1
|
Delfinis LJ, Khajehzadehshoushtar S, Flewwelling LD, Andrews NJ, Garibotti MC, Gandhi S, Brahmbhatt AN, Morris BA, Garlisi B, Lauks S, Aitken C, Tsitkanou S, Simpson JA, Greene NP, Cheng AJ, Petrik J, Perry CGR. Mitochondrial-targeted plastoquinone therapy ameliorates early onset muscle weakness that precedes ovarian cancer cachexia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619751. [PMID: 39484418 PMCID: PMC11526977 DOI: 10.1101/2024.10.22.619751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Cancer cachexia, and the related loss of muscle and strength, worsens quality of life and lowers overall survival. Recently, a novel 'pre-atrophy' muscle weakness was identified during early-stage cancer. While mitochondrial stress responses are associated with early-stage pre-atrophy weakness, a causal relationship has not been established. Using a robust mouse model of metastatic epithelial ovarian cancer (EOC)-induced cachexia, we found the well-established mitochondrial-targeted plastoquinone SkQ1 partially prevents pre-atrophy weakness in the diaphragm. Furthermore, SkQ1 improved force production during atrophy without preventing atrophy itself in the tibialis anterior and diaphragm. EOC reduced flexor digitorum brevis (FDB) force production and myoplasmic free calcium ([Ca 2+ ] i ) during contraction in single muscle fibers, both of which were prevented by SkQ1. Remarkably, changes in mitochondrial reactive oxygen species and pyruvate metabolism were heterogeneous across time and between muscle types which highlights a considerable complexity in the relationships between mitochondria and muscle remodeling throughout EOC. These discoveries identify that muscle weakness can occur independent of atrophy throughout EOC in a manner that is linked to improved calcium handling. The findings also demonstrate that mitochondrial-targeted therapies exert a robust effect in preserving muscle force during the early pre-atrophy period and in late-stage EOC once cachexia has become severe.
Collapse
|
2
|
Ogilvie LM, Delfinis LJ, Coyle-Asbil B, Vudatha V, Alshamali R, Garlisi B, Pereira M, Matuszewska K, Garibotti MC, Gandhi S, Brunt KR, Wood GA, Trevino JG, Perry CGR, Petrik J, Simpson JA. Cardiac Atrophy, Dysfunction, and Metabolic Impairments: A Cancer-Induced Cardiomyopathy Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1823-1843. [PMID: 39032600 DOI: 10.1016/j.ajpath.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024]
Abstract
Muscle atrophy and weakness are prevalent features of cancer. Although extensive research has characterized skeletal muscle wasting in cancer cachexia, limited studies have investigated how cardiac structure and function are affected by therapy-naive cancer. Herein, orthotopic, syngeneic models of epithelial ovarian cancer and pancreatic ductal adenocarcinoma, and a patient-derived pancreatic xenograft model, were used to define the impact of malignancy on cardiac structure, function, and metabolism. Tumor-bearing mice developed cardiac atrophy and intrinsic systolic and diastolic dysfunction, with arterial hypotension and exercise intolerance. In hearts of ovarian tumor-bearing mice, fatty acid-supported mitochondrial respiration decreased, and carbohydrate-supported respiration increased-showcasing a substrate shift in cardiac metabolism that is characteristic of heart failure. Epithelial ovarian cancer decreased cytoskeletal and cardioprotective gene expression, which was paralleled by down-regulation of transcription factors that regulate cardiomyocyte size and function. Patient-derived pancreatic xenograft tumor-bearing mice show altered myosin heavy chain isoform expression-also a molecular phenotype of heart failure. Markers of autophagy and ubiquitin-proteasome system were upregulated by cancer, providing evidence of catabolic signaling that promotes cardiac wasting. Together, two cancer types were used to cross-validate evidence of the structural, functional, and metabolic cancer-induced cardiomyopathy, thus providing translational evidence that could impact future medical management strategies for improved cancer recovery in patients.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Luca J Delfinis
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Razan Alshamali
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Madison C Garibotti
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Shivam Gandhi
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada; IMPART Investigator Team, Saint John, New Brunswick, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jose G Trevino
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Christopher G R Perry
- School of Kinesiology & Health Science and the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; IMPART Investigator Team, Saint John, New Brunswick, Canada.
| |
Collapse
|
3
|
Qian L, Zhu J, Xue Z, Zhou Y, Xiang N, Xu H, Sun R, Gong W, Cai X, Sun L, Ge W, Liu Y, Su Y, Lin W, Zhan Y, Wang J, Song S, Yi X, Ni M, Zhu Y, Hua Y, Zheng Z, Guo T. Proteomic landscape of epithelial ovarian cancer. Nat Commun 2024; 15:6462. [PMID: 39085232 PMCID: PMC11291745 DOI: 10.1038/s41467-024-50786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is a deadly disease with limited diagnostic biomarkers and therapeutic targets. Here we conduct a comprehensive proteomic profiling of ovarian tissue and plasma samples from 813 patients with different histotypes and therapeutic regimens, covering the expression of 10,715 proteins. We identify eight proteins associated with tumor malignancy in the tissue specimens, which are further validated as potential circulating biomarkers in plasma. Targeted proteomics assays are developed for 12 tissue proteins and 7 blood proteins, and machine learning models are constructed to predict one-year recurrence, which are validated in an independent cohort. These findings contribute to the understanding of EOC pathogenesis and provide potential biomarkers for early detection and monitoring of the disease. Additionally, by integrating mutation analysis with proteomic data, we identify multiple proteins related to DNA damage in recurrent resistant tumors, shedding light on the molecular mechanisms underlying treatment resistance. This study provides a multi-histotype proteomic landscape of EOC, advancing our knowledge for improved diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Liujia Qian
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jianqing Zhu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhangzhi Xue
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Xiang
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Rui Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Wangang Gong
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xue Cai
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Lu Sun
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yufeng Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Ying Su
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wangmin Lin
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Yuecheng Zhan
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Junjian Wang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiao Yi
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yi Zhu
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Science, Zhejiang University, Hangzhou, China.
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Tiannan Guo
- School of Medicine, Westlake University, Hangzhou, Zhejiang Province, China.
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Garlisi B, Lauks S, Aitken C, Ogilvie LM, Lockington C, Petrik D, Eichhorn JS, Petrik J. The Complex Tumor Microenvironment in Ovarian Cancer: Therapeutic Challenges and Opportunities. Curr Oncol 2024; 31:3826-3844. [PMID: 39057155 PMCID: PMC11275383 DOI: 10.3390/curroncol31070283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) in ovarian cancer (OC) has much greater complexity than previously understood. In response to aggressive pro-angiogenic stimulus, blood vessels form rapidly and are dysfunctional, resulting in poor perfusion, tissue hypoxia, and leakiness, which leads to increased interstitial fluid pressure (IFP). Decreased perfusion and high IFP significantly inhibit the uptake of therapies into the tumor. Within the TME, there are numerous inhibitor cells, such as myeloid-derived suppressor cells (MDSCs), tumor association macrophages (TAMs), regulatory T cells (Tregs), and cancer-associated fibroblasts (CAFs) that secrete high numbers of immunosuppressive cytokines. This immunosuppressive environment is thought to contribute to the lack of success of immunotherapies such as immune checkpoint inhibitor (ICI) treatment. This review discusses the components of the TME in OC, how these characteristics impede therapeutic efficacy, and some strategies to alleviate this inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.G.); (S.L.); (C.A.); (L.M.O.); (C.L.); (D.P.); (J.S.E.)
| |
Collapse
|
5
|
Xing L, Wang Z, Feng Y, Luo H, Dai G, Sang L, Zhang C, Qian J. The biological roles of CD47 in ovarian cancer progression. Cancer Immunol Immunother 2024; 73:145. [PMID: 38832992 PMCID: PMC11150368 DOI: 10.1007/s00262-024-03708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
Ovarian cancer is one of the most lethal malignant tumors, characterized by high incidence and poor prognosis. Patients relapse occurred in 65-80% after initial treatment. To date, no effective treatment has been established for these patients. Recently, CD47 has been considered as a promising immunotherapy target. In this paper, we reviewed the biological roles of CD47 in ovarian cancer and summarized the related mechanisms. For most types of cancers, the CD47/Sirpα immune checkpoint has attracted the most attention in immunotherapy. Notably, CD47 monoclonal antibodies and related molecules are promising in the immunotherapy of ovarian cancer, and further research is needed. In the future, new immunotherapy regimens targeting CD47 can be applied to the clinical treatment of ovarian cancer patients.
Collapse
Affiliation(s)
- Linan Xing
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Zhao Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yue Feng
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Haixia Luo
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Guijiang Dai
- Department of Comprehensive Office, The Second Affiliated Hospital of MuDanjiang Medical University, Mudanjiang, 157009, People's Republic of China
| | - Lin Sang
- Department of Obstetrics and Gynecology, People's Hospital of Anji, Huzhou, 310022, People's Republic of China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Jianhua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
6
|
Ogilvie LM, Coyle-Asbil B, Brunt KR, Petrik J, Simpson JA. Therapy-naïve malignancy causes cardiovascular disease: a state-of-the-art cardio-oncology perspective. Am J Physiol Heart Circ Physiol 2024; 326:H1515-H1537. [PMID: 38639740 DOI: 10.1152/ajpheart.00795.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are the leading causes of mortality worldwide. Although generally thought of as distinct diseases, the intersectional overlap between CVD and cancer is increasingly evident in both causal and mechanistic relationships. The field of cardio-oncology is largely focused on the cardiotoxic effects of cancer therapies (e.g., chemotherapy, radiation). Furthermore, the cumulative effects of cardiotoxic therapy exposure and the prevalence of CVD risk factors in patients with cancer lead to long-term morbidity and poor quality of life in this patient population, even when patients are cancer-free. Evidence from patients with cancer and animal models demonstrates that the presence of malignancy itself, independent of cardiotoxic therapy exposure or CVD risk factors, negatively impacts cardiac structure and function. As such, the primary focus of this review is the cardiac pathophysiological and molecular features of therapy-naïve cancer. We also summarize the strengths and limitations of preclinical cancer models for cardio-oncology research and discuss therapeutic strategies that have been tested experimentally for the treatment of cancer-induced cardiac atrophy and dysfunction. Finally, we explore an adjacent area of interest, called "reverse cardio-oncology," where the sequelae of heart failure augment cancer progression. Here, we emphasize the cross-disease communication between malignancy and the injured heart and discuss the importance of chronic low-grade inflammation and endocrine factors in the progression of both diseases.
