1
|
Tamayo E, Nada B, Hafermann I, Benz JP. Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate. Appl Microbiol Biotechnol 2024; 108:83. [PMID: 38189952 PMCID: PMC10774165 DOI: 10.1007/s00253-023-12907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Isabell Hafermann
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Chaudhari BY, Pradhan AG, Joshi RS. Metabolic gatekeepers: Dynamic roles of sugar transporters in insect metabolism and physiology. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39394882 DOI: 10.1111/imb.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
Sugars play multiple critical roles in insects, serving as energy sources, carbon skeletons, osmolytes and signalling molecules. The transport of sugars from source to sink via membrane proteins is essential for the uptake, distribution and utilization of sugars across various tissues. Sugar supply and distribution are crucial for insect development, flight, diapause and reproduction. Insect sugar transporters (STs) share significant structural and functional similarities with those in mammals and other higher eukaryotes. However, they exhibit unique characteristics, including differential regulation, substrate selectivity and kinetics. Here, we have discussed structural diversity, evolutionary trends, expression dynamics, mechanisms of action and functional significance of insect STs. The sequence and structural diversity of insect STs, highlighted by the analysis of conserved domains and evolutionary patterns, underpins their functional differentiation and divergence. The review emphasizes the importance of STs in insect metabolism, physiology and stress tolerance. It also discusses how variations in transporter regulation, expression, selectivity and activity contribute to functional differences. Furthermore, we have underlined the potential and necessity of studying these mechanisms and roles to gain a deeper understanding of insect glycobiology. Understanding the regulation and function of sugar transporters is vital for comprehending insect metabolism and physiological potential. This review provides valuable insights into the diverse functionalities of insect STs and their significant roles in metabolism and physiology.
Collapse
Affiliation(s)
- Bhagyashri Y Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya G Pradhan
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Rakesh S Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism Department, John Innes Centre, Norwich, UK
| | - Anthony J Miller
- Biochemistry & Metabolism Department, John Innes Centre, Norwich, UK
| | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, Jiangxi, China
| | - Yao Huang
- School of Life Science, NanChang University, Nanchang, Jiangxi, China
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Gaili Fan
- Xiamen Greening Administration Centre, Xiamen, China
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical Garden, Chinese Academy of Science, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Chen L, Cai M, Liu J, Jiang X, Liu J, Zhenxing W, Wang Y, Li Y. Genome-wide identification and expression analyses of SWEET gene family reveal potential roles in plant development, fruit ripening and abiotic stress responses in cranberry ( Vaccinium macrocarpon Ait). PeerJ 2024; 12:e17974. [PMID: 39308825 PMCID: PMC11416763 DOI: 10.7717/peerj.17974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
The sugars will eventually be exported transporter (SWEET) family is a novel class of sugar transporters that play a crucial role in plant growth, development, and responses to stress. Cranberry (Vaccinium macrocarpon Ait.) is a nutritious berry with economic importance, but little is known about SWEET gene family functions in this small fruit. In this research, 13 VmSWEET genes belonging to four clades were identified in the cranberry genome for the first time. In the conserved domains, we observed seven phosphorylation sites and four amino acid residues that might be crucial for the binding function. The majority of VmSWEET genes in each clade shared similar gene structures and conserved motifs, showing that the VmSWEET genes were highly conserved during evolution. Chromosomal localization and duplication analyses showed that VmSWEET genes were unevenly distributed in eight chromosomes and two pairs of them displayed synteny. A total of 79 cis-acting elements were predicted in the promoter regions of VmSWEETs including elements responsive to plant hormones, light, growth and development and stress responses. qRT-PCR analysis showed that VmSWEET10.1 was highly expressed in flowers, VmSWEET16 was highly expressed in upright and runner stems, and VmSWEET3 was highly expressed in the leaves of both types of stems. In fruit, the expression of VmSWEET14 and VmSWEET16 was highest of all members during the young fruit stage and were downregulated as fruit matured. The expression of VmSWEET4 was higher during later developmental stages than earlier developmental stages. Furthermore, qRT-PCR results revealed a significant up-regulation of VmSWEET10.2, under osmotic, saline, salt-alkali, and aluminum stress conditions, suggesting it has a crucial role in mediating plant responses to various environmental stresses. Overall, these results provide new insights into the characteristics and evolution of VmSWEET genes. Moreover, the candidate VmSWEET genes involved in the growth, development and abiotic stress responses can be used for molecular breeding to improve cranberry fruit quality and abiotic stress resistance.
