1
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
2
|
Alex L, Tuleta I, Hernandez SC, Hanna A, Venugopal H, Astorkia M, Humeres C, Kubota A, Su K, Zheng D, Frangogiannis NG. Cardiac Pericytes Acquire a Fibrogenic Phenotype and Contribute to Vascular Maturation After Myocardial Infarction. Circulation 2023; 148:882-898. [PMID: 37350296 PMCID: PMC10527624 DOI: 10.1161/circulationaha.123.064155] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Pericytes have been implicated in tissue repair, remodeling, and fibrosis. Although the mammalian heart contains abundant pericytes, their fate and involvement in myocardial disease remains unknown. METHODS We used NG2Dsred;PDGFRαEGFP pericyte:fibroblast dual reporter mice and inducible NG2CreER mice to study the fate and phenotypic modulation of pericytes in myocardial infarction. The transcriptomic profile of pericyte-derived cells was studied using polymerase chain reaction arrays and single-cell RNA sequencing. The role of transforming growth factor-β (TGF-β) signaling in regulation of pericyte phenotype was investigated in vivo using pericyte-specific TGF-β receptor 2 knockout mice and in vitro using cultured human placental pericytes. RESULTS In normal hearts, neuron/glial antigen 2 (NG2) and platelet-derived growth factor receptor α (PDGFRα) identified distinct nonoverlapping populations of pericytes and fibroblasts, respectively. After infarction, a population of cells expressing both pericyte and fibroblast markers emerged. Lineage tracing demonstrated that in the infarcted region, a subpopulation of pericytes exhibited transient expression of fibroblast markers. Pericyte-derived cells accounted for ~4% of PDGFRα+ infarct fibroblasts during the proliferative phase of repair. Pericyte-derived fibroblasts were overactive, expressing higher levels of extracellular matrix genes, integrins, matricellular proteins, and growth factors, when compared with fibroblasts from other cellular sources. Another subset of pericytes contributed to infarct angiogenesis by forming a mural cell coat, stabilizing infarct neovessels. Single-cell RNA sequencing showed that NG2 lineage cells diversify after infarction and exhibit increased expression of matrix genes, and a cluster with high expression of fibroblast identity markers emerges. Trajectory analysis suggested that diversification of infarct pericytes may be driven by proliferating cells. In vitro and in vivo studies identified TGF-β as a potentially causative mediator in fibrogenic activation of infarct pericytes. However, pericyte-specific TGF-β receptor 2 disruption had no significant effects on infarct myofibroblast infiltration and collagen deposition. Pericyte-specific TGF-β signaling was involved in vascular maturation, mediating formation of a mural cell coat investing infarct neovessels and protecting from dilative remodeling. CONCLUSIONS In the healing infarct, cardiac pericytes upregulate expression of fibrosis-associated genes, exhibiting matrix-synthetic and matrix-remodeling profiles. A fraction of infarct pericytes exhibits expression of fibroblast identity markers. Pericyte-specific TGF-β signaling plays a central role in maturation of the infarct vasculature and protects from adverse dilative remodeling, but it does not modulate fibrotic remodeling.
Collapse
Affiliation(s)
- Linda Alex
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Maider Astorkia
- Department of Genetics, Albert Einstein College of Medicine, Bronx NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, USA
| |
Collapse
|
3
|
Senescent cardiac fibroblasts: A key role in cardiac fibrosis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166642. [PMID: 36669578 DOI: 10.1016/j.bbadis.2023.166642] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cardiac fibroblasts are a cell population that controls the homeostasis of the extracellular matrix and orchestrates a damage response to maintain cardiac architecture and performance. Due to these functions, fibroblasts play a central role in cardiac fibrosis development, and there are large differences in matrix protein secretion profiles between fibroblasts from aged versus young animals. Senescence is a multifactorial and complex process that has been associated with inflammatory and fibrotic responses. After damage, transient cellular senescence is usually beneficial, as these cells promote tissue repair. However, the persistent presence of senescent cells within a tissue is linked with fibrosis development and organ dysfunction, leading to aging-related diseases such as cardiovascular pathologies. In the heart, early cardiac fibroblast senescence after myocardial infarction seems to be protective to avoid excessive fibrosis; however, in non-infarcted models of cardiac fibrosis, cardiac fibroblast senescence has been shown to be deleterious. Today, two new classes of drugs, termed senolytics and senostatics, which eliminate senescent cells or modify senescence-associated secretory phenotype, respectively, arise as novel therapeutical strategies to treat aging-related pathologies. However, further studies will be needed to evaluate the extent of the utility of senotherapeutic drugs in cardiac diseases, in which pathological context and temporality of the intervention must be considered.
