1
|
He X, Xia M, Ying G, He Q, Chen Z, Liu L, Zhang Q, Cai J. FOSL2 activates TGF-β1-mediated GLUT1/mTOR signaling to promote diabetic kidney disease. J Diabetes Investig 2025; 16:187-203. [PMID: 39569837 PMCID: PMC11786189 DOI: 10.1111/jdi.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
AIMS/INTRODUCTION Diabetic kidney disease (DKD) is a major cause of kidney failure. FOS-like antigen 2 (FOSL2) has been revealed to be increased in kidney biopsies of patients with lupus nephritis, while its association with DKD remains unsolved. This study aimed to characterize the role of FOSL2 in DKD and its mechanism. METHOD The kidney tissues of DKD mice induced by STZ and a high-fat diet were subjected to PAS and Masson's staining. Glomerular mesangial cells (MCs) were treated with high glucose (HG) or normal glucose (NG). CCK-8 and EdU assays were performed to detect cell proliferation, and immunoblotting was conducted to analyze ECM deposition. ChIP-qPCR was performed on MCs to detect the binding of FOSL2 on the TGF-β1 promoter and a dual-luciferase assay to detect the impact of FOSL2 on the transcription of the TGF-β1 promoter. RESULTS FOSL2 was elevated in the kidney tissues of DKD mice. Knockdown of FOSL2 reduced the mRNA expression of TGF-β1 to decrease the protein expression of GLUT1 and mTOR in the kidney tissues of DKD mice, and TGF-β1 reversed the effects caused by knockdown of FOSL2. The mTOR inhibitor Rapamycin alleviated kidney injury in the presence of FOSL2. Knockdown of FOSL2 inhibited the proliferation and improved ECM deposition of MCs, which were reversed by TGF-β1. Rapamycin and GLUT1 inhibitor BAY-876 reversed the promotion effect of FOSL2 on the proliferation of NG-MCs/HG-MCs and improved ECM deposition of MCs. CONCLUSIONS Our data demonstrated that FOSL2 accentuates DKD in mice by increasing TGF-β1-induced GLUT1/mTOR signaling.
Collapse
Affiliation(s)
- Xuelin He
- Kidney Disease Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Min Xia
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Guanghui Ying
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Qien He
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Zhaogui Chen
- Department of NephrologyBeilun People's HospitalNingboZhejiangChina
| | - Li Liu
- Department of LibraryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianxin Cai
- Department of PediatricWuhan Hospital of Traditional Chinese MedicineWuhanHubeiChina
| |
Collapse
|
2
|
Alvarado-Vasquez N, Rangel-Escareño C, de Jesús Ramos-Abundis J, Becerril C, Negrete-García MC. The possible role of hypoxia-induced exosomes on the fibroblast metabolism in idiopathic pulmonary fibrosis. Biomed Pharmacother 2024; 181:117680. [PMID: 39549361 DOI: 10.1016/j.biopha.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has a high incidence and prevalence among patients over 65 years old. While its exact etiology remains unknown, several risk factors have recently been identified. Hypoxia is associated with IPF due to the abnormal architecture of lung parenchyma and the accumulation of extracellular matrix produced by activated fibroblasts. Exosomes play a crucial role in intercellular communication during both physiological and pathological processes, including hypoxic diseases like IPF. Recent findings suggest that a hypoxic microenvironment influences the content of exosomes in various diseases, thereby altering cellular metabolism. Although the role of exosomes in IPF is an emerging area of research, the significance of hypoxic exosomes as inducers of metabolic reprogramming in fibroblasts is still underexplored. In this study, we analyze and discuss the relationship between hypoxia, exosomal cargo, and the metabolic reprogramming of fibroblasts in the progression of IPF.
Collapse
Affiliation(s)
- Noé Alvarado-Vasquez
- Department of Molecular Biomedicine and Translational Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics, National Institute of Genomic Medicine, Mexico City 14610, Mexico; School of Engineering and Sciences, Tecnologico de Monterrey, NL 64700, Mexico
| | | | - Carina Becerril
- Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico.
| |
Collapse
|
3
|
Deng X, Liu J, Zhou J, Shi Y, Song S, Chen J, Li Y, Yu B, Liang SH, Zhu X. Imaging Pulmonary Fibrosis and Treatment Efficacy In Vivo with Autotaxin-Specific PET Ligand [ 18F]ATX-1905. Mol Pharm 2024; 21:5171-5181. [PMID: 39186477 DOI: 10.1021/acs.molpharmaceut.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by unpredictable progression and limited therapeutic options. Current diagnosis relies on high resolution computed tomography (HRCT), which may not adequately capture early signs of deterioration. The enzyme autotaxin (ATX) emerges as a prominently expressed extracellular secretory enzyme in the lungs of IPF patients. The objective of this study was to evaluate the effectiveness of 18F-labeled ATX-targeted tracer [18F]ATX-1905, in comparison with [18F]FDG, for early fibrosis diagnosis, disease evolution monitoring, and treatment efficacy assessment in bleomycin-induced pulmonary fibrosis (BPF) models. To assess treatment efficacy, mice were treated with two commonly used drugs for IPF, pirfenidone or nintedanib, from Day 9 to Day 23 postbleomycin administration. Lung tissue assessments encompassed inflammation severity via H&E staining, and Ashcroft scoring via Masson staining, alongside quantification of ATX expression through ELISA. Positron emission tomography (PET) imaging employing [18F]FDG and [18F]ATX-1905 tracked disease progression pre- and post-treatment. The extent of pulmonary fibrosis corresponded to changes in ATX expression levels in the BPF mouse model. Notably, [18F]ATX-1905 exhibited elevated uptake in BPF lungs during the progression of the disease, particularly evident at the early stage (Day 9). This uptake was inhibited by an ATX inhibitor, PF-8380, underscoring the specificity of the radiotracer. Conversely, [18F]FDG uptake, peaking at Day 15, decreased subsequently, likely reflective of diminished inflammation. A 2-week treatment regimen using either pirfenidone or nintedanib resulted in notable reductions of ATX expression levels and fibrosis degrees within lung tissues, based on ELISA and Masson staining, as evidenced by PET imaging with [18F]ATX-1905. [18F]FDG uptake also decreased following the treatment period. Additionally, PET/CT imaging extended to a nonhuman primate (NHP) BPF model. The uptake of [18F]ATX-1905 (SUVmax = 2.2) was significantly higher than that of [18F]FDG (SUVmax = 0.7) in fibrotic lung tissue. Using our novel ATX-specific radiotracer [18F]ATX-1905 and PET/CT imaging, we demonstrated excellent ability in early fibrosis detection, disease monitoring, and treatment assessment within lungs of the BPF mouse models. [18F]ATX-1905 displayed remarkable specificity for ATX expression and high sensitivity for ATX alterations, suggesting its potential for monitoring varying ATX expression in lungs of IPF patients.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Junyi Liu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jianyuan Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yifan Shi
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
4
|
Wang Y, Wang X, Bai B, Shaha A, He X, He Y, Ye Z, Shah VH, Kang N. Targeting Src SH3 domain-mediated glycolysis of HSC suppresses transcriptome, myofibroblastic activation, and colorectal liver metastasis. Hepatology 2024; 80:578-594. [PMID: 38271673 PMCID: PMC11266532 DOI: 10.1097/hep.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND AIMS Transforming growth factor-beta 1 (TGFβ1) induces HSC activation into metastasis-promoting cancer-associated fibroblasts (CAFs), but how the process is fueled remains incompletely understood. We studied metabolic reprogramming induced by TGFβ1 in HSCs. APPROACHES AND RESULTS Activation of cultured primary human HSCs was assessed by the expression of myofibroblast markers. Glucose transporter 1 (Glut1) of murine HSC was disrupted by Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination (Cre/LoxP). Plasma membrane (PM) Glut1 and glycolysis were studied by biotinylation assay and the Angilent Seahorse XFe96 Analyzer. S.c. HSC/tumor co-implantation and portal vein injection of MC38 colorectal cancer cells into HSC-specific Glut1 knockout mice were performed to determine in vivo relevance. Transcriptome was obtained by RNA sequencing of HSCs and spatialomics with MC38 liver metastases. TGFβ1-induced CAF activation of HSCs was accompanied by elevation of PM Glut1, glucose uptake, and glycolysis. Targeting Glut1 or Src by short hairpin RNA, pharmacologic inhibition, or a Src SH3 domain deletion mutant abrogated TGFβ1-stimulated PM accumulation of Glut1, glycolysis, and CAF activation. Mechanistically, binding of the Src SH3 domain to SH3 domain-binding protein 5 led to a Src/SH3 domain-binding protein 5/Rab11/Glut1 complex that activated Rab11-dependent Glut1 PM transport under TGFβ1 stimulation. Deleting the Src SH3 domain or targeting Glut1 of HSCs by short hairpin RNA or Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination suppressed CAF activation in mice and MC38 colorectal liver metastasis. Multi-omics revealed that Glut1 deficiency in HSCs/CAFs suppressed HSC expression of tumor-promoting factors and altered MC38 transcriptome, contributing to reduced MC38 liver metastases. CONCLUSION The Src SH3 domain-facilitated metabolic reprogramming induced by TGFβ1 represents a target to inhibit CAF activation and the pro-metastatic liver microenvironment.