Collapse
Affiliation(s)
- Li Chen
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Mingyu Cai
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiaxin Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Xuxin Jiang
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Jiayi Liu
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Wang Zhenxing
- Jilin Agricultural University, College of Horticulture, Changchun, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yadong Li
- Jilin Agricultural University, College of Horticulture, Changchun, China
| |
Collapse
|
5
|
Narayanan KK, Weigle AT, Xu L, Mi X, Zhang C, Chen LQ, Procko E, Shukla D. Deep mutational scanning reveals sequence to function constraints for SWEET family transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601307. [PMID: 39005363 PMCID: PMC11244857 DOI: 10.1101/2024.06.28.601307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Protein science is entering a transformative phase enabled by deep mutational scans that provide an unbiased view of the residue level interactions that mediate function. However, it has yet to be extensively used to characterize the mutational and evolutionary landscapes of plant proteins. Here, we apply the method to explore sequence-function relationships within the sugar transporter AtSWEET13. DMS results describe how mutational interrogation throughout different regions of the protein affects AtSWEET13 abundance and transport function. Our results identify novel transport-enhancing mutations that are validated using the FRET sensor assays. Extending DMS results to phylogenetic analyses reveal the role of transmembrane helix 4 (TM4) which makes the SWEET family transporters distinct from prokaryotic SemiSWEETs. We show that transmembrane helix 4 is intolerant to motif swapping with other clade-specific SWEET TM4 compositions, despite accommodating single point-mutations towards aromatic and charged polar amino acids. We further show that the transfer learning approaches based on physics and ML based In silico variant prediction tools have limited utility for engineering plant proteins as they were unable to reproduce our experimental results. We conclude that DMS can produce datasets which, when combined with the right predictive computational frameworks, can direct plant engineering efforts through derivative phenotype selection and evolutionary insights.
Collapse
Affiliation(s)
- Krishna K. Narayanan
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Austin T. Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lingyun Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xuenan Mi
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chen Zhang
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Erik Procko
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cyrus Biotechnology, Inc., Seattle, Washington 98121, United States
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering; Department of Plant Biology; Department of Bioengineering; Department of Chemistry, Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Weigle AT, Shukla D. The Arabidopsis AtSWEET13 transporter discriminates sugars by selective facial and positional substrate recognition. Commun Biol 2024; 7:764. [PMID: 38914639 PMCID: PMC11196581 DOI: 10.1038/s42003-024-06291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Transporters are targeted by endogenous metabolites and exogenous molecules to reach cellular destinations, but it is generally not understood how different substrate classes exploit the same transporter's mechanism. Any disclosure of plasticity in transporter mechanism when treated with different substrates becomes critical for developing general selectivity principles in membrane transport catalysis. Using extensive molecular dynamics simulations with an enhanced sampling approach, we select the Arabidopsis sugar transporter AtSWEET13 as a model system to identify the basis for glucose versus sucrose molecular recognition and transport. Here we find that AtSWEET13 chemical selectivity originates from a conserved substrate facial selectivity demonstrated when committing alternate access, despite mono-/di-saccharides experiencing differing degrees of conformational and positional freedom throughout other stages of transport. However, substrate interactions with structural hallmarks associated with known functional annotations can help reinforce selective preferences in molecular transport.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Diwakar Shukla
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Gupta A, Sankararamakrishnan R. Substrate selectivity and unique sequence signatures in SWEET/semiSWEET homologs of four taxonomic groups: Sequence analysis and phylogenetic studies. Proteins 2024. [PMID: 38243636 DOI: 10.1002/prot.26670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
The recently discovered SWEET (Sugar Will Eventually be Exported Transporter) proteins are involved in the selective transport of monosaccharides and disaccharides. The prokaryotic counterparts, semiSWEETs, form dimers with each monomer forming a triple-helix transmembrane bundle (THB). The longer eukaryotic SWEETs have seven transmembrane helices with two THBs and a linker helix. Structures of semiSWEETs/SWEETs have been determined experimentally. Experimental studies revealed the role of plant SWEETs in vital physiological processes and identified residues responsible for substrate selectivity. However, SWEETs/semiSWEETs from metazoans and bacteria are not characterized. In this study, we used structure-based sequence alignment and compared more than 2000 SWEET/semiSWEETs from four different taxonomic groups. Conservation of residue/chemical property was examined at all positions. Properties of clades/subclades of phylogenetic trees from each taxonomic group were analyzed. Conservation pattern of known residues in the selectivity-filter was used to predict the substrate preference of plant SWEETs and some clusters of metazoans and bacteria. Some residues at the gating and substrate-binding regions, pore-facing positions and at the helix-helix interface are conserved across all taxonomic groups. Conservation of polar/charged residues at specific pore-facing positions, helix-helix interface and in loops seems to be unique for plant SWEETs. Overall, the number of conserved residues is less in metazoan SWEETs. Plant and metazoan SWEETs exhibit high conservation of four and three proline residues respectively in "proline tetrad." Further experimental studies can validate the predicted substrate selectivity and significance of conserved polar/charged/aromatic residues at structurally and functionally important positions of SWEETs/semiSWEETs in plants, metazoans and bacteria.