Collapse
|
4
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Domene A, Orozco H, Rodríguez-Viso P, Monedero V, Zúñiga M, Vélez D, Devesa V. Intestinal homeostasis disruption in mice chronically exposed to arsenite-contaminated drinking water. Chem Biol Interact 2023; 373:110404. [PMID: 36791901 DOI: 10.1016/j.cbi.2023.110404] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/14/2023]
Abstract
Chronic exposure to inorganic arsenic [As(III) and As(V)] affects about 200 million people, and is linked to a greater incidence of certain types of cancer. Drinking water is the main route of exposure, so, in endemic areas, the intestinal mucosa is constantly exposed to the metalloid. However, studies on the intestinal toxicity of inorganic As are scarce. The objective of this study was to evaluate the toxicity of a chronic exposure to As(III) on the intestinal mucosa and its associated microbiota. For this purpose, BALB/c mice were exposed during 6 months through drinking water to As(III) (15 and 30 mg/L). Treatment with As(III) increased reactive oxygen species (43-64%) and lipid peroxidation (8-51%). A pro-inflammatory response was also observed, evidenced by an increase in fecal lactoferrin (23-29%) and mucosal neutrophil infiltration. As(III) also induced an increase in the colonic levels of pro-inflammatory cytokines (24-201%) and the activation of some pro-inflammatory signaling pathways. Reductions in the number of goblet cells and mucus production were also observed. Moreover, As(III) exposure resulted in changes in gut microbial alpha diversity but no differences in beta diversity. This suggested that the abundance of some taxa was significantly affected by As(III), although the composition of the population did not show significant alterations. Analysis of differential taxa agreed with this, 21 ASVs were affected in abundance or variability, especially ASVs from the family Muribaculaceae. Intestinal microbiota metabolism was also affected, as reductions in fecal concentration of short-chain fatty acids were observed. The effects observed on different components of the intestinal barrier may be responsible of the increased permeability in As(III) treated mice, evidenced by an increase in fecal albumin (48-66%). Moreover, serum levels of Lipopolysaccharide binding proteins and TNF-α were increased in animals treated with 30 mg/L of As(III), suggesting a low-level systemic inflammation.
Collapse
Affiliation(s)
- A Domene
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - H Orozco
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - P Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Monedero
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - M Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - D Vélez
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Devesa
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain.
| |
Collapse
|
6
|
Yuan J, Peng H, Mo B, Yin C, Fang G, Li Y, Wang Y, Chen R, Wang Q. Inhibition of Wdr5 Attenuates Ang-II-Induced Fibroblast-to-Myofibroblast Transition in Cardiac Fibrosis by Regulating Mdm2/P53/P21 Pathway. Biomolecules 2022; 12:1574. [PMID: 36358925 PMCID: PMC9687631 DOI: 10.3390/biom12111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Cardiac fibrosis is an important pathological process in many diseases. Wdr5 catalyzes the trimethylation of lysine K4 on histone H3. The effects of Wdr5 on the cardiac fibrosis phenotype and the activation or transformation of cardiac fibroblasts were investigated by Ang-II-infused mice by osmotic mini-pump and isolated primary neonatal rat cardiac fibroblasts. We found that the Wdr5 expression and histone H3K4me3 modification were significantly increased in Ang-II-infused mice. By stimulating primary neonatal rat cardiac fibroblasts with Ang II, we detected that the expression of Wdr5 and H3K4me3 modification were also significantly increased. Two Wdr5-specific inhibitors, and the lentivirus that transfected Sh-Wdr5, were used to treat primary mouse cardiac fibroblasts, which not only inhibited the histone methylation by Wdr5 but also significantly reduced the activation and migration ability of Ang-II-treated fibroblasts. To explore its mechanism, we found that the inhibition of Wdr5 increased the expression of P53, P21. Cut&Tag-qPCR showed that the inhibition of Wdr5 significantly reduced the enrichment of H3K4me3 in the Mdm2 promoter region. For in vivo experiments, we finally proved that the Wdr5 inhibitor OICR9429 significantly reduced Ang-II-induced cardiac fibrosis and increased the expression of P21 in cardiac fibroblasts. Inhibition of Wdr5 may mediate cardiac fibroblast cycle arrest through the Mdm2/P53/P21 pathway and alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Hong Peng
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Binfeng Mo
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Chengye Yin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Guojian Fang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| | - Renhua Chen
- Department of Cardiology, Quanzhou Hospital of Traditional Chinese Medicine, #388 SunJiang Road, Quanzhou 362000, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, #1665 Kongjiang Road, Shanghai 200082, China
| |
Collapse
|
7
|
Abstract
Transforming growth factor-β (TGFβ) isoforms are upregulated and activated in myocardial diseases and have an important role in cardiac repair and remodelling, regulating the phenotype and function of cardiomyocytes, fibroblasts, immune cells and vascular cells. Cardiac injury triggers the generation of bioactive TGFβ from latent stores, through mechanisms involving proteases, integrins and specialized extracellular matrix (ECM) proteins. Activated TGFβ signals through the SMAD intracellular effectors or through non-SMAD cascades. In the infarcted heart, the anti-inflammatory and fibroblast-activating actions of TGFβ have an important role in repair; however, excessive or prolonged TGFβ signalling accentuates adverse remodelling, contributing to cardiac dysfunction. Cardiac pressure overload also activates TGFβ cascades, which initially can have a protective role, promoting an ECM-preserving phenotype in fibroblasts and preventing the generation of injurious, pro-inflammatory ECM fragments. However, prolonged and overactive TGFβ signalling in pressure-overloaded cardiomyocytes and fibroblasts can promote cardiac fibrosis and dysfunction. In the atria, TGFβ-mediated fibrosis can contribute to the pathogenic substrate for atrial fibrillation. Overactive or dysregulated TGFβ responses have also been implicated in cardiac ageing and in the pathogenesis of diabetic, genetic and inflammatory cardiomyopathies. This Review summarizes the current evidence on the role of TGFβ signalling in myocardial diseases, focusing on cellular targets and molecular mechanisms, and discussing challenges and opportunities for therapeutic translation.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
8
|
Tuleta I, Frangogiannis NG. Fibrosis of the diabetic heart: Clinical significance, molecular mechanisms, and therapeutic opportunities. Adv Drug Deliv Rev 2021; 176:113904. [PMID: 34331987 PMCID: PMC8444077 DOI: 10.1016/j.addr.2021.113904] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/02/2023]
Abstract
In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.