Collapse
Affiliation(s)
- Yuanguo Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- The School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Bing Bai
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Aurpita Shaha
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Xipu He
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- The School of Chemistry and Chemical Engineering, Nanning, Guangxi, China
| | - Yingzi He
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- The School of Environmental and Life Sciences, Nanning Normal University, Nanning, Guangxi, China
| | - Zhenqing Ye
- Department of Population Health Science, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| |
Collapse
|
5
|
Wang Y, Wang X, Du C, Wang Z, Wang J, Zhou N, Wang B, Tan K, Fan Y, Cao P. Glycolysis and beyond in glucose metabolism: exploring pulmonary fibrosis at the metabolic crossroads. Front Endocrinol (Lausanne) 2024; 15:1379521. [PMID: 38854692 PMCID: PMC11157045 DOI: 10.3389/fendo.2024.1379521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
At present, pulmonary fibrosis (PF) is a prevalent and irreversible lung disease with limited treatment options, and idiopathic pulmonary fibrosis (IPF) is one of its most common forms. Recent research has highlighted PF as a metabolic-related disease, including dysregulated iron, mitochondria, lipid, and glucose homeostasis. Systematic reports on the regulatory roles of glucose metabolism in PF are rare. This study explores the intricate relationships and signaling pathways between glucose metabolic processes and PF, delving into how key factors involved in glucose metabolism regulate PF progression, and the interplay between them. Specifically, we examined various enzymes, such as hexokinase (HK), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), pyruvate kinase (PK), and lactate dehydrogenase (LDH), illustrating their regulatory roles in PF. It highlights the significance of lactate, alongside the role of pyruvate dehydrogenase kinase (PDK) and glucose transporters (GLUTs) in modulating pulmonary fibrosis and glucose metabolism. Additionally, critical regulatory factors such as transforming growth factor-beta (TGF-β), interleukin-1 beta (IL-1β), and hypoxia-inducible factor 1 subunit alpha (HIF-1α) were discussed, demonstrating their impact on both PF and glucose metabolic pathways. It underscores the pivotal role of AMP-activated protein kinase (AMPK) in this interplay, drawing connections between diabetes mellitus, insulin, insulin-like growth factors, and peroxisome proliferator-activated receptor gamma (PPARγ) with PF. This study emphasizes the role of key enzymes, regulators, and glucose transporters in fibrogenesis, suggesting the potential of targeting glucose metabolism for the clinical diagnosis and treatment of PF, and proposing new promising avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Yuejiao Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Xue Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Chaoqi Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Zeming Wang
- Department of Laboratory, Hebei Provincial People’s Hospital, Shijiazhuang, Hebei, China
| | - Jiahui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Nan Zhou
- Department of Gynecology, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| | - Pengxiu Cao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Pan T, Bai L, Zhu D, Wei Y, Zhao Q, Feng F, Wang Z, Xu Y, Zhou X. The causal relationship between genetically predicted blood metabolites and idiopathic pulmonary fibrosis: A bidirectional two-sample Mendelian randomization study. PLoS One 2024; 19:e0300423. [PMID: 38626141 PMCID: PMC11020755 DOI: 10.1371/journal.pone.0300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Numerous metabolomic studies have confirmed the pivotal role of metabolic abnormalities in the development of idiopathic pulmonary fibrosis (IPF). Nevertheless, there is a lack of evidence on the causal relationship between circulating metabolites and the risk of IPF. METHODS The potential causality between 486 blood metabolites and IPF was determined through a bidirectional two-sample Mendelian randomization (TSMR) analysis. A genome-wide association study (GWAS) involving 7,824 participants was performed to analyze metabolite data, and a GWAS meta-analysis involving 6,257 IPF cases and 947,616 control European subjects was conducted to analyze IPF data. The TSMR analysis was performed primarily with the inverse variance weighted model, supplemented by weighted mode, MR-Egger regression, and weighted median estimators. A battery of sensitivity analyses was performed, including horizontal pleiotropy assessment, heterogeneity test, Steiger test, and leave-one-out analysis. Furthermore, replication analysis and meta-analysis were conducted with another GWAS dataset of IPF containing 4,125 IPF cases and 20,464 control subjects. Mediation analyses were used to identify the mediating role of confounders in the effect of metabolites on IPF. RESULTS There were four metabolites associated with the elevated risk of IPF, namely glucose (odds ratio [OR] = 2.49, 95% confidence interval [95%CI] = 1.13-5.49, P = 0.024), urea (OR = 6.24, 95% CI = 1.77-22.02, P = 0.004), guanosine (OR = 1.57, 95%CI = 1.07-2.30, P = 0.021), and ADpSGEGDFXAEGGGVR (OR = 1.70, 95%CI = 1.00-2.88, P = 0.0496). Of note, the effect of guanosine on IPF was found to be mediated by gastroesophageal reflux disease. Reverse Mendelian randomization analysis displayed that IPF might slightly elevate guanosine levels in the blood. CONCLUSION Conclusively, hyperglycemia may confer a promoting effect on IPF, highlighting that attention should be paid to the relationship between diabetes and IPF, not solely to the diagnosis of diabetes. Additionally, urea, guanosine, and ADpSGEGDFXAEGGGVR also facilitate the development of IPF. This study may provide a reference for analyzing the potential mechanism of IPF and carry implications for the prevention and treatment of IPF.
Collapse
Affiliation(s)
- Tingyu Pan
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Le Bai
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongwei Zhu
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Wei
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qi Zhao
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fanchao Feng
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhichao Wang
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Xu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xianmei Zhou
- Department of Pulmonary and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Song C, Hu P, Peng R, Li F, Fang Z, Xu Y. Bioenergetic dysfunction in the pathogenesis of intervertebral disc degeneration. Pharmacol Res 2024; 202:107119. [PMID: 38417775 DOI: 10.1016/j.phrs.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
8
|
Mari YM, Fraix MP, Agrawal DK. Pulmonary Fibrosis and Diabetes Mellitus: Two coins with the same face. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:53-70. [PMID: 38576768 PMCID: PMC10994216 DOI: 10.26502/aimr.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) constitutes a long-term disease with a complex pathophysiology composed of multiple molecular actors that lead to the deposition of extracellular matrix, the loss of pulmonary function and ultimately the patient's death. Despite the approval of pirfenidone and nintedanib for the treatment of the disease, lung transplant is the only long-term solution to fully recover the respiratory capacity and gain quality of life. One of the risk factors for the development of IPF is the pre-existing condition of diabetes mellitus. Both, IPF and diabetes mellitus, share similar pathological damage mechanisms, including inflammation, endoplasmic reticulum stress, mitochondrial failure, oxidative stress, senescence and signaling from glycated proteins through receptors. In this critical review article, we provide information about this interrelationship, examining molecular mediators that play an essential role in both diseases and identify targets of interest for the development of potential drugs. We review the findings of clinical trials examining the progression of IPF and how novel molecules may be used to stop this process. The results highlight the importance of early detection and addressing multiple therapeutic targets simultaneously to achieve better therapeutic efficacy and potentially reverse lung fibrosis.
Collapse
Affiliation(s)
- Yssel Mendoza Mari
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Marcel P Fraix
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona CA 91766
| |
Collapse
|
9
|
Shan B, Zhou H, Guo C, Liu X, Wu M, Zhai R, Chen J. Tanshinone IIA ameliorates energy metabolism dysfunction of pulmonary fibrosis using 13C metabolic flux analysis. J Pharm Anal 2024; 14:244-258. [PMID: 38464785 PMCID: PMC10921327 DOI: 10.1016/j.jpha.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
Evidence indicates that metabolic reprogramming characterized by the changes in cellular metabolic patterns contributes to the pathogenesis of pulmonary fibrosis (PF). It is considered as a promising therapeutic target anti-PF. The well-documented against PF properties of Tanshinone IIA (Tan IIA) have been primarily attributed to its antioxidant and anti-inflammatory potency. Emerging evidence suggests that Tan IIA may target energy metabolism pathways, including glycolysis and tricarboxylic acid (TCA) cycle. However, the detailed and advanced mechanisms underlying the anti-PF activities remain obscure. In this study, we applied [U-13C]-glucose metabolic flux analysis (MFA) to examine metabolism flux disruption and modulation nodes of Tan IIA in PF. We identified that Tan IIA inhibited the glycolysis and TCA flux, thereby suppressing the production of transforming growth factor-β1 (TGF-β1)-dependent extracellular matrix and the differentiation and proliferation of myofibroblasts in vitro. We further revealed that Tan IIA inhibited the expression of key metabolic enzyme hexokinase 2 (HK2) by inhibiting phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α) pathway activities, which decreased the accumulation of abnormal metabolites. Notably, we demonstrated that Tan IIA inhibited ATP citrate lyase (ACLY) activity, which reduced the collagen synthesis pathway caused by cytosol citrate consumption. Further, these results were validated in a mouse model of bleomycin-induced PF. This study was novel in exploring the mechanism of the occurrence and development of Tan IIA in treating PF using 13C-MFA technology. It provided a novel understanding of the mechanism of Tan IIA against PF from the perspective of metabolic reprogramming.
Collapse
Affiliation(s)
- Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoyan Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Congying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaolu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingyu Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rao Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
10
|
Xu M, Hu B, Chen J, Wang J, Li X. Mechanisms of fibrosis in iatrogenic laryngotracheal stenosis: New discoveries and novel targets. Biomed Pharmacother 2024; 170:115995. [PMID: 38118348 DOI: 10.1016/j.biopha.2023.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Iatrogenic laryngotracheal stenosis (iLTS) is a pathological condition characterized by the narrowing of the laryngeal and tracheal structures due to the formation of abnormal scar tissue. The core of iLTS lies in the fibrosis of the laryngotracheal tissue, and recent research has unveiled novel discoveries regarding the underlying mechanisms of fibrosis. This review provides an overview of the recent advancements in understanding the mechanisms of fibrosis in iLTS. It encompasses various aspects, such as immune system dysregulation, changes in the extracellular matrix (ECM), metabolic alterations, and the role of microbial flora. The review also explores the interplay and relationships between these new mechanisms, establishing a theoretical foundation for the development of multi-target therapies and combination therapies for iLTS.