Collapse
Affiliation(s)
- Ankita Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ramasubbu Sankararamakrishnan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
8
|
Maor-Landaw K, Eisenhut M, Tortorelli G, van de Meene A, Kurz S, Segal G, van Oppen MJH, Weber APM, McFadden GI. A candidate transporter allowing symbiotic dinoflagellates to feed their coral hosts. ISME COMMUNICATIONS 2023; 3:7. [PMID: 36709382 PMCID: PMC9884229 DOI: 10.1038/s43705-023-00218-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
The symbiotic partnership between corals and dinoflagellate algae is crucial to coral reefs. Corals provide their algal symbionts with shelter, carbon dioxide and nitrogen. In exchange, the symbiotic algae supply their animal hosts with fixed carbon in the form of glucose. But how glucose is transferred from the algal symbiont to the animal host is unknown. We reasoned that a transporter resident in the dinoflagellate cell membrane would facilitate outward transfer of glucose to the surrounding host animal tissue. We identified a candidate transporter in the cnidarian symbiont dinoflagellate Breviolum minutum that belongs to the ubiquitous family of facilitative sugar uniporters known as SWEETs (sugars will eventually be exported transporters). Previous gene expression analyses had shown that BmSWEET1 is upregulated when the algae are living symbiotically in a cnidarian host by comparison to the free-living state [1, 2]. We used immunofluorescence microscopy to localise BmSWEET1 in the dinoflagellate cell membrane. Substrate preference assays in a yeast surrogate transport system showed that BmSWEET1 transports glucose. Quantitative microscopy showed that symbiotic B. minutum cells have significantly more BmSWEET1 protein than free-living cells of the same strain, consistent with export during symbiosis but not during the free-living, planktonic phase. Thus, BmSWEET1 is in the right place, at the right time, and has the right substrate to be the transporter with which symbiotic dinoflagellate algae feed their animal hosts to power coral reefs.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Marion Eisenhut
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Giada Tortorelli
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
- Coral Resilience Lab, Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | | | - Samantha Kurz
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Gabriela Segal
- Biological Optical Microscopy Platform, The University of Melbourne, Parkville, VIC, Australia
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Zhu J, Zhou L, Li T, Ruan Y, Zhang A, Dong X, Zhu Y, Li C, Fan J. Genome-Wide Investigation and Characterization of SWEET Gene Family with Focus on Their Evolution and Expression during Hormone and Abiotic Stress Response in Maize. Genes (Basel) 2022; 13:genes13101682. [PMID: 36292567 PMCID: PMC9601529 DOI: 10.3390/genes13101682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022] Open
Abstract
The sugar will eventually be exported transporters (SWEET) family is an important group of transport carriers for carbon partitioning in plants and has important functions in growth, development, and abiotic stress tolerance. Although the SWEET family is an important sugar transporter, little is known of the functions of the SWEET family in maize (Zea mays), especially in response to abiotic stresses. To further explore the response pattern of maize SWEET to abiotic stress, a bioinformatics-based approach was used to predict and identify the maize SWEET gene (ZmSWEET) family. Twenty-four ZmSWEET genes were identified using the MaizeGDB database. Phylogenetic analysis resolved these twenty-four genes into four clades. One tandem and five segmental duplication events were identified, which played a major role in ZmSWEET family expansion. Synteny analysis provided insight into the evolutionary characteristics of the ZmSWEET genes with those of three graminaceous crop species. A heatmap showed that most ZmSWEET genes responded to at least one type of abiotic stress. By an abscisic acid signaling pathway, among which five genes were significantly induced under NaCl treatment, eight were obviously up-regulated under PEG treatment and five were up-regulated under Cd stress, revealing their potential functions in response to abiotic stress. These findings will help to explain the evolutionary links of the ZmSWEET family and contribute to future studies on the functional characteristics of ZmSWEET genes, and then improve abiotic stress tolerance in maize through molecular breeding.
