1
|
Shrikondawar AN, Chennoju K, Ghosh DK, Ranjan A. Mapping of Nuclear Localization Signal in Secreted Liver-Specific Protein 2 of Plasmodium falciparum. ACS Infect Dis 2024; 10:4369-4383. [PMID: 39601512 DOI: 10.1021/acsinfecdis.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The secretory proteome of Plasmodium exhibits differential spatial and functional activity within host cells. Plasmodium secretes proteins that translocate into the human host cell nucleus. Liver-specific protein 2 of Plasmodium falciparum (Pf-LISP2) shows nuclear accumulation in human hepatocytes during the late liver stage of malaria parasite development. However, the nuclear translocation mechanism for Pf-LISP2 remains largely uncharacterized. Here, we identified a classical bipartite nuclear localization signal (NLS) located in the C-terminal region of Pf-LISP2. Phylogenetic analysis revealed that this NLS is unique to Plasmodium falciparum and its close relative Plasmodium reichenowi, suggesting an evolutionary adaptation linked to their shared primate hosts. Functional assays confirmed the NLS's nuclear import activity, as fusion constructs of the Pf-LISP2 NLS with Pf-aldolase (Pf-aldolase-NLS-EGFP) localized exclusively to the nucleus of HepG2 cells. Mutation analysis of key lysine and arginine residues in the bipartite NLS demonstrated that the basic amino acid clusters are essential for nuclear localization. Importin-α/β interaction was found to be crucial for Pf-LISP2 nuclear transport, as coexpression of the NLS constructs with the importin-α/β inhibitor mCherry-Bimax2 significantly blocked nuclear translocation. Specific interactions between the lysine and arginine residues of Pf-LISP2's NLS and the conserved tryptophan and asparagine residues of human importin-α1 facilitate the cytosol-to-nuclear translocation of Pf-LISP2. Additionally, LISP2 lacks any nuclear export signal. These results provide new insights into the mechanisms of nuclear transport in Plasmodium falciparum, potentially contributing to the understanding of its pathogenicity and host-cell interactions during liver-stage infection.
Collapse
Affiliation(s)
- Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Kiranmai Chennoju
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Debasish Kumar Ghosh
- Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
| |
Collapse
|
2
|
Moita D, Rôla C, Nunes-Cabaço H, Nogueira G, Maia TG, Othman AS, Franke-Fayard B, Janse CJ, Mendes AM, Prudêncio M. The effect of dosage on the protective efficacy of whole-sporozoite formulations for immunization against malaria. NPJ Vaccines 2023; 8:182. [PMID: 37996533 PMCID: PMC10667361 DOI: 10.1038/s41541-023-00778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Rôla
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo Nogueira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Teresa G Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ahmad Syibli Othman
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, 21300, Terengganu, Malaysia
| | | | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Plasmodium 6-cysteine proteins determine the commitment of sporozoites to liver-infection. Parasitol Int 2023; 93:102700. [PMID: 36403748 DOI: 10.1016/j.parint.2022.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Plasmodium sporozoites travel a long way from the site where they are released by a mosquito bite to the liver, where they infect hepatocytes and develop into erythrocyte-invasive forms. The success of this infection depends on the ability of the sporozoites to correctly recognize the hepatocyte as a target and change their behavior from migration to infection. However, how this change is accomplished remains incompletely understood. In this paper, we report that 6-cysteine protein family members expressed in sporozoites including B9 are responsible for this ability. Experiments on parasites using double knockouts of B9 and SPECT2, which is essential for sporozoite to migrate through the hepatocyte, showed that the parasites lacked the capacity to stop migration. This finding suggests that interactions between these parasite proteins and hepatocyte-specific cell surface ligands mediate correct recognition of hepatocytes by sporozoites, which is an essential step in malaria transmission to humans.
Collapse
|
4
|
Abstract
INTRODUCTION : Eradication of malaria remains one of the main aims of medicine. Despite progress in malaria treatment, mortality rate remains high, especially in the poorest parts of the world. Therefore, prevention through vaccines is fundamental and recent approval of the first effective vaccine reinforced this assumption. However, since the parasite cycle is complex, being composed of three stages, different types of vaccine targeting stage-specific antigens shall be developed. Moreover, the beneficial effect on vaccinated subjects can be tuned using compositions targeting different disease stages. AREA COVERED : We analysed the malaria vaccine patent landscape describing the most significant patents published after 2016, classified according to the different parasite stages targeted focusing on selected protein antigens or epitopes. We searched "malaria vaccine" on Patentscope and Espacenet. EXPERT OPINION : Pre-erythrocytic vaccines were boosted by RTS,S approval, but its partial efficacy, limited to sporozoites, calls for compositions active against other disease stages. In particular, multi-antigens vaccines could be more effective than single-stage ones, as they would activate an immune response more similar to that acquired in endemic regions. Furthermore, vaccine storage is another factor to be taken into account given the climate of the areas where malaria is widespread. More advanced technologies can lead to more effective and safer vaccines.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
6
|
Targetome Analysis of Malaria Sporozoite Transcription Factor AP2-Sp Reveals Its Role as a Master Regulator. mBio 2023; 14:e0251622. [PMID: 36622145 PMCID: PMC9973277 DOI: 10.1128/mbio.02516-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Malaria transmission to humans begins with sporozoite infection of the liver. The elucidation of gene regulation during the sporozoite stage will promote the investigation of mechanisms of liver infection by this parasite and contribute to the development of strategies for preventing malaria transmission. AP2-Sp is a transcription factor (TF) essential for the formation of sporozoites or sporogony, which takes place in oocysts in the midguts of infected mosquitoes. To understand the role of this TF in the transcriptional regulatory system of this stage, we performed chromatin immunoprecipitation sequencing (ChIP-seq) analyses using whole mosquito midguts containing late oocysts as starting material and explored its genome-wide target genes. We identified 697 target genes, comprising those involved in distinct processes parasites experience during this stage, from sporogony to development into the liver stage and representing the majority of genes highly expressed in the sporozoite stage. These results suggest that AP2-Sp determines basal patterns of gene expression by targeting a broad range of genes directly. The ChIP-seq analyses also showed that AP2-Sp maintains its own expression by a transcriptional autoactivation mechanism (positive-feedback loop) and induces all TFs reported to be transcribed at this stage, including AP2-Sp2, AP2-Sp3, and SLARP. The results showed that AP2-Sp exists at the top of the transcriptional cascade of this stage and triggers the formation of this stage as a master regulator. IMPORTANCE The sporozoite stage plays a central role in malaria transmission from a mosquito to vertebrate host and is an important target for antimalarial strategies. AP2-Sp is a candidate master transcription factor for the sporozoite stage. However, study of its role in gene regulation has been hampered because of difficulties in performing genome-wide studies of gene regulation in this stage. Here, we conquered this problem and revealed that AP2-Sp has the following prominent features as a master transcription factor. First, it determines the repertory of gene expression during this stage. Second, it maintains its own expression through a transcriptional positive-feedback loop and induces all other transcription factors specifically expressed in this stage. This study represents a major breakthrough in fully understanding gene regulation in this important malarial stage.
Collapse
|
7
|
Fernandes P, Loubens M, Marinach C, Coppée R, Baron L, Grand M, Andre TP, Hamada S, Langlois AC, Briquet S, Bun P, Silvie O. Plasmodium sporozoites require the protein B9 to invade hepatocytes. iScience 2023; 26:106056. [PMID: 36761022 PMCID: PMC9906020 DOI: 10.1016/j.isci.2023.106056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Plasmodium sporozoites are transmitted to a mammalian host during blood feeding by an infected mosquito and invade hepatocytes for initial replication of the parasite into thousands of erythrocyte-invasive merozoites. Here we report that the B9 protein, a member of the 6-cysteine domain protein family, is secreted from sporozoite micronemes and is required for productive invasion of hepatocytes. The N-terminus of B9 forms a beta-propeller domain structurally related to CyRPA, a cysteine-rich protein forming an essential invasion complex in Plasmodium falciparum merozoites. The beta-propeller domain of B9 is essential for sporozoite infectivity and interacts with the 6-cysteine proteins P36 and P52 in a heterologous expression system. Our results suggest that, despite using distinct sets of parasite and host entry factors, Plasmodium sporozoites and merozoites may share common structural modules to assemble protein complexes for invasion of host cells.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Manon Loubens
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Romain Coppée
- Université de Paris, UMR 261 MERIT, IRD, 75006 Paris, France
| | - Ludivine Baron
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Morgane Grand
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Thanh-Phuc Andre
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), 75013 Paris, France
| | - Anne-Claire Langlois
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Sylvie Briquet
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Philippe Bun
- INSERM U1266, NeurImag Facility, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
- Corresponding author
| |
Collapse
|
8
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
9
|
Hussain T, Linera-Gonzalez J, Beck JM, Fierro MA, Mair GR, Smith RC, Beck JR. The PTEX Pore Component EXP2 Is Important for Intrahepatic Development during the Plasmodium Liver Stage. mBio 2022; 13:e0309622. [PMID: 36445080 PMCID: PMC9765067 DOI: 10.1128/mbio.03096-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
During vertebrate infection, obligate intracellular malaria parasites develop within a parasitophorous vacuole, which constitutes the interface between the parasite and its hepatocyte or erythrocyte host cells. To traverse this barrier, Plasmodium spp. utilize a dual-function pore formed by EXP2 for nutrient transport and, in the context of the PTEX translocon, effector protein export across the vacuole membrane. While critical to blood-stage survival, less is known about EXP2/PTEX function in the liver stage, although major differences in the export mechanism are suggested by absence of the PTEX unfoldase HSP101 in the intrahepatic vacuole. Here, we employed the glucosamine-activated glmS ribozyme to study the role of EXP2 during Plasmodium berghei liver-stage development in hepatoma cells. Insertion of the glmS sequence into the exp2 3' untranslated region (UTR) enabled glucosamine-dependent depletion of EXP2 after hepatocyte invasion, allowing separation of EXP2 function during intrahepatic development from a recently reported role in hepatocyte invasion. Postinvasion EXP2 knockdown reduced parasite size and largely abolished expression of the mid- to late-liver-stage marker LISP2. As an orthogonal approach to monitor development, EXP2-glmS parasites and controls were engineered to express nanoluciferase. Activation of glmS after invasion substantially decreased luminescence in hepatoma monolayers and in culture supernatants at later time points corresponding to merosome detachment, which marks the culmination of liver-stage development. Collectively, our findings extend the utility of the glmS ribozyme to study protein function in the liver stage and reveal that EXP2 is important for intrahepatic parasite development, indicating that PTEX components also function at the hepatocyte-parasite interface. IMPORTANCE After the mosquito bite that initiates a Plasmodium infection, parasites first travel to the liver and develop in hepatocytes. This liver stage is asymptomatic but necessary for the parasite to transition to the merozoite form, which infects red blood cells and causes malaria. To take over their host cells, avoid immune defenses, and fuel their growth, these obligately intracellular parasites must import nutrients and export effector proteins across a vacuole membrane in which they reside. In the blood stage, these processes depend on a translocon called PTEX, but it is unclear if PTEX also functions during the liver stage. Here, we adapted the glmS ribozyme to control expression of EXP2, the membrane pore component of PTEX, during the liver stage of the rodent malaria parasite Plasmodium berghei. Our results show that EXP2 is important for intracellular development in the hepatocyte, revealing that PTEX components are also functionally important during liver-stage infection.