Collapse
Affiliation(s)
- Mengrou Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, People's Republic of China
| | - Bin Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Changhai Hospital Affiliated with the Second Military Medical University of PLA, Shanghai, China
| | - Jiarui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, People's Republic of China
| | - Jing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, People's Republic of China.
| | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, People's Republic of China.
| |
Collapse
|
11
|
Yan P, Liu J, Li Z, Wang J, Zhu Z, Wang L, Yu G. Glycolysis Reprogramming in Idiopathic Pulmonary Fibrosis: Unveiling the Mystery of Lactate in the Lung. Int J Mol Sci 2023; 25:315. [PMID: 38203486 PMCID: PMC10779333 DOI: 10.3390/ijms25010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive deposition of fibrotic connective tissue in the lungs. Emerging evidence suggests that metabolic alterations, particularly glycolysis reprogramming, play a crucial role in the pathogenesis of IPF. Lactate, once considered a metabolic waste product, is now recognized as a signaling molecule involved in various cellular processes. In the context of IPF, lactate has been shown to promote fibroblast activation, myofibroblast differentiation, and extracellular matrix remodeling. Furthermore, lactate can modulate immune responses and contribute to the pro-inflammatory microenvironment observed in IPF. In addition, lactate has been implicated in the crosstalk between different cell types involved in IPF; it can influence cell-cell communication, cytokine production, and the activation of profibrotic signaling pathways. This review aims to summarize the current research progress on the role of glycolytic reprogramming and lactate in IPF and its potential implications to clarify the role of lactate in IPF and to provide a reference and direction for future research. In conclusion, elucidating the intricate interplay between lactate metabolism and fibrotic processes may lead to the development of innovative therapeutic strategies for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China; (P.Y.); (J.L.); (Z.L.); (J.W.); (Z.Z.)
| |
Collapse
|
12
|
Nogueras Pérez R, Heredia-Nicolás N, de Lara-Peña L, López de Andrés J, Marchal JA, Jiménez G, Griñán-Lisón C. Unraveling the Potential of miRNAs from CSCs as an Emerging Clinical Tool for Breast Cancer Diagnosis and Prognosis. Int J Mol Sci 2023; 24:16010. [PMID: 37958993 PMCID: PMC10647353 DOI: 10.3390/ijms242116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer in women and the second most common cancer globally. Significant advances in BC research have led to improved early detection and effective therapies. One of the key challenges in BC is the presence of BC stem cells (BCSCs). This small subpopulation within the tumor possesses unique characteristics, including tumor-initiating capabilities, contributes to treatment resistance, and plays a role in cancer recurrence and metastasis. In recent years, microRNAs (miRNAs) have emerged as potential regulators of BCSCs, which can modulate gene expression and influence cellular processes like BCSCs' self-renewal, differentiation, and tumor-promoting pathways. Understanding the miRNA signatures of BCSCs holds great promise for improving BC diagnosis and prognosis. By targeting BCSCs and their associated miRNAs, researchers aim to develop more effective and personalized treatment strategies that may offer better outcomes for BC patients, minimizing tumor recurrence and metastasis. In conclusion, the investigation of miRNAs as regulators of BCSCs opens new directions for advancing BC research through the use of bioinformatics and the development of innovative therapeutic approaches. This review summarizes the most recent and innovative studies and clinical trials on the role of BCSCs miRNAs as potential tools for early diagnosis, prognosis, and resistance.
Collapse
Affiliation(s)
- Raquel Nogueras Pérez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Noelia Heredia-Nicolás
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
| | - Laura de Lara-Peña
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; (R.N.P.); (N.H.-N.); (L.d.L.-P.); (J.L.d.A.); (J.A.M.)
- Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada, University of Granada, 18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol Ther 2023; 246:108436. [PMID: 37150402 DOI: 10.1016/j.pharmthera.2023.108436] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.
Collapse
Affiliation(s)
- Rishi Rajesh
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Moita MR, Silva MM, Diniz C, Serra M, Hoet RM, Barbas A, Simão D. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. Front Cardiovasc Med 2022; 9:1015473. [PMID: 36531712 PMCID: PMC9751336 DOI: 10.3389/fcvm.2022.1015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Activated cardiac fibroblasts (CF) play a central role in cardiac fibrosis, a condition associated with most cardiovascular diseases. Conversion of quiescent into activated CF sustains heart integrity upon injury. However, permanence of CF in active state inflicts deleterious heart function effects. Mechanisms underlying this cell state conversion are still not fully disclosed, contributing to a limited target space and lack of effective anti-fibrotic therapies. MATERIALS AND METHODS To prioritize targets for drug development, we studied CF remodeling upon activation at transcriptomic and proteomic levels, using three different cell sources: primary adult CF (aHCF), primary fetal CF (fHCF), and induced pluripotent stem cells derived CF (hiPSC-CF). RESULTS All cell sources showed a convergent response upon activation, with clear morphological and molecular remodeling associated with cell-cell and cell-matrix interactions. Quantitative proteomic analysis identified known cardiac fibrosis markers, such as FN1, CCN2, and Serpine1, but also revealed targets not previously associated with this condition, including MRC2, IGFBP7, and NT5DC2. CONCLUSION Exploring such targets to modulate CF phenotype represents a valuable opportunity for development of anti-fibrotic therapies. Also, we demonstrate that hiPSC-CF is a suitable cell source for preclinical research, displaying significantly lower basal activation level relative to primary cells, while being able to elicit a convergent response upon stimuli.
Collapse
Affiliation(s)
- Maria Raquel Moita
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta M. Silva
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia Diniz
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - René M. Hoet
- Department of Pathology, CARIM - School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Daniel Simão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
15
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Advances in energy metabolism in renal fibrosis. Life Sci 2022; 312:121033. [PMID: 36270427 DOI: 10.1016/j.lfs.2022.121033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Renal fibrosis is a common pathway toward chronic kidney disease (CKD) and is the main pathological predecessor for end-stage renal disease; thus, preventing progressive CKD and renal fibrosis is essential to reducing their consequential morbidity and mortality. Emerging evidence has connected renal fibrosis to metabolic reprogramming; abnormalities in energy metabolism pathways, such as glycolysis, the tricarboxylic acid cycle, and lipid metabolism, are known to cause diseases of diverse etiologies. Cytokine interventions in affected metabolic pathways may significantly reduce the degree of fibrosis, highlighting therapeutic targets for drug development for renal fibrosis. Here, we discuss the relationship between glycolysis, lipid metabolism, mitochondrial and peroxisome dysfunction, and renal fibrosis in detail and propose that targeted therapies for specific metabolic pathways are expected to represent the next generation of treatments for renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
17
|
García-Sancha N, Corchado-Cobos R, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Blanco-Gómez A, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Mendiburu-Eliçabe M, Pérez-Losada J. Evolutionary Origins of Metabolic Reprogramming in Cancer. Int J Mol Sci 2022; 23:ijms232012063. [PMID: 36292921 PMCID: PMC9603151 DOI: 10.3390/ijms232012063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. These changes are not specific to tumors but also take place during the physiological growth of tissues. Indeed, the cellular and tissue mechanisms present in the tumor have their physiological counterpart in the repair of tissue lesions and wound healing. These molecular mechanisms have been acquired during metazoan evolution, first to eliminate the infection of the tissue injury, then to enter an effective regenerative phase. Cancer itself could be considered a phenomenon of antagonistic pleiotropy of the genes involved in effective tissue repair. Cancer and tissue repair are complex traits that share many intermediate phenotypes at the molecular, cellular, and tissue levels, and all of these are integrated within a Systems Biology structure. Complex traits are influenced by a multitude of common genes, each with a weak effect. This polygenic component of complex traits is mainly unknown and so makes up part of the missing heritability. Here, we try to integrate these different perspectives from the point of view of the metabolic changes observed in cancer.
Collapse
Affiliation(s)
- Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Adrián Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, CA 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.M.-E.); (J.P.-L.)
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: (M.M.-E.); (J.P.-L.)
| |
Collapse
|
18
|
Li Y, Yang S, Liu Y, Qin L, Yang S. IFT20 governs mesenchymal stem cell fate through positively regulating TGF-β-Smad2/3-Glut1 signaling mediated glucose metabolism. Redox Biol 2022; 54:102373. [PMID: 35751983 PMCID: PMC9243161 DOI: 10.1016/j.redox.2022.102373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Aberrant lineage allocation of mesenchymal stem cells (MSCs) could cause bone marrow osteoblast-adipocyte imbalance, and glucose as an important nutrient is required for the maintenance of the MSCs' fate and function. Intraflagellar transport 20 (IFT20) is one of the IFT complex B protein which regulates osteoblast differentiation, and bone formation, but how IFT20 regulates MSCs' fate remains undefined. Here, we demonstrated that IFT20 controls MSC lineage allocation through regulating glucose metabolism during skeletal development. IFT20 deficiency in the early stage of MSCs caused significantly shortened limbs, decreased bone mass and significant increase in marrow fat. However, deletion of IFT20 in the later stage of MSCs and osteocytes just slightly decreased bone mass and bone growth and increased marrow fat. Additionally, we found that loss of IFT20 in MSCs promotes adipocyte formation, which enhances RANKL expression and bone resorption. Conversely, ablation of IFT20 in adipocytes reversed these phenotypes. Mechanistically, loss of IFT20 in MSCs significantly decreased glucose tolerance and suppressed glucose uptake and lactate and ATP production. Moreover, loss of IFT20 significantly decreased the activity of TGF-β-Smad2/3 signaling and reduced the binding activity of Smad2/3 to Glut1 promoter to downregulate Glut1 expression. These findings indicate that IFT20 plays essential roles for preventing MSC lineage allocation into adipocytes through TGF-β-Smad2/3-Glut1 axis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Decreased expression of ErbB2 on left ventricular epicardial cells in patients with diabetes mellitus. Cell Signal 2022; 96:110360. [PMID: 35609807 PMCID: PMC9671200 DOI: 10.1016/j.cellsig.2022.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
We investigated the cell surface expression of ErbB receptors on left ventricular (LV) epicardial endothelial cells and CD105+ cells obtained from cardiac biopsies of patients undergoing coronary artery bypass grafting surgery (CABG). Endothelial cells and CD105+ non-endothelial cells were freshly isolated from LV epicardial biopsies obtained from 15 subjects with diabetes mellitus (DM) and 8 controls. The expression of ErbB receptors was examined using flow cytometry. We found that diabetes mellitus (DM) and high levels of hemoglobin A1C are associated with reduced expression of ErbB2. To determine if the expression of ErbB2 receptors is regulated by glucose levels, we examined the effect of high Glucose in human microvascular endothelial cells (HMEC-1) and CD105+ non-endothelial cells, using a novel flow cytometric approach to simultaneously determine the total level, cell surface expression, and phosphorylation of ErbB2. Incubation of cells in the presence of 25 mM d-glucose resulted in decreased cell surface but not total levels of ErbB2. The level of ErbB2 at the cell surface is controlled by disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) that is expressed on LV epicardial cells. Inhibition of ADAM10 prevented the high glucose-dependent decrease in the cell surface expression of ErbB2. We suggest that high Glucose depresses ErbB receptor signaling in endothelial cells and cardiac progenitor cells via the promotion of ADAM10-dependent cleavage of ErbB2 at the cell surface, thus contributing to vascular dysfunction and adverse remodeling seen in diabetic patients.