Collapse
Affiliation(s)
- Jialun Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianfeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanshu Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| | - Jinjuan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
- Correspondence: (C.L.); (J.F.)
| |
Collapse
|
10
|
Fleet J, Ansari M, Pittman JK. Phylogenetic analysis and structural prediction reveal the potential functional diversity between green algae SWEET transporters. FRONTIERS IN PLANT SCIENCE 2022; 13:960133. [PMID: 36186040 PMCID: PMC9520054 DOI: 10.3389/fpls.2022.960133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Sugar-Will-Eventually-be-Exported-Transporters (SWEETs) are an important family of sugar transporters that appear to be ubiquitous in all organisms. Recent research has determined the structure of SWEETs in higher plants, identified specific residues required for monosaccharide or disaccharide transport, and begun to understand the specific functions of individual plant SWEET proteins. However, in green algae (Chlorophyta) these transporters are poorly characterised. This study identified SWEET proteins from across representative Chlorophyta with the aim to characterise their phylogenetic relationships and perform protein structure modelling in order to inform functional prediction. The algal genomes analysed encoded between one and six SWEET proteins, which is much less than a typical higher plant. Phylogenetic analysis identified distinct clusters of over 70 SWEET protein sequences, taken from almost 30 algal genomes. These clusters remain separate from representative higher or non-vascular plant SWEETs, but are close to fungi SWEETs. Subcellular localisation predictions and analysis of conserved amino acid residues revealed variation between SWEET proteins of different clusters, suggesting different functionality. These findings also showed conservation of key residues at the substrate-binding site, indicating a similar mechanism of substrate selectivity and transport to previously characterised higher plant monosaccharide-transporting SWEET proteins. Future work is now required to confirm the predicted sugar transport specificity and determine the functional role of these algal SWEET proteins.
Collapse
Affiliation(s)
- Jack Fleet
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| | - Mujtaba Ansari
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jon K. Pittman
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Characterization of the SWEET Gene Family in Longan (Dimocarpus longan) and the Role of DlSWEET1 in Cold Tolerance. Int J Mol Sci 2022; 23:ijms23168914. [PMID: 36012186 PMCID: PMC9408694 DOI: 10.3390/ijms23168914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Sugars will eventually be exported transporters (SWEET), a group of relatively novel sugar transporters, that play important roles in phloem loading, seed and fruit development, pollen development, and stress response in plants. Longan (Dimocarpus longan), a subtropic fruit tree with high economic value, is sensitive to cold. However, whether the SWEET gene family plays a role in conferring cold tolerance upon longan remains unknown. Here, a total of 20 longan SWEET (DlSWEET) genes were identified, and their phylogenetic relationships, gene structures, cis-acting elements, and tissue-specific expression patterns were systematically analyzed. This family is divided into four clades. Gene structures and motifs analyses indicated that the majority of DlSWEETs in each clade shared similar exon–intron organization and conserved motifs. Tissue-specific gene expression suggested diverse possible functions for DlSWEET genes. Cis-elements analysis and quantitative real-time PCR (qRT-PCR) analysis revealed that DlSWEET1 responded to cold stress. Notably, the overexpression of DlSWEET1 improved cold tolerance in transgenic Arabidopsis, suggesting that DlSWEET1 might play a positive role in D. longan’s responses to cold stress. Together, these results contribute to a better understanding of SWEET genes, which could serve as a foundation for the further functional identification of these genes.