Collapse
Affiliation(s)
- Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA.
| |
Collapse
|
9
|
Ozkan E, Bakar-Ates F. The Trinity of Matrix Metalloproteinases, Inflammation, and Cancer: A Literature Review of Recent Updates. Antiinflamm Antiallergy Agents Med Chem 2021; 19:206-221. [PMID: 32178620 PMCID: PMC7499348 DOI: 10.2174/1871523018666191023141807] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
The critical link between cancer and inflammation has been known for many years. This complex network was further complexed by revealing the association of the matrix metalloproteinase family members with inflammatory cytokines, which were previously known to be responsible for the development of metastasis. This article summarizes the current studies which evaluate the relationship between cancer and inflammatory microenvironment as well as the roles of MMPs on invasion and metastasis together.
Collapse
Affiliation(s)
- Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
Trial J, Diaz Lankenau R, Angelini A, Tovar Perez JE, Taffet GE, Entman ML, Cieslik KA. Treatment with a DC-SIGN ligand reduces macrophage polarization and diastolic dysfunction in the aging female but not male mouse hearts. GeroScience 2021; 43:881-899. [PMID: 32851570 PMCID: PMC8110645 DOI: 10.1007/s11357-020-00255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiac diastolic dysfunction in aging arises from increased ventricular stiffness caused by inflammation and interstitial fibrosis. The diastolic dysfunction contributes to heart failure with preserved ejection fraction (HFpEF), which in the aging population is more common in women. This report examines its progression over 12 weeks in aging C57BL/6J mice and correlates its development with changes in macrophage polarization and collagen deposition.Aged C57BL/6J mice were injected with dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) ligand 1 (DCSL1, an anti-inflammatory agent) or saline for 12 weeks. Echo and Doppler measurements were performed before and after 4 and 12 weeks of treatment. DCSL1 prevented the worsening of diastolic dysfunction over time in females but not in males. Cardiac single cell suspensions analyzed by flow cytometry revealed changes in the inflammatory infiltrate: (1) in males, there was an increased total number of leukocytes with an increased pro-inflammatory profile compared with females and they did not respond to DCSL1; (2) by contrast, DCSL1 treatment resulted in a shift in macrophage polarization to an anti-inflammatory phenotype in females. Notably, DCSL1 preferentially targeted tumor necrosis factor-α (TNFα+) pro-inflammatory macrophages. The reduction in pro-inflammatory macrophage polarization was accompanied by a decrease in collagen content in the heart.Age-associated diastolic dysfunction in mice is more severe in females and is associated with unique changes in macrophage polarization in cardiac tissue. Treatment with DCSL1 mitigates the changes in inflammation, cardiac function, and fibrosis. The characteristics of diastolic dysfunction in aging female mice mimic similar changes in aging women.
Collapse
Affiliation(s)
- JoAnn Trial
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Rodrigo Diaz Lankenau
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Aude Angelini
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
| | - Jorge E Tovar Perez
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- Texas A&M University, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA
| | - George E Taffet
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- The DeBakey Heart Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Mark L Entman
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA
- The DeBakey Heart Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Katarzyna A Cieslik
- Department of Medicine, Cardiovascular Research, Baylor College of Medicine, One Baylor Plaza, MS: BCM 620, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Zhu X, Zhang C, Shi M, Li H, Jiang X, Wang L. IL-6/STAT3-mediated autophagy participates in the development of age-related glomerulosclerosis. J Biochem Mol Toxicol 2021; 35:e22698. [PMID: 33393185 DOI: 10.1002/jbt.22698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
The standard of age-related glomerulosclerosis is unclear. Both signal transducer and activator of transcription 3 (STAT3) and autophagy are involved in age-related kidney disease. Therefore, we aimed to explore the standard, as well as the potential mechanism(s). A total of 44 patients who underwent radical nephrectomy were enrolled. Pearson analysis was performed to investigate the parameters with ages. The patients were divided into the young- and aged-kidney groups. Kidney morphological changes were evaluated by histology staining, senescence was evaluated by senescence-associated-β-galactosidase (SA-β-gal) staining, and autophagosome was measured by transmission electron microscopy. Moreover, Western blot and/or immunohistochemistry were accomplished to assess the expression of p16, STAT3, and glycoprotein130 (GP130) and autophagy-related proteins. Furthermore, human glomerular mesangial cells were administrated with tocilizumab (TCZ) and/or IL-6, and then the above indexes were tested again. Sclerotic glomerular density and glomerular sclerosis rate were significantly higher in individuals more than 40 years old, and they were strongly correlated with ages. Moreover, the expression of p16, STAT3, GP130, and p62 was significantly increased, while LC3II and autophagosome were statistically decreased in the aged-kidney. Glomeruli were hardly to stain with SA-β-gal. For the in vitro experiments, we observed that IL-6 significantly increased p16, STAT3, GP130, and p62, induced higher SA-β-gal staining, while downregulated LC3II and autophagosome. Furthermore, TCZ statistically reversed the effects of IL-6 on the above expression of proteins. Glomerular sclerosis rate might be one standard for natural renal aging, and IL-6/STAT3-mediated autophagy may participate in the development of age-related glomerulosclerosis.