Collapse
Affiliation(s)
- Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | | | - John M. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gunnar R. Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
10
|
Lyons FMT, Gabriela M, Tham WH, Dietrich MH. Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Front Cell Infect Microbiol 2022; 12:945924. [PMID: 35899047 PMCID: PMC9309271 DOI: 10.3389/fcimb.2022.945924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.
Collapse
Affiliation(s)
- Frankie M. T. Lyons
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikha Gabriela
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
van der Boor SC, van Gemert GJ, Hanssen AEJ, van Waardenburg YM, McCall MBB, Bousema T, de Wilt JHW, Sauerwein RW, Yang ASP. Mid-Liver Stage Arrest of Plasmodium falciparum Schizonts in Primary Porcine Hepatocytes. Front Cell Infect Microbiol 2022; 12:834850. [PMID: 35252038 PMCID: PMC8892583 DOI: 10.3389/fcimb.2022.834850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
During co-evolution Plasmodium parasites and vertebrates went through a process of selection resulting in defined and preferred parasite-host combinations. As such, Plasmodium falciparum (Pf) sporozoites can infect human hepatocytes while seemingly incompatible with host cellular machinery of other species. The compatibility between parasite invasion ligands and their respective human hepatocyte receptors plays a key role in Pf host selectivity. However, it is unclear whether the ability of Pf sporozoites to mature in cross-species infection also plays a role in host tropism. Here we used fresh hepatocytes isolated from porcine livers to study permissiveness to Pf sporozoite invasion and development. We monitored intra-hepatic development via immunofluorescence using anti-HSP70, MSP1, EXP1, and EXP2 antibodies. Our data shows that Pf sporozoites can invade non-human hepatocytes and undergo partial maturation with a significant decrease in schizont numbers between day three and day five. A possible explanation is that Pf sporozoites fail to form a parasitophorous vacuolar membrane (PVM) during invasion. Indeed, the observed aberrant EXP1 and EXP2 staining supports the presence of an atypical PVM. Functions of the PVM include the transport of nutrients, export of waste, and offering a protective barrier against intracellular host effectors. Therefore, an atypical PVM likely results in deficiencies that may detrimentally impact parasite development at multiple levels. In summary, despite successful invasion of porcine hepatocytes, Pf development arrests at mid-stage, possibly due to an inability to mobilize critical nutrients across the PVM. These findings underscore the potential of a porcine liver model for understanding the importance of host factors required for Pf mid-liver stage development.
Collapse
Affiliation(s)
- Saskia C. van der Boor
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert-Jan van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alex E. J. Hanssen
- Animal Research Facility, Radboud University Medical Center, Nijmegen, Netherlands
| | - Youri M. van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthew B. B. McCall
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Teun Bousema
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Robert W. Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
- TropIQ Health Sciences, Nijmegen, Netherlands
| | - Annie S. P. Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
12
|
Dietrich MH, Chan LJ, Adair A, Boulet C, O'Neill MT, Tan LL, Keremane S, Mok YF, Lo AW, Gilson P, Tham WH. Structure of the Pf12 and Pf41 heterodimeric complex of Plasmodium falciparum 6-cysteine proteins. FEMS MICROBES 2022; 3:xtac005. [PMID: 35308105 PMCID: PMC8930183 DOI: 10.1093/femsmc/xtac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
During the different stages of the Plasmodium life cycle, surface-associated proteins establish key interactions with the host and play critical roles in parasite survival. The 6-cysteine (6-cys) protein family is one of the most abundant surface antigens and expressed throughout the Plasmodium falciparum life cycle. This protein family is conserved across Plasmodium species and plays critical roles in parasite transmission, evasion of the host immune response and host cell invasion. Several 6-cys proteins are present on the parasite surface as hetero-complexes but it is not known how two 6-cys proteins interact together. Here, we present a crystal structure of Pf12 bound to Pf41 at 2.85 Å resolution, two P. falciparum proteins usually found on the parasite surface of late schizonts and merozoites. Our structure revealed two critical interfaces required for complex formation with important implications on how different 6-cysteine proteins may interact with each other. Using structure-function analyses, we identified important residues for Pf12-Pf41 complex formation. In addition, we generated 16 nanobodies against Pf12 and Pf41 and showed that several Pf12-specific nanobodies inhibit Pf12-Pf41 complex formation. Using X-ray crystallography, we were able to describe the structural mechanism of an inhibitory nanobody in blocking Pf12-Pf41 complex formation. Future studies using these inhibitory nanobodies will be useful to determine the functional role of these two 6-cys proteins in malaria parasites.
Collapse
Affiliation(s)
- Melanie H Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy Adair
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sravya Keremane
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Alvin W Lo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol 2021; 38:316-334. [PMID: 34896016 DOI: 10.1016/j.pt.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
The control of diseases caused by protozoan parasites is one of the United Nations' Sustainable Development Goals. In recent years much research effort has gone into developing a new generation of live attenuated vaccines (LAVs) against malaria, Chagas disease and leishmaniasis. However, there is a bottleneck related to their biosafety, production, and distribution that slows downs further development. The success of irradiated or genetically attenuated sporozoites against malaria, added to the first LAV against leishmaniasis to be evaluated in clinical trials, is indicative that the drawbacks of LAVs are gradually being overcome. However, whether persistence of LAVs is a prerequisite for sustained long-term immunity remains to be clarified, and the procedures necessary for clinical evaluation of vaccine candidates need to be standardized.
Collapse
|
14
|
Kolli SK, Salman AM, Ramesar J, Chevalley-Maurel S, Kroeze H, Geurten FGA, Miyazaki S, Mukhopadhyay E, Marin-Mogollon C, Franke-Fayard B, Hill AVS, Janse CJ. Screening of viral-vectored P. falciparum pre-erythrocytic candidate vaccine antigens using chimeric rodent parasites. PLoS One 2021; 16:e0254498. [PMID: 34252120 PMCID: PMC8274855 DOI: 10.1371/journal.pone.0254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Collapse
Affiliation(s)
- Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M. Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona G. A. Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekta Mukhopadhyay
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Adrian V. S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Yang Z, Shi Y, Cui H, Yang S, Gao H, Yuan J. A malaria parasite phospholipid flippase safeguards midgut traversal of ookinetes for mosquito transmission. SCIENCE ADVANCES 2021; 7:7/30/eabf6015. [PMID: 34301597 PMCID: PMC8302136 DOI: 10.1126/sciadv.abf6015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/08/2021] [Indexed: 05/03/2023]
Abstract
Mosquito midgut epithelium traversal is essential for malaria parasite transmission. Phospholipid flippases are eukaryotic type 4 P-type adenosine triphosphatases (P4-ATPases), which, in association with CDC50, translocate phospholipids across the membrane lipid bilayers. In this study, we investigated the function of a putative P4-ATPase, ATP7, from the rodent malaria parasite Plasmodium yoelii Disruption of ATP7 blocks the parasite infection of mosquitoes. ATP7 is localized on the ookinete plasma membrane. While ATP7-depleted ookinetes are capable of invading the midgut, they are eliminated within the epithelial cells by a process independent from the mosquito complement-like immunity. ATP7 colocalizes and interacts with the flippase cofactor CDC50C. Depletion of CDC50C phenocopies ATP7 deficiency. ATP7-depleted ookinetes fail to uptake phosphatidylcholine across the plasma membrane. Ookinete microinjection into the mosquito hemocoel reverses the ATP7 deficiency phenotype. Our study identifies Plasmodium flippase as a mechanism of parasite survival in the midgut epithelium that is required for mosquito transmission.