Collapse
|
12
|
Xue X, Wang J, Shukla D, Cheung LS, Chen LQ. When SWEETs Turn Tweens: Updates and Perspectives. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:379-403. [PMID: 34910586 DOI: 10.1146/annurev-arplant-070621-093907] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.
Collapse
Affiliation(s)
- Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
13
|
Sugar Transporters in Plasmodiophora brassicae: Genome-Wide Identification and Functional Verification. Int J Mol Sci 2022; 23:ijms23095264. [PMID: 35563657 PMCID: PMC9099952 DOI: 10.3390/ijms23095264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
Plasmodiophora brassicae, an obligate intracellular pathogen, can hijack the host’s carbohydrates for survival. When the host plant is infected by P. brassicae, a large amount of soluble sugar accumulates in the roots, especially glucose, which probably facilitates the development of this pathogen. Although a complete glycolytic and tricarboxylic acid cycle (TCA) cycle existed in P. brassicae, very little information about the hexose transport system has been reported. In this study, we screened 17 putative sugar transporters based on information about their typical domains. The structure of these transporters showed a lot of variation compared with that of other organisms, especially the number of transmembrane helices (TMHs). Phylogenetic analysis indicated that these sugar transporters were far from the evolutionary relationship of other organisms and were unique in P. brassicae. The hexose transport activity assay indicated that eight transporters transported glucose or fructose and could restore the growth of yeast strain EBY.VW4000, which was deficient in hexose transport. The expression level of these glucose transporters was significantly upregulated at the late inoculation time when resting spores and galls were developing and a large amount of energy was needed. Our study provides new insights into the mechanism of P. brassicae survival in host cells by hijacking and utilizing the carbohydrates of the host.
Collapse
|
14
|
McDonald TR, Rizvi MF, Ruiter BL, Roy R, Reinders A, Ward JM. Posttranslational regulation of transporters important for symbiotic interactions. PLANT PHYSIOLOGY 2022; 188:941-954. [PMID: 34850211 PMCID: PMC8825328 DOI: 10.1093/plphys/kiab544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.
Collapse
Affiliation(s)
- Tami R McDonald
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Madeeha F Rizvi
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Bretton L Ruiter
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Rahul Roy
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, St. Paul, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Author for communication:
| |
Collapse
|
15
|
Anjali A, Fatima U, Senthil-Kumar M. The ins and outs of SWEETs in plants: Current understanding of the basics and their prospects in crop improvement. J Biosci 2021. [DOI: 10.1007/s12038-021-00227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Zhang C, Li Y, Wang J, Xue X, Beuchat G, Chen LQ. Two evolutionarily duplicated domains individually and post-transcriptionally control SWEET expression for phloem transport. THE NEW PHYTOLOGIST 2021; 232:1793-1807. [PMID: 34431115 DOI: 10.1111/nph.17688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Cell type-specific gene expression is critical for the specialized functions within multicellular organisms. In Arabidopsis, SWEET11 and SWEET12 sugar transporters are specifically expressed in phloem parenchyma (PP) cells and are responsible for sucrose efflux from the PP, the first step of a two-step apoplasmic phloem-loading strategy that initiates the long-distance transport of sugar from leaves to nonphotosynthetic sink tissues. However, we know nothing about what determines the PP cell-specific expression of these SWEETs. Sequence deletions, histochemical β-glucuronidase (GUS) analysis, cross-sectioning, live-cell imaging, and evolutionary analysis were used to elucidate domains responsible for PP specificity, while a Förster resonance energy transfer (FRET) sensor-based transport assay was used to determine whether substrate specificity coevolved with PP specificity. We identified two domains in the Arabidopsis SWEET11 coding sequence that, along with its promoter (including 5' UTR), regulate PP-specific expression at the post-transcriptional level, probably involving RNA-binding proteins. This mechanism is conserved among vascular plants but independent of transport substrate specificity. We conclude that two evolutionarily duplicated coding sequence domains are essential and individually sufficient for PP-specific expression of SWEET11. We also provide a crucial experimental tool to study PP physiology and development.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ye Li
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, 100081, China
| | - Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gabriel Beuchat
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Podolsky IA, Schauer EE, Seppälä S, O'Malley MA. Identification of novel membrane proteins for improved lignocellulose conversion. Curr Opin Biotechnol 2021; 73:198-204. [PMID: 34482155 DOI: 10.1016/j.copbio.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new membrane proteins that enable the broad uptake of hydrolyzed substrates. Whereas glucose consumption rarely presents a bottleneck for cell factories, there is also a lack of transporters that allow co-consumption of glucose with other abundant biomass sugars such as xylose. This review discusses recent efforts to bioinformatically identify membrane proteins of high biotech potential for lignocellulose conversion and metabolic engineering in both model and nonconventional organisms. Of particular interest are transporters sourced from anaerobic gut fungi resident to large herbivores, which produce Sugars Will Eventually be Exported Transporters (SWEETs) that enhance xylose transport in the yeast Saccharomyces cerevisiae and enable glucose and xylose co-utilization. Additionally, recently identified fungal cellodextrin transporters are valuable alternatives to mitigate glucose repression and transporter inhibition.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elizabeth E Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA.