Collapse
|
20
|
胡 彬, 陈 佳, 李 为, 汪 景, 李 晓. [An updated review of the mechanism of fibrosis in acquired laryngotrachealstenosis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:310-314. [PMID: 35511628 PMCID: PMC10128174 DOI: 10.13201/j.issn.2096-7993.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 04/30/2023]
Abstract
Acquired laryngotracheal stenosis is a laryngeal obstruction disease due to pathologic scar formation. Although acquired laryngotracheal stenosis is hypothesized to be related to fibrosis, its specific mechanisms have yet to be characterized. This article reviews the latest research progress on the mechanisms of laryngotracheal fibrosis, including metabolic changes, immune cell dysregulation, extracellular matrix changes and microbiota.
Collapse
Affiliation(s)
- 彬 胡
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| | - 佳瑞 陈
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| | | | - 景 汪
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| | - 晓艳 李
- 上海市儿童医院 上海交通大学附属儿童医院耳鼻喉科(上海, 200333)
| |
Collapse
|
21
|
Li Z, Geng J, Xie B, He J, Wang J, Peng L, Hu Y, Dai H, Wang C. Dihydromyricetin Alleviates Pulmonary Fibrosis by Regulating Abnormal Fibroblasts Through the STAT3/p-STAT3/GLUT1 Signaling Pathway. Front Pharmacol 2022; 13:834604. [PMID: 35359847 PMCID: PMC8964100 DOI: 10.3389/fphar.2022.834604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with a poor prognosis. Although dihydromyricetin (DHM), extracted from vine tea and other Ampelopsis species, has been proven to have anti-inflammatory and antioxidant functions, the effects of DHM on IPF remain unclear. Methods: The effects of DHM on the differentiation, migration, proliferation, and respiratory functions of primary mouse lung fibroblasts (PMLFs) and primary human lung fibroblasts (PHLFs) were detected by western blotting, the Transwell assay, EdU staining, and the Mito Stress test. Then, the impacts of DHM on bleomycin (BLM)-induced pulmonary fibrosis were evaluated by pathological staining, western blotting, and coimmunofluorescence staining. The signaling pathway influenced by DHM was also investigated. Results: DHM could regulate the differentiation of fibroblasts to myofibroblasts and suppress the abnormal migration, proliferation, and respiratory functions of myofibroblasts induced by TGF-β1 or myofibroblasts from IPF patients. DHM could also alleviate pulmonary fibrosis induced by BLM. All these effects were achieved by regulating the STAT3/p-STAT3/GLUT1 signaling pathway. Conclusion: DHM could regulate the abnormal functions of myofibroblasts induced by TGF-β1 and myofibroblasts from IPF patients and alleviate pulmonary fibrosis induced by BLM; thus, DHM might be a candidate medicinal treatment for IPF.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bingbing Xie
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiarui He
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yinan Hu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Yinan Hu, ; Huaping Dai, ; Chen Wang,
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Yinan Hu, ; Huaping Dai, ; Chen Wang,
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Center for Respiratory Medicine; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Yinan Hu, ; Huaping Dai, ; Chen Wang,
| |
Collapse
|
22
|
Sharma S, Watanabe T, Nishimoto T, Takihara T, Mlakar L, Nguyen XX, Sanderson M, Su Y, Chambers RA, Feghali-Bostwick C. E4 engages uPAR and enolase-1 and activates urokinase to exert antifibrotic effects. JCI Insight 2021; 6:144935. [PMID: 34935642 PMCID: PMC8783693 DOI: 10.1172/jci.insight.144935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroproliferative disorders such as systemic sclerosis (SSc) have no effective therapies and result in significant morbidity and mortality. We recently demonstrated that the C-terminal domain of endostatin, known as E4, prevented and reversed both dermal and pulmonary fibrosis. Our goal was to identify the mechanism by which E4 abrogates fibrosis and its cell surface binding partner(s). Our findings show that E4 activated the urokinase pathway and increased the urokinase plasminogen activator (uPA) to type 1 plasminogen activator inhibitor (PAI-1) ratio. In addition, E4 substantially increased MMP-1 and MMP-3 expression and activity. In vivo, E4 reversed bleomycin induction of PAI-1 and increased uPA activity. In patients with SSc, the uPA/PAI-1 ratio was decreased in both lung tissues and pulmonary fibroblasts compared with normal donors. Proteins bound to biotinylated-E4 were identified as enolase-1 (ENO) and uPA receptor (uPAR). The antifibrotic effects of E4 required uPAR. Further, ENO mediated the fibrotic effects of TGF-β1 and exerted TGF-β1–independent fibrotic effects. Our findings suggest that the antifibrotic effect of E4 is mediated, in part, by regulation of the urokinase pathway and induction of MMP-1 and MMP-3 levels and activity in a uPAR-dependent manner, thus promoting extracellular matrix degradation. Further, our findings identify a moonlighting function for the glycolytic enzyme ENO in fibrosis.
Collapse
Affiliation(s)
- Shailza Sharma
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tomoya Watanabe
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tetsuya Nishimoto
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Takahisa Takihara
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Logan Mlakar
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xinh-Xinh Nguyen
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Sanderson
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yunyun Su
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Roger A Chambers
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
23
|
Selvarajah B, Azuelos I, Anastasiou D, Chambers RC. Fibrometabolism-An emerging therapeutic frontier in pulmonary fibrosis. Sci Signal 2021; 14:14/697/eaay1027. [PMID: 34429381 DOI: 10.1126/scisignal.aay1027] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibrosis is the final pathological outcome and major cause of morbidity and mortality in many common and chronic inflammatory, immune-mediated, and metabolic diseases. Despite the growing incidence of fibrotic diseases and extensive research efforts, there remains a lack of effective therapies that improve survival. The application of omics technologies has revolutionized our approach to identifying previously unknown therapeutic targets and potential disease biomarkers. The application of metabolomics, in particular, has improved our understanding of disease pathomechanisms and garnered a wave of scientific interest in the role of metabolism in the biology of myofibroblasts, the key effector cells of the fibrogenic response. Emerging evidence suggests that alterations in metabolism not only are a feature of but also may play an influential role in the pathogenesis of fibrosis, most notably in idiopathic pulmonary fibrosis (IPF), the most rapidly progressive and fatal of all fibrotic conditions. This review will detail the role of key metabolic pathways, their alterations in myofibroblasts, and the potential this new knowledge offers for the development of antifibrotic therapeutic strategies.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London WC1E 6JF, UK
| | - Ilan Azuelos
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London WC1E 6JF, UK
| | | | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London WC1E 6JF, UK.
| |
Collapse
|
24
|
Henderson J, O'Reilly S. The emerging role of metabolism in fibrosis. Trends Endocrinol Metab 2021; 32:639-653. [PMID: 34024695 DOI: 10.1016/j.tem.2021.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
The metabolic shift that cancer cells undergo towards aerobic glycolysis was identified as a defining feature in tumours almost 100 years ago; however, it has only recently become apparent that similar metabolic reprogramming is a key feature in other diseases - with fibrosis now entering the fray. In this perspective, an overview of the recent evidence implicating increased glycolysis and glutaminolysis as mediators of fibrosis is presented, with a particular emphasis on the novel therapeutic possibilities this introduces. Furthermore, the impact that metabolic reprogramming has on redox homeostasis is discussed, providing an insight into how this often-overlooked mechanism may drive the pathogenesis.
Collapse
Affiliation(s)
- John Henderson
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK
| | - Steven O'Reilly
- Biosciences, Durham University, South Road, Durham DH1 3LE, UK. steven.o'
| |
Collapse
|
25
|
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol 2021; 254:358-373. [PMID: 33834494 DOI: 10.1002/path.5680] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Many chronic diseases are marked by fibrosis, which is defined by an abundance of activated fibroblasts and excessive deposition of extracellular matrix, resulting in loss of normal function of the affected organs. The initiation and progression of fibrosis are elaborated by pro-fibrotic cytokines, the most critical of which is transforming growth factor-β1 (TGF-β1). This review focuses on the fibrogenic roles of increased TGF-β activities and underlying signaling mechanisms in the activated fibroblast population and other cell types that contribute to progression of fibrosis. Insight into these roles and mechanisms of TGF-β as a universal driver of fibrosis has stimulated the development of therapeutic interventions to attenuate fibrosis progression, based on interference with TGF-β signaling. Their promise in preclinical and clinical settings will be discussed. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Erine H Budi
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | | | | | - Scott Turner
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Hypoxia Inducible Factor 1A Supports a Pro-Fibrotic Phenotype Loop in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2021; 22:ijms22073331. [PMID: 33805152 PMCID: PMC8078165 DOI: 10.3390/ijms22073331] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The IPF-conditioned matrix (IPF-CM) system enables the study of matrix–fibroblast interplay. While effective at slowing fibrosis, nintedanib has limitations and the mechanism is not fully elucidated. In the current work, we explored the underlying signaling pathways and characterized nintedanib involvement in the IPF-CM fibrotic process. Results were validated using IPF patient samples and bleomycin-treated animals with/without oral and inhaled nintedanib. IPF-derived primary human lung fibroblasts (HLFs) were cultured on Matrigel and then cleared using NH4OH, creating the IPF-CM. Normal HLF-CM served as control. RNA-sequencing, PCR and western-blots were performed. HIF1α targets were evaluated by immunohistochemistry in bleomycin-treated rats with/without nintedanib and in patient samples with IPF. HLFs cultured on IPF-CM showed over-expression of ‘HIF1α signaling pathway’ (KEGG, p < 0.0001), with emphasis on SERPINE1 (PAI-1), VEGFA and TIMP1. IPF patient samples showed high HIF1α staining, especially in established fibrous tissue. PAI-1 was overexpressed, mainly in alveolar macrophages. Nintedanib completely reduced HIF1α upregulation in the IPF-CM and rat-bleomycin models. IPF-HLFs alter the extracellular matrix, thus creating a matrix that further propagates an IPF-like phenotype in normal HLFs. This pro-fibrotic loop includes the HIF1α pathway, which can be blocked by nintedanib.