Collapse
Affiliation(s)
- Zhenke Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yang Shi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiting Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuzhen Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Han Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signal Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
16
|
Nanobody generation and structural characterization of Plasmodium falciparum 6-cysteine protein Pf12p. Biochem J 2021; 478:579-595. [PMID: 33480416 PMCID: PMC7886318 DOI: 10.1042/bcj20200415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
Surface-associated proteins play critical roles in the Plasmodium parasite life cycle and are major targets for vaccine development. The 6-cysteine (6-cys) protein family is expressed in a stage-specific manner throughout Plasmodium falciparum life cycle and characterized by the presence of 6-cys domains, which are β-sandwich domains with conserved sets of disulfide bonds. Although several 6-cys family members have been implicated to play a role in sexual stages, mosquito transmission, evasion of the host immune response and host cell invasion, the precise function of many family members is still unknown and structural information is only available for four 6-cys proteins. Here, we present to the best of our knowledge, the first crystal structure of the 6-cys protein Pf12p determined at 2.8 Å resolution. The monomeric molecule folds into two domains, D1 and D2, both of which adopt the canonical 6-cys domain fold. Although the structural fold is similar to that of Pf12, its paralog in P. falciparum, we show that Pf12p does not complex with Pf41, which is a known interaction partner of Pf12. We generated 10 distinct Pf12p-specific nanobodies which map into two separate epitope groups; one group which binds within the D2 domain, while several members of the second group bind at the interface of the D1 and D2 domain of Pf12p. Characterization of the structural features of the 6-cys family and their associated nanobodies provide a framework for generating new tools to study the diverse functions of the 6-cys protein family in the Plasmodium life cycle.
Collapse
|
17
|
Abstract
Obligate intracellular malaria parasites reside within a vacuolar compartment generated during invasion which is the principal interface between pathogen and host. To subvert their host cell and support their metabolism, these parasites coordinate a range of transport activities at this membrane interface that are critically important to parasite survival and virulence, including nutrient import, waste efflux, effector protein export, and uptake of host cell cytosol. Here, we review our current understanding of the transport mechanisms acting at the malaria parasite vacuole during the blood and liver-stages of development with a particular focus on recent advances in our understanding of effector protein translocation into the host cell by the Plasmodium Translocon of EXported proteins (PTEX) and small molecule transport by the PTEX membrane-spanning pore EXP2. Comparison to Toxoplasma gondii and other related apicomplexans is provided to highlight how similar and divergent mechanisms are employed to fulfill analogous transport activities.
Collapse
Affiliation(s)
- Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Chi-Min Ho
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| |
Collapse
|
18
|
Mello-Vieira J, Enguita FJ, de Koning-Ward TF, Zuzarte-Luís V, Mota MM. Plasmodium translocon component EXP2 facilitates hepatocyte invasion. Nat Commun 2020; 11:5654. [PMID: 33159090 PMCID: PMC7648069 DOI: 10.1038/s41467-020-19492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Plasmodium parasites possess a translocon that exports parasite proteins into the infected erythrocyte. Although the translocon components are also expressed during the mosquito and liver stage of infection, their function remains unexplored. Here, using a combination of genetic and chemical assays, we show that the translocon component Exported Protein 2 (EXP2) is critical for invasion of hepatocytes. EXP2 is a pore-forming protein that is secreted from the sporozoite upon contact with the host cell milieu. EXP2-deficient sporozoites are impaired in invasion, which can be rescued by the exogenous administration of recombinant EXP2 and alpha-hemolysin (an S. aureus pore-forming protein), as well as by acid sphingomyelinase. The latter, together with the negative impact of chemical and genetic inhibition of acid sphingomyelinase on invasion, reveals that EXP2 pore-forming activity induces hepatocyte membrane repair, which plays a key role in parasite invasion. Overall, our findings establish a novel and critical function for EXP2 that leads to an active participation of the host cell in Plasmodium sporozoite invasion, challenging the current view of the establishment of liver stage infection. While the role of Plasmodium EXP2 protein as translocon component of blood stage parasites is established, its functional role in liver stage parasites remains unclear. Here, Mello-Vieira et al. reveal that EXP2 pore-forming activity induces hepatocyte membrane repair and hence is critical for hepatocyte invasion.
Collapse
Affiliation(s)
- João Mello-Vieira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | | | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| |
Collapse
|
19
|
Ueti MW, Johnson WC, Kappmeyer LS, Herndon DR, Mousel MR, Reif KE, Taus NS, Ifeonu OO, Silva JC, Suarez CE, Brayton KA. Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. Int J Parasitol 2020; 51:123-136. [PMID: 33069745 DOI: 10.1016/j.ijpara.2020.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022]
Abstract
Throughout their life cycle, Babesia parasites alternate between a mammalian host, where they cause babesiosis, and the tick vector. Transition between hosts results in distinct environmental signals that influence patterns of gene expression, consistent with the morphological and functional changes operating in the parasites during their life stages. In addition, comparing differential patterns of gene expression among mammalian and tick parasite stages can provide clues for developing improved methods of control. Hereby, we upgraded the genome assembly of Babesia bovis, a bovine hemoparasite, closing a 139 kbp gap, and used RNA-Seq datasets derived from mammalian blood and tick kinete stages to update the genome annotation. Of the originally annotated genes, 1,254 required structural changes, and 326 new genes were identified, leading to a different predicted proteome compared to the original annotation. Next, the RNA-Seq data was used to identify B. bovis genes that were differentially expressed in the vertebrate and arthropod hosts. In blood stages, 28% of the genes were upregulated up to 300 fold, whereas 26% of the genes in kinetes, a tick stage, were upregulated up to >19,000 fold. We thus discovered differentially expressed genes that may play key biological roles and serve as suitable targets for the development of vaccines to control bovine babesiosis.
Collapse
Affiliation(s)
- Massaro W Ueti
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
| | | | | | - David R Herndon
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA
| | - Michelle R Mousel
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Kathryn E Reif
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Naomi S Taus
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olukemi O Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carlos E Suarez
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kelly A Brayton
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
20
|
Ghartey-Kwansah G, Adu-Nti F, Aboagye B, Ankobil A, Essuman EE, Opoku YK, Abokyi S, Abu EK, Boampong JN. Autophagy in the control and pathogenesis of parasitic infections. Cell Biosci 2020; 10:101. [PMID: 32944216 PMCID: PMC7487832 DOI: 10.1186/s13578-020-00464-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy has a crucial role in the defense against parasites. The interplay existing between host autophagy and parasites has varied outcomes due to the kind of host cell and microorganism. The presence of autophagic compartments disrupt a significant number of pathogens and are further cleared by xenophagy in an autolysosome. Another section of pathogens have the capacity to outwit the autophagic pathway to their own advantage. Result To comprehend the interaction between pathogens and the host cells, it is significant to distinguish between starvation-induced autophagy and other autophagic pathways. Subversion of host autophagy by parasites is likely due to differences in cellular pathways from those of ‘classical’ autophagy and that they are controlled by parasites in a peculiar way. In xenophagy clearance at the intracellular level, the pathogens are first ubiquitinated before autophagy receptors acknowledgement, followed by labeling with light chain 3 (LC3) protein. The LC3 in LC3-associated phagocytosis (LAP) is added directly into vacuole membrane and functions regardless of the ULK, an initiation complex. The activation of the ULK complex composed of ATG13, FIP200 and ATG101causes the initiation of host autophagic response. Again, the recognition of PAMPs by conserved PRRs marks the first line of defense against pathogens, involving Toll-like receptors (TLRs). These all important immune-related receptors have been reported recently to regulate autophagy. Conclusion In this review, we sum up recent advances in autophagy to acknowledge and understand the interplay between host and parasites, focusing on target proteins for the design of therapeutic drugs. The target host proteins on the initiation of the ULK complex and PRRs-mediated recognition of PAMPs may provide strong potential for the design of therapeutic drugs against parasitic infections.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Frank Adu-Nti
- Department of Medical Laboratory Science, Radford University College, Accra, Ghana
| | - Benjamin Aboagye
- Department of Forensic Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Amandus Ankobil
- School of Nursing and Midwifery, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,Department of Epidemiology and Biostatistics, State University of New York at Albany, New York, USA
| | - Edward Eyipe Essuman
- US Food and Drugs Administration CBER, OBRR, DETTD 10903 New Hampshire Avenue, White Oak, USA
| | - Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science, University of Education, Winneba, Ghana
| | - Samuel Abokyi
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.,School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Emmanuel Kwasi Abu
- Department of Optometry and Vision Science, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Johnson Nyarko Boampong
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
21
|
Marques-da-Silva C, Peissig K, Kurup SP. Pre-Erythrocytic Vaccines against Malaria. Vaccines (Basel) 2020; 8:vaccines8030400. [PMID: 32708179 PMCID: PMC7565498 DOI: 10.3390/vaccines8030400] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Malaria, caused by the protozoan Plasmodium, is a devastating disease with over 200 million new cases reported globally every year. Although immunization is arguably the best strategy to eliminate malaria, despite decades of research in this area we do not have an effective, clinically approved antimalarial vaccine. The current impetus in the field is to develop vaccines directed at the pre-erythrocytic developmental stages of Plasmodium, utilizing novel vaccination platforms. We here review the most promising pre-erythrocytic stage antimalarial vaccine candidates.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Kristen Peissig
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Samarchith P. Kurup
- Center for Tropical and Emerging Global Diseases, The University of Georgia, Athens, GA 30602, USA; (C.M.-d.-S.); (K.P.)
