberrant NT4 expression following early insults. NT4 is selectively expressed by ASM and mast cells in mice, nonhuman primates, and humans. We show in mice that mast cell-derived NT4 is dispensable for ASM innervation during development. However, upon insults, mast cells expand in number and degranulate to release NT4 and thus become the major source of NT4 under pathological condition. Adoptive transfer of wild-type mast cells, but not NT4-/- mast cells restores ASM hyperinnervation and AHR in KitW-sh/W-sh mice following early-life insults. Notably, an infant nonhuman primate model of asthma also exhibits ASM hyperinnervation associated with the expansion and degranulation of mast cells. Together, these findings identify an essential role of mast cells in mediating ASM hyperinnervation following early-life insults by producing NT4. This role may be evolutionarily conserved in linking early insults to long-term airway dysfunction.
Collapse
Affiliation(s)
- Kruti R. Patel
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Linh Aven
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Fengzhi Shao
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nandini Krishnamoorthy
- Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, USA
| | - Melody G. Duvall
- Division of Critical Care Medicine, Department of Anesthesia, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, USA
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, USA
| | - Xingbin Ai
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Abdulnour REE, Sham HP, Douda DN, Colas RA, Dalli J, Bai Y, Ai X, Serhan CN, Levy BD. Aspirin-triggered resolvin D1 is produced during self-resolving gram-negative bacterial pneumonia and regulates host immune responses for the resolution of lung inflammation. Mucosal Immunol 2016; 9:1278-87. [PMID: 26647716 PMCID: PMC5107310 DOI: 10.1038/mi.2015.129] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/10/2015] [Indexed: 02/04/2023]
Abstract
Bacterial pneumonia is a leading cause of morbidity and mortality worldwide. Host responses to contain infection and mitigate pathogen-mediated lung inflammation are critical for pneumonia resolution. Aspirin-triggered resolvin D1 (AT-RvD1; 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) is a lipid mediator (LM) that displays organ-protective actions in sterile lung inflammation, and regulates pathogen-initiated cellular responses. Here, in a self-resolving murine model of Escherichia coli pneumonia, LM metabololipidomics performed on lungs obtained at baseline, 24, and 72 h after infection uncovered temporal regulation of endogenous AT-RvD1 production. Early treatment with exogenous AT-RvD1 (1 h post infection) enhanced clearance of E. coli and Pseudomonas aeruginosa in vivo, and lung macrophage phagocytosis of fluorescent bacterial particles ex vivo. Characterization of macrophage subsets in the alveolar compartment during pneumonia identified efferocytosis by infiltrating macrophages (CD11b(Hi) CD11c(Low)) and exudative macrophages (CD11b(Hi) CD11c(Hi)). AT-RvD1 increased efferocytosis by these cells ex vivo, and accelerated neutrophil clearance during pneumonia in vivo. These anti-bacterial and pro-resolving actions of AT-RvD1 were additive to antibiotic therapy. Taken together, these findings suggest that the pro-resolving actions of AT-RvD1 during pneumonia represent a novel host-directed therapeutic strategy to complement the current antibiotic-centered approach for combatting infections.
Collapse
Affiliation(s)
- Raja Elie E. Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ho Pan Sham
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - David N. Douda
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Romain A. Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce D. Levy
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA,Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Chetty A, Cao GJ, Sharda A, Tsay T, Nielsen HC. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice. Front Biosci (Elite Ed) 2016; 8:370-7. [PMID: 27100345 DOI: 10.2741/e773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The temporal origins of childhood asthma are incompletely understood. We hypothesize that allergen sensitization which begins in early infancy causes IgE-mediated airway and vascular remodeling, and airway hyper-responsiveness. Mice were sensitized with ovalbumin (OVA) without or with anti-IgE antibody from postnatal day (P) 10 through P42. We studied airway resistance in response to Methacholine (MCh) challenge, bronchoalveolar lavage fluid (BAL) inflammatory cell content, immunohistochemistry for inflammation, alpha-smooth muscle actin (alpha-SMA) and platelet/endothelial cell adhesion molecule (PECAM) proteins, and Western blotting for vascular endothelial growth factor (VEGF) protein. Compared to controls, mice treated with OVA had increased airway resistance (baseline: 192% of control; MCH 12 mg/mL 170% of control; P less than 0.0.5). OVA treatment also increased lung alpha-SMA, VEGF and PECAM compared to controls. Inflammatory cells in the BAL and perivascular and peribronchiolar inflammatory cell infiltrates increased over controls with OVA exposure. These changes were counteracted by anti-IgE treatment. We conclude that mice sensitized in early infancy develop an IgE-mediated hyper-reactive airway disease with airway and vascular remodeling. Preventive approaches in early infancy of at-risk individuals may reduce childhood asthma.