Collapse
|
27
|
Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2021; 134:261-274. [PMID: 33522725 PMCID: PMC7846426 DOI: 10.1097/cm9.0000000000001288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There have been recent extensive studies and rapid advancement on the pathogenesis underlying idiopathic pulmonary fibrosis (IPF), and intricate pathogenesis of IPF has been suggested. The purpose of this study was to clarify the logical relationship between these mechanisms. An extensive search was undertaken of the PubMed using the following keywords: “etiology,” “pathogenesis,” “alveolar epithelial cell (AEC),” “fibroblast,” “lymphocyte,” “macrophage,” “epigenomics,” “histone,” acetylation,” “methylation,” “endoplasmic reticulum stress,” “mitochondrial dysfunction,” “telomerase,” “proteases,” “plasminogen,” “epithelial-mesenchymal transition,” “oxidative stress,” “inflammation,” “apoptosis,” and “idiopathic pulmonary fibrosis.” This search covered relevant research articles published up to April 30, 2020. Original articles, reviews, and other articles were searched and reviewed for content; 240 highly relevant studies were obtained after screening. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors: environmental exposures affect epigenetic marks; epigenetic processes translate environmental exposures into the regulation of chromatin; epigenetic processes shape gene expression profiles; in turn, an individual's genetic background determines epigenetic marks; finally, these genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung tissue. The pathogenesis of IPF involves various imbalances including endoplasmic reticulum, telomere length homeostasis, mitochondrial dysfunction, oxidant/antioxidant imbalance, Th1/Th2 imbalance, M1–M2 polarization of macrophages, protease/antiprotease imbalance, and plasminogen activation/inhibition imbalance. These affect each other, promote each other, and ultimately promote AEC/fibroblast apoptosis imbalance directly or indirectly. Excessive AEC apoptosis and impaired apoptosis of fibroblasts contribute to fibrosis. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors. The pathogenesis of IPF involves various imbalances centered on AEC/fibroblast apoptosis imbalance.
Collapse
|
28
|
Hamanaka RB, Mutlu GM. Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism. FEBS J 2021; 288:6331-6352. [PMID: 33393204 DOI: 10.1111/febs.15693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
Fibrosis is a pathologic condition characterized by excessive deposition of extracellular matrix and chronic scaring that can affect every organ system. Organ fibrosis is associated with significant morbidity and mortality, contributing to as many as 45% of all deaths in the developed world. In the lung, many chronic lung diseases may lead to fibrosis, the most devastating being idiopathic pulmonary fibrosis (IPF), which affects approximately 3 million people worldwide and has a median survival of 3.8 years. Currently approved therapies for IPF do not significantly extend lifespan, and thus, there is pressing need for novel therapeutic strategies to treat IPF and other fibrotic diseases. At the heart of pulmonary fibrosis are myofibroblasts, contractile cells with characteristics of both fibroblasts and smooth muscle cells, which are the primary cell type responsible for matrix deposition in fibrotic diseases. Much work has centered around targeting the extracellular growth factors and intracellular signaling regulators of myofibroblast differentiation. Recently, metabolic changes associated with myofibroblast differentiation have come to the fore as targetable mechanisms required for myofibroblast function. In this review, we will discuss the metabolic changes associated with myofibroblast differentiation, as well as the mechanisms by which these changes promote myofibroblast function. We will then discuss the potential for this new knowledge to lead to the development of novel therapies for IPF and other fibrotic diseases.
Collapse
Affiliation(s)
- Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL, USA
| |
Collapse
|
29
|
McIlvenna LC, Patten RK, McAinch AJ, Rodgers RJ, Stepto NK, Moreno-Asso A. Transforming Growth Factor Beta 1 Alters Glucose Uptake but Not Insulin Signalling in Human Primary Myotubes From Women With and Without Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2021; 12:732338. [PMID: 34707569 PMCID: PMC8544291 DOI: 10.3389/fendo.2021.732338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Women with polycystic ovary syndrome (PCOS), commonly have profound skeletal muscle insulin resistance which can worsen other clinical features. The heterogeneity of the condition has made it challenging to identify the precise mechanisms that cause this insulin resistance. A possible explanation for the underlying insulin resistance may be the dysregulation of Transforming Growth Factor-beta (TGFβ) signalling. TGFβ signalling contributes to the remodelling of reproductive and hepatic tissues in women with PCOS. Given the systemic nature of TGFβ signalling and its role in skeletal muscle homeostasis, it may be possible that these adverse effects extend to other peripheral tissues. We aimed to determine if TGFβ1 could negatively regulate glucose uptake and insulin signalling in skeletal muscle of women with PCOS. We show that both myotubes from women with PCOS and healthy women displayed an increase in glucose uptake, independent of changes in insulin signalling, following short term (16 hr) TGFβ1 treatment. This increase occurred despite pro-fibrotic signalling increasing via SMAD3 and connective tissue growth factor in both groups following treatment with TGFβ1. Collectively, our findings show that short-term treatment with TGFβ1 does not appear to influence insulin signalling or promote insulin resistance in myotubes. These findings suggest that aberrant TGFβ signalling is unlikely to directly contribute to skeletal muscle insulin resistance in women with PCOS in the short term but does not rule out indirect or longer-term effects.
Collapse
Affiliation(s)
- Luke C. McIlvenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Rhiannon K. Patten
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Raymond J. Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nigel K. Stepto
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, Melbourne, VIC, Australia
- *Correspondence: Alba Moreno-Asso,
| |
Collapse
|
30
|
Nilchian A, Giotopoulou N, Sun W, Fuxe J. Different Regulation of Glut1 Expression and Glucose Uptake during the Induction and Chronic Stages of TGFβ1-Induced EMT in Breast Cancer Cells. Biomolecules 2020; 10:E1621. [PMID: 33271824 PMCID: PMC7760794 DOI: 10.3390/biom10121621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor beta 1 (TGF-β1) is associated with epithelial-mesenchymal transition (EMT), lymph metastasis, and poor prognosis in breast cancer. Paradoxically, TGF-β1 is also a potent inhibitor of cell proliferation. TGF-β1-induced EMT involves activation of several pathways including AKT, which also regulates glucose uptake. Recent data show that prolonged TGF-β1 exposure leads to a more stable EMT phenotype in breast cancer cells. However, whether this is linked to changes in glucose metabolism is not clear. Here, we used a model of TGF-β1-induced EMT in mammary epithelial cells to study the regulation of Glut1 and EMT markers during the induction compared to a prolonged phase of EMT by western blot, immunofluorescence and qPCR analysis. We also measured cell proliferation and uptake of the glucose analogue 2-NDBG. We found that EMT induction was associated with decreased Glut1 expression and glucose uptake. These effects were linked to reduced cell proliferation rather than EMT. Knockdown of Glut1 resulted in growth inhibition and less induction of vimentin during TGF-β1-induced EMT. Intriguingly, Glut1 levels, glucose uptake and cell proliferation were restored during prolonged EMT. The results link Glut1 repression to the anti-proliferative response of TGF-β1 and indicate that re-expression of Glut1 during chronic TGF-β1 exposure allows breast cancer cells to develop stable EMT and proliferate, in parallel.
Collapse
Affiliation(s)
| | | | | | - Jonas Fuxe
- Karolinska Institutet, Department of Laboratory Medicine (LABMED), H5, Division of Pathology, F46, Karolinska University Hospital, 141 52 Huddinge, Sweden; (A.N.); (N.G.); (W.S.)
| |
Collapse
|
31
|
Lin Y, Xu Z. Fibroblast Senescence in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2020; 8:593283. [PMID: 33324646 PMCID: PMC7723977 DOI: 10.3389/fcell.2020.593283] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable and complex natural phenomenon due to the increase in age. Cellular senescence means a non-proliferative but viable cellular physiological state. It is the basis of aging, and it exists in the body at any time point. Idiopathic pulmonary fibrosis (IPF) is an interstitial fibrous lung disease with unknown etiology, characterized by irreversible destruction of lung structure and function. Aging is one of the most critical risk factors for IPF, and extensive epidemiological data confirms IPF as an aging-related disease. Senescent fibroblasts in IPF show abnormal activation, telomere shortening, metabolic reprogramming, mitochondrial dysfunction, apoptosis resistance, autophagy deficiency, and senescence-associated secretory phenotypes (SASP). These characteristics of senescent fibroblasts establish a close link between cellular senescence and IPF. The treatment of senescence-related molecules and pathways is continually emerging, and using senolytics eliminating senescent fibroblasts is also actively tried as a new therapy for IPF. In this review, we discuss the roles of aging and cellular senescence in IPF. In particular, we summarize the signaling pathways through which senescent fibroblasts influence the occurrence and development of IPF. On this basis, we further talk about the current treatment ideas, hoping this paper can be used as a helpful reference for future researches.