| |
Collapse
|
18
|
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. PLANT PHYSIOLOGY 2021; 186:836-852. [PMID: 33724398 PMCID: PMC8195505 DOI: 10.1093/plphys/kiab127] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Author for communication:
| | - Hélder Badim
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Ana Margarida Fortes
- Lisbon Science Faculty, BioISI, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga 4710-057, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia 46022, Spain
| |
Collapse
|
19
|
Podolsky IA, Seppälä S, Xu H, Jin YS, O'Malley MA. A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast. Metab Eng 2021; 66:137-147. [PMID: 33887459 DOI: 10.1016/j.ymben.2021.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
In the yeast Saccharomyces cerevisiae, microbial fuels and chemicals production on lignocellulosic hydrolysates is constrained by poor sugar transport. For biotechnological applications, it is desirable to source transporters with novel or enhanced function from nonconventional organisms in complement to engineering known transporters. Here, we identified and functionally screened genes from three strains of early-branching anaerobic fungi (Neocallimastigomycota) that encode sugar transporters from the recently discovered Sugars Will Eventually be Exported Transporter (SWEET) superfamily in Saccharomyces cerevisiae. A novel fungal SWEET, NcSWEET1, was identified that localized to the plasma membrane and complemented growth in a hexose transporter-deficient yeast strain. Single cross-over chimeras were constructed from a leading NcSWEET1 expression-enabling domain paired with all other candidate SWEETs to broadly scan the sequence and functional space for enhanced variants. This led to the identification of a chimera, NcSW1/PfSW2:TM5-7, that enhanced the growth rate significantly on glucose, fructose, and mannose. Additional chimeras with varied cross-over junctions identified residues in TM1 that affect substrate selectivity. Furthermore, we demonstrate that NcSWEET1 and the enhanced NcSW1/PfSW2:TM5-7 variant facilitated novel co-consumption of glucose and xylose in S. cerevisiae. NcSWEET1 utilized 40.1% of both sugars, exceeding the 17.3% utilization demonstrated by the control HXT7(F79S) strain. Our results suggest that SWEETs from anaerobic fungi are beneficial tools for enhancing glucose and xylose co-utilization and offers a promising step towards biotechnological application of SWEETs in S. cerevisiae.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Haiqing Xu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Center for Advanced Bioenergy and Bioproduct Innovation (CABBI), Urbana, IL, 61801, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, USA.
| |
Collapse
|
20
|
Datamining and functional environmental genomics reassess the phylogenetics and functional diversity of fungal monosaccharide transporters. Appl Microbiol Biotechnol 2021; 105:647-660. [PMID: 33394157 DOI: 10.1007/s00253-020-11076-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Sugar transporters are essential components of carbon metabolism and have been extensively studied to control sugar uptake by yeasts and filamentous fungi used in fermentation processes. Based on published information on characterized fungal sugar porters, we show that this protein family encompasses phylogenetically distinct clades. While several clades encompass transporters that seemingly specialized on specific "sugar-related" molecules (e.g., myo-inositol, charged sugar analogs), others include mostly either mono- or di/oligosaccharide low-specificity transporters. To address the issue of substrate specificity of sugar transporters, that protein primary sequences do not fully reveal, we screened "multi-species" soil eukaryotic cDNA libraries for mannose transporters, a sugar that had never been used to select transporters. We obtained 19 environmental transporters, mostly from Basidiomycota and Ascomycota. Among them, one belonged to the unusual "Fucose H+ Symporter" family, which is only known in Fungi for a rhamnose transporter in Aspergillus niger. Functional analysis of the 19 transporters by expression in yeast and for two of them in Xenopus laevis oocytes for electrophysiological measurements indicated that most of them showed a preference for D-mannose over other tested D-C6 (glucose, fructose, galactose) or D-C5 (xylose) sugars. For the several glucose and fructose-negative transporters, growth of the corresponding recombinant yeast strains was prevented on mannose in the presence of one of these sugars that may act by competition for the binding site. Our results highlight the potential of environmental genomics to figure out the functional diversity of key fungal protein families and that can be explored in a context of biotechnology. KEY POINTS: • Most fungal sugar transporters accept several sugars as substrates. • Transporters, belonging to 2 protein families, were isolated from soil cDNA libraries. • Environmental transporters featured novel substrate specificities.