Collapse
Affiliation(s)
- Leslie M Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Bridget Coyle-Asbil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie Medicine New Brunswick, Saint John, New Brunswick, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART Investigator Team Canada, Saint John, New Brunswick, Canada
| |
Collapse
|
7
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Chen JJ, Vincent MY, Shepard D, Peereboom D, Mahalingam D, Battiste J, Patel MR, Juric D, Wen PY, Bullock A, Selfridge JE, Pant S, Liu J, Li W, Fyfe S, Wang S, Zota V, Mahoney J, Watnick RS, Cieslewicz M, Watnick J. Phase 1 dose expansion and biomarker study assessing first-in-class tumor microenvironment modulator VT1021 in patients with advanced solid tumors. COMMUNICATIONS MEDICINE 2024; 4:95. [PMID: 38773224 PMCID: PMC11109328 DOI: 10.1038/s43856-024-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Preclinical studies have demonstrated that VT1021, a first-in-class therapeutic agent, inhibits tumor growth via stimulation of thrombospondin-1 (TSP-1) and reprograms the tumor microenvironment. We recently reported data from the dose escalation part of a phase I study of VT1021 in solid tumors. Here, we report findings from the dose expansion phase of the same study. METHODS We analyzed the safety and tolerability, clinical response, and biomarker profile of VT1021 in the expansion portion of the phase I study (NCT03364400). Safety/tolerability is determined by adverse events related to the treatment. Clinical response is determined by RECIST v1.1 and iRECIST. Biomarkers are measured by multiplexed ion beam imaging and enzyme-linked immunoassay (ELISA). RESULTS First, we report the safety and tolerability data as the primary outcome of this study. Adverse events (AE) suspected to be related to the study treatment (RTEAEs) are mostly grade 1-2. There are no grade 4 or 5 adverse events. VT1021 is safe and well tolerated in patients with solid tumors in this study. We report clinical responses as a secondary efficacy outcome. VT1021 demonstrates promising single-agent clinical activity in recurrent GBM (rGBM) in this study. Among 22 patients with rGBM, the overall disease control rate (DCR) is 45% (95% confidence interval, 0.24-0.67). Finally, we report the exploratory outcomes of this study. We show the clinical confirmation of TSP-1 induction and TME remodeling by VT1021. Our biomarker analysis identifies several plasmatic cytokines as potential biomarkers for future clinical studies. CONCLUSIONS VT1021 is safe and well-tolerated in patients with solid tumors in a phase I expansion study. VT1021 has advanced to a phase II/III clinical study in glioblastoma (NCT03970447).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | - Dejan Juric
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Shubham Pant
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joyce Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Wendy Li
- Vigeo Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Delfinis LJ, Ogilvie LM, Khajehzadehshoushtar S, Gandhi S, Garibotti MC, Thuhan AK, Matuszewska K, Pereira M, Jones RG, Cheng AJ, Hawke TJ, Greene NP, Murach KA, Simpson JA, Petrik J, Perry CG. Muscle weakness and mitochondrial stress occur before metastasis in a novel mouse model of ovarian cancer cachexia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588639. [PMID: 38645227 PMCID: PMC11030380 DOI: 10.1101/2024.04.08.588639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Objectives A high proportion of women with advanced epithelial ovarian cancer (EOC) experience weakness and cachexia. This relationship is associated with increased morbidity and mortality. EOC is the most lethal gynecological cancer, yet no preclinical cachexia model has demonstrated the combined hallmark features of metastasis, ascites development, muscle loss and weakness in adult immunocompetent mice. Methods Here, we evaluated a new model of ovarian cancer-induced cachexia with the advantages of inducing cancer in adult immunocompetent C57BL/6J mice through orthotopic injections of EOC cells in the ovarian bursa. We characterized the development of metastasis, ascites, muscle atrophy, muscle weakness, markers of inflammation, and mitochondrial stress in the tibialis anterior (TA) and diaphragm ~45, ~75 and ~90 days after EOC injection. Results Primary ovarian tumour sizes were progressively larger at each time point while robust metastasis, ascites development, and reductions in body, fat and muscle weights occurred by 90 Days. There were no changes in certain inflammatory (TNFα), atrogene (MURF1 and Atrogin) or GDF15 markers within both muscles whereas IL-6 was increased at 45 and 90 Day groups in the diaphragm. TA weakness in 45 Day preceded atrophy and metastasis that were observed later (75 and 90 Day, respectively). The diaphragm demonstrated both weakness and atrophy in 45 Day. In both muscles, this pre-metastatic muscle weakness corresponded with considerable reprogramming of gene pathways related to mitochondrial bioenergetics as well as reduced functional measures of mitochondrial pyruvate oxidation and creatine-dependent ADP/ATP cycling as well as increased reactive oxygen species emission (hydrogen peroxide). Remarkably, muscle force per unit mass at 90 days was partially restored in the TA despite the presence of atrophy and metastasis. In contrast, the diaphragm demonstrated progressive weakness. At this advanced stage, mitochondrial pyruvate oxidation in both muscles exceeded control mice suggesting an apparent metabolic super-compensation corresponding with restored indices of creatine-dependent adenylate cycling. Conclusion This mouse model demonstrates the concurrent development of cachexia and metastasis that occurs in women with EOC. The model provides physiologically relevant advantages of inducing tumour development within the ovarian bursa in immunocompetent adult mice. Moreover, the model reveals that muscle weakness in both TA and diaphragm precedes metastasis while weakness also precedes atrophy in the TA. An underlying mitochondrial bioenergetic stress corresponded with this early weakness. Collectively, these discoveries can direct new research towards the development of therapies that target pre-atrophy and pre-metastatic weakness during EOC in addition to therapies targeting cachexia.
Collapse
Affiliation(s)
- Luca J. Delfinis
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Leslie M. Ogilvie
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Shivam Gandhi
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Madison C. Garibotti
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Arshdeep K. Thuhan
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Ronald G. Jones
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Arthur J. Cheng
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Thomas J. Hawke
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nicholas P. Greene
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A. Murach
- Exercise Science Research Center, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jeremy A. Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Christopher G.R. Perry
- School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
Petrik J, Lauks S, Garlisi B, Lawler J. Thrombospondins in the tumor microenvironment. Semin Cell Dev Biol 2024; 155:3-11. [PMID: 37286406 DOI: 10.1016/j.semcdb.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Many cancers begin with the formation of a small nest of transformed cells that can remain dormant for years. Thrombospondin-1 (TSP-1) initially promotes dormancy by suppressing angiogenesis, a key early step in tumor progression. Over time, increases in drivers of angiogenesis predominate, and vascular cells, immune cells, and fibroblasts are recruited to the tumor mass forming a complex tissue, designated the tumor microenvironment. Numerous factors, including growth factors, chemokine/cytokine, and extracellular matrix, participate in the desmoplastic response that in many ways mimics wound healing. Vascular and lymphatic endothelial cells, and cancer-associated pericytes, fibroblasts, macrophages and immune cells are recruited to the tumor microenvironment, where multiple members of the TSP gene family promote their proliferation, migration and invasion. The TSPs also affect the immune signature of tumor tissue and the phenotype of tumor-associated macrophages. Consistent with these observations, expression of some TSPs has been established to correlate with poor outcomes in specific types of cancer.
Collapse
Affiliation(s)
- James Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Sylvia Lauks
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Harvard Medical School, Boston, MA, USA; Beth Israel, Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Longhi E, Carminati L, Carlessi E, Belotti D, Taraboletti G. Thrombospondin-1 in drug activity and tumor response to therapies. Semin Cell Dev Biol 2024; 155:45-51. [PMID: 37414720 DOI: 10.1016/j.semcdb.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Thrombospondins (TSPs) have numerous different roles in cancer, regulating the behavior of cancer cells and non-neoplastic cells, and defining the responses of tumor cells to environmental changes, thorough their ability to orchestrate cellular and molecular interactions in the tumor microenvironment (TME). As a result of these activities, TSPs can also control drug delivery and activity, tumor response and resistance to therapies, with different outcomes depending on the nature of TSP-interacting cell types, receptors, and ligands, in a highly context-dependent manner. This review, focusing primarily on TSP-1, discusses the effects of TSPs on tumor response to chemotherapy, antiangiogenic, low-dose metronomic chemotherapy, immunotherapy, and radiotherapy, by analyzing TSP activity on different cell compartments - tumor cells, vascular endothelial cells and immune cells. We review evidence of the value of TSPs, specifically TSP-1 and TSP-2, as biomarkers of prognosis and tumor response to therapy. Finally, we examine possible approaches to develop TSP-based compounds as therapeutic tools to potentiate the efficacy of anticancer therapy.