Collapse
Affiliation(s)
- Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Congxiao Zhang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China.,Blood Purification Center, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Mai Shi
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Huimin Li
- Department of Nephrology, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Lining Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Res Rev 2020; 63:101150. [PMID: 32846223 DOI: 10.1016/j.arr.2020.101150] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
The myofibroblast is a specialized fibroblast that expresses α-smooth muscle actin (α-SMA) and participates in wound contraction and fibrosis. The fibroblast to myofibroblast transition depends on chemical and mechanical signals. A fibroblast senses the changes in the environment (extracellular matrix (ECM)) and transduces these changes to the cytoskeleton and the nucleus, resulting in activation or inhibition of α-SMA transcription in a process called mechanosensing. A stiff matrix greatly facilitates the transition from fibroblast to myofibroblast, and although the aging heart is much stiffer than the young one, the aging fibroblast has difficulties in transitioning into the contractile phenotype. This suggests that the events occurring downstream of the matrix, such as activation or changes in expression levels of various proteins participating in mechanotransduction can negatively alter the ability of the aging fibroblast to become a myofibroblast. In this review, we will discuss in detail the changes in ECM, receptors (integrin or non-integrin), focal adhesions, cytoskeleton, and transcription factors involved in mechanosensing that occur with aging.
Collapse
|
13
|
Sattayaprasert P, Vasireddi SK, Bektik E, Jeon O, Hajjiri M, Mackall JA, Moravec CS, Alsberg E, Fu J, Laurita KR. Human Cardiac Mesenchymal Stem Cells Remodel in Disease and Can Regulate Arrhythmia Substrates. Circ Arrhythm Electrophysiol 2020; 13:e008740. [PMID: 32755466 PMCID: PMC7578059 DOI: 10.1161/circep.120.008740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1β (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1β or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.
Collapse
Affiliation(s)
- Prasongchai Sattayaprasert
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Sunil K Vasireddi
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Emre Bektik
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA (E.B.)
| | - Oju Jeon
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago
| | - Mohammad Hajjiri
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| | - Judith A Mackall
- Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center (J.A.M.)
| | - Christine S Moravec
- Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland (C.S.M.)
| | - Eben Alsberg
- Departments of Biomedical Engineering (O.J., E.A.), University of Illinois at Chicago.,Orthopaedics (E.A.), University of Illinois at Chicago.,Pharmacology (E.A.), University of Illinois at Chicago.,Mechanical & Industrial Engineering (E.A.), University of Illinois at Chicago
| | - Jidong Fu
- Department of Physiology & Cell Biology, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus (J.F.)
| | - Kenneth R Laurita
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH (P.S., S.K.V., M.H., K.R.L.)
| |
Collapse
|
14
|
Scott RA, Robinson KG, Kiick KL, Akins RE. Human Adventitial Fibroblast Phenotype Depends on the Progression of Changes in Substrate Stiffness. Adv Healthc Mater 2020; 9:e1901593. [PMID: 32105417 PMCID: PMC7274877 DOI: 10.1002/adhm.201901593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Indexed: 12/24/2022]
Abstract
Adventitial fibroblasts (AFs) are major contributors to vascular remodeling and maladaptive cascades associated with arterial disease, where AFs both contribute to and respond to alterations in their surrounding matrix. The relationships between matrix modulus and human aortic AF (AoAF) function are investigated using poly(ethylene glycol)-based hydrogels designed with matrix metalloproteinase (MMP)-sensitive and integrin-binding peptides. Initial equilibrium shear storage moduli for the substrates examined are 0.33, 1.42, and 2.90 kPa; after 42 days of culture, all hydrogels exhibit similar storage moduli (0.3-0.7 kPa) regardless of initial modulus, with encapsulated AoAFs spreading and proliferating. In 10 and 7.5 wt% hydrogels, modulus decreases monotonically throughout culture; however, in 5 wt% hydrogels, modulus increases after an initial 7 days of culture, accompanied by an increase in myofibroblast transdifferentiation and expression of collagen I and III through day 28. Thereafter, significant reductions in both collagens occur, with increased MMP-9 and decreased tissue inhibitor of metalloproteinase-1/-2 production. Releasing cytoskeletal tension or inhibiting cellular protein secretion in 5 wt% hydrogels block the stiffening of the polymer matrix. Results indicate that encapsulated AoAFs initiate cell-mediated matrix remodeling and demonstrate the utility of dynamic 3D systems to elucidate the complex interactions between cell behavior and substrate properties.
Collapse
Affiliation(s)
- Rebecca A. Scott
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Karyn G. Robinson
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Robert E. Akins
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont, Hall, Newark, Delaware 19716, United States
- Nemours - Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, Delaware 19803, United States
| |
Collapse
|
15
|
Niu XH, Xie YP, Yang S, Chen Y, Xu L, Zhang Y, Liu Y. IL-18/IL-18R1 promotes circulating fibrocyte differentiation in the aging population. Inflamm Res 2020; 69:497-507. [PMID: 32193584 DOI: 10.1007/s00011-020-01330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/18/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Fibrosis in multiple organs increases with age. Circulating fibrocytes are bone-marrow-derived mesenchymal progenitors that contribute to heart, lung, and kidney fibrosis under the diseased conditions. Whether circulating fibrocytes contribute to aging-related fibrosis is very limited. METHODS AND RESULTS We measured the proportion and differentiation of circulating fibrocytes (CD45+/CD34+/collagen I+) from elders (n = 12) and adults (n = 12) using flow cytometry. Differentiated fibrocytes in the culture dishes were isolated and microarray was performed. The percentage of circulating fibrocytes in elders (1.95 ± 0.43%) was comparable to that in the adults (1.71 ± 0.38%). Cultured fibrocytes displayed enhanced potential of differentiation in the elder group (67.91 ± 5.88%) vs the adult group (44.03 ± 7.98%). In addition, expression of fibroblast activation markers and cell migratory ability were also increased in differentiated fibrocytes from elders. Microarray analysis revealed that differentiated fibrocytes from elders expressed high level of interleukin-18 (IL-18) receptor 1 (IL-18R1). Furthermore, we found IL-18 was elevated in the plasma of elders and IL-18/IL-18R1 was shown to promote fibrocyte differentiation. CONCLUSION Circulating fibrocytes from elders had an enhanced capacity to differentiate into myofibroblasts, and might contribute to age-dependent fibrosis. Age-dependent increment of differentiation at least in part arose from their enhanced expression of IL-18R1. Inhibiting fibrocyte differentiation might be useful as an adjuvant treatment to delay the fibrosis process in aging population.