Collapse
Affiliation(s)
- Yifan Lin
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
32
|
Henderson J, Duffy L, Stratton R, Ford D, O'Reilly S. Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis. J Cell Mol Med 2020; 24:14026-14038. [PMID: 33140521 PMCID: PMC7754020 DOI: 10.1111/jcmm.16013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic Sclerosis (SSc) is a rare fibrotic autoimmune disorder for which no curative treatments currently exist. Metabolic remodelling has recently been implicated in other autoimmune diseases; however, its potential role in SSc has received little attention. Here, we aimed to determine whether changes to glycolysis and glutaminolysis are important features of skin fibrosis. TGF‐β1, the quintessential pro‐fibrotic stimulus, was used to activate fibrotic pathways in NHDFs in vitro. Dermal fibroblasts derived from lesions of SSc patients were also used for in vitro experiments. Parameters of glycolytic function were assessed using by measuring extracellular acidification in response to glycolytic activators/inhibitors, whilst markers of fibrosis were measured by Western blotting following the use of the glycolysis inhibitors 2‐dg and 3PO and the glutaminolysis inhibitor G968. Succinate was also measured after TGF‐β1 stimulation. Itaconate was added to SSc fibroblasts and collagen examined. TGF‐β1 up‐regulates glycolysis in dermal fibroblasts, and inhibition of glycolysis attenuates its pro‐fibrotic effects. Furthermore, inhibition of glutamine metabolism also reverses TGF‐β1‐induced fibrosis, whilst glutaminase expression is up‐regulated in dermal fibroblasts derived from SSc patient skin lesions, suggesting that enhanced glutamine metabolism is another aspect of the pro‐fibrotic metabolic phenotype in skin fibrosis. TGF‐β1 was also able to enhance succinate production, with increased succinate shown to be associated with increased collagen expression. Incubation of SSc cells with itaconate, an important metabolite, reduced collagen expression. TGF‐β1 activation of glycolysis is a key feature of the fibrotic phenotype induced by TGF‐B1 in skin cells, whilst increased glutaminolysis is also evident in SSc fibroblasts.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Laura Duffy
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatic and Connective Tissue Diseases, University College London, London, UK
| | - Dianne Ford
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven O'Reilly
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
33
|
Khawaja AA, Chong DLW, Sahota J, Mikolasch TA, Pericleous C, Ripoll VM, Booth HL, Khan S, Rodriguez-Justo M, Giles IP, Porter JC. Identification of a Novel HIF-1α-α Mβ 2 Integrin-NET Axis in Fibrotic Interstitial Lung Disease. Front Immunol 2020; 11:2190. [PMID: 33178179 PMCID: PMC7594517 DOI: 10.3389/fimmu.2020.02190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Neutrophilic inflammation correlates with mortality in fibrotic interstitial lung disease (ILD) particularly in the most severe form, idiopathic pulmonary fibrosis (IPF), although the underlying mechanisms remain unclear. Neutrophil function is modulated by numerous factors, including integrin activation, inflammatory cytokines and hypoxia. Hypoxia has an important role in inflammation and may also contribute to pulmonary disease. We aimed to determine how neutrophil activation occurs in ILD and the relative importance of hypoxia. Using lung biopsies and bronchoalveolar lavage (BAL) fluid from ILD patients we investigated the extent of hypoxia and neutrophil activation in ILD lungs. Then we used ex vivo neutrophils isolated from healthy volunteers and BAL from patients with ILD and non-ILD controls to further investigate aberrant neutrophil activation in hypoxia and ILD. We demonstrate for the first time using intracellular staining, HIF-1α stabilization in neutrophils and endothelial cells in ILD lung biopsies. Hypoxia enhanced both spontaneous (+1.31-fold, p < 0.05) and phorbol 12-myristate 13-acetate (PMA)-induced (+1.65-fold, p < 0.001) neutrophil extracellular trap (NET) release, neutrophil adhesion (+8.8-fold, <0.05), and trans-endothelial migration (+1.9-fold, p < 0.05). Hypoxia also increased neutrophil expression of the αM (+3.1-fold, p < 0.001) and αX (+1.6-fold, p < 0.01) integrin subunits. Interestingly, NET formation was induced by αMβ2 integrin activation and prevented by cation chelation. Finally, we observed NET-like structures in IPF lung sections and in the BAL from ILD patients, and quantification showed increased cell-free DNA content (+5.5-fold, p < 0.01) and MPO-citrullinated histone H3 complexes (+21.9-fold, p < 0.01) in BAL from ILD patients compared to non-ILD controls. In conclusion, HIF-1α upregulation may augment neutrophil recruitment and activation within the lung interstitium through activation of β2 integrins. Our results identify a novel HIF-1α- αMβ2 integrin axis in NET formation for future exploration in therapeutic approaches to fibrotic ILD.
Collapse
Affiliation(s)
- Akif A. Khawaja
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Deborah L. W. Chong
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Jagdeep Sahota
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Theresia A. Mikolasch
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Charis Pericleous
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Vera M. Ripoll
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Helen L. Booth
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Saif Khan
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Department of Histopathology, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Ian P. Giles
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
34
|
Hernandez DM, Kang JH, Choudhury M, Andrianifahanana M, Yin X, Limper AH, Leof EB. IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J 2020; 34:5363-5388. [PMID: 32067272 PMCID: PMC7136152 DOI: 10.1096/fj.201901719rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Pathogenic fibrotic diseases, including idiopathic pulmonary fibrosis (IPF), have some of the worst prognoses and affect millions of people worldwide. With unclear etiology and minimally effective therapies, two-thirds of IPF patients die within 2-5 years from this progressive interstitial lung disease. Transforming Growth Factor Beta (TGFβ) and insulin-like growth factor-1 (IGF-1) are known to promote fibrosis; however, myofibroblast specific upregulation of IGF-1 in the initiation and progression of TGFβ-induced fibrogenesis and IPF have remained unexplored. To address this, the current study (1) documents the upregulation of IGF-1 via TGFβ in myofibroblasts and fibrotic lung tissue, as well as its correlation with decreased pulmonary function in advanced IPF; (2) identifies IGF-1's C1 promoter as mediating the increase in IGF-1 transcription by TGFβ in pulmonary fibroblasts; (3) determines that SMAD2 and mTOR signaling are required for TGFβ-dependent Igf-1 expression in myofibroblasts; (4) demonstrates IGF-1R activation is essential to support TGFβ-driven profibrotic myofibroblast functions and excessive wound healing; and (5) establishes the effectiveness of slowing the progression of murine lung fibrosis with the IGF-1R inhibitor OSI-906. These findings expand our knowledge of IGF-1's role as a novel fibrotic-switch, bringing us one step closer to understanding the complex biological mechanisms responsible for fibrotic diseases and developing effective therapies.
Collapse
Affiliation(s)
- Danielle M. Hernandez
- Mayo Clinic Graduate School of Biomedical Sciences, Biochemistry & Molecular Biology Department, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Neurosurgery, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Malay Choudhury
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Current Address: Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Andrew H. Limper
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Edward B. Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
35
|
Schwörer S, Berisa M, Violante S, Qin W, Zhu J, Hendrickson RC, Cross JR, Thompson CB. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J 2020; 39:e103334. [PMID: 32134147 DOI: 10.15252/embj.2019103334] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022] Open
Abstract
The production and secretion of matrix proteins upon stimulation of fibroblasts by transforming growth factor-beta (TGFβ) play a critical role in wound healing. How TGFβ supports the bioenergetic cost of matrix protein synthesis is not fully understood. Here, we show that TGFβ promotes protein translation at least in part by increasing the mitochondrial oxidation of glucose and glutamine carbons to support the bioenergetic demand of translation. Surprisingly, we found that in addition to stimulating the entry of glucose and glutamine carbon into the TCA cycle, TGFβ induced the biosynthesis of proline from glutamine in a Smad4-dependent fashion. Metabolic manipulations that increased mitochondrial redox generation promoted proline biosynthesis, while reducing mitochondrial redox potential and/or ATP synthesis impaired proline biosynthesis. Thus, proline biosynthesis acts as a redox vent, preventing the TGFβ-induced increase in mitochondrial glucose and glutamine catabolism from generating damaging reactive oxygen species (ROS) when TCA cycle activity exceeds the ability of oxidative phosphorylation to convert mitochondrial redox potential into ATP. In turn, the enhanced synthesis of proline supports TGFβ-induced production of matrix proteins.
Collapse
Affiliation(s)
- Simon Schwörer
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mirela Berisa
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weige Qin
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiajun Zhu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
36
|
Nwadozi E, Rudnicki M, Haas TL. Metabolic Coordination of Pericyte Phenotypes: Therapeutic Implications. Front Cell Dev Biol 2020; 8:77. [PMID: 32117997 PMCID: PMC7033550 DOI: 10.3389/fcell.2020.00077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Pericytes are mural vascular cells found predominantly on the abluminal wall of capillaries, where they contribute to the maintenance of capillary structural integrity and vascular permeability. Generally quiescent cells in the adult, pericyte activation and proliferation occur during both physiological and pathological vascular and tissue remodeling. A considerable body of research indicates that pericytes possess attributes of a multipotent adult stem cell, as they are capable of self-renewal as well as commitment and differentiation into multiple lineages. However, pericytes also display phenotypic heterogeneity and recent studies indicate that lineage potential differs between pericyte subpopulations. While numerous microenvironmental cues and cell signaling pathways are known to regulate pericyte functions, the roles that metabolic pathways play in pericyte quiescence, self-renewal or differentiation have been given limited consideration to date. This review will summarize existing data regarding pericyte metabolism and will discuss the coupling of signal pathways to shifts in metabolic pathway preferences that ultimately regulate pericyte quiescence, self-renewal and trans-differentiation. The association between dysregulated metabolic processes and development of pericyte pathologies will be highlighted. Despite ongoing debate regarding pericyte classification and their functional capacity for trans-differentiation in vivo, pericytes are increasingly exploited as a cell therapy tool to promote tissue healing and regeneration. Ultimately, the efficacy of therapeutic approaches hinges on the capacity to effectively control/optimize the fate of the implanted pericytes. Thus, we will identify knowledge gaps that need to be addressed to more effectively harness the opportunity for therapeutic manipulation of pericytes to control pathological outcomes in tissue remodeling.
Collapse
Affiliation(s)
| | | | - Tara L. Haas
- School of Kinesiology and Health Science, Angiogenesis Research Group and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
37
|
Meyer K, Morales‐Navarrete H, Seifert S, Wilsch‐Braeuninger M, Dahmen U, Tanaka EM, Brusch L, Kalaidzidis Y, Zerial M. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Mol Syst Biol 2020; 16:e8985. [PMID: 32090478 PMCID: PMC7036714 DOI: 10.15252/msb.20198985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.
Collapse
Affiliation(s)
- Kirstin Meyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Uta Dahmen
- Experimental Transplantation SurgeryDepartment of General, Visceral and Vascular SurgeryJena University HospitalJenaGermany
| | - Elly M Tanaka
- Research Institute of Molecular PathologyVienna BioCenterViennaAustria
| | - Lutz Brusch
- Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Faculty of Bioengineering and BioinformaticsMoscow State UniversityMoscowRussia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
38
|
Abstract
Glucose addiction is observed in cancer and other diseases that are associated with hyperproliferation. The development of compounds that restrict glucose supply and decrease glycolysis has great potential for the development of new therapeutic approaches. Addressing facilitative glucose transporters (GLUTs), which are often upregulated in glucose-dependent cells, is therefore of particular interest. This article reviews a selection of potent, isoform-selective GLUT inhibitors and their biological characterization. Potential therapeutic applications of GLUT inhibitors in oncology and other diseases that are linked to glucose addiction are discussed.