Collapse
Affiliation(s)
- Anne Chetty
- Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, MA
| | - Gong-Jie Cao
- Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, MA
| | - Azeem Sharda
- Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, MA
| | - Theresia Tsay
- Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, MA
| | - Heber C Nielsen
- Department of Pediatrics, Floating Hospital for Children, Tufts Medical Center, Boston, MA,
| |
Collapse
|
34
|
Yuan L, Liu J, Dong R, Zhu J, Tao C, Zheng R, Zhu S. 14,15-epoxyeicosatrienoic acid promotes production of brain derived neurotrophic factor from astrocytes and exerts neuroprotective effects during ischaemic injury. Neuropathol Appl Neurobiol 2016; 42:607-620. [PMID: 26526810 DOI: 10.1111/nan.12291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
AIMS 14,15-Epoxyeicosatrienoic acid (14,15-EET) is abundantly expressed in brain and exerts protective effects against ischaemia. 14,15-EET is hydrolysed by soluble epoxide hydrolase (sEH). sEH-/- mice show a higher level of 14,15-EET in the brain. Astrocytes play a pivotal role in neuronal survival under ischaemic conditions. However, it is unclear whether the neuroprotective effect of 14,15-EET is associated with astrocytes. METHODS A mouse model of focal cerebral ischaemia was induced by middle cerebral artery occlusion. Oxygen-glucose deprivation/reoxygenation (OGD/R) was performed on cultured murine astrocytes, neurons and a human cell line. Cell viabilities were measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The mRNA expressions were quantified by real-time PCR. Brain derived neurotrophic factor (BDNF) concentration was measured by ELISA. Protein expressions were quantified by Western blotting. BDNF and peroxisome proliferators-activated receptor gamma (PPAR-γ) expressions were analysed by confocal microscopy. RESULTS Decreased infarct volumes, elevated BDNF expression and increased numbers of BDNF/GFAP Glial Fibrillary Acidic Protein double-positive cells were observed in the ischaemic penumbra of sEH-/- mice. The decreased infarct volumes of sEH-/- mice were diminished by intracerebroventricular injection of a blocker of BDNF receptor. 14,15-EET increases BDNF expression and cell viability of murine astrocytes and U251 cells by BDNF-TrkB Tyrosine receptor kinase-B-extracellular signal-regulated kinase 1/2 signalling during OGD/R. 14,15-EET protects neurons from OGD/R by stimulating the production of astrocyte-derived BDNF. 14,15-EET stimulates the production of astrocyte-derived BDNF through PPAR-γ/p-cAMP-response element binding protein signal pathways. CONCLUSIONS Our study demonstrates the importance of 14,15-EET-mediated production of astrocyte-derived BDNF for enhancing viability of astrocytes and protecting neurons from the ischaemic injury and provides insights into the mechanism by which 14,15-EET is involved in neuroprotection.
Collapse
Affiliation(s)
- L Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - J Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - R Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - J Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - C Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - R Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - S Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
35
|
Wang SY, Freeman MR, Sathish V, Thompson MA, Pabelick CM, Prakash YS. Sex Steroids Influence Brain-Derived Neurotropic Factor Secretion From Human Airway Smooth Muscle Cells. J Cell Physiol 2015; 231:1586-92. [PMID: 26566264 DOI: 10.1002/jcp.25254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/15/2022]
Abstract
Brain derived neurotropic factor (BDNF) is emerging as an important player in airway inflammation, remodeling, and hyperreactivity. Separately, there is increasing evidence that sex hormones contribute to pathophysiology in the lung. BDNF and sex steroid signaling are thought to be intricately linked in the brain. There is currently little information on BDNF and sex steroid interactions in the airway but is relevant to understanding growth factor signaling in the context of asthma in men versus women. In this study, we assessed the effect of sex steroids on BDNF expression and secretion in human airway smooth muscle (ASM). Human ASM was treated with estrogen (E2 ) or testosterone (T, 10 nM each) and intracellular BDNF and secreted BDNF measured. E2 and T significantly reduced secretion of BDNF; effects prevented by estrogen and androgen receptor inhibitor, ICI 182,780 (1 μM), and flutamide (10 μM), respectively. Interestingly, no significant changes were observed in intracellular BDNF mRNA or protein expression. High affinity BDNF receptor, TrkB, was not altered by E2 or T. E2 (but not T) significantly increased intracellular cyclic AMP levels. Notably, Epac1 and Epac2 expression were significantly reduced by E2 and T. Furthermore, SNARE complex protein SNAP25 was decreased. Overall, these novel data suggest that physiologically relevant concentrations of E2 or T inhibit BDNF secretion in human ASM, suggesting a potential interaction of sex steroids with BDNF in the airway that is different from brain. The relevance of sex steroid-BDNF interactions may lie in their overall contribution to airway diseases such as asthma.