Collapse
Affiliation(s)
- Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy
| | - Dorina Belotti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy.
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Stezzano 87, Bergamo 24126, Italy.
| |
Collapse
|
12
|
Xia L, Zhou Z, Chen X, Luo W, Ding L, Xie H, Zhuang W, Ni K, Li G. Ligand-dependent CD36 functions in cancer progression, metastasis, immune response, and drug resistance. Biomed Pharmacother 2023; 168:115834. [PMID: 37931517 DOI: 10.1016/j.biopha.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
CD36, a multifunctional glycoprotein, has been shown to play critical roles in tumor initiation, progression, metastasis, immune response, and drug resistance. CD36 serves as a receptor for a wide range of ligands, including lipid-related ligands (e.g., long-chain fatty acid (LCFA), oxidized low-density lipoprotein (oxLDL), and oxidized phospholipids), as well as protein-related ligands (e.g., thrombospondins, amyloid proteins, collagens I and IV). CD36 is overexpressed in various cancers and may act as an independent prognostic marker. While it was initially identified as a mediator of anti-angiogenesis through its interaction with thrombospondin-1 (TSP1), recent research has highlighted its role in promoting tumor growth, metastasis, drug resistance, and immune suppression. The varied impact of CD36 on cancer is likely ligand-dependent. Therefore, we focus specifically on the ligand-dependent role of CD36 in cancer to provide a critical review of recent advances, perspectives, and challenges.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenwei Zhou
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhuang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Kangxin Ni
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Portillo AL, Monteiro JK, Rojas EA, Ritchie TM, Gillgrass A, Ashkar AA. Charting a killer course to the solid tumor: strategies to recruit and activate NK cells in the tumor microenvironment. Front Immunol 2023; 14:1286750. [PMID: 38022679 PMCID: PMC10663242 DOI: 10.3389/fimmu.2023.1286750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The ability to expand and activate natural Killer (NK) cells ex vivo has dramatically changed the landscape in the development of novel adoptive cell therapies for treating cancer over the last decade. NK cells have become a key player for cancer immunotherapy due to their innate ability to kill malignant cells while not harming healthy cells, allowing their potential use as an "off-the-shelf" product. Furthermore, recent advancements in NK cell genetic engineering methods have enabled the efficient generation of chimeric antigen receptor (CAR)-expressing NK cells that can exert both CAR-dependent and antigen-independent killing. Clinically, CAR-NK cells have shown promising efficacy and safety for treating CD19-expressing hematologic malignancies. While the number of pre-clinical studies using CAR-NK cells continues to expand, it is evident that solid tumors pose a unique challenge to NK cell-based adoptive cell therapies. Major barriers for efficacy include low NK cell trafficking and infiltration into solid tumor sites, low persistence, and immunosuppression by the harsh solid tumor microenvironment (TME). In this review we discuss the barriers posed by the solid tumor that prevent immune cell trafficking and NK cell effector functions. We then discuss promising strategies to enhance NK cell infiltration into solid tumor sites and activation within the TME. This includes NK cell-intrinsic and -extrinsic mechanisms such as NK cell engineering to resist TME-mediated inhibition and use of tumor-targeted agents such as oncolytic viruses expressing chemoattracting and activating payloads. We then discuss opportunities and challenges for using combination therapies to extend NK cell therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ana L. Portillo
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan K. Monteiro
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Eduardo A. Rojas
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Tyrah M. Ritchie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
14
|
Duggins-Warf M, Ghalali A, Sesen J, Martinez T, Fehnel KP, Pineda S, Zurakowski D, Smith ER. Disease specific urinary biomarkers in the central nervous system. Sci Rep 2023; 13:19244. [PMID: 37935834 PMCID: PMC10630515 DOI: 10.1038/s41598-023-46763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Urinary biomarkers can diagnose and monitor pathophysiologic conditions in the central nervous system (CNS). However, focus is often on single diseases, with limited data on discriminatory capability of this approach in a general setting. Here, we demonstrate that different classes of CNS disease exhibit distinct biomarker patterns, evidence of disease-specific "fingerprinting." Urine from 218 patients with pathology-confirmed tumors or cerebrovascular disease, controls (n = 33) were collected. ELISA and/or bead-based multiplexing quantified levels of 21 putative urinary biomarkers. Analysis identified biomarkers capable of distinguishing each disease from controls and other diseases. Mann-Whitney U tests identified biomarkers with differential expression between disease types and controls (P ≤ 0.001). Subsequent receiver-operating characteristic (ROC) analyses revealed distinguishing biomarkers with high sensitivity and specificity. Areas under the curve (AUCs) ranged 0.8563-1.000 (P values ≤ 0.0003), sensitivities ranged 80.00-100.00%, and specificities ranged 80.95-100.00%. These data demonstrate proof-of-principle evidence that disease-specific urinary biomarker signatures exist. In contrast to non-specific responses to ischemia or injury, these results suggest that urinary biomarkers accurately reflect unique biological processes distinct to different diseases. This work can be used to generate disease-specific panels for enhancing diagnosis, assisting less-invasive follow-up and herald utility by revealing putative disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Micah Duggins-Warf
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Katie P Fehnel
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Steven Pineda
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188958. [PMID: 37495194 DOI: 10.1016/j.bbcan.2023.188958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, which is generally resistant to various treatments. Tumor angiogenesis is deemed to be a pivotal rate-determining step for tumor growth and metastasis. Therefore, anti-angiogenetic therapy is a rational strategy to treat various cancers. However, numerous clinical trials on anti-angiogenetic therapies for PC are overwhelmingly disappointing. The unique characteristics of tumor blood vessels in PC, which are desperately lacking and highly compressed by the dense desmoplastic stroma, are reconsidered to explore some optimized strategies. In this review, we mainly focus on its specific characteristics of tumor blood vessels, discuss the current dilemmas of anti-angiogenic therapy in PC and their underlying mechanisms. Furthermore, we point out the future directions, including remodeling the abnormal vasculature or even reshaping the whole tumor microenvironment in which they are embedded to improve tumor microcirculation, and then create therapeutic vulnerabilities to the current available therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Fei An
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Basic Medicine, Chang Zhi Medical College, Changzhi 046000,China; Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Bin Jia
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Pal S, Bhowmick S, Sharma A, Sierra-Fonseca JA, Mondal S, Afolabi F, Roy D. Lymphatic vasculature in ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188950. [PMID: 37419192 PMCID: PMC10754213 DOI: 10.1016/j.bbcan.2023.188950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Ovarian cancer (OVCA) is the second most common gynecological cancer and one of the leading causes of cancer related mortality among women. Recent studies suggest that among ovarian cancer patients at least 70% of the cases experience the involvement of lymph nodes and metastases through lymphatic vascular network. However, the impact of lymphatic system in the growth, spread and the evolution of ovarian cancer, its contribution towards the landscape of ovarian tissue resident immune cells and their metabolic responses is still a major knowledge gap. In this review first we present the epidemiological aspect of the OVCA, the lymphatic architecture of the ovary, we discuss the role of lymphatic circulation in regulation of ovarian tumor microenvironment, metabolic basis of the upregulation of lymphangiogenesis which is often observed during progression of ovarian metastasis and ascites development. Further we describe the implication of several mediators which influence both lymphatic vasculature as well as ovarian tumor microenvironment and conclude with several therapeutic strategies for targeting lymphatic vasculature in ovarian cancer progression in present day.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, United States
| | - Sramana Bhowmick
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Anurag Sharma
- Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Susmita Mondal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Favour Afolabi
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, United States.
| |
Collapse
|
17
|
Interactions between Platelets and Tumor Microenvironment Components in Ovarian Cancer and Their Implications for Treatment and Clinical Outcomes. Cancers (Basel) 2023; 15:cancers15041282. [PMID: 36831623 PMCID: PMC9953912 DOI: 10.3390/cancers15041282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Platelets, the primary operatives of hemostasis that contribute to blood coagulation and wound healing after blood vessel injury, are also involved in pathological conditions, including cancer. Malignancy-associated thrombosis is common in ovarian cancer patients and is associated with poor clinical outcomes. Platelets extravasate into the tumor microenvironment in ovarian cancer and interact with cancer cells and non-cancerous elements. Ovarian cancer cells also activate platelets. The communication between activated platelets, cancer cells, and the tumor microenvironment is via various platelet membrane proteins or mediators released through degranulation or the secretion of microvesicles from platelets. These interactions trigger signaling cascades in tumors that promote ovarian cancer progression, metastasis, and neoangiogenesis. This review discusses how interactions between platelets, cancer cells, cancer stem cells, stromal cells, and the extracellular matrix in the tumor microenvironment influence ovarian cancer progression. It also presents novel potential therapeutic approaches toward this gynecological cancer.
Collapse
|
18
|
CD36 and Its Role in Regulating the Tumor Microenvironment. Curr Oncol 2022; 29:8133-8145. [PMID: 36354702 PMCID: PMC9688853 DOI: 10.3390/curroncol29110642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 01/14/2023] Open
Abstract
CD36 is a transmembrane glycoprotein that binds to a wide range of ligands, including fatty acids (FAs), cholesterol, thrombospondin-1 (TSP-1) and thrombospondin-2 (TSP-2), and plays an important role in lipid metabolism, immune response, and angiogenesis. Recent studies have highlighted the role of CD36 in mediating lipid uptake by tumor-associated immune cells and in promoting tumor cell progression. In cancer-associated fibroblasts (CAFs), CD36 regulates lipid uptake and matrix protein production to promote tumor proliferation. In addition, CD36 can promote tumor cell adhesion to the extracellular matrix (ECM) and induce epithelial mesenchymal transition (EMT). In terms of tumor angiogenesis, CD36 binding to TSP-1 and TSP-2 can both inhibit tumor angiogenesis and promote tumor migration and invasion. CD36 can promote tumor angiogenesis through vascular mimicry (VM). Overall, we found that CD36 exhibits diverse functions in tumors. Here, we summarize the recent research findings highlighting the novel roles of CD36 in the context of tumors.