Collapse
Affiliation(s)
- Xiao-Hui Niu
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, No 222, Zhongshan Rd, Dalian, China.,Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing, China.,Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, No 222, Zhongshan Rd, Dalian, China
| | - Yun-Peng Xie
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, No 222, Zhongshan Rd, Dalian, China
| | - Song Yang
- Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing, China
| | - Yanchun Chen
- Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing, China
| | - Liang Xu
- Yixing People's Hospital, The Affiliated Hospital of Jiangsu University, Yixing, China
| | - Ying Zhang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, No 222, Zhongshan Rd, Dalian, China.
| | - Yang Liu
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, No 222, Zhongshan Rd, Dalian, China.
| |
Collapse
|
16
|
Liu J, Zhang L, Liu M. Mechanisms supporting potential use of bone marrow-derived mesenchymal stem cells in psychocardiology. Am J Transl Res 2019; 11:6717-6738. [PMID: 31814884 PMCID: PMC6895510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Despite great efforts made in recent years, globally cardiovascular disease (CVD) remains the most common and devastating disease. Pharmacological, interventional and surgical treatments have proved to be only partly satisfactory for the majority of patients. A major underlying cause of poor prognosis is a high comorbidity rate between CVD and mental illness, which calls for the approaches of psychocardiology. As psychiatric disorders and CVD can influence each other bidirectionally, it is necessary to develop novel therapies targeting both systems simultaneously. Therefore, innovative stem cell (SC) therapy has become the most promising treatment strategy in psychocardiology. Bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs), among all different types of SCs, have drawn the most attention due to unique advantages in terms of ethical considerations, low immunogenicity and simplicity of preparation. In this review, we survey recent publications and clinical trials to summarize the knowledge and progress gained so far. Moreover, we discuss the feasibility of the clinical application of BM-MSCs in the area of psychocardiology.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University Beijing 100029, China
| | - Lijun Zhang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University Beijing 100029, China
| | - Meiyan Liu
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University Beijing 100029, China
| |
Collapse
|
17
|
Cieslik KA, Sekhar RV, Granillo A, Reddy A, Medrano G, Heredia CP, Entman ML, Hamilton DJ, Li S, Reineke E, Gupte AA, Zhang A, Taffet GE. Improved Cardiovascular Function in Old Mice After N-Acetyl Cysteine and Glycine Supplemented Diet: Inflammation and Mitochondrial Factors. J Gerontol A Biol Sci Med Sci 2019. [PMID: 29538624 DOI: 10.1093/gerona/gly034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabolic, inflammatory, and functional changes occur in cardiovascular aging which may stem from oxidative stress and be remediable with antioxidants. Glutathione, an intracellular antioxidant, declines with aging, and supplementation with glutathione precursors, N-acetyl cysteine (NAC) and glycine (Gly), increases tissue glutathione. Thirty-month old mice were fed diets supplemented with NAC or NAC+Gly and, after 7 weeks, cardiac function and molecular studies were performed. The NAC+Gly supplementation improved diastolic function, increasing peak early filling velocity, and reducing relaxation time, left atrial volume, and left ventricle end diastolic pressure. By contrast, cardiac function did not improve with NAC alone. Both diet supplementations decreased cardiac levels of inflammatory mediators; only NAC+Gly reduced leukocyte infiltration. Several mitochondrial genes reduced with aging were upregulated in hearts by NAC+Gly diet supplementation. These Krebs cycle and oxidative phosphorylation enzymes, suggesting improved mitochondrial function, and permeabilized cardiac fibers from NAC+Gly-fed mice produced ATP from carbohydrate and fatty acid sources, whereas fibers from control old mice were less able to utilize fatty acids. Our data indicate that NAC+Gly supplementation can improve diastolic function in the old mouse and may have potential to prevent important morbidities for older people.