Collapse
|
21
|
Wipf D, Pfister C, Mounier A, Leborgne-Castel N, Frommer WB, Courty PE. Identification of Putative Interactors of Arabidopsis Sugar Transporters. TRENDS IN PLANT SCIENCE 2021; 26:13-22. [PMID: 33071187 DOI: 10.1016/j.tplants.2020.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Hexoses and disaccharides are the key carbon sources for essentially all physiological processes across kingdoms. In plants, sucrose, and in some cases raffinose and stachyose, are transported from the site of synthesis in leaves, the sources, to all other organs that depend on import, the sinks. Sugars also play key roles in interactions with beneficial and pathogenic microbes. Sugar transport is mediated by transport proteins that fall into super-families. Sugar transporter (ST) activity is tuned at different levels, including transcriptional and posttranslational levels. Understanding the ST interactome has a great potential to uncover important players in biologically and physiologically relevant processes, including, but not limited to Arabidopsis thaliana. Here, we combined ST interactions and coexpression studies to identify potentially relevant interaction networks.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Carole Pfister
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Wolf B Frommer
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Université de Bourgogne, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
22
|
Zhang R, Niu K, Ma H. Identification and Expression Analysis of the SWEET Gene Family from Poa pratensis Under Abiotic Stresses. DNA Cell Biol 2020; 39:1606-1620. [PMID: 32749870 DOI: 10.1089/dna.2020.5418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The sugars will eventually be exported transporters (SWEET) gene family is a glycoprotein gene family that can regulate the transport of sugar in plants and plays an important role in plant growth and development, as well as in response to environmental stress. In this study, Kentucky bluegrass (cv. Baron) seedlings were grown in various treatments, including heavy metal cadmium, salt, drought, cold, and heat stress for 6 h, 24 h, 48 h, and 7 day. The relative expression of the identified PpSWEET genes in Kentucky bluegrass was measured. The results showed there were a total of 13 SWEET genes, which could be divided into four clades by phylogenetic analysis. Most PpSWEET genes are alkali proteins with seven transmembrane helices. Moreover, almost all PpSWEET proteins possess similar conserved motifs and active sites. In addition, an analysis of the relative expression of PpSWEET genes under various stress treatments indicated that PpSWEET12 and PpSWEET15 had very high expression under the five types of stress, meaning they can be used as important candidate genes for studying responses to environmental stresses of turfgrass. Furthermore, certain genes only showed changes in expression under one or two specific stress treatments. This study provides important insight into the SWEET gene family in Kentucky bluegrass and its functional roles in responses to various environmental stresses.