- Department of Cellular Biology, The University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
22
|
PIMMS43 is required for malaria parasite immune evasion and sporogonic development in the mosquito vector. Proc Natl Acad Sci U S A 2020; 117:7363-7373. [PMID: 32165544 PMCID: PMC7132314 DOI: 10.1073/pnas.1919709117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Malaria is transmitted among humans through mosquito bites. Here, we characterize a protein found on the surface of mosquito stages of malaria parasites and reveal that it serves to evade the mosquito immune system and ensure disease transmission. Neutralization of PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43), either by eliminating it from the parasite genome or by preincubating parasites with antibodies that bind to the PIMMS43 protein, inhibits mosquito infection with malaria parasites. Differences in PIMMS43 detected between African malaria parasite populations suggest that these populations have adapted for transmission by different mosquito vectors that are also differentially distributed across the continent. We conclude that targeting PIMMS43 can block malaria parasites inside mosquitoes before they can infect humans. After being ingested by a female Anopheles mosquito during a bloodmeal on an infected host, and before they can reach the mosquito salivary glands to be transmitted to a new host, Plasmodium parasites must establish an infection of the mosquito midgut in the form of oocysts. To achieve this, they must first survive a series of robust innate immune responses that take place prior to, during, and immediately after ookinete traversal of the midgut epithelium. Understanding how parasites may evade these responses could highlight new ways to block malaria transmission. We show that an ookinete and sporozoite surface protein designated as PIMMS43 (Plasmodium Infection of the Mosquito Midgut Screen 43) is required for parasite evasion of the Anopheles coluzzii complement-like response. Disruption of PIMMS43 in the rodent malaria parasite Plasmodium berghei triggers robust complement activation and ookinete elimination upon mosquito midgut traversal. Silencing components of the complement-like system through RNAi largely restores ookinete-to-oocyst transition but oocysts remain small in size and produce a very small number of sporozoites that additionally are not infectious, indicating that PIMMS43 is also essential for sporogonic development in the oocyst. Antibodies that bind PIMMS43 interfere with parasite immune evasion when ingested with the infectious blood meal and significantly reduce the prevalence and intensity of infection. PIMMS43 genetic structure across African Plasmodium falciparum populations indicates allelic adaptation to sympatric vector populations. These data add to our understanding of mosquito–parasite interactions and identify PIMMS43 as a target of malaria transmission blocking.
Collapse
|
23
|
Kawai S, Annoura T, Araki T, Shiogama Y, Soma S, Takano JI, Sato MO, Kaneko O, Yasutomi Y, Chigusa Y. Development of an effective alternative model for in vivo hypnozoite-induced relapse infection: A Japanese macaque (Macaca fuscata) model experimentally infected with Plasmodium cynomolgi. Parasitol Int 2020; 76:102096. [PMID: 32114084 DOI: 10.1016/j.parint.2020.102096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
In the present study, we demonstrate that the Japanese macaque (Macaca fuscata) can be used as an effective alternative in vivo model for investigating hypnozoite-induced relapsing infection caused by Plasmodium cynomolgi B strain, and that this model is comparable to the rhesus macaque model. Two female Japanese macaques (JM-1 and JM-2; aged 5 years; weighing about 4.0 kg) were used for the experiment. To produce sporozoites in mosquitoes, blood infected with P. cynomolgi B strain was collected from the donor monkey JM-1 and fed to approximately 200 mosquitoes using the standard artificial membrane feeding method. The isolated sporozoites (2 × 105) were intravenously inoculated into the JM-2 monkey, and the blood stage of the parasite was detected on day 8 after the infection. Chloroquine sulfate (CQ) was intramuscularly administered at a dosage of 6.0 mg/kg into the JM-2 monkey for 6 consecutive days from day 12 onward, after which the parasites disappeared from the peripheral blood. The first relapse occurred on day 26, which was treated again with CQ. Then, the second relapse occurred on day 44, which was cured by CQ treatment followed by the administration of primaquine phosphate (PQ) at a dosage of 1.0 mg/kg/day for 15 days. The JM-2 monkey was observed until 69 days after PQ administration, and there was no relapse during the entire follow-up period. We propose that the Japanese macaque model could contribute not only to drug screening for anti-hypnozoite activity, but could also be used as a powerful tool for investigating hypnozoite biology.
Collapse
Affiliation(s)
- Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan.
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Shogo Soma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Jun-Ichiro Takano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Marcello Otake Sato
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki, Japan
| | - Yuichi Chigusa
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
24
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
25
|
Araki T, Kawai S, Kakuta S, Kobayashi H, Umeki Y, Saito-Nakano Y, Sasaki T, Nagamune K, Yasutomi Y, Nozaki T, Franke-Fayard B, Khan SM, Hisaeda H, Annoura T. Three-dimensional electron microscopy analysis reveals endopolygeny-like nuclear architecture segregation in Plasmodium oocyst development. Parasitol Int 2019; 76:102034. [PMID: 31805442 DOI: 10.1016/j.parint.2019.102034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 10/25/2022]
Abstract
The genus Plasmodium is a unicellular eukaryotic parasite that is the causative agent of malaria, which is transmitted by Anopheline mosquito. There are a total of three developmental stages in the production of haploid parasites in the Plasmodium life cycle: the oocyst stage in mosquitoes and the liver and blood stages in mammalian hosts. The Plasmodium oocyst stage plays an important role in the production of the first generation of haploid parasites. Nuclear division is the most important event that occurs during the proliferation of all eukaryotes. However, obtaining the details of nuclear division at the oocyst stage is challenging owing to difficulties in preparation. In this study, we used focused-ion-beam-milling combined with scanning-electron-microscopy to report the 3D architecture during nuclear segregations in oocyst stage. This advanced technology allowed us to analyse the 3D details of organelle segregation inside the oocyst during sporogony formation. It was revealed that multiple nuclei were involved with several centrosomes in one germ nucleus during sporozoite budding (endopolygeny). Our high-resolution 3D analysis uncovered the endopolygeny-like nuclear architecture of Plasmodium in the definitive host. This nuclear segregation was different from that in the blood stage, and its similarity to other apicomplexan parasite nuclear divisions such as Sarcocystis is discussed.
Collapse
Affiliation(s)
- Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoru Kawai
- Department of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo 113-8421, Japan
| | - Hirotaka Kobayashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yuko Umeki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), 2333 ZA Leiden, the Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Parasitology, Center of Infectious Diseases, Leiden University Medical Center (LUMC), 2333 ZA Leiden, the Netherlands
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
26
|
Goswami D, Minkah NK, Kappe SHI. Designer Parasites: Genetically Engineered Plasmodium as Vaccines To Prevent Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:20-28. [PMID: 30587570 DOI: 10.4049/jimmunol.1800727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022]
Abstract
A highly efficacious malaria vaccine that prevents disease and breaks the cycle of infection remains an aspirational goal of medicine. Whole parasite vaccines based on the sporozoite forms of the parasite that target the clinically silent pre-erythrocytic stages of infection have emerged as one of the leading candidates. In animal models of malaria, these vaccines elicit potent neutralizing Ab responses against the sporozoite stage and cytotoxic T cells that eliminate parasite-infected hepatocytes. Among whole-sporozoite vaccines, immunization with live, replication-competent whole parasites engenders superior immunity and protection when compared with live replication-deficient sporozoites. As such, the genetic design of replication-competent vaccine strains holds the promise for a potent, broadly protective malaria vaccine. In this report, we will review the advances in whole-sporozoite vaccine development with a particular focus on genetically attenuated parasites both as malaria vaccine candidates and also as valuable tools to interrogate protective immunity against Plasmodium infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Nana K Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
27
|
The Plasmodium falciparum male gametocyte protein P230p, a paralog of P230, is vital for ookinete formation and mosquito transmission. Sci Rep 2018; 8:14902. [PMID: 30297725 PMCID: PMC6175877 DOI: 10.1038/s41598-018-33236-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Two members of 6-cysteine (6-cys) protein family, P48/45 and P230, are important for gamete fertility in rodent and human malaria parasites and are leading transmission blocking vaccine antigens. Rodent and human parasites encode a paralog of P230, called P230p. While P230 is expressed in male and female parasites, P230p is expressed only in male gametocytes and gametes. In rodent malaria parasites this protein is dispensable throughout the complete life-cycle; however, its function in P. falciparum is unknown. Using CRISPR/Cas9 methodology we disrupted the gene encoding Pfp230p resulting in P. falciparum mutants (PfΔp230p) lacking P230p expression. The PfΔp230p mutants produced normal numbers of male and female gametocytes, which retained expression of P48/45 and P230. Upon activation male PfΔp230p gametocytes undergo exflagellation and form male gametes. However, male gametes are unable to attach to red blood cells resulting in the absence of characteristic exflagellation centres in vitro. In the absence of P230p, zygote formation as well as oocyst and sporozoite development were strongly reduced (>98%) in mosquitoes. These observations demonstrate that P230p, like P230 and P48/45, has a vital role in P. falciparum male fertility and zygote formation and warrants further investigation as a potential transmission blocking vaccine candidate.