Collapse
Affiliation(s)
- Katarzyna A Cieslik
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rajagopal V Sekhar
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas
| | - Alejandro Granillo
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anilkumar Reddy
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Indus Instruments, Webster, Texas
| | - Guillermo Medrano
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Celia Pena Heredia
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mark L Entman
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Dale J Hamilton
- Department of Medicine, Houston Methodist, Texas.,Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Erin Reineke
- Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Anisha A Gupte
- Department of Medicine, Houston Methodist, Texas.,Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - Aijun Zhang
- Department of Medicine, Houston Methodist, Texas.,Center for Bioenergetics, Houston Methodist Hospital Research Institute, Texas
| | - George E Taffet
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Medicine, Houston Methodist, Texas.,Section of Geriatrics, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
18
|
Chinnakkannu P, Reese C, Gaspar JA, Panneerselvam S, Pleasant-Jenkins D, Mukherjee R, Baicu C, Tourkina E, Hoffman S, Kuppuswamy D. Suppression of angiotensin II-induced pathological changes in heart and kidney by the caveolin-1 scaffolding domain peptide. PLoS One 2018; 13:e0207844. [PMID: 30576317 PMCID: PMC6303044 DOI: 10.1371/journal.pone.0207844] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Dysregulation of the renin-angiotensin system leads to systemic hypertension and maladaptive fibrosis in various organs. We showed recently that myocardial fibrosis and the loss of cardiac function in mice with transverse aortic constriction (TAC) could be averted by treatment with the caveolin-1 scaffolding domain (CSD) peptide. Here, we used angiotensin II (AngII) infusion (2.1 mg/kg/day for 2 wk) in mice as a second model to confirm and extend our observations on the beneficial effects of CSD on heart and kidney disease. AngII caused cardiac hypertrophy (increased heart weight to body weight ratio (HW/BW) and cardiomyocyte cross-sectional area); fibrosis in heart and kidney (increased levels of collagen I and heat shock protein-47 (HSP47)); and vascular leakage (increased levels of IgG in heart and kidney). Echocardiograms of AngII-infused mice showed increased left ventricular posterior wall thickness (pWTh) and isovolumic relaxation time (IVRT), and decreased ejection fraction (EF), stroke volume (SV), and cardiac output (CO). CSD treatment (i.p. injections, 50 μg/mouse/day) of AngII-infused mice significantly suppressed all of these pathological changes in fibrosis, hypertrophy, vascular leakage, and ventricular function. AngII infusion increased β1 and β3 integrin levels and activated Pyk2 in both heart and kidney. These changes were also suppressed by CSD. Finally, bone marrow cell (BMC) isolated from AngII-infused mice showed hyper-migration toward SDF1. When AngII-infused mice were treated with CSD, BMC migration was reduced to the basal level observed in cells from control mice. Importantly, CSD did not affect the AngII-induced increase in blood pressure (BP), indicating that the beneficial effects of CSD were not mediated via normalization of BP. These results strongly indicate that CSD suppresses AngII-induced pathological changes in mice, suggesting that CSD can be developed as a treatment for patients with hypertension and pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Panneerselvam Chinnakkannu
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Charles Reese
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | - Saraswathi Panneerselvam
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dorea Pleasant-Jenkins
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Catalin Baicu
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Elena Tourkina
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Stanley Hoffman
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
19
|
Tsai TH, Lin CJ, Chua S, Chung SY, Chen SM, Lee CH, Hang CL. Deletion of RasGRF1 Attenuated Interstitial Fibrosis in Streptozotocin-Induced Diabetic Cardiomyopathy in Mice through Affecting Inflammation and Oxidative Stress. Int J Mol Sci 2018; 19:ijms19103094. [PMID: 30308936 PMCID: PMC6213028 DOI: 10.3390/ijms19103094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is characterized by cardiac fibrosis and stiffness, which often develops into heart failure. This study investigated the role of Ras protein-specific guanine nucleotide releasing factor 1 (RasGRF1) in the development of DCM. Methods: Forty-eight mice were divided into four groups (n = 12 per group): Group 1: Wild-type (WT) mice, Group 2: RasGRF1 deficiency (RasGRF1−/−) mice. Group 3: Streptozotocin (STZ)-induced diabetic WT mice, Group 4: STZ-induced diabetic RasGRF1−/− mice. Myocardial functions were assessed by cardiac echography. Heart tissues from all of the mice were investigated for cardiac fibrosis, inflammation, and oxidative stress markers. Results: Worse impaired diastolic function with elevation serum interleukin (IL)-6 was found in the diabetic group compared with the non-diabetic groups. Serum IL-6 levels were found to be elevated in the diabetic compared with the non-diabetic groups. However, the diabetic RasGRF1−/− mice exhibited lower serum IL-6 levels and better diastolic function than the diabetic WT mice. The diabetic RasGRF1−/− mice were associated with reduced cardiac inflammation, which was shown by lower invading inflammation cells, lower expression of matrix metalloproteinase 9, and less chemokines compared to the diabetic WT mice. Furthermore, less oxidative stress as well as extracellular matrix deposition leading to a reduction in cardiac fibrosis was also found in the diabetic RasGRF1−/− mice compared with the diabetic WT mice. Conclusion: The deletion of RasGRF1 attenuated myocardial fibrosis and improved cardiac function in diabetic mice through inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Tzu-Hsien Tsai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
| | - Cheng-Jei Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Sarah Chua
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Shyh-Ming Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chien-Ho Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chi-Ling Hang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
20
|
Trial J, Cieslik KA. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am J Physiol Heart Circ Physiol 2018; 315:H745-H755. [PMID: 29906228 DOI: 10.1152/ajpheart.00237.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cardiac fibroblast plays a central role in tissue homeostasis and in repair after injury. With aging, dysregulated cardiac fibroblasts have a reduced capacity to activate a canonical transforming growth factor-β-Smad pathway and differentiate poorly into contractile myofibroblasts. That results in the formation of an insufficient scar after myocardial infarction. In contrast, in the uninjured aged heart, fibroblasts are activated and acquire a profibrotic phenotype that leads to interstitial fibrosis, ventricular stiffness, and diastolic dysfunction, all conditions that may lead to heart failure. There is an apparent paradox in aging, wherein reparative fibrosis is impaired but interstitial, adverse fibrosis is augmented. This could be explained by analyzing the effectiveness of signaling pathways in resident fibroblasts from young versus aged hearts. Whereas defective signaling by transforming growth factor-β leads to insufficient scar formation by myofibroblasts, enhanced activation of the ERK1/2 pathway may be responsible for interstitial fibrosis mediated by activated fibroblasts. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/fibroblast-phenotypic-changes-in-the-aging-heart/ .