Collapse
Affiliation(s)
- Sheng-Yu Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, PR China.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Meyerholz DK, Lambertz AM, Reznikov LR, Ofori-Amanfo GK, Karp PH, McCray PB, Welsh MJ, Stoltz DA. Immunohistochemical Detection of Markers for Translational Studies of Lung Disease in Pigs and Humans. Toxicol Pathol 2015; 44:434-41. [PMID: 26511846 DOI: 10.1177/0192623315609691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetically engineered pigs are increasingly recognized as valuable models for the study of human disease. Immunohistochemical study of cellular markers of disease is an important tool for the investigation of these novel models so as to evaluate genotype and treatment differences. Even so, there remains a lack of validated markers for pig tissues that can serve as a translational link to human disease in organs such as the lung. Herein, we evaluate markers of cellular inflammation (cluster of differentiation [CD]3, CD79a, B cell lymphoma [BCL] 6, ionized calcium-binding adapter molecule [IBA]1, and myeloperoxidase) and those that may be involved with tissue remodeling (alpha-smooth muscle actin, beta-tubulin-III, lactoferrin, mucin [MUC]5AC, MUC5B, and cystic fibrosis transmembrane conductance regulator [CFTR]) for study of lung tissues. We compare the utility of these markers between pig and human lungs to validate translational relevance of each marker. Our results suggest these markers can be a useful addition in the pathological evaluation of porcine models of human disease.
Collapse
Affiliation(s)
| | | | - Leah R Reznikov
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Phil H Karp
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, USA Howard Hughes Medical Institute, University of Iowa, Iowa City, IA, USA
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, USA Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Chitano P, Wang L, Degan S, Worthington CL, Pozzato V, Hussaini SH, Turner WC, Dorscheid DR, Murphy TM. Ovalbumin sensitization of guinea pig at birth prevents the ontogenetic decrease in airway smooth muscle responsiveness. Physiol Rep 2014; 2:2/12/e12241. [PMID: 25501429 PMCID: PMC4332219 DOI: 10.14814/phy2.12241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Airway smooth muscle (ASM) displays a hyperresponsive phenotype at young age and becomes less responsive in adulthood. We hypothesized that allergic sensitization, which causes ASM hyperresponsiveness and typically occurs early in life, prevents the ontogenetic loss of the ASM hyperresponsive phenotype. We therefore studied whether neonatal allergic sensitization, not followed by later allergen challenges, alters the ontogenesis of ASM properties. We neonatally sensitized guinea pigs to ovalbumin and studied them at 1 week, 3 weeks, and 3 months (adult). A Schultz‐Dale response in isolated tracheal rings confirmed sensitization. The occurrence of inflammation was evaluated in the blood and in the submucosa of large airways. We assessed ASM function in tracheal strips as ability to produce force and shortening. ASM content of vimentin was also studied. A Schultz‐Dale response was observed in all 3‐week or older sensitized animals. A mild inflammatory process was characterized by eosinophilia in the blood and in the airway submucosa. Early life sensitization had no effect on ASM force generation, but prevented the ontogenetic decline of shortening velocity and the increase in resistance to shortening. Vimentin increased with age in control but not in sensitized animals. Allergic sensitization at birth without subsequent allergen exposures is sufficient to prevent normal ASM ontogenesis, inducing persistence to adulthood of an ASM hyperresponsive phenotype. Airway smooth muscle (ASM) displays a hyperresponsive phenotype at young age and becomes less responsive in adulthood. In this study, we found that allergic sensitization at birth without subsequent allergen exposures is sufficient to prevent normal ASM ontogenesis, inducing persistence to adulthood of an ASM hyperresponsive phenotype.
Collapse
Affiliation(s)
- Pasquale Chitano
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina James Hogg Research Centre, Institute for Heart and Lung Innovation and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lu Wang
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina James Hogg Research Centre, Institute for Heart and Lung Innovation and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simone Degan
- Duke Center for Molecular and Biomolecular Imaging, Duke University Medical Center, Durham, North Carolina Duke Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Charles L Worthington
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Valeria Pozzato
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Syed H Hussaini
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Wesley C Turner
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Delbert R Dorscheid
- James Hogg Research Centre, Institute for Heart and Lung Innovation and Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas M Murphy
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
38
|
Abstract
Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|