Collapse
Affiliation(s)
- Elena S. Reckzeh
- Department Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Department Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Department Chemical BiologyMax Planck Institute of Molecular PhysiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Department Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
| |
Collapse
|
39
|
Senavirathna LK, Huang C, Pushparaj S, Xu D, Liu L. Hypoxia and transforming growth factor β1 regulation of long non-coding RNA transcriptomes in human pulmonary fibroblasts. Physiol Rep 2020; 8:e14343. [PMID: 31925944 PMCID: PMC6954122 DOI: 10.14814/phy2.14343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the key characteristics of idiopathic pulmonary fibrosis (IPF) is accumulation of excess fibrous tissue in the lung, which leads to hypoxic conditions. Transforming growth factor (TGF) β is a major mediator that promotes the differentiation of fibroblasts to myofibroblasts. However, how hypoxia and TGFβ together contribute the pathogenesis of IPF is poorly understood. Long non-coding RNAs (lncRNAs) have regulatory effects on certain genes and are involved in many diseases. In this study, we determined the effects of hypoxia and/or TGFβ on mRNA and lncRNA transcriptomes in pulmonary fibroblasts. Hypoxia and TGFβ1 synergistically increased myofibroblast marker expression. RNA sequencing revealed that hypoxia and TGFβ1 treatment resulted in significant changes in 669 lncRNAs and 2,676 mRNAs compared to 150 lncRNAs and 858 mRNAs in TGFβ1 alone group and 222 lncRNAs and 785 mRNAs in hypoxia alone group. TGFβ1 induced the protein expression of HIF-1α, but not HIF-2α. On the other hand, hypoxia enhanced the TGFβ1-induced phosphorylation of Smad3, suggesting a cross-talk between these two signaling pathways. In all, 10 selected lncRNAs (five-up and five-down) in RNA sequencing data were validated using real-time PCR. Two lncRNAs were primarily located in cytoplasm, three in nuclei and five in both nuclei and cytoplasm. The silencing of HIF-1α and Smad3, but not Smad2 and HIF-2α rescued the downregulation of FENDRR by hypoxia and TGFβ1. In conclusion, hypoxia and TGFβ1 synergistically regulate mRNAs and lncRNAs involved in several cellular processes, which may contribute to the pathogenesis of IPF.
Collapse
Affiliation(s)
- Lakmini K. Senavirathna
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|
40
|
Yin X, Choudhury M, Kang JH, Schaefbauer KJ, Jung MY, Andrianifahanana M, Hernandez DM, Leof EB. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci Signal 2019; 12:12/612/eaax4067. [PMID: 31848318 DOI: 10.1126/scisignal.aax4067] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic dysregulation in fibroblasts is implicated in the profibrotic actions of transforming growth factor-β (TGF-β). Here, we present evidence that hexokinase 2 (HK2) is important for mediating the fibroproliferative activity of TGF-β both in vitro and in vivo. Both Smad-dependent and Smad-independent TGF-β signaling induced HK2 accumulation in murine and human lung fibroblasts through induction of the transcription factor c-Myc. Knockdown of HK2 or pharmacological inhibition of HK2 activity with Lonidamine decreased TGF-β-stimulated fibrogenic processes, including profibrotic gene expression, cell migration, colony formation, and activation of the transcription factors YAP and TAZ, with no apparent effect on cellular viability. Fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibited an increased abundance of HK2. In a mouse model of bleomycin-induced lung fibrosis, Lonidamine reduced the expression of genes encoding profibrotic markers (collagenΙα1, EDA-fibronectin, α smooth muscle actin, and connective tissue growth factor) and stabilized or improved lung function as assessed by measurement of peripheral blood oxygenation. These findings provide evidence of how metabolic dysregulation through HK2 can be integrated within the context of profibrotic TGF-β signaling.
Collapse
Affiliation(s)
- Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Malay Choudhury
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kyle J Schaefbauer
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mi-Yeon Jung
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Danielle M Hernandez
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Edward B Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
41
|
Akaike K, Saruwatari K, Oda S, Shiraishi S, Takahashi H, Hamada S, Iyama S, Horio Y, Tomita Y, Saeki S, Okamoto S, Ichiyasu H, Fujii K, Sakagami T. Predictive value of 18F-FDG PET/CT for acute exacerbation of interstitial lung disease in patients with lung cancer and interstitial lung disease treated with chemotherapy. Int J Clin Oncol 2019; 25:681-690. [PMID: 31781994 DOI: 10.1007/s10147-019-01584-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND We examined whether fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) performed before chemotherapy could predict the onset of acute exacerbation of interstitial lung disease (AE-ILD) in patients with lung cancer and ILD treated with chemotherapy. METHODS Thirty-three patients with lung cancer and ILD who underwent 18F-FDG PET/CT and were treated with chemotherapy at Kumamoto University Hospital between April 2006 and March 2018 were retrospectively analyzed. The maximum standardized uptake value (SUVmax) of interstitial lesions was measured to quantify the background ILD activity. A prediction model of AE-ILD was developed using logistic regression analyses for the SUVmax, and receiver operating characteristic (ROC) curve analyses were conducted. RESULTS Among the 33 patients, 7 experienced AE-ILD. The SUVmax of contralateral interstitial lesions was significantly higher in patients with vs. without AE-ILD (median SUVmax: 2.220 vs. 1.795, P = 0.025). Univariable logistic regression analyses showed that the SUVmax of contralateral interstitial lesions trended towards being significantly associated with the onset of AE-ILD [odds ratio: 8.683, 95% confidence interval (CI) 0.88-85.83, P = 0.064]. The area under the ROC curve of the SUVmax for predicting AE-ILD was 0.780 (95% CI 0.579-0.982, P = 0.025). The optimal cut-off value for SUVmax was 2.005, with sensitivity and specificity values of 0.857 and 0.769, respectively. CONCLUSIONS The SUVmax of contralateral interstitial lesions in 18F-FDG PET/CT images might be useful for predicting the onset of AE-ILD in patients with lung cancer and ILD treated with chemotherapy.
Collapse
Affiliation(s)
- Kimitaka Akaike
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Koichi Saruwatari
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan.
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shinya Shiraishi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiroshi Takahashi
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Shohei Hamada
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Shinji Iyama
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yuko Horio
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Yusuke Tomita
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Sho Saeki
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Shinichiro Okamoto
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Hidenori Ichiyasu
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Kazuhiko Fujii
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Kumamoto University Hospital, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto, 860-8556, Japan
| |
Collapse
|
42
|
Kang JH, Jung MY, Leof EB. B7-1 drives TGF-β stimulated pancreatic carcinoma cell migration and expression of EMT target genes. PLoS One 2019; 14:e0222083. [PMID: 31483844 PMCID: PMC6726221 DOI: 10.1371/journal.pone.0222083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
B7-1 proteins are routinely expressed on the surface of antigen presenting cells (APC) and within the innate immune system. They function to establish a biologically optimal and dynamic balance between immune activation and inhibition or self-tolerance. Interactions between B7-1 and its receptors, which include CD28, CTLA4 and PD-L1, contribute to both stimulatory as well as inhibitory or homeostatic regulation. In the current study, we investigated whether the tumor-promoting actions of transforming growth factor beta (TGF-β) disrupted this equilibrium in pancreatic cancer to promote malignant progression and an enhanced means to evade immune detection. The data show that B7-1 is (i) upregulated following treatment of pancreatic carcinoma cells with TGF-β; (ii) induced by TGF-β via both Smad2/3-dependent and independent pathways; (iii) required for pancreatic tumor cell in vitro migration/invasion; and (iv) necessary for TGF-β regulated epithelial-mesenchymal transition (EMT) through induction of Snail family members. Results from the proposed studies provide valuable insights into mechanisms whereby TGF-β regulates both the innate immune response and intrinsic properties of pancreatic tumor growth.
Collapse
Affiliation(s)
- Jeong-Han Kang
- Departments of Medicine and Biochemistry & Molecular Biology, Division of Pulmonary and Critical Care Medicine, Thoracic Disease Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Mi-Yeon Jung
- Departments of Medicine and Biochemistry & Molecular Biology, Division of Pulmonary and Critical Care Medicine, Thoracic Disease Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Edward B. Leof
- Departments of Medicine and Biochemistry & Molecular Biology, Division of Pulmonary and Critical Care Medicine, Thoracic Disease Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| |
Collapse
|
43
|
Fang T, Wang M, Xiao H, Wei X. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol 2019; 35:493-502. [PMID: 31119467 DOI: 10.1007/s10565-019-09473-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/05/2023]
Abstract
The functions of body gradually decrease as the age increases, leading to a higher frequency of incidence of age-related diseases. Diseases associated with aging in the respiratory system include chronic obstructive pulmonary disease (COPD), IPF (idiopathic pulmonary fibrosis), asthma, lung cancer, and so on. The mitochondrial dysfunction is not only a sign of aging, but also is a disease trigger. This article aims to explain mitochondrial dysfunction as an aging marker, and its role in aging diseases of lung. We also discuss whether the mitochondria can be used as a target for the treatment of aging lung disease.