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
21
|
El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys BD, Bellusci S. Mesenchymal Stem Cells in Fibrotic Disease. Cell Stem Cell 2018; 21:166-177. [PMID: 28777943 DOI: 10.1016/j.stem.2017.07.011] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrosis is associated with organ failure and high mortality and is commonly characterized by aberrant myofibroblast accumulation. Investigating the cellular origin of myofibroblasts in various diseases is thus a promising strategy for developing targeted anti-fibrotic treatments. Recent studies using genetic lineage tracing technology have implicated diverse organ-resident perivascular mesenchymal stem cell (MSC)-like cells and bone marrow-MSCs in myofibroblast generation during fibrosis development. In this Review, we give an overview of the emerging role of MSCs and MSC-like cells in myofibroblast-mediated fibrotic disease in the kidney, lung, heart, liver, skin, and bone marrow.
Collapse
Affiliation(s)
- Elie El Agha
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China; Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Medical Faculty RWTH Aachen University, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany; Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, USA
| | - Saverio Bellusci
- Institute of Life Sciences, Wenzhou University, Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedicine, Wenzhou, Zhejiang, China; Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
22
|
Soldati L, Di Renzo L, Jirillo E, Ascierto PA, Marincola FM, De Lorenzo A. The influence of diet on anti-cancer immune responsiveness. J Transl Med 2018; 16:75. [PMID: 29558948 PMCID: PMC5859494 DOI: 10.1186/s12967-018-1448-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has matured into standard treatment for several cancers, but much remains to be done to extend the reach of its effectiveness particularly to cancers that are resistant within each indication. This review proposes that nutrition can affect and potentially enhance the immune response against cancer. The general mechanisms that link nutritional principles to immune function and may influence the effectiveness of anticancer immunotherapy are examined. This represents also the premise for a research project aimed at identifying the best diet for immunotherapy enhancement against tumours (D.I.E.T project). Particular attention is turned to the gut microbiota and the impact of its composition on the immune system. Also, the dietary patterns effecting immune function are discussed including the value of adhering to a healthy diets such as the Mediterranean, Veg, Japanese, or a Microbiota-regulating diet, the very low ketogenic diet, which have been demonstrated to lower the risk of developing several cancers and reduce the mortality associated with them. Finally, supplements, as omega-3 and polyphenols, are discussed as potential approaches that could benefit healthy dietary and lifestyle habits in the context of immunotherapy.
Collapse
Affiliation(s)
- Laura Soldati
- Department of Health Sciences, Università degli Studi di Milano, Via A di Rudinì 8, 20124, Milan, Italy.
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, 70124, Bari, Italy
| | - Paolo A Ascierto
- Melanoma, Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Via Mariano Semmola snc, 80131, Naples, Italy
| | | | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
23
|
Marelli G, Sica A, Vannucci L, Allavena P. Inflammation as target in cancer therapy. Curr Opin Pharmacol 2017; 35:57-65. [PMID: 28618326 DOI: 10.1016/j.coph.2017.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Cells of the innate immunity infiltrating tumour tissues promote, rather than halt, cancer cell proliferation and distant spreading. Tumour-Associated Macrophages (TAMs) are abundantly present in the tumour milieu and here trigger and perpetrate a state of chronic inflammation which ultimately supports disease development and contributes to an immune-suppressive environment. Therapeutic strategies to limit inflammatory cells and their products have been successful in pre-clinical tumour models. Early clinical trials with specific cytokine and chemokine inhibitors, or with strategies designed to target TAMs, are on their way in different solid malignancies. Partial clinical responses and stabilization of diseases were observed in some patients, in the absence of significant toxicity. These encouraging results open new perspectives of combination treatments aimed at reducing cancer-promoting inflammation to maximize the anti-tumour efficacy.
Collapse
Affiliation(s)
| | - Antonio Sica
- IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy; Università Piemonte Orientale, Novara, Italy
| | - Luca Vannucci
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Paola Allavena
- IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy.
| |
Collapse
|
24
|
Trial J, Heredia CP, Taffet GE, Entman ML, Cieslik KA. Dissecting the role of myeloid and mesenchymal fibroblasts in age-dependent cardiac fibrosis. Basic Res Cardiol 2017; 112:34. [PMID: 28478479 DOI: 10.1007/s00395-017-0623-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
Abstract
Aging is associated with increased cardiac interstitial fibrosis and diastolic dysfunction. Our previous study has shown that mesenchymal fibroblasts in the C57BL/6J (B6J) aging mouse heart acquire an inflammatory phenotype and produce higher levels of chemokines. Monocyte chemoattractant protein-1 (MCP-1) secreted by these aged fibroblasts promotes leukocyte uptake into the heart. Some of the monocytes that migrate into the heart polarize into M2a macrophages/myeloid fibroblasts. The number of activated mesenchymal fibroblasts also increases with age, and consequently, both sources of fibroblasts contribute to fibrosis. Here, we further investigate mechanisms by which inflammation influences activation of myeloid and mesenchymal fibroblasts and their collagen synthesis. We examined cardiac fibrosis and heart function in three aged mouse strains; we compared C57BL/6J (B6J) with two other strains that have reduced inflammation via different mechanisms. Aged C57BL/6N (B6N) hearts are protected from oxidative stress and fibroblasts derived from them do not develop an inflammatory phenotype. Likewise, these mice have preserved diastolic function. Aged MCP-1 null mice on the B6J background (MCP-1KO) are protected from elevated leukocyte infiltration; they develop moderate but reduced fibrosis and diastolic dysfunction. Based on these studies, we further delineated the role of resident versus monocyte-derived M2a macrophages in myeloid-dependent fibrosis and found that the number of monocyte-derived M2a (but not resident) macrophages correlates with age-related fibrosis and diastolic dysfunction. In conclusion, we have found that ROS and inflammatory mediators are necessary for activation of fibroblasts of both developmental origins, and prevention of either led to better functional outcomes.