Collapse
|
19
|
Lawler J. Counter Regulation of Tumor Angiogenesis by Vascular Endothelial Growth Factor and Thrombospondin-1. Semin Cancer Biol 2022; 86:126-135. [PMID: 36191900 DOI: 10.1016/j.semcancer.2022.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
Considerable progress has been made in our understanding of the process of angiogenesis in the context of normal and tumor tissue over the last fifty years. Angiogenesis, like most physiological processes, is carefully controlled by dynamic and opposing effects of positive factors, such as vascular endothelial growth factor (VEGF), and negative factors, such as thrombospondin-1. In most cases, the progression of a small mass of cancerous cells to a life-threatening tumor depends upon the initiation of angiogenesis and involves the dysregulation of the angiogenic balance. Whereas our newfound appreciation for the role of angiogenesis in cancer has opened up new avenues for treatment, the success of these treatments, which have focused almost exclusively on antagonizing the VEGF pathway, has been limited to date. It is anticipated that this situation will improve as more therapeutics that target other pathways are developed, more strategies for combination therapies are advanced, more detailed stratification of patient populations occurs, and a better understanding of resistance to anti-angiogenic therapy is gained.
Collapse
Affiliation(s)
- Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, The Center for Vascular Biology Research, 99 Brookline Ave, Boston MA 02215, United States.
| |
Collapse
|
20
|
van Vloten JP, Matuszewska K, Minow MAA, Minott JA, Santry LA, Pereira M, Stegelmeier AA, McAusland TM, Klafuric EM, Karimi K, Colasanti J, McFadden DG, Petrik JJ, Bridle BW, Wootton SK. Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer 2022; 10:jitc-2021-004335. [PMID: 35296558 PMCID: PMC8928368 DOI: 10.1136/jitc-2021-004335] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Novel therapies are needed to improve outcomes for women diagnosed with ovarian cancer. Oncolytic viruses are multifunctional immunotherapeutic biologics that preferentially infect cancer cells and stimulate inflammation with the potential to generate antitumor immunity. Herein we describe Parapoxvirus ovis (Orf virus (OrfV)), an oncolytic poxvirus, as a viral immunotherapy for ovarian cancer. METHODS The immunotherapeutic potential of OrfV was tested in the ID8 orthotopic mouse model of end-stage epithelial ovarian carcinoma. Immune cell profiling, impact on secondary lesion development and survival were evaluated in OrfV-treated mice as well as in Batf3 knockout, mice depleted of specific immune cell subsets and in mice where the primary tumor was removed. Finally, we interrogated gene expression datasets from primary human ovarian tumors from the International Cancer Genome Consortium database to determine whether the interplay we observed between natural killer (NK) cells, classical type 1 dendritic cells (cDC1s) and T cells exists and influences outcomes in human ovarian cancer. RESULTS OrfV was an effective monotherapy in a murine model of advanced-stage epithelial ovarian cancer. OrfV intervention relied on NK cells, which when depleted abrogated antitumor CD8+ T-cell responses. OrfV therapy was shown to require cDC1s in experiments with BATF3 knockout mice, which do not have mature cDC1s. Furthermore, cDC1s governed antitumor NK and T-cell responses to mediate antitumor efficacy following OrfV. Primary tumor removal, a common treatment option in human patients, was effectively combined with OrfV for optimal therapeutic outcome. Analysis of human RNA sequencing datasets revealed that cDC1s correlate with NK cells in human ovarian cancer and that intratumoral NK cells correlate positively with survival. CONCLUSIONS The data herein support the translational potential of OrfV as an NK stimulating immunotherapeutic for the treatment of advanced-stage ovarian cancer.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mark A A Minow
- Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jessica A Minott
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | - Thomas M McAusland
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Elaine M Klafuric
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - D Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Stegelmeier AA, Santry LA, Guilleman MM, Matuszewska K, Minott JA, Yates JGE, Stevens BAY, Thomas SP, Vanderkamp S, Hanada K, Pei Y, Rghei AD, van Vloten JP, Pereira M, Thompson B, Major PP, Petrik JJ, Bridle BW, Wootton SK. AAV-Vectored Expression of the Vascular Normalizing Agents 3TSR and Fc3TSR, and the Anti-Angiogenic Bevacizumab Extends Survival in a Murine Model of End-Stage Epithelial Ovarian Carcinoma. Biomedicines 2022; 10:biomedicines10020362. [PMID: 35203573 PMCID: PMC8962366 DOI: 10.3390/biomedicines10020362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies.
Collapse
Affiliation(s)
- Ashley A. Stegelmeier
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Matthew M. Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Brenna A. Y. Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sylvia P. Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sierra Vanderkamp
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kiersten Hanada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Amira D. Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | | | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
- Correspondence: ; Tel.: +1-519-824-4210 (ext. 54729)
| |
Collapse
|
22
|
Yu X, Mi S, Ye J, Lou G. Aberrant lipid metabolism in cancer cells and tumor microenvironment: the player rather than bystander in cancer progression and metastasis. J Cancer 2022; 12:7498-7506. [PMID: 35003369 PMCID: PMC8734401 DOI: 10.7150/jca.64833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
As the primary cause of cancer-induced fatality and morbidity, cancer metastasis has been a hard nut to crack. Existing studies indicate that lipid metabolism reprogramming occurring in cancer cells and surrounding cells in TME also endows the aggressive and spreading properties with malignant cells. In this review we describe the lipid metabolic reprogramming of cancer cells at different steps along the metastatic process, we also summarize the altered lipid metabolism of non-cancer cells in TME during tumor metastasis. Additionally, we reveal both intrinsic and extrinsic factors which influence the cellular lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Xiujing Yu
- Department of Endoscopy Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuyi Mi
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Guochun Lou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Matuszewska K, Ten Kortenaar S, Pereira M, Santry LA, Petrik D, Lo KM, Bridle BW, Wootton SK, Lawler J, Petrik J. Addition of an Fc-IgG induces receptor clustering and increases the in vitro efficacy and in vivo anti-tumor properties of the thrombospondin-1 type I repeats (3TSR) in a mouse model of advanced stage ovarian cancer. Gynecol Oncol 2021; 164:154-169. [PMID: 34799137 DOI: 10.1016/j.ygyno.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Tumor vasculature is structurally abnormal, with anatomical deformities, reduced pericyte coverage and low tissue perfusion. As a result of this vascular dysfunction, tumors are often hypoxic, which is associated with an aggressive tumor phenotype, and reduced delivery of therapeutic compounds to the tumor. We have previously shown that a peptide containing the thrombospondin-1 type I repeats (3TSR) specifically targets tumor vessels and induces vascular normalization in a mouse model of epithelial ovarian cancer (EOC). However, due to its small size, 3TSR is rapidly cleared from circulation. We now introduce a novel construct with the 3TSR peptide fused to the C-terminus of each of the two heavy chains of the Fc region of human IgG1 (Fc3TSR). We hypothesize that Fc3TSR will have greater anti-tumor activity in vitro and in vivo compared to the native compound. METHODS Fc3TSR was evaluated in vitro using proliferation and apoptosis assays to investigate differences in efficacy compared to native 3TSR. In light of the multivalency of Fc3TSR, we also investigate whether it induces greater clustering of its functional receptor, CD36. We also compare the compounds in vivo using an orthotopic, syngeneic mouse model of advanced stage EOC. The impact of the two compounds on changes to tumor vasculature morphology was also investigated. RESULTS Fc3TSR significantly decreased the viability and proliferative potential of EOC cells and endothelial cells in vitro compared to native 3TSR. High-resolution imaging followed by image correlation spectroscopy demonstrated enhanced clustering of the CD36 receptor in cells treated with Fc3TSR. This was associated with enhanced downstream signaling and greater in vitro and in vivo cellular responses. Fc3TSR induced greater vascular normalization and disease regression compared to native 3TSR in an orthotopic, syngeneic mouse model of advanced stage ovarian cancer. CONCLUSION The development of Fc3TSR which is greater in size, stable in circulation and enhances receptor activation compared to 3TSR, facilitates its translational potential as a therapy in the treatment of metastatic advanced stage ovarian cancer.
Collapse
Affiliation(s)
- Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Simone Ten Kortenaar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, ON, United States of America
| | - Duncan Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America
| | - Kin-Ming Lo
- EMD Serono Research & Development Institute, Billerica, MA, United States of America
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, United States of America
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, United States of America
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, United States of America.
| |
Collapse
|
24
|
Anti-Angiogenic Therapy: Current Challenges and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073765. [PMID: 33916438 PMCID: PMC8038573 DOI: 10.3390/ijms22073765] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-angiogenic therapy is an old method to fight cancer that aims to abolish the nutrient and oxygen supply to the tumor cells through the decrease of the vascular network and the avoidance of new blood vessels formation. Most of the anti-angiogenic agents approved for cancer treatment rely on targeting vascular endothelial growth factor (VEGF) actions, as VEGF signaling is considered the main angiogenesis promotor. In addition to the control of angiogenesis, these drugs can potentiate immune therapy as VEGF also exhibits immunosuppressive functions. Despite the mechanistic rational that strongly supports the benefit of drugs to stop cancer progression, they revealed to be insufficient in most cases. We hypothesize that the rehabilitation of old drugs that interfere with mechanisms of angiogenesis related to tumor microenvironment might represent a promising strategy. In this review, we deepened research on the molecular mechanisms underlying anti-angiogenic strategies and their failure and went further into the alternative mechanisms that impact angiogenesis. We concluded that the combinatory targeting of alternative effectors of angiogenic pathways might be a putative solution for anti-angiogenic therapies.