Collapse
|
28
|
Othman AS, Lin JW, Franke-Fayard BM, Kroeze H, van Pul FJA, Chevalley-Maurel S, Ramesar J, Marin-Mogollon C, Jore MM, Morin MJ, Long CA, Sauerwein R, Birkett A, Miura K, Janse CJ, Khan SM. Expression of full-length Plasmodium falciparum P48/45 in P. berghei blood stages: A method to express and evaluate vaccine antigens. Mol Biochem Parasitol 2018; 224:44-49. [PMID: 30053393 PMCID: PMC11040549 DOI: 10.1016/j.molbiopara.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The transmission-blocking vaccine candidate Pfs48/45 from the human malaria parasite Plasmodium falciparum is known to be difficult to express in heterologous systems, either as full-length protein or as correctly folded protein fragments that retain conformational epitopes. In this study we express full-length Pfs48/45 in the rodent parasite P. berghei. Pfs48/45 is expressed as a transgene under control of the strong P. berghei schizont-specific msp1 gene promoter (Pfs48/45@PbMSP1). Pfs48/45@PbMSP1 schizont-infected red blood cells produced full-length Pfs48/45 and the structural integrity of Pfs48/45 was confirmed using a panel of conformation-specific monoclonal antibodies that bind to different Pfs48/45 epitopes. Sera from mice immunized with transgenic Pfs48/45@PbMSP1 schizonts showed strong transmission-reducing activity in mosquitoes infected with P. falciparum using standard membrane feeding. These results demonstrate that transgenic rodent malaria parasites expressing human malaria antigens may be used as means to evaluate immunogenicity and functionality of difficult to express malaria vaccine candidate antigens.
Collapse
Affiliation(s)
- Ahmad Syibli Othman
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Jing-Wen Lin
- Division of Pediatric Infectious Diseases, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaboration Innovation Center, Chengdu, China
| | - Blandine M Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Hans Kroeze
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Fiona J A van Pul
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Catherin Marin-Mogollon
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA
| | - Chris J Janse
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Shahid M Khan
- Leiden Malaria Research Group, Parasitology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
29
|
Agop-Nersesian C, Niklaus L, Wacker R, Theo Heussler V. Host cell cytosolic immune response during Plasmodium liver stage development. FEMS Microbiol Rev 2018; 42:324-334. [PMID: 29529207 PMCID: PMC5995216 DOI: 10.1093/femsre/fuy007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Recent years have witnessed a great gain in knowledge regarding parasite-host cell interactions during Plasmodium liver stage development. It is now an accepted fact that a large percentage of sporozoites invading hepatocytes fail to form infectious merozoites. There appears to be a delicate balance between parasite survival and elimination and we now start to understand why this is so. Plasmodium liver stage parasites replicate within the parasitophorous vacuole (PV), formed during invasion by invagination of the host cell plasma membrane. The main interface between the parasite and hepatocyte is the parasitophorous vacuole membrane (PVM) that surrounds the PV. Recently, it was shown that autophagy marker proteins decorate the PVM of Plasmodium liver stage parasites and eliminate a proportion of them by an autophagy-like mechanism. Successfully developing Plasmodium berghei parasites are initially also labeled but in the course of development, they are able to control this host defense mechanism by shedding PVM material into the tubovesicular network (TVN), an extension of the PVM that releases vesicles into the host cell cytoplasm. Better understanding of the molecular events at the PVM/TVN during parasite elimination could be the basis of new antimalarial measures.
Collapse
Affiliation(s)
- Carolina Agop-Nersesian
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, MA 02118, USA
| | - Livia Niklaus
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Volker Theo Heussler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| |
Collapse
|
30
|
A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun 2018; 86:IAI.00088-18. [PMID: 29440367 DOI: 10.1128/iai.00088-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Genetically attenuated malaria parasites (GAP) that arrest during liver stage development are powerful immunogens and afford complete and durable protection against sporozoite infection. Late liver stage-arresting GAP provide superior protection against sporozoite challenge in mice compared to early live stage-arresting attenuated parasites. However, very few late liver stage-arresting GAP have been generated to date. Therefore, identification of additional loci that are critical for late liver stage development and can be used to generate novel late liver stage-arresting GAPs is of importance. We further explored genetic attenuation in Plasmodium yoelii by combining two gene deletions, PlasMei2 and liver-specific protein 2 (LISP2), that each cause late liver stage arrest with various degrees of infrequent breakthrough to blood stage infection. The dual gene deletion resulted in a synthetic lethal phenotype that caused complete attenuation in a highly susceptible mouse strain. P. yoeliiplasmei2-lisp2- arrested late in liver stage development and did not persist in livers beyond 3 days after infection. Immunization with this GAP elicited robust protective antibody responses in outbred and inbred mice against sporozoites, liver stages, and blood stages as well as eliciting protective liver-resident T cells. The immunization afforded protection against both sporozoite challenge and blood stage challenge. These findings provide evidence that completely attenuated late liver stage-arresting GAP are achievable via the synthetic lethal approach and might enable a path forward for the creation of a completely attenuated late liver stage-arresting P. falciparum GAP.
Collapse
|
31
|
Garzón-Ospina D, Buitrago SP, Ramos AE, Patarroyo MA. Identifying Potential Plasmodium vivax Sporozoite Stage Vaccine Candidates: An Analysis of Genetic Diversity and Natural Selection. Front Genet 2018; 9:10. [PMID: 29422913 PMCID: PMC5788960 DOI: 10.3389/fgene.2018.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/09/2018] [Indexed: 11/30/2022] Open
Abstract
Parasite antigen genetic diversity represents a great obstacle when designing a vaccine against malaria caused by Plasmodium vivax. Selecting vaccine candidate antigens has been focused on those fulfilling a role in invasion and which are conserved, thus avoiding specific-allele immune responses. Most antigens described to date belong to the blood stage, thereby blocking parasite development within red blood cells, whilst studying antigens from other stages has been quite restricted. Antigens from different parasite stages are required for developing a completely effective vaccine; thus, pre-erythrocyte stage antigens able to block the first line of infection becoming established should also be taken into account. However, few antigens from this stage have been studied to date. Several P. falciparum sporozoite antigens are involved in invasion. Since 77% of genes are orthologous amongst Plasmodium parasites, P. vivax sporozoite antigen orthologs to those of P. falciparum might be present in its genome. Although these genes might have high genetic diversity, conserved functionally-relevant regions (ideal for vaccine development) could be predicted by comparing genetic diversity patterns and evolutionary rates. This study was thus aimed at searching for putative P. vivax sporozoite genes so as to analyse their genetic diversity for determining their potential as vaccine candidates. Several DNA sequence polymorphism estimators were computed at each locus. The evolutionary force (drift, selection and recombination) drawing the genetic diversity pattern observed was also determined by using tests based on polymorphism frequency spectrum as well as the type of intra- and inter-species substitutions. Likewise, recombination was assessed both indirectly and directly. The results showed that sporozoite genes were more conserved than merozoite genes evaluated to date. Putative domains implied in cell traversal, gliding motility and hepatocyte interaction had a negative selection signal, being conserved amongst different species in the genus. PvP52, PvP36, PvSPATR, PvPLP1, PvMCP1, PvTLP, PvCelTOS, and PvMB2 antigens or functionally restricted regions within them would thus seem promising vaccine candidates and could be used when designing a pre-erythrocyte and/or multi-stage vaccine against P. vivax to avoid allele-specific immune responses that could reduce vaccine efficacy.
Collapse
Affiliation(s)
- Diego Garzón-Ospina
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Sindy P Buitrago
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Andrea E Ramos
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Laboratory, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
32
|
Zuck M, Austin LS, Danziger SA, Aitchison JD, Kaushansky A. The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Front Microbiol 2017; 8:2183. [PMID: 29201016 PMCID: PMC5696578 DOI: 10.3389/fmicb.2017.02183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Despite global eradication efforts over the past century, malaria remains a devastating public health burden, causing almost half a million deaths annually (WHO, 2016). A detailed understanding of the mechanisms that control malaria infection has been hindered by technical challenges of studying a complex parasite life cycle in multiple hosts. While many interventions targeting the parasite have been implemented, the complex biology of Plasmodium poses a major challenge, and must be addressed to enable eradication. New approaches for elucidating key host-parasite interactions, and predicting how the parasite will respond in a variety of biological settings, could dramatically enhance the efficacy and longevity of intervention strategies. The field of systems biology has developed methodologies and principles that are well poised to meet these challenges. In this review, we focus our attention on the Liver Stage of the Plasmodium lifecycle and issue a “call to arms” for using systems biology approaches to forge a new era in malaria research. These approaches will reveal insights into the complex interplay between host and pathogen, and could ultimately lead to novel intervention strategies that contribute to malaria eradication.