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - Celia Pena Heredia
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - George E Taffet
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA
| | - Mark L Entman
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA.,Houston Methodist, Houston, TX, USA
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, M.S. BCM620, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Pleasant-Jenkins D, Reese C, Chinnakkannu P, Kasiganesan H, Tourkina E, Hoffman S, Kuppuswamy D. Reversal of maladaptive fibrosis and compromised ventricular function in the pressure overloaded heart by a caveolin-1 surrogate peptide. J Transl Med 2017; 97:370-382. [PMID: 28112757 PMCID: PMC5909408 DOI: 10.1038/labinvest.2016.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic ventricular pressure overload (PO) results in congestive heart failure (CHF) in which myocardial fibrosis develops in concert with ventricular dysfunction. Caveolin-1 is important in fibrosis in various tissues due to its decreased expression in fibroblasts and monocytes. The profibrotic effects of low caveolin-1 can be blocked with the caveolin-1 scaffolding domain peptide (CSD, a caveolin-1 surrogate) using both mouse models and human cells. We have studied the beneficial effects of CSD on mice in which PO was induced by trans-aortic constriction (TAC). Beneficial effects observed in TAC mice receiving CSD injections daily included: improved ventricular function (increased ejection fraction, stroke volume, and cardiac output; reduced wall thickness); decreased collagen I, collagen chaperone HSP47, fibronectin, and CTGF levels; decreased activation of non-receptor tyrosine kinases Pyk2 and Src; and decreased activation of eNOS. To determine the source of cells that contribute to fibrosis in CHF, flow cytometric studies were performed that suggested that myofibroblasts in the heart are in large part bone marrow-derived. Two CD45+ cell populations were observed. One (Zone 1) contained CD45+/HSP47-/macrophage marker+ cells (macrophages). The second (Zone 2) contained CD45moderate/HSP47+/macrophage marker- cells often defined as fibrocytes. TAC increased the number of cells in Zones 1 and 2 and the level of HSP47 in Zone 2. These studies are a first step in elucidating the mechanism of action of CSD in heart fibrosis and promoting the development of CSD as a novel treatment to reduce fibrosis and improve ventricular function in CHF patients.
Collapse
Affiliation(s)
- Dorea Pleasant-Jenkins
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Charleston, SC, USA
| | - Charles Reese
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Harinath Kasiganesan
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Charleston, SC, USA
| | - Elena Tourkina
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Stanley Hoffman
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Dhandapani Kuppuswamy
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Charleston, SC, USA
| |
Collapse
|
26
|
Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K, Guckian KM, Gomez IG, Altemeier WA, Duffield JS. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest 2016; 127:321-334. [PMID: 27869651 DOI: 10.1172/jci87532] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 10/13/2016] [Indexed: 12/21/2022] Open
Abstract
Fibrotic disease is associated with matrix deposition that results in the loss of organ function. Pericytes, the precursors of myofibroblasts, are a source of pathological matrix collagens and may be promising targets for treating fibrogenesis. Here, we have shown that pericytes activate a TLR2/4- and MyD88-dependent proinflammatory program in response to tissue injury. Similarly to classic immune cells, pericytes activate the NLRP3 inflammasome, leading to IL-1β and IL-18 secretion. Released IL-1β signals through pericyte MyD88 to amplify this response. Unexpectedly, we found that MyD88 and its downstream effector kinase IRAK4 intrinsically control pericyte migration and conversion to myofibroblasts. Specific ablation of MyD88 in pericytes or pharmacological inhibition of MyD88 signaling by an IRAK4 inhibitor in vivo protected against kidney injury by profoundly attenuating tissue injury, activation, and differentiation of myofibroblasts. Our data show that in pericytes, MyD88 and IRAK4 are key regulators of 2 major injury responses: inflammatory and fibrogenic. Moreover, these findings suggest that disruption of this MyD88-dependent pathway in pericytes might be a potential therapeutic approach to inhibit fibrogenesis and promote regeneration.
Collapse
|
27
|
Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart. J Mol Cell Cardiol 2015; 91:28-34. [PMID: 26718722 DOI: 10.1016/j.yjmcc.2015.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/08/2015] [Accepted: 12/20/2015] [Indexed: 12/24/2022]
Abstract
Pathologic fibrosis in the aging mouse heart is associated with dysregulated resident mesenchymal stem cells (MSC) arising from reduced stemness and aberrant differentiation into dysfunctional inflammatory fibroblasts. Fibroblasts derived from aging MSC secrete higher levels of 1) collagen type 1 (Col1) that directly contributes to fibrosis, 2) monocyte chemoattractant protein-1 (MCP-1) that attracts leukocytes from the blood and 3) interleukin-6 (IL-6) that facilitates transition of monocytes into myeloid fibroblasts. The transcriptional activation of these proteins is controlled via the farnesyltransferase (FTase)-Ras-Erk pathway. The intrinsic change in the MSC phenotype acquired by advanced age is specific for the heart since MSC originating from bone wall (BW-MSC) or fibroblasts derived from them were free of these defects. The potential therapeutic interventions other than clinically approved strategies based on findings presented in this review are discussed as well. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
|