Collapse
|
25
|
Morandi V, Petrik J, Lawler J. Endothelial Cell Behavior Is Determined by Receptor Clustering Induced by Thrombospondin-1. Front Cell Dev Biol 2021; 9:664696. [PMID: 33869231 PMCID: PMC8044760 DOI: 10.3389/fcell.2021.664696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
The thrombospondins (TSPs) are a family of multimeric extracellular matrix proteins that dynamically regulate cellular behavior and response to stimuli. In so doing, the TSPs directly and indirectly affect biological processes such as embryonic development, wound healing, immune response, angiogenesis, and cancer progression. Many of the direct effects of Thrombospondin 1 (TSP-1) result from the engagement of a wide range of cell surface receptors including syndecans, low density lipoprotein receptor-related protein 1 (LRP1), CD36, integrins, and CD47. Different or even opposing outcomes of TSP-1 actions in certain pathologic contexts may occur, depending on the structural/functional domain involved. To expedite response to external stimuli, these receptors, along with vascular endothelial growth factor receptor 2 (VEGFR2) and Src family kinases, are present in specific membrane microdomains, such as lipid rafts or tetraspanin-enriched microdomains. The molecular organization of these membrane microdomains and their constituents is modulated by TSP-1. In this review, we will describe how the presence of TSP-1 at the plasma membrane affects endothelial cell signal transduction and angiogenesis.
Collapse
Affiliation(s)
| | - Jim Petrik
- University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
27
|
Wang P, Zeng Z, Lin C, Wang J, Xu W, Ma W, Xiang Q, Liu H, Liu SL. Thrombospondin-1 as a Potential Therapeutic Target: Multiple Roles in Cancers. Curr Pharm Des 2020; 26:2116-2136. [PMID: 32003661 DOI: 10.2174/1381612826666200128091506] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
Thrombospondin-1, an extracellular matrix protein, is the first identified natural angiogenesis inhibitor. Thrombospondin-1 participates in a great number of physiological and pathological processes, including cell-cell and cell-matrix interactions via a number of cell receptors, including CD36 and CD47, which plays a vital role in mediating inflammation and performs a promoting effect in pulmonary arterial vasculopathy and diabetes. Thrombospondin-1 consists of six domains, which combine with different molecules and participate in various functions in cancers, serving as a critical member in diverse pathways in cancers. Thrombospondin-1 works as a cancer promotor in some pathways but as a cancer suppressor in others, which makes it highly possible that its erroneous functioning might lead to opposite effects. Therefore, subdividing the roles of thrombospondin-1 and distinguishing them in cancers are necessary. Complex structure and multiple roles take disadvantage of the research and application of thrombospondin-1. Compared with the whole thrombospondin-1 protein, each thrombospondin- 1 active peptide performs an uncomplicated structure and, nevertheless, a specific role. In other words, various thrombospondin-1 active peptides may function differently. For instance, thrombospondin-1 could both promote and inhibit glioblastoma, which is significantly inhibited by the three type I repeats, a thrombospondin-1 active peptide but promoted by the fragment 167-569, a thrombospondin-1 active peptide consisting of the procollagen homology domain and the three type I repeats. Further studies of the functions of thrombospondin-1 active peptides and applying them reasonably are necessary. In addition to mediating cancerogenesis, thrombospondin-1 is also affected by cancer development, as reflected by its expression in plasma and the cancer tissue. Therefore, thrombospondin-1 may be a potential biomarker for pre-clinical and clinical application. This review summarizes findings on the multiple roles of thrombospondin-1 in cancer processes, with a focus on its use as a potential therapeutic target.
Collapse
Affiliation(s)
- Pengfei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Jiali Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
28
|
Santry LA, van Vloten JP, Knapp JP, Matuszewska K, McAusland TM, Minott JA, Mould RC, Stegelmeier AA, Major PP, Wootton SK, Petrik JJ, Bridle BW. Tumour vasculature: Friend or foe of oncolytic viruses? Cytokine Growth Factor Rev 2020; 56:69-82. [PMID: 32893095 DOI: 10.1016/j.cytogfr.2020.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
In the past two decades there have been substantial advances in understanding the anti-cancer mechanisms of oncolytic viruses (OVs). OVs can mediate their effects directly, by preferentially infecting and killing tumour cells. Additionally, OVs can indirectly generate anti-tumour immune responses. These differing mechanisms have led to a paradoxical divergence in strategies employed to further increase the potency of oncolytic virotherapies. On one hand, the tumour neovasculature is seen as a vital lifeline to the survival of the tumour, leading some to use OVs to target the tumour vasculature in hopes to starve cancers. Therapeutics causing vascular collapse can potentiate tumour hypoxia, nutrient restriction and pro-inflammatory cytokine release, which has shown promise in oncological studies. On the other hand, the same vasculature plays an important role for the dissemination of OVs, trafficking of effector cells and other therapeutics, which has prompted researchers to find ways of normalizing the vasculature to enhance infiltration of leukocytes and delivery of therapeutic agents. This article describes the recent developments of therapies aimed to shut down versus normalize tumour vasculature in order to inform researchers striving to optimize OV-based therapies.
Collapse
Affiliation(s)
- Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jason P Knapp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Kathy Matuszewska
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Pierre P Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
29
|
Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards Clinical Implementation of Adeno-Associated Virus (AAV) Vectors for Cancer Gene Therapy: Current Status and Future Perspectives. Cancers (Basel) 2020; 12:E1889. [PMID: 32674264 PMCID: PMC7409174 DOI: 10.3390/cancers12071889] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Adeno-associated virus (AAV) vectors have gained tremendous attention as in vivo delivery systems in gene therapy for inherited monogenetic diseases. First market approvals, excellent safety data, availability of large-scale production protocols, and the possibility to tailor the vector towards optimized and cell-type specific gene transfer offers to move from (ultra) rare to common diseases. Cancer, a major health burden for which novel therapeutic options are urgently needed, represents such a target. We here provide an up-to-date overview of the strategies which are currently developed for the use of AAV vectors in cancer gene therapy and discuss the perspectives for the future translation of these pre-clinical approaches into the clinic.
Collapse
Affiliation(s)
- Ulrich T. Hacker
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
| | - Dorota Kaniowska
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, 04103 Leipzig, Germany;
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (M.B.); (M.M.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
30
|
Yu DL, Stegelmeier AA, Chow N, Rghei AD, Matuszewska K, Lawler J, Bridle BW, Petrik JJ, Wootton SK. AAV-mediated expression of 3TSR inhibits tumor and metastatic lesion development and extends survival in a murine model of epithelial ovarian carcinoma. Cancer Gene Ther 2019; 27:356-367. [PMID: 31160686 DOI: 10.1038/s41417-019-0108-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
An integral step in the development of solid tumors is the recruitment of blood vessels to fuel tumor growth. Antiangiogenic therapies can inhibit this process and control solid tumor growth. Thrombospondin-1 is an antiangiogenic protein possessing three type I repeats (3TSR) near the center of the protein and a CD47-binding peptide (CD47) in its C-terminus. Previously, we showed that treatment with recombinant 3TSR induces tumor regression, normalizes tumor vasculature, and improves uptake of chemotherapy drugs in an orthotopic, syngeneic mouse model of advanced stage epithelial ovarian cancer (EOC). While effective, this intervention required daily intraperitoneal injections. To circumvent this, here we employ adeno-associated virus (AAV) gene therapy vectors to express 3TSR alone or in combination with the CD47-binding peptide of TSP-1 and evaluate the impact on tumor development and survival in a mouse model of EOC. A single intraperitoneal injection of 1 × 1011 vg of AAV expressing 3TSR, CD47-binding peptide, or 3TSR + CD47 effectively suppressed primary tumor growth; however, only AAV-3TSR was able to inhibit development of secondary lesions at 90-days post-tumor implantation and significantly improve survival. Taken together, AAV-mediated expression of 3TSR appears safe and effective at inhibiting tumor development and represents a novel, less invasive approach for treating ovarian carcinoma.