Collapse
Affiliation(s)
- Meghan Zuck
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Laura S Austin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States
| | - Samuel A Danziger
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - John D Aitchison
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Institute for Systems Biology, Seattle, WA, United States
| | - Alexis Kaushansky
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
33
|
N-Terminal Pfs230 Domain Produced in Baculovirus as a Biological Active Transmission-Blocking Vaccine Candidate. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00140-17. [PMID: 28747311 PMCID: PMC5629673 DOI: 10.1128/cvi.00140-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/23/2017] [Indexed: 12/13/2022]
Abstract
Transmission-blocking vaccines have the potential to accelerate malaria parasite elimination by inducing antibodies that block parasite transmission from humans to mosquitoes. Pfs230, a gametocyte surface protein involved in gamete function, has long been a promising candidate. Due to the large size (3,135 amino acids), complex domains, and repeating 6-cysteine (6-Cys) motifs with a multitude of disulfide bonds, the feasibility of expression of a full-length protein has been difficult. A priority focus, therefore, has been on the generation of single domains, including N-terminal fragments. Here we utilized a heterologous expression system, baculovirus, to produce an N-terminal domain of Pfs230 (Pfs230C1). Pfs230C1 (amino acids 443 to 731) with a polyhistidine affinity tag was expressed in Super Sf9 cells. Since the native host lacks glycosylation machinery, a single N585Q mutation was made to eliminate potential N-linked glycosylation. The expressed protein, purified by nickel affinity, ion exchange, and size exclusion chromatography to >90% purity, was present in monomeric form with an observed mass of 33,510 Da (matching oxidized form). Peptide mapping and disulfide analysis confirmed the proper formation of predicted disulfide bonds. Antibodies, generated against Pfs230C1 in mice, bound to the gametocyte in an immunofluorescence assay (IFA) and demonstrated functional activity in both the standard membrane feeding assay (SMFA) and the exflagellation assay (EXA). The biochemical, biophysical, and immunological results reported herein support the continued advancement of an N-terminal Pfs230 antigen (Pfs230C1) as a component of a transmission-blocking vaccine. Our results also support the continued use of the scalable baculovirus expression system for the generation of complex Plasmodium proteins.
Collapse
|
34
|
Haeberlein S, Chevalley-Maurel S, Ozir-Fazalalikhan A, Koppejan H, Winkel BMF, Ramesar J, Khan SM, Sauerwein RW, Roestenberg M, Janse CJ, Smits HH, Franke-Fayard B. Protective immunity differs between routes of administration of attenuated malaria parasites independent of parasite liver load. Sci Rep 2017; 7:10372. [PMID: 28871201 PMCID: PMC5583236 DOI: 10.1038/s41598-017-10480-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/10/2017] [Indexed: 12/27/2022] Open
Abstract
In humans and murine models of malaria, intradermal immunization (ID-I) with genetically attenuated sporozoites that arrest in liver induces lower protective immunity than intravenous immunization (IV-I). It is unclear whether this difference is caused by fewer sporozoites migrating into the liver or by suboptimal hepatic and injection site-dependent immune responses. We therefore developed a Plasmodium yoelii immunization/boost/challenge model to examine parasite liver loads as well as hepatic and lymph node immune responses in protected and unprotected ID-I and IV-I animals. Despite introducing the same numbers of genetically attenuated parasites in the liver, ID-I resulted in lower sterile protection (53-68%) than IV-I (93-95%). Unprotected mice developed less sporozoite-specific CD8+ and CD4+ effector T-cell responses than protected mice. After immunization, ID-I mice showed more interleukin-10-producing B and T cells in livers and skin-draining lymph nodes, but fewer hepatic CD8 memory T cells and CD8+ dendritic cells compared to IV-I mice. Our results indicate that the lower protection efficacy obtained by intradermal sporozoite administration is not linked to low hepatic parasite numbers as presumed before, but correlates with a shift towards regulatory immune responses. Overcoming these immune suppressive responses is important not only for live-attenuated malaria vaccines but also for other live vaccines administered in the skin.
Collapse
Affiliation(s)
- Simone Haeberlein
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Institute of Parasitology, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Séverine Chevalley-Maurel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Arifa Ozir-Fazalalikhan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hester Koppejan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Beatrice M F Winkel
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Shahid M Khan
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
35
|
Plasmodium berghei P47 is essential for ookinete protection from the Anopheles gambiae complement-like response. Sci Rep 2017; 7:6026. [PMID: 28729672 PMCID: PMC5519742 DOI: 10.1038/s41598-017-05917-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 11/26/2022] Open
Abstract
Malaria is a mosquito-borne disease affecting millions of people every year. The rodent parasite Plasmodium berghei has served as a model for human malaria transmission studies and played a pivotal role in dissecting the mosquito immune response against infection. The 6-cysteine protein P47, known to be important for P. berghei female gamete fertility, is shown to serve a different function in Plasmodium falciparum, protecting ookinetes from the mosquito immune response. Here, we investigate the function of P. berghei P47 in Anopheles gambiae mosquito infections. We show that P47 is expressed on the surface of both female gametocytes and ookinetes where it serves distinct functions in promoting gametocyte-to-ookinete development and protecting ookinetes from the mosquito complement-like response, respectively. The latter function is essential, as ookinetes lacking P47 are targeted for killing while traversing the mosquito midgut cells and eliminated upon exposure to hemolymph proteins of the complement-like system. Silencing key factors of the complement-like system restores oocyst development and disease transmission to rodent hosts. Our data establish a dual role of P. berghei P47 in vivo and reinforce the use of this parasite to study the impact of the mosquito immune response on human malaria transmission.
Collapse
|
36
|
Soga A, Bando H, Ko-Ketsu M, Masuda-Suganuma H, Kawazu SI, Fukumoto S. High efficacy in vitro selection procedure for generating transgenic parasites of Plasmodium berghei using an antibiotic toxic to rodent hosts. Sci Rep 2017. [PMID: 28638105 PMCID: PMC5479828 DOI: 10.1038/s41598-017-04244-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The malaria parasite Plasmodium berghei is one of the main rodent malaria models. A shortcoming of this model parasite is its low flexibility in genetic manipulation. As this parasite cannot be continuously propagated in cell cultures, in vivo drug selection procedures are necessary to isolate genetic mutants. Drugs harmful to rodents therefore cannot be used for drug selection, which restricts the range of genetic manipulation. In this study, we addressed this problem by establishing a novel in vitro culture drug selection method, which we used in combination with other established methods to successfully isolate genetically manipulated parasites. The target mutants were enriched to the desired level within two weeks. We show that our system can also be used for sequential genetic manipulation of parasites carrying the traditionally used selection markers, demonstrate the procedure’s versatility, and show its use in isolating specific genetically manipulated parasites. This novel in vitro selection method increases the number of available selection markers, allowing more extensive genetic manipulation in malaria parasite research.
Collapse
Affiliation(s)
- Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hironori Bando
- Department of immunoparasitology, Research Institute for Microbial Disease, Osaka University, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Mami Ko-Ketsu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Hirono Masuda-Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
37
|
Vaughan AM, Kappe SHI. Malaria Parasite Liver Infection and Exoerythrocytic Biology. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025486. [PMID: 28242785 DOI: 10.1101/cshperspect.a025486] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In their infection cycle, malaria parasites undergo replication and population expansions within the vertebrate host and the mosquito vector. Host infection initiates with sporozoite invasion of hepatocytes, followed by a dramatic parasite amplification event during liver stage parasite growth and replication within hepatocytes. Each liver stage forms up to 90,000 exoerythrocytic merozoites, which are in turn capable of initiating a blood stage infection. Liver stages not only exploit host hepatocyte resources for nutritional needs but also endeavor to prevent hepatocyte cell death and detection by the host's immune system. Research over the past decade has identified numerous parasite factors that play a critical role during liver infection and has started to delineate a complex web of parasite-host interactions that sustain successful parasite colonization of the mammalian host. Targeting the parasites' obligatory infection of the liver as a gateway to the blood, with drugs and vaccines, constitutes the most effective strategy for malaria eradication, as it would prevent clinical disease and onward transmission of the parasite.
Collapse
Affiliation(s)
- Ashley M Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington 98109.,Department of Global Health, University of Washington, Seattle, Washington 98195
| |
Collapse
|
38
|
Kreutzfeld O, Müller K, Matuschewski K. Engineering of Genetically Arrested Parasites (GAPs) For a Precision Malaria Vaccine. Front Cell Infect Microbiol 2017; 7:198. [PMID: 28620583 PMCID: PMC5450620 DOI: 10.3389/fcimb.2017.00198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Continuous stage conversion and swift changes in the antigenic repertoire in response to acquired immunity are hallmarks of complex eukaryotic pathogens, including Plasmodium species, the causative agents of malaria. Efficient elimination of Plasmodium liver stages prior to blood infection is one of the most promising malaria vaccine strategies. Here, we describe different genetically arrested parasites (GAPs) that have been engineered in Plasmodium berghei, P. yoelii and P. falciparum and compare their vaccine potential. A better understanding of the immunological mechanisms of prime and boost by arrested sporozoites and experimental strategies to enhance vaccine efficacy by further engineering existing GAPs into a more immunogenic form hold promise for continuous improvements of GAP-based vaccines. A critical hurdle for vaccines that elicit long-lasting protection against malaria, such as GAPs, is safety and efficacy in vulnerable populations. Vaccine research should focus on solutions toward turning malaria into a vaccine-preventable disease, which would offer an exciting new path of malaria control.