Collapse
Affiliation(s)
- Tingting Fang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Manni Wang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Hengyi Xiao
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
44
|
Selvarajah B, Azuelos I, Platé M, Guillotin D, Forty EJ, Contento G, Woodcock HV, Redding M, Taylor A, Brunori G, Durrenberger PF, Ronzoni R, Blanchard AD, Mercer PF, Anastasiou D, Chambers RC. mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-β 1-induced collagen biosynthesis. Sci Signal 2019; 12:eaav3048. [PMID: 31113850 PMCID: PMC6584619 DOI: 10.1126/scisignal.aav3048] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The differentiation of fibroblasts into a transient population of highly activated, extracellular matrix (ECM)-producing myofibroblasts at sites of tissue injury is critical for normal tissue repair. Excessive myofibroblast accumulation and persistence, often as a result of a failure to undergo apoptosis when tissue repair is complete, lead to pathological fibrosis and are also features of the stromal response in cancer. Myofibroblast differentiation is accompanied by changes in cellular metabolism, including increased glycolysis, to meet the biosynthetic demands of enhanced ECM production. Here, we showed that transforming growth factor-β1 (TGF-β1), the key pro-fibrotic cytokine implicated in multiple fibrotic conditions, increased the production of activating transcription factor 4 (ATF4), the transcriptional master regulator of amino acid metabolism, to supply glucose-derived glycine to meet the amino acid requirements associated with enhanced collagen production in response to myofibroblast differentiation. We further delineated the signaling pathways involved and showed that TGF-β1-induced ATF4 production depended on cooperation between canonical TGF-β1 signaling through Smad3 and activation of mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). ATF4, in turn, promoted the transcription of genes encoding enzymes of the de novo serine-glycine biosynthetic pathway and glucose transporter 1 (GLUT1). Our findings suggest that targeting the TGF-β1-mTORC1-ATF4 axis may represent a novel therapeutic strategy for interfering with myofibroblast function in fibrosis and potentially in other conditions, including cancer.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Ilan Azuelos
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Manuela Platé
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Ellen J Forty
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Greg Contento
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Hannah V Woodcock
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Matthew Redding
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Adam Taylor
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Gino Brunori
- GlaxoSmithKline, David Jack Centre for R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Pascal F Durrenberger
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Riccardo Ronzoni
- Centre for Respiratory Biology, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | - Andy D Blanchard
- Fibrosis Discovery Performance Unit, Respiratory Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK
| | | | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Building, University College London, London WC1E 6JF, UK.
| |
Collapse
|
45
|
Schwörer S, Vardhana SA, Thompson CB. Cancer Metabolism Drives a Stromal Regenerative Response. Cell Metab 2019; 29:576-591. [PMID: 30773467 PMCID: PMC6692899 DOI: 10.1016/j.cmet.2019.01.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/12/2018] [Accepted: 01/20/2019] [Indexed: 01/07/2023]
Abstract
The metabolic reprogramming associated with malignant transformation has led to a growing appreciation of the nutrients required to support anabolic cell growth. Less well studied is how cancer cells satisfy those demands in vivo, where they are dispersed within a complex microenvironment. Tumor-associated stromal components can support tumor growth by providing nutrients that supplement those provided by the local vasculature. These non-malignant stromal cells are phenotypically similar to those that accumulate during wound healing. Owing to their immediate proximity, stromal cells are inevitably affected by the metabolic activity of their cancerous neighbors. Until recently, a role for tumor cell metabolism in influencing the cell fate decisions of neighboring stromal cells has been underappreciated. Here, we propose that metabolites consumed and released by tumor cells act as paracrine factors that regulate the non-malignant cellular composition of a developing tumor by driving stromal cells toward a regenerative response that supports tumor growth.
Collapse
Affiliation(s)
- Simon Schwörer
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA
| | - Santosha A Vardhana
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA
| | - Craig B Thompson
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, New York, NY 10065, USA.
| |
Collapse
|
46
|
Lukey PT, Harrison SA, Yang S, Man Y, Holman BF, Rashidnasab A, Azzopardi G, Grayer M, Simpson J, Bareille P, Paul L, Woodcock HV, Toshner R, Saunders P, Molyneaux PL, Thielemans K, Wilson FJ, Mercer PF, Chambers RC, Groves AM, Fahy WA, Marshall RP, Maher TM. A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. Eur Respir J 2019; 53:13993003.01992-2018. [DOI: 10.1183/13993003.01992-2018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/11/2018] [Indexed: 11/05/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) and mammalian target of rapamycin (mTOR) play a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Omipalisib (GSK2126458) is a potent inhibitor of PI3K/mTOR.A randomised, placebo-controlled, double-blind, repeat dose escalation, experimental medicine study of omipalisib in subjects with IPF was conducted (NCT01725139) to test safety, tolerability, pharmacokinetics and pharmacodynamics. Omipalisib was dosed at 0.25 mg, 1 mg and 2 mg twice daily for 8 days in four cohorts of four subjects randomised 3:1 to receive omipalisib or placebo (two cohorts received 2 mg twice daily).17 subjects with IPF were enrolled. The most common adverse event was diarrhoea, which was reported by four participants. Dose-related increases in insulin and glucose were observed. Pharmacokinetic analysis demonstrated that exposure in the blood predicts lung exposure. Exposure-dependent inhibition of phosphatidylinositol 3,4,5 trisphosphate and pAKT confirmed target engagement in blood and lungs. 18F-2-fluoro-2-deoxy-d-glucose(FDG)-positron emission tomography/computed tomography scans revealed an exposure-dependent reduction in 18F-FDG uptake in fibrotic areas of the lung, as measured by target-to-background, ratio thus confirming pharmacodynamic activity.This experimental medicine study demonstrates acceptable tolerability of omipalisib in subjects with IPF at exposures for which target engagement was confirmed both systemically and in the lungs.
Collapse
|
47
|
Castiaux A, Van Simaeys G, Goldman S, Bondue B. Assessment of 18F-FDG uptake in idiopathic pulmonary fibrosis: influence of lung density changes. Eur J Hybrid Imaging 2018. [DOI: 10.1186/s41824-018-0045-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Wang Y, Zhang T, Guo L, Ren T, Yang Y. Stromal extracellular matrix is a microenvironmental cue promoting resistance to EGFR tyrosine kinase inhibitors in lung cancer cells. Int J Biochem Cell Biol 2018; 106:96-106. [PMID: 30471423 DOI: 10.1016/j.biocel.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
The acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a critical problem in lung cancer clinic, but the underlying mechanisms have remained incompletely understood. Although the TKI-induced or -selected genetic changes are known to drive resistance, resistance also occurs in tumor cells without genetic changes through poorly-characterized processes. Here, we show that the extracellular matrix (ECM) from various components of the tumor microenvironment, including neighboring tumor cells and fibroblasts, may be the driver of resistance in the absence of genetic changes. Unlike genetic changes, which may evolve during relatively long time of chronic EGFR TKI treatment to drive resistance, briefly culturing on de-cellularized ECM, or co-culturing with the ECM donor cells, immediately confers resistance to tumor cells that are otherwise sensitive to EGFR TKIs. We show evidence that collagen in the ECM may be its primary constituent driving resistance, at least partly through the collagen receptor Integrin-β1. Intriguingly, such effect of ECM and collagen is dose-dependent and reversible, suggesting a potential clinic-relevant application for targeting this effect. Collectively, our results reveal that the stromal ECM acts as a microenvironmental cue promoting EGFR TKI resistance in lung cancer cells, and targeting collagen and Integrin-β1 may be useful for treating resistance, especially the resistance without clearly-defined genetic changes, for which effective therapeutics are lacking.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ting Zhang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lixia Guo
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yanan Yang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Developmental Therapeutics and Cell Biology Programs, Mayo Clinic Cancer Center, Rochester, MN 55905, USA.
| |
Collapse
|
49
|
Liu H, Zhang Z, Li Y, Wang X, Zhang Y, Chu Y, Yuan X, Wang X. Preparation and evaluation of anti-renal fibrosis activity of novel truncated TGF-β receptor type II. Biotechnol Appl Biochem 2018; 65:834-840. [PMID: 30066965 DOI: 10.1002/bab.1667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Production of excessive transforming growth factor-beta 1 (TGF-β1) with elevated TGF-β1 activity has been implicated in renal fibrosis via renal epithelial cells activation and collagen deposition. As such, attenuating the binding of TGF-β1 to its receptor TGF-beta receptor type II (TGF-βRII) in TGF-β1-dependent signaling is an attractive target for the control of renal fibrosis. Here, we verified the interaction between novel truncated human TGF-βRII (thTβRII, Thr23-Gln166) and TGF-β1, prepared thTβRII in Escherichia coli, and assessed the effects of thTβRII on TGF-β1-induced human kidney epithelial cells (HK-2) and unilateral ureteral obstruction (UUO) model of renal fibrosis. Our data showed that thTβRII accounted for up to 20% of the total protein and 40% of the inclusion bodies of whole cell lysates under the optimal conditions (0.8 mM IPTG and 25°C for 6 H). Most of the expressed protein in inclusion body was refolded by dialysis refolding procedures and purified by Ni2+ -IDA affinity chromatography. Furthermore, thTβRII decreased type I collagen and α-smooth muscle actin protein expression in TGF-β1-induced HK-2 cells, and ameliorated kidney morphology and fibrotic responses in fibrosis animal. These findings indicate that thTβRII holds great promise for developing new treatments for renal fibrosis.
Collapse
Affiliation(s)
- Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Zhongmin Zhang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yuting Li
- Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaoli Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yufei Zhang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohua Wang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
50
|
Jung MY, Kang JH, Hernandez DM, Yin X, Andrianifahanana M, Wang Y, Gonzalez-Guerrico A, Limper AH, Lupu R, Leof EB. Fatty acid synthase is required for profibrotic TGF-β signaling. FASEB J 2018; 32:3803-3815. [PMID: 29475397 PMCID: PMC5998981 DOI: 10.1096/fj.201701187r] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
Evidence is provided that the fibroproliferative actions of TGF-β are dependent on a metabolic adaptation that sustains pathologic growth. Specifically, profibrotic TGF-β signaling is shown to require fatty acid synthase (FASN), an essential anabolic enzyme responsible for the de novo synthesis of fatty acids. With the use of pharmacologic and genetic approaches, we show that TGF-β-stimulated FASN expression is independent of Smad2/3 and is mediated via mammalian target of rapamycin complex 1. In the absence of FASN activity or protein, TGF-β-driven fibrogenic processes are reduced with no apparent toxicity. Furthermore, as increased FASN expression was also observed to correlate with the degree of lung fibrosis in bleomycin-treated mice, inhibition of FASN was examined in a murine-treatment model of pulmonary fibrosis. Remarkably, inhibition of FASN not only decreased expression of profibrotic targets, but lung function was also stabilized/improved, as assessed by peripheral blood oxygenation.-Jung, M.-Y., Kang, J.-H., Hernandez, D. M., Yin, X., Andrianifahanana, M., Wang, Y., Gonzalez-Guerrico, A., Limper, A. H., Lupu, R., Leof, E. B. Fatty acid synthase is required for profibrotic TGF-β signaling.
Collapse
Affiliation(s)
- Mi-Yeon Jung
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Danielle M. Hernandez
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Youli Wang
- Division of Nephrology, Augusta University, Augusta, Georgia, USA; and
| | - Anatilde Gonzalez-Guerrico
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Edward B. Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|