Collapse
Affiliation(s)
- Darrick L Yu
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Natalie Chow
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - James J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
31
|
Pal P, Hales K, Petrik J, Hales DB. Pro-apoptotic and anti-angiogenic actions of 2-methoxyestradiol and docosahexaenoic acid, the biologically derived active compounds from flaxseed diet, in preventing ovarian cancer. J Ovarian Res 2019; 12:49. [PMID: 31128594 PMCID: PMC6535187 DOI: 10.1186/s13048-019-0523-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have previously shown that a whole flaxseed supplemented diet decreased the onset and severity of ovarian cancer in the laying hen, the only known animal model of spontaneous ovarian cancer. Flaxseed is rich in omega-3 fatty acids (OM3FA), mostly α-Linoleic acid (ALA), which gets converted to Docosahexaenoic acid (DHA) by the action of delta-6 desaturase enzyme. Ingestion of flaxseed also causes an increase in production of 2-methoxyestradiol (2MeOE2) via the induction of the CYP1A1 pathway of estrogen metabolism. We have previously reported that the flaxseed diet induces apoptosis via p38-MAPK pathway in chicken tumors. The objective of this study was to investigate the effect of the flaxseed diet on ovarian cancer in chickens, focusing on two hallmarks of cancer, apoptosis and angiogenesis. RESULTS The anti-cancer effects of two active biologically derived compounds of flax diet, 2MeOE2 and DHA, were individually tested on human ovarian cancer cells and in vivo by the Chick Chorioallantoic Membrane (CAM) assay. Our results indicate that a flaxseed-supplemented diet promotes apoptosis and inhibits angiogenesis in chicken tumors but not in normal ovaries. 2MeOE2 promotes apoptosis in human ovarian cancer cells, inhibits angiogenesis on CAM and its actions are dependent on the p38-MAPK pathway. DHA does not have any pro-apoptotic effect on human ovarian cancer cells but has strong anti-angiogenic effects as seen on CAM, but not dependent on the p38-MAPK pathway. CONCLUSIONS Dietary flaxseed supplementation promotes a pro-apoptotic and anti-angiogenic effect in ovarian tumors, not in normal ovaries. The biologically derived active compounds from flaxseed diet act through different pathways to elicit their respective anti-cancer effects. A flaxseed-supplemented diet is a promising approach for prevention of ovarian cancer as well as having a significant potential as an adjuvant treatment to supplement chemotherapeutic agents for treatment of advanced stages of ovarian cancer.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology, Southern Illinois University, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, IL, 62901, USA
| | - Karen Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Jim Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University, 1125 Lincoln Drive, Life Science II, Room 245B, Carbondale, IL, 62901, USA.
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
32
|
Li D, Finley SD. The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment. Integr Biol (Camb) 2019; 10:253-269. [PMID: 29623971 DOI: 10.1039/c8ib00019k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple promoters and inhibitors mediate angiogenesis, the formation of new blood vessels, and these factors represent potential targets for impeding vessel growth in tumors. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor targeted in anti-angiogenic cancer therapies. In addition, thrombospondin-1 (TSP1) is a major endogenous inhibitor of angiogenesis, and TSP1 mimetics are being developed as an alternative type of anti-angiogenic agent. The combination of bevacizumab, an anti-VEGF agent, and ABT-510, a TSP1 mimetic, has been tested in clinical trials to treat advanced solid tumors. However, the patients' responses are highly variable and show disappointing outcomes. To obtain mechanistic insight into the effects of this combination anti-angiogenic therapy, we have constructed a novel whole-body systems biology model including the VEGF and TSP1 reaction networks. Using this molecular-detailed model, we investigated how the combination anti-angiogenic therapy changes the amounts of pro-angiogenic and anti-angiogenic complexes in cancer patients. We particularly focus on answering the question of how the effect of the combination therapy is influenced by tumor receptor expression, one aspect of patient-to-patient variability. Overall, this model complements the clinical administration of combination anti-angiogenic therapy, highlights the role of tumor receptor variability in the heterogeneous responses to anti-angiogenic therapy, and identifies the tumor receptor profiles that correlate with a high likelihood of a positive response to the combination therapy. Our model provides novel understanding of the VEGF-TSP1 balance in cancer patients at the systems-level and could be further used to optimize combination anti-angiogenic therapy.
Collapse
Affiliation(s)
- Ding Li
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, California 90089, USA.
| | | |
Collapse
|
33
|
Bykov Y, Zamarin D. Virus, Vessel, Victory: A Novel Approach to Tumor Killing. Clin Cancer Res 2019; 25:1446-1448. [PMID: 30530816 DOI: 10.1158/1078-0432.ccr-18-3441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is intimately dependent on aberrant tumor vasculature. A unique therapeutic approach combining a systemic oncolytic virus with a novel vascular-normalizing agent in ovarian cancer demonstrates the potential to enhance antitumor efficacy through improved delivery of the virus and enhanced infiltration of immune cells into the tumors.See related article by Matuszewska et al., p. 1624.
Collapse
Affiliation(s)
- Yonina Bykov
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dmitriy Zamarin
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York.,Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
34
|
van Vloten JP, Santry LA, McAusland TM, Karimi K, McFadden G, Petrik JJ, Wootton SK, Bridle BW. Quantifying Antigen-Specific T Cell Responses When Using Antigen-Agnostic Immunotherapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:154-166. [PMID: 30788384 PMCID: PMC6369252 DOI: 10.1016/j.omtm.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
Immunotherapies are at the forefront of the fight against cancers, and researchers continue to develop and test novel immunotherapeutic modalities. Ideal cancer immunotherapies induce a patient’s immune system to kill their own cancer and develop long-lasting immunity. Research has demonstrated a critical requirement for CD8+ and CD4+ T cells in achieving durable responses. In the path to the clinic, researchers require robust tools to effectively evaluate the capacity for immunotherapies to generate adaptive anti-tumor responses. To study functional tumor-specific T cells, researchers have relied on targeting tumor-associated antigens (TAAs) or the inclusion of surrogate transgenes in pre-clinical models, which facilitate detection of T cells by using the targeted antigen(s) in peptide re-stimulation or tetramer-staining assays. Unfortunately, many pre-clinical models lack a defined TAA, and epitope mapping of TAAs is costly. Surrogate transgenes can alter tumor engraftment and influence the immunogenicity of tumors, making them less relevant to clinical tumors. Further, some researchers prefer to develop therapies that do not rely on pre-defined TAAs. Here, we describe a method to exploit major histocompatibility complex expression on murine cancer cell lines in a co-culture assay to detect T cells responding to bulk, undefined, tumor antigens. This is a tool to support the preclinical evaluation of novel, antigen-agnostic immunotherapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant McFadden
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
35
|
Matuszewska K, Santry LA, van Vloten JP, AuYeung AWK, Major PP, Lawler J, Wootton SK, Bridle BW, Petrik J. Combining Vascular Normalization with an Oncolytic Virus Enhances Immunotherapy in a Preclinical Model of Advanced-Stage Ovarian Cancer. Clin Cancer Res 2018; 25:1624-1638. [PMID: 30206160 DOI: 10.1158/1078-0432.ccr-18-0220] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/03/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Intravenous delivery of oncolytic viruses often leads to tumor vascular shutdown, resulting in decreased tumor perfusion and elevated tumor hypoxia. We hypothesized that using 3TSR to normalize tumor vasculature prior to administration of an oncolytic Newcastle disease virus (NDV) would enhance virus delivery and trafficking of immunologic cell subsets to the tumor core, resulting in systemically enhanced immunotherapy and regression of advanced-stage epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN Using an orthotopic, syngeneic mouse model of advanced-stage EOC, we pretreated mice with 3TSR (4 mg/kg per day) alone or followed by combination with fusogenic NDV(F3aa) (1.0 × 108 plaque-forming units). RESULTS Treatment with 3TSR normalized tumor vasculature, enhanced blood perfusion of primary EOC tumors, and induced disease regression. Animals treated with combination therapy had the greatest reduction in primary tumor mass, ascites accumulation, and secondary lesions (50% of mice were completely devoid of peritoneal metastases). Combining 3TSR + NDV(F3aa) led to enhanced trafficking of immunologic cells into the primary tumor core. CONCLUSIONS We have shown, for the first time, that NDV, like other oncolytic viruses, is a potent mediator of acute vascular shutdown and that preventing this through vascular normalization can promote regression in a preclinical model of advanced-stage ovarian cancer. This challenges the current focus on induction of intravascular thrombosis as a requisite for successful oncolytic virotherapy.See related commentary by Bykov and Zamarin, p. 1446.
Collapse
Affiliation(s)
- Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Amanda W K AuYeung
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Pierre P Major
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
36
|
Targeting CD36 as Biomarker for Metastasis Prognostic: How Far from Translation into Clinical Practice? BIOMED RESEARCH INTERNATIONAL 2018; 2018:7801202. [PMID: 30069479 PMCID: PMC6057354 DOI: 10.1155/2018/7801202] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
Metastasis requires cellular changes related to cell-to-cell and cell-to-matrix adhesion, immune surveillance, activation of growth and survival signalling pathways, and epigenetic modifications. In addition to tumour cells, tumour stroma is also modified in relationship to the primary tumour as well as to distant metastatic sites (forming a metastatic niche). A common denominator of most stromal partners in tumour progression is CD36, a scavenger receptor for fatty acid uptake that modulates cell-to-extracellular matrix attachment, stromal cell fate (for adipocytes, endothelial cells), TGFβ activation, and immune signalling. CD36 has been repeatedly proposed as a prognostic marker in various cancers, mostly of epithelial origin (breast, prostate, ovary, and colon) and also for hepatic carcinoma and gliomas. Data gathered in preclinical models of various cancers have shown that blocking CD36 might prove beneficial in stopping metastasis spread. However, targeting the receptor in clinical trials with thrombospondin mimetic peptides has proven ineffective, and monoclonal antibodies are not yet available for patient use. This review presents data to support CD36 as a potential prognostic biomarker in cancer, its current stage towards achieving bona fide biomarker status, and knowledge gaps that must be filled before further advancement towards clinical practice.