Collapse
Affiliation(s)
- Oriana Kreutzfeld
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Katja Müller
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt UniversityBerlin, Germany
| |
Collapse
|
39
|
Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D, Nosten F, Baumert TF, Silvie O. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. eLife 2017; 6:e25903. [PMID: 28506360 PMCID: PMC5470872 DOI: 10.7554/elife.25903] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.
Collapse
Affiliation(s)
- Giulia Manzoni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Carine Marinach
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Selma Topçu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Sylvie Briquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Morgane Grand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Matthieu Tolle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Marion Gransagne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Julien Lescar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean-François Franetich
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thierry Huby
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition, UMR_S 1166, Paris, France
| | - Eric Rubinstein
- INSERM, U935, Villejuif, France
- Université Paris Sud, Institut André Lwoff, Villejuif, France
| | - Georges Snounou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
- Assistance Publique Hôpitaux de Paris, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| |
Collapse
|
40
|
Santos JM, Egarter S, Zuzarte-Luís V, Kumar H, Moreau CA, Kehrer J, Pinto A, da Costa M, Franke-Fayard B, Janse CJ, Frischknecht F, Mair GR. Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts. eLife 2017; 6:e24109. [PMID: 28525314 PMCID: PMC5438254 DOI: 10.7554/elife.24109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion during gliding motility in the rodent malaria model P. berghei. Transcribed in gametocytes, LIMP is translated in the ookinete from maternal mRNA, and later in the sporozoite. The absence of LIMP reduces initial mosquito infection by 50%, impedes salivary gland invasion 10-fold, and causes a complete absence of liver invasion as mutants fail to attach to host cells. GFP tagging of LIMP caused a limping defect during movement with reduced speed and transient curvature changes of the parasite. LIMP is an essential motility and invasion factor necessary for malaria transmission.
Collapse
Affiliation(s)
- Jorge M Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Saskia Egarter
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Hirdesh Kumar
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Catherine A Moreau
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Jessica Kehrer
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Mário da Costa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Friedrich Frischknecht
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
41
|
Al-Nihmi FMA, Kolli SK, Reddy SR, Mastan BS, Togiri J, Maruthi M, Gupta R, Sijwali PS, Mishra S, Kumar KA. A Novel and Conserved Plasmodium Sporozoite Membrane Protein SPELD is Required for Maturation of Exo-erythrocytic Forms. Sci Rep 2017; 7:40407. [PMID: 28067322 PMCID: PMC5220379 DOI: 10.1038/srep40407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
Plasmodium sporozoites are the infective forms of malaria parasite to vertebrate host and undergo dramatic changes in their transcriptional repertoire during maturation in mosquito salivary glands. We report here the role of a novel and conserved Plasmodium berghei protein encoded by PBANKA_091090 in maturation of Exo-erythrocytic Forms (EEFs) and designate it as Sporozoite surface Protein Essential for Liver stage Development (PbSPELD). PBANKA_091090 was previously annotated as PB402615.00.0 and its transcript was recovered at maximal frequency in the Serial Analysis of the Gene Expression (SAGE) of Plasmodium berghei salivary gland sporozoites. An orthologue of this transcript was independently identified in Plasmodium vivax sporozoite microarrays and was designated as Sporozoite Conserved Orthologous Transcript-2 (scot-2). Functional characterization through reverse genetics revealed that PbSPELD is essential for Plasmodium liver stage maturation. mCherry transgenic of PbSPELD localized the protein to plasma membrane of sporozoites and early EEFs. Global microarray analysis of pbspeld ko revealed EEF attenuation being associated with down regulation of genes central to general transcription, cell cycle, proteosome and cadherin signaling. pbspeld mutant EEFs induced pre-erythrocytic immunity with 50% protective efficacy. Our studies have implications for attenuating the human Plasmodium liver stages by targeting SPELD locus.
Collapse
Affiliation(s)
| | - Surendra Kumar Kolli
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Segireddy Rameswara Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Babu S Mastan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Jyothi Togiri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mulaka Maruthi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Roshni Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Puran Singh Sijwali
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
42
|
The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle. Int J Parasitol 2016; 47:409-423. [PMID: 27899328 DOI: 10.1016/j.ijpara.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions.
Collapse
|
43
|
Fougère A, Jackson AP, Paraskevi Bechtsi D, Braks JAM, Annoura T, Fonager J, Spaccapelo R, Ramesar J, Chevalley-Maurel S, Klop O, van der Laan AMA, Tanke HJ, Kocken CHM, Pasini EM, Khan SM, Böhme U, van Ooij C, Otto TD, Janse CJ, Franke-Fayard B. Variant Exported Blood-Stage Proteins Encoded by Plasmodium Multigene Families Are Expressed in Liver Stages Where They Are Exported into the Parasitophorous Vacuole. PLoS Pathog 2016; 12:e1005917. [PMID: 27851824 PMCID: PMC5113031 DOI: 10.1371/journal.ppat.1005917] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
Many variant proteins encoded by Plasmodium-specific multigene families are exported into red blood cells (RBC). P. falciparum-specific variant proteins encoded by the var, stevor and rifin multigene families are exported onto the surface of infected red blood cells (iRBC) and mediate interactions between iRBC and host cells resulting in tissue sequestration and rosetting. However, the precise function of most other Plasmodium multigene families encoding exported proteins is unknown. To understand the role of RBC-exported proteins of rodent malaria parasites (RMP) we analysed the expression and cellular location by fluorescent-tagging of members of the pir, fam-a and fam-b multigene families. Furthermore, we performed phylogenetic analyses of the fam-a and fam-b multigene families, which indicate that both families have a history of functional differentiation unique to RMP. We demonstrate for all three families that expression of family members in iRBC is not mutually exclusive. Most tagged proteins were transported into the iRBC cytoplasm but not onto the iRBC plasma membrane, indicating that they are unlikely to play a direct role in iRBC-host cell interactions. Unexpectedly, most family members are also expressed during the liver stage, where they are transported into the parasitophorous vacuole. This suggests that these protein families promote parasite development in both the liver and blood, either by supporting parasite development within hepatocytes and erythrocytes and/or by manipulating the host immune response. Indeed, in the case of Fam-A, which have a steroidogenic acute regulatory-related lipid transfer (START) domain, we found that several family members can transfer phosphatidylcholine in vitro. These observations indicate that these proteins may transport (host) phosphatidylcholine for membrane synthesis. This is the first demonstration of a biological function of any exported variant protein family of rodent malaria parasites. Malaria-parasites invade and multiply in hepatocytes and erythrocytes. The human parasite P. falciparum transports proteins encoded by multigene families onto the surface of erythrocytes, mediating interactions between infected red blood cells (iRBCs) and other host-cells and are thought to play a key role in parasite survival during blood-stage development. The function of other exported Plasmodium protein families remains largely unknown. We provide novel insights into expression and cellular location of proteins encoded by three large multigene families of rodent malaria parasites (Fam-a, Fam-b and PIR). Multiple members of the same family are expressed in a single iRBC, unlike P. falciparum PfEMP1 proteins where individual iRBCs express only a single member. Most proteins we examined are located in the RBC cytoplasm and are not transported onto the iRBC surface membrane, indicating that these proteins are unlikely to mediate interactions between iRBCs and host-cells. Unexpectedly, liver stages also express many of these proteins, where they locate to the vacuole surrounding the parasite inside the hepatocyte. In support of a role of these proteins for parasite growth within their host cells we provide evidence that Fam-A proteins have a role in uptake and transport of (host) phosphatidylcholine for parasite-membrane synthesis.
Collapse
Affiliation(s)
- Aurélie Fougère
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Experimental Medicine, University of Perugia, Italy
| | - Andrew P. Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UnitedKingdom
| | | | - Joanna A. M. Braks
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Jannik Fonager
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microbiological Diagnostics and Virology, Statens Serum Institute, Copenhagen, Denmark
| | | | - Jai Ramesar
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Hans J. Tanke
- Department of Molecular Cell Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | - Erica M. Pasini
- Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ulrike Böhme
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Christiaan van Ooij
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London, UnitedKingdom
| | - Thomas D. Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UnitedKingdom
| | - Chris J. Janse
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Blandine Franke-Fayard
- Leiden Malaria Research Group, Parasitology, Center of infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
44
|
Singer M, Frischknecht F. Time for Genome Editing: Next-Generation Attenuated Malaria Parasites. Trends Parasitol 2016; 33:202-213. [PMID: 27793562 DOI: 10.1016/j.pt.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022]
Abstract
Immunization with malaria parasites that developmentally arrest in or immediately after the liver stage is the only way currently known to confer sterilizing immunity in both humans and rodent models. There are various ways to attenuate parasite development resulting in different timings of arrest, which has a significant impact on vaccination efficiency. To understand what most impacts vaccination efficiency, newly developed gain-of-function methods can now be used to generate a wide array of differently attenuated parasites. The combination of multiple attenuation approaches offers the potential to engineer efficiently attenuated Plasmodium parasites and learn about their fascinating biology at the same time. Here we discuss recent studies and the potential of targeted parasite manipulation using genome editing to develop live attenuated malaria vaccines.
Collapse
Affiliation(s)
- Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
45
|
Alzan HF, Lau AOT, Knowles DP, Herndon DR, Ueti MW, Scoles GA, Kappmeyer LS, Suarez CE. Expression of 6-Cys Gene Superfamily Defines Babesia bovis Sexual Stage Development within Rhipicephalus microplus. PLoS One 2016; 11:e0163791. [PMID: 27668751 PMCID: PMC5036836 DOI: 10.1371/journal.pone.0163791] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
Babesia bovis, an intra-erythrocytic tick-borne apicomplexan protozoan, is one of the causative agents of bovine babesiosis. Its life cycle includes sexual reproduction within cattle fever ticks, Rhipicephalus spp. Six B. bovis 6-Cys gene superfamily members were previously identified (A, B, C, D, E, F) where their orthologues in Plasmodium parasite have been shown to encode for proteins required for the development of sexual stages. The current study identified four additional 6-Cys genes (G, H, I, J) in the B. bovis genome. These four genes are described in the context of the complete ten 6-Cys gene superfamily. The proteins expressed by this gene family are predicted to be secreted or surface membrane directed. Genetic analysis comparing the 6-Cys superfamily among five distinct B. bovis strains shows limited sequence variation. Additionally, A, B, E, H, I and J genes were transcribed in B. bovis infected tick midgut while genes A, B and E were also transcribed in the subsequent B. bovis kinete stage. Transcription of gene C was found exclusively in the kinete. In contrast, transcription of genes D, F and G in either B. bovis infected midguts or kinetes was not detected. None of the 6-Cys transcripts were detected in B. bovis blood stages. Subsequent protein analysis of 6-Cys A and B is concordant with their transcript profile. The collective data indicate as in Plasmodium parasite, certain B. bovis 6-Cys family members are uniquely expressed during sexual stages and therefore, they are likely required for parasite reproduction. Within B. bovis specifically, proteins encoded by 6-Cys genes A and B are markers for sexual stages and candidate antigens for developing novel vaccines able to interfere with the development of B. bovis within the tick vector.
Collapse
Affiliation(s)
- Heba F. Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Audrey O. T. Lau
- The National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, MSC 9823, Bethesda, MD, United States of America
| | - Donald P. Knowles
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA, United States of America
| | - David R. Herndon
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA, United States of America
| | - Massaro W. Ueti
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA, United States of America
| | - Glen A. Scoles
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA, United States of America
| | - Lowell S. Kappmeyer
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA, United States of America
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States of America
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
46
|
Prado M, Eickel N, De Niz M, Heitmann A, Agop-Nersesian C, Wacker R, Schmuckli-Maurer J, Caldelari R, Janse CJ, Khan SM, May J, Meyer CG, Heussler VT. Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms. Autophagy 2016. [PMID: 26208778 PMCID: PMC4590598 DOI: 10.1080/15548627.2015.1067361] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasmodium parasites are transmitted by Anopheles mosquitoes to the mammalian host and actively infect hepatocytes after passive transport in the bloodstream to the liver. In their target host hepatocyte, parasites reside within a parasitophorous vacuole (PV). In the present study it was shown that the parasitophorous vacuole membrane (PVM) can be targeted by autophagy marker proteins LC3, ubiquitin, and SQSTM1/p62 as well as by lysosomes in a process resembling selective autophagy. The dynamics of autophagy marker proteins in individual Plasmodium berghei-infected hepatocytes were followed by live imaging throughout the entire development of the parasite in the liver. Although the host cell very efficiently recognized the invading parasite in its vacuole, the majority of parasites survived this initial attack. Successful parasite development correlated with the gradual loss of all analyzed autophagy marker proteins and associated lysosomes from the PVM. However, other autophagic events like nonselective canonical autophagy in the host cell continued. This was indicated as LC3, although not labeling the PVM anymore, still localized to autophagosomes in the infected host cell. It appears that growing parasites even benefit from this form of nonselective host cell autophagy as an additional source of nutrients, as in host cells deficient for autophagy, parasite growth was retarded and could partly be rescued by the supply of additional amino acid in the medium. Importantly, mouse infections with P. berghei sporozoites confirmed LC3 dynamics, the positive effect of autophagy activation on parasite growth, and negative effects upon autophagy inhibition.
Collapse
Affiliation(s)
- Monica Prado
- b Molecular Parasitology; Bernhard Nocht Institute for Tropical Medicine ; Hamburg , Germany
| | - Nina Eickel
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| | - Mariana De Niz
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| | - Anna Heitmann
- b Molecular Parasitology; Bernhard Nocht Institute for Tropical Medicine ; Hamburg , Germany
| | | | - Rahel Wacker
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| | | | - Reto Caldelari
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| | - Chris J Janse
- c Center of Infectious Diseases; Leiden University Medical Center ; Leiden , The Netherlands
| | - Shahid M Khan
- c Center of Infectious Diseases; Leiden University Medical Center ; Leiden , The Netherlands
| | - Jürgen May
- d Infectious Disease Epidemiology; Bernhard Nocht Institute for Tropical Medicine ; Hamburg , Germany
| | - Christian G Meyer
- e Molecular Medicine; Bernhard Nocht Institute for Tropical Medicine ; Hamburg , Germany.,f Institute of Tropical Medicine; Eberhard-Karls University ; Tübingen , Germany
| | - Volker T Heussler
- a Institute of Cell Biology; University of Bern ; Bern , Switzerland
| |
Collapse
|
47
|
van der Velden M, Rijpma SR, Verweij V, van Gemert GJ, Chevalley-Maurel S, van de Vegte-Bolmer M, Franke-Fayard BM, Russel FGM, Janse CJ, Sauerwein RW, Koenderink JB. Protective Efficacy Induced by Genetically Attenuated Mid-to-Late Liver-Stage Arresting Plasmodium berghei Δmrp2 Parasites. Am J Trop Med Hyg 2016; 95:378-82. [PMID: 27296385 DOI: 10.4269/ajtmh.16-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023] Open
Abstract
Whole parasite immunization strategies employing genetically attenuated parasites (GAP), which arrest during liver-stage development, have been applied successfully for induction of sterile malaria protection in rodents. Recently, we generated a Plasmodium berghei GAP-lacking expression of multidrug resistance-associated protein (MRP2) (PbΔmrp2) that was capable of partial schizogony in hepatocytes but showed complete growth arrest. Here, we investigated the protective efficacy after intravenous (IV) immunization of BALB/c and C57BL/6J mice with PbΔmrp2 sporozoites. Low-dose immunization using 400 PbΔmrp2 sporozoites induced 100% sterile protection in BALB/c mice after IV challenge with 10,000 wild-type sporozoites. In addition, almost full protection (90%) was obtained after three immunizations with 10,000 sporozoites in C57BL/6J mice. Parasite liver loads in nonprotected PbΔmrp2-challenged C57BL/6J mice were reduced by 86% ± 5% on average compared with naive control mice. The mid-to-late arresting PbΔmrp2 GAP was equipotent in induction of protective immunity to the early arresting PbΔb9Δslarp GAP. The combined data support a clear basis for further exploration of Plasmodium falciparum parasites lacking mrp2 as a suitable GAP vaccine candidate.
Collapse
Affiliation(s)
- Maarten van der Velden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanna R Rijpma
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Blandine M Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Protective efficacy and safety of liver stage attenuated malaria parasites. Sci Rep 2016; 6:26824. [PMID: 27241521 PMCID: PMC4886212 DOI: 10.1038/srep26824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy.
Collapse
|
49
|
Silva PAGC, Guerreiro A, Santos JM, Braks JAM, Janse CJ, Mair GR. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites. PLoS One 2016; 11:e0147940. [PMID: 26808677 PMCID: PMC4726560 DOI: 10.1371/journal.pone.0147940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite.
Collapse
Affiliation(s)
- Patrícia A. G. C. Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | - Jorge M. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
| | | | | | - Gunnar R. Mair
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649–028, Lisbon, Portugal
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
50
|
Kaushansky A, Douglass AN, Arang N, Vigdorovich V, Dambrauskas N, Kain HS, Austin LS, Sather DN, Kappe SHI. Malaria parasites target the hepatocyte receptor EphA2 for successful host infection. Science 2015; 350:1089-92. [PMID: 26612952 DOI: 10.1126/science.aad3318] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The invasion of a suitable host hepatocyte by mosquito-transmitted Plasmodium sporozoites is an essential early step in successful malaria parasite infection. Yet precisely how sporozoites target their host cell and facilitate productive infection remains largely unknown. We found that the hepatocyte EphA2 receptor was critical for establishing a permissive intracellular replication compartment, the parasitophorous vacuole. Sporozoites productively infected hepatocytes with high EphA2 expression, and the deletion of EphA2 protected mice from liver infection. Lack of host EphA2 phenocopied the lack of the sporozoite proteins P52 and P36. Our data suggest that P36 engages EphA2, which is likely to be a key step in establishing the permissive replication compartment.
Collapse
Affiliation(s)
- Alexis Kaushansky
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA.
| | - Alyse N Douglass
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Nadia Arang
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Vladimir Vigdorovich
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Nicholas Dambrauskas
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Heather S Kain
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Laura S Austin
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA. Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - D Noah Sather
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Avenue North, No. 500, Seattle, WA 98109, USA. Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|