Collapse
|
37
|
Dynes J, Osz K, Hooper A, Petrik J. Low-dose metronomic delivery of cyclophosphamide is less detrimental to granulosa cell viability, ovarian function, and fertility than maximum tolerated dose delivery in the mouse. Biol Reprod 2018; 97:449-465. [PMID: 29024988 DOI: 10.1093/biolre/iox110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/29/2017] [Indexed: 01/01/2023] Open
Abstract
Chemotherapy can cause early menopause or infertility in women and have a profound negative impact on the quality of life of young female cancer survivors. Various factors are known to influence the risk of chemotherapy-induced ovarian failure, including the drug dose and treatment duration; however, the scheduling of dose administration has not yet been evaluated as an independent risk factor. We hypothesized that low-dose metronomic (LDM) chemotherapy scheduling would be less detrimental to ovarian function than the traditional maximum tolerated dose (MTD) strategy. In vitro, MTD cyclophosphamide exposure resulted in decreased proliferation and increased granulosa cell apoptosis, while cells treated with LDM cyclophosphamide were not different from untreated controls. Treatments of MTD cyclophosphamide induced high levels of follicle atresia and enhanced follicle recruitment in mice. In contrast, LDM delivery of an equivalent dose of cyclophosphamide reduced growing follicle numbers, but was not associated with higher levels of follicle atresia or recruitment. MTD cyclophosphamide induced significant vascular disruption and DNA damage in vivo, while LDM chemotherapy with equal cumulative amounts of cyclophosphamide was not different from controls. MTD chemotherapy also had a negative effect on mouse-fertility outcomes. Our findings suggest that LDM scheduling could potentially minimize the long-term effects of cyclophosphamide on female fertility by preventing follicle depletion from enhanced activation.
Collapse
Affiliation(s)
- Jacqueline Dynes
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kata Osz
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Allyssa Hooper
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
38
|
Cymbaluk-Płoska A, Chudecka-Głaz A, Pius-Sadowska E, Machaliński B, Menkiszak J. Thrombospondin-I concentrations behavior in plasma of patients with ovarian cancer. Cancer Biomark 2018; 20:31-39. [PMID: 28655131 DOI: 10.3233/cbm-161546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine whether thrombospondin-1 might be used as a prognostic factor in ovarian cancer patients. METHOD Ninety-six female subjects hospitalized in years 2011-2014 was included in the study. Transvaginal ultrasound examination was performed in all patients. In 39 cases of suspected ovarian cancer, CT scans were also performed. Each patient had been subjected to collection of a 5-mL blood sample before the laparoscopic procedure. Thrombospondin-1 concentrations were quantified in serum by multiplex fluorescent bead-based immunoassays (Luminex) at the Laboratory of the Department of General Pathology. RESULTS Statistical analysis performed using the Kaplan-Meier survival curves and log-rank test revealed no statistically significant correlations between the median, 75th percentile and 95th percentile thrombospondin-1 levels with progression-free survival of patients (p= 0.47). In the univariate OS model, median thrombospondin-1 level was a significant variable. Correlation was demonstrated between baseline thrombospondin-1 levels and overall survival of patients (p= 0.04, HR = 0.99). The higher the baseline TSP1 level, the longer the overall survival of patients. CONCLUSION In our study, we were the first to demonstrate correlation between the levels of thrombospondin-1 and overall survival of patients. Therefore, it appears that thrombospondin-1 may be used as a prognostic factor in ovarian cancer patients.
Collapse
Affiliation(s)
- Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Anita Chudecka-Głaz
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Pius-Sadowska
- General Pathology Department, Pomeranian Medical University, Szczecin, Poland
| | | | - Janusz Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
39
|
Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med 2018; 22:2086-2097. [PMID: 29441713 PMCID: PMC5867078 DOI: 10.1111/jcmm.13565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/07/2018] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin-1 (TSP-1), a matricellular protein and one of the first endogenous anti-angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP-1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP-1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP-1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP-1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP-1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation-related diseases in humans. We compare the secretion rates of TSP-1 by different cancer and non-cancer cells and discuss the potential connection between the expression changes of TSP-1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP-1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non-cancer disorders, are highlighted. The analysis of published TSP-1 data presented in this review may have implications for the future exploration of novel TSP-1-based treatment strategies for cancer and cardiovascular-related diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical CareDepartment of MedicineHeart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Aleksander S. Popel
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
40
|
Gaustad JV, Simonsen TG, Andersen LMK, Rofstad EK. Properdistatin inhibits angiogenesis and improves vascular function in human melanoma xenografts with low thrombospondin-1 expression. Oncotarget 2018; 7:76806-76815. [PMID: 27756886 PMCID: PMC5363551 DOI: 10.18632/oncotarget.12695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, the effect of properdistatin, a novel peptide derived from the thrombospondin 1 (TSP-1) domain of properdin, was investigated in three melanoma xenograft models with different TSP-1 expression. The tumors were grown in dorsal window chambers and were treated with 80 mg/kg/day properdistatin or vehicle. Morphological parameters of the tumor vasculature were assessed from high resolution transillumination images. Blood supply time (i.e., the time required for arterial blood to flow from a supplying artery to downstream microvessels) and plasma velocities were assessed from first-pass imaging movies recorded after a bolus of fluorescence-labeled dextran had been administered intravenously. Gene and protein expression of TSP-1 were assessed with quantitative PCR and immunohistochemistry, respectively. Properdistatin treatment inhibited angiogenesis in low TSP-1 expressing tumors but did not alter the vasculature in high TSP-1 expressing tumors. In low TSP-1 expressing tumors, properdistatin selectively removed small-diameter capillaries, but did not change the morphology of tumor arterioles or tumor venules. Properdistatin also reduced blood supply times and increased plasma velocities, implying that the treatment reduced the geometric resistance to blood flow and improved vascular function.
Collapse
Affiliation(s)
- Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Linnerth-Petrik NM, Santry LA, Moorehead R, Jücker M, Wootton SK, Petrik J. Akt isoform specific effects in ovarian cancer progression. Oncotarget 2018; 7:74820-74833. [PMID: 27533079 PMCID: PMC5342704 DOI: 10.18632/oncotarget.11204] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer.
Collapse
Affiliation(s)
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Manfred Jücker
- Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
42
|
Kazerounian S, Lawler J. Integration of pro- and anti-angiogenic signals by endothelial cells. J Cell Commun Signal 2017; 12:171-179. [PMID: 29264709 DOI: 10.1007/s12079-017-0433-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis or neovascularization is a complex multi-step physiological process that occurs throughout life both in normal tissues and in disease. It is tightly regulated by the balance between pro-angiogenic and anti-angiogenic factors. The angiogenic switch has been identified as the key step during tumor progression in which the balance between pro-angiogenic and anti-angiogenic factors leans toward pro-angiogenic stimuli promoting the progression of tumors from dormancy to dysplasia and ultimately malignancy. This event can be described as either the outcome of a genetic event occurring in cancer cells themselves, or the positive and negative cross-talk between tumor-associated endothelial cells and other cellular components of the tumor microenvironment. In recent years, the mechanisms underlying the angiogenic switch have been extensively investigated in particular to identify therapeutic targets that can lead to development of effective therapies. In this review, we will discuss the current findings on the regulatory pathways in endothelial cells that are involved in the angiogenic switch with an emphasis on the role of anti-angiogenic protein, thrombospondin-1 (TSP-1) and pro-angiogenic factor, vascular endothelial growth factor (VEGF).
Collapse
Affiliation(s)
- Shideh Kazerounian
- The Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jack Lawler
- The Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
43
|
Lopez-Ramirez MA, Fonseca G, Zeineddine HA, Girard R, Moore T, Pham A, Cao Y, Shenkar R, de Kreuk BJ, Lagarrigue F, Lawler J, Glass CK, Awad IA, Ginsberg MH. Thrombospondin1 (TSP1) replacement prevents cerebral cavernous malformations. J Exp Med 2017; 214:3331-3346. [PMID: 28970240 PMCID: PMC5679163 DOI: 10.1084/jem.20171178] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/24/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022] Open
Abstract
KRIT1 mutations are the most common cause of cerebral cavernous malformation (CCM). Acute Krit1 gene inactivation in mouse brain microvascular endothelial cells (BMECs) changes expression of multiple genes involved in vascular development. These changes include suppression of Thbs1, which encodes thrombospondin1 (TSP1) and has been ascribed to KLF2- and KLF4-mediated repression of Thbs1 In vitro reconstitution of TSP1 with either full-length TSP1 or 3TSR, an anti-angiogenic TSP1 fragment, suppresses heightened vascular endothelial growth factor signaling and preserves BMEC tight junctions. Furthermore, administration of 3TSR prevents the development of lesions in a mouse model of CCM1 (Krit1ECKO ) as judged by histology and quantitative micro-computed tomography. Conversely, reduced TSP1 expression contributes to the pathogenesis of CCM, because inactivation of one or two copies of Thbs1 exacerbated CCM formation. Thus, loss of Krit1 function disables an angiogenic checkpoint to enable CCM formation. These results suggest that 3TSR, or other angiogenesis inhibitors, can be repurposed for TSP1 replacement therapy for CCMs.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endothelial Cells/metabolism
- Gene Expression Profiling/methods
- Genetic Therapy/methods
- HEK293 Cells
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/therapy
- Humans
- KRIT1 Protein/genetics
- KRIT1 Protein/metabolism
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA Interference
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
Collapse
Affiliation(s)
| | - Gregory Fonseca
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Angela Pham
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Bart-Jan de Kreuk
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | - Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christopher K Glass
- Department of Medicine, University of California, San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
44
|
Yin M, Zhou HJ, Zhang J, Lin C, Li H, Li X, Li Y, Zhang H, Breckenridge DG, Ji W, Min W. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight 2017; 2:91828. [PMID: 28931753 DOI: 10.1172/jci.insight.91828] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/11/2017] [Indexed: 02/06/2023] Open
Abstract
We have recently reported that tumor-associated macrophages (TAMs) promote early transcoelomic metastasis of ovarian cancer by facilitating TAM-ovarian cancer cell spheroid formation. ASK1 is known to be important for macrophage activation and inflammation-mediated tumorigenesis. In the present study, we show that ASK1 deficiency attenuates TAM-spheroid formation and ovarian cancer progression in an orthotopic ovarian cancer model. Interestingly, ASK1 in stroma, but not in TAMs, is critical for peritoneal tumor growth of ovarian cancer. Moreover, overexpression of an ASK1 inhibitory protein (suppressor of cytokine signaling-1; SOCS1) in vascular endothelium attenuates vascular permeability, TAM infiltration, and ovarian cancer growth. Mechanistically, we show that ASK1 mediates degradation of endothelial junction protein VE-cadherin via a lysosomal pathway to promote macrophage transmigration. Importantly, a pharmacological ASK1 inhibitor prevents tumor-induced vascular leakage, macrophage infiltration, and tumor growth in two mouse models. Since transcoelomic metastasis is also associated with many other cancers, such as pancreatic and colon cancers, our study provides ASK1 as a therapeutic target for the treatment of ovarian cancer and other transcoelomic metastasis cancers.
Collapse
Affiliation(s)
- Mingzhu Yin
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Huanjiao Jenny Zhou
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jiqin Zhang
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Translational Medicine, The First Affiliated Hospital, and
| | - Caixia Lin
- Center for Translational Medicine, The First Affiliated Hospital, and
| | - Hongmei Li
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xia Li
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yonghao Li
- Zhongshan Ophthalmology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haifeng Zhang
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, and
| | - Wang Min
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Center for Translational Medicine, The First Affiliated Hospital, and
| |
Collapse
|
45
|
Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc Natl Acad Sci U S A 2017; 114:2574-2579. [PMID: 28202721 DOI: 10.1073/pnas.1613165114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thrombospondin type 1 repeats (TSRs) occur in diverse proteins involved in adhesion and signaling. The two extracellular TSRs of the netrin receptor UNC5A contain WxxWxxWxxC motifs that can be C-mannosylated on all tryptophans. A single C-mannosyltransferase (dumpy-19, DPY-19), modifying the first two tryptophans, occurs in Caenorhabditis elegans, but four putative enzymes (DPY-19-like 1-4, DPY19L1-4) exist in mammals. Single and triple CRISPR-Cas9 knockouts of the three homologs that are expressed in Chinese hamster ovary cells (DPY19L1, DPY19L3, and DPY19L4) and complementation experiments with mouse homologs showed that DPY19L1 preferentially mannosylates the first two tryptophans and DPY19L3 prefers the third, whereas DPY19L4 has no function in TSR glycosylation. Mannosylation by DPY19L1 but not DPY19L3 is required for transport of UNC5A from the endoplasmic reticulum to the cell surface. In vertebrates, a new C-mannosyltransferase has apparently evolved to increase glycosylation of TSRs, potentially to increase the stability of the structurally essential tryptophan ladder or to provide additional adhesion functions.
Collapse
|
46
|
The Pleiotropic Role of L1CAM in Tumor Vasculature. Int J Mol Sci 2017; 18:ijms18020254. [PMID: 28134764 PMCID: PMC5343790 DOI: 10.3390/ijms18020254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is a key step in the development, invasion, and dissemination of solid tumors and, therefore, represents a viable target in the context of antitumor therapy. Indeed, antiangiogenic approaches have given promising results in preclinical models and entered the clinical practice. However, in patients, the results obtained so far with antiangiogenic drugs have not completely fulfilled expectations, especially because their effect has been transient with tumors developing resistance and evasion mechanisms. A better understanding of the mechanisms that underlie tumor vascularization and the functional regulation of cancer vessels is a prerequisite for the development of novel and alternative antiangiogenic treatments. The L1 cell adhesion molecule (L1CAM), a cell surface glycoprotein previously implicated in the development and plasticity of the nervous system, is aberrantly expressed in the vasculature of various cancer types. L1CAM plays multiple pro-angiogenic roles in the endothelial cells of tumor-associated vessels, thus emerging as a potential therapeutic target. In addition, L1CAM prevents the maturation of cancer vasculature and its inhibition promotes vessel normalization, a process that is thought to improve the therapeutic response of tumors to cytotoxic drugs. We here provide an overview on tumor angiogenesis and antiangiogenic therapies and summarize the current knowledge on the biological role of L1CAM in cancer vasculature. Finally, we highlight the clinical implications of targeting L1CAM as a novel antiangiogenic and vessel-normalizing approach.
Collapse
|
47
|
Wang S, Blois A, El Rayes T, Liu JF, Hirsch MS, Gravdal K, Palakurthi S, Bielenberg DR, Akslen LA, Drapkin R, Mittal V, Watnick RS. Development of a prosaposin-derived therapeutic cyclic peptide that targets ovarian cancer via the tumor microenvironment. Sci Transl Med 2016; 8:329ra34. [PMID: 26962158 DOI: 10.1126/scitranslmed.aad5653] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vast majority of ovarian cancer-related deaths are caused by metastatic dissemination of tumor cells, resulting in subsequent organ failure. However, despite our increased understanding of the physiological processes involved in tumor metastasis, there are no clinically approved drugs that have made a major impact in increasing the overall survival of patients with advanced, metastatic ovarian cancer. We identified prosaposin (psap) as a potent inhibitor of tumor metastasis, which acts via stimulation of p53 and the antitumorigenic protein thrombospondin-1 (TSP-1) in bone marrow-derived cells that are recruited to metastatic sites. We report that more than 97% of human serous ovarian tumors tested express CD36, the receptor that mediates the proapoptotic activity of TSP-1. Accordingly, we sought to determine whether a peptide derived from psap would be effective in treating this form of ovarian cancer. To that end, we developed a cyclic peptide with drug-like properties derived from the active sequence in psap. The cyclic psap peptide promoted tumor regression in a patient-derived tumor xenograft model of metastatic ovarian cancer. Thus, we hypothesize that a therapeutic agent based on this psap peptide would have efficacy in treating patients with metastatic ovarian cancer.
Collapse
Affiliation(s)
- Suming Wang
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Blois
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. Department of Surgery, Harvard Medical School, Boston, MA 02115, USA. Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway
| | - Tina El Rayes
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065, USA. Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA. Neuberger Berman Lung Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joyce F Liu
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michelle S Hirsch
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Karsten Gravdal
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway. Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lars A Akslen
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway. Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Ronny Drapkin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065, USA. Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA. Neuberger Berman Lung Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | - Randolph S Watnick
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA. Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G, Min W. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest 2016; 126:4157-4173. [PMID: 27721235 DOI: 10.1172/jci87252] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) can influence ovarian cancer growth, migration, and metastasis, but the detailed mechanisms underlying ovarian cancer metastasis remain unclear. Here, we have shown a strong correlation between TAM-associated spheroids and the clinical pathology of ovarian cancer. Further, we have determined that TAMs promote spheroid formation and tumor growth at early stages of transcoelomic metastasis in an established mouse model for epithelial ovarian cancer. M2 macrophage-like TAMs were localized in the center of spheroids and secreted EGF, which upregulated αMβ2 integrin on TAMs and ICAM-1 on tumor cells to promote association between tumor cells and TAM. Moreover, EGF secreted by TAMs activated EGFR on tumor cells, which in turn upregulated VEGF/VEGFR signaling in surrounding tumor cells to support tumor cell proliferation and migration. Pharmacological blockade of EGFR or antibody neutralization of ICAM-1 in TAMs blunted spheroid formation and ovarian cancer progression in mouse models. These findings suggest that EGF secreted from TAMs plays a critical role in promoting early transcoelomic metastasis of ovarian cancer. As transcoelomic metastasis is also associated with many other cancers, such as pancreatic and colon cancers, our findings uncover a mechanism for TAM-mediated spheroid formation and provide a potential target for the treatment of ovarian cancer and other transcoelomic metastatic cancers.
Collapse
|
49
|
Schadler KL, Thomas NJ, Galie PA, Bhang DH, Roby KC, Addai P, Till JE, Sturgeon K, Zaslavsky A, Chen CS, Ryeom S. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget 2016; 7:65429-65440. [PMID: 27589843 PMCID: PMC5323166 DOI: 10.18632/oncotarget.11748] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.
Collapse
Affiliation(s)
- Keri L. Schadler
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Nicholas J. Thomas
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Peter A. Galie
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dong Ha Bhang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Kerry C. Roby
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Prince Addai
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Jacob E. Till
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Kathleen Sturgeon
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | - Alexander Zaslavsky
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | | - Sandra Ryeom
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Puzzling and ambivalent roles of malarial infections in cancer development and progression. Parasitology 2016; 143:1811-1823. [DOI: 10.1017/s0031182016001591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYScientific evidence strongly suggests that parasites are directly or indirectly associated with carcinogenesis in humans. However, studies have also indicated that parasites or their products might confer resistance to tumour growth.Plasmodiumprotozoa, the causative agents of malaria, exemplify the ambivalent link between parasites and cancer. Positive relationships between malaria and virus-associated cancers are relatively well-documented; for example, malaria can reactivate the Epstein-Barr Virus, which is the known cause of endemic Burkitt lymphoma. Nevertheless, possible anti-tumour properties of malaria have also been reported and, interestingly, this disease has long been thought to be beneficial to patients suffering from cancers. Current knowledge of the potential pro- and anti-cancer roles of malaria suggests that, contrary to other eukaryotic parasites affecting humans,Plasmodium-related cancers are principally lymphoproliferative disorders and attributable to virus reactivation, whereas, similar to other eukaryotic parasites, the anti-tumour effects of malaria are primarily associated with carcinomas and certain sarcomas. Moreover, malarial infection significantly suppresses murine cancer growth by inducing both innate and specific adaptive anti-tumour responses. This review aims to present an update regarding the ambivalent association between malaria and cancer, and further studies may open future pathways to develop novel strategies for anti-cancer therapies.
Collapse
|