Collapse
Affiliation(s)
- Ran Zhang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China.,Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou, China
| | - Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China.,Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China.,Key Laboratory of Grassland Ecosystems, The Ministry of Education of China, Lanzhou, China
| |
Collapse
|
23
|
Willson BJ, Chapman LNM, Thomas GH. Evolutionary dynamics of membrane transporters and channels: enhancing function through fusion. Curr Opin Genet Dev 2019; 58-59:76-86. [DOI: 10.1016/j.gde.2019.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
|
24
|
Cheng KJ, Selvam B, Chen LQ, Shukla D. Distinct Substrate Transport Mechanism Identified in Homologous Sugar Transporters. J Phys Chem B 2019; 123:8411-8418. [DOI: 10.1021/acs.jpcb.9b08257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kevin J. Cheng
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
- Department of Plant Biology, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Champaign, Illinois 61801, United States
| |
Collapse
|
25
|
Hu B, Wu H, Huang W, Song J, Zhou Y, Lin Y. SWEET Gene Family in Medicago truncatula: Genome-Wide Identification, Expression and Substrate Specificity Analysis. PLANTS 2019; 8:plants8090338. [PMID: 31505820 PMCID: PMC6783836 DOI: 10.3390/plants8090338] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
SWEET (Sugars Will Eventually be Exported Transporter) proteins mediate the translocation of sugars across cell membranes and play crucial roles in plant growth and development as well as stress responses. In this study, a total of 25 SWEET genes were identified from the Medicago truncatula genome and were divided into four clades based on the phylogenetic analysis. The MtSWEET genes are distributed unevenly on the M. truncatula chromosomes, and eight and 12 MtSWEET genes are segmentally and tandemly duplicated, respectively. Most MtSWEET genes contain five introns and encode proteins with seven transmembrane helices (TMHs). Besides, nearly all MtSWEET proteins have relatively conserved membrane domains, and contain conserved active sites. Analysis of microarray data showed that some MtSWEET genes are specifically expressed in disparate developmental stages or tissues, such as flowers, developing seeds and nodules. RNA-seq and qRT-PCR expression analysis indicated that many MtSWEET genes are responsive to various abiotic stresses such as cold, drought, and salt treatments. Functional analysis of six selected MtSWEETs in yeast revealed that they possess diverse transport activities for sucrose, fructose, glucose, galactose, and mannose. These results provide new insights into the characteristics of the MtSWEET genes, which lay a solid foundation for further investigating their functional roles in the developmental processes and stress responses of M. truncatula.
Collapse
Affiliation(s)
- Bin Hu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hao Wu
- Henry Fok Collge of Life Sciences, Shaoguan University, Shaoguan 512005, China.
| | - Weifeng Huang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianbo Song
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yong Zhou
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Jeena GS, Kumar S, Shukla RK. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. PLANT MOLECULAR BIOLOGY 2019; 100:351-365. [PMID: 31030374 DOI: 10.1007/s11103-019-00872-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 05/21/2023]
Abstract
Present review describes the structure, evolution, transport mechanism and physiological functions of SWEETs. Their application using TALENs and CRISPR/CAS9 based genomic editing approach is discussed. Sugars Will Eventually be Exported Transporters (SWEET) proteins were first identified in plants as the novel family of sugar transporters which mediates the translocation of sugars across cell membranes. The SWEET family of sugar transporters is unique in terms of their structure which contains seven predicted transmembrane domains with two internal triple-helix bundles which possibly originate due to prokaryotic gene duplication. SWEETs perform diverse physiological functions such as pollen nutrition, nectar secretion, seed filling, phloem loading, and pathogen nutrition which we have discussed in the present review. We also discuss how transcriptional activator-like effector nucleases (TALENs) and CRISPR/CAS9 genome editing tools are used to engineer SWEET mutants which modulate pathogen resistance in plants and its applications in the field of agriculture. The expression of SWEETs promises to implement insights into many other cellular transport mechanisms. To conclude, the present review highlights the recent aspects which will further develop better understanding of molecular evolution, structure, and function of SWEET transporters in plants.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Sunil Kumar
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India.
| |
Collapse
|
27
|
Youkharibache P. Protodomains: Symmetry-Related Supersecondary Structures in Proteins and Self-Complementarity. Methods Mol Biol 2019; 1958:187-219. [PMID: 30945220 PMCID: PMC8323591 DOI: 10.1007/978-1-4939-9161-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We will consider in this chapter supersecondary structures (SSS) as a set of secondary structure elements (SSEs) found in protein domains. Some SSS arrangements/topologies have been consistently observed within known tertiary structural domains. We use them in the context of repeating supersecondary structures that self-assemble in a symmetric arrangement to form a domain. We call them protodomains (or protofolds). Protodomains are some of the most interesting and insightful SSSs. Within a given 3D protein domain/fold, recognizing such sets may give insights into a possible evolutionary process of duplication, fusion, and coevolution of these protodomains, pointing to possible original protogenes. On protein folding itself, pseudosymmetric domains may point to a "directed" assembly of pseudosymmetric protodomains, directed by the only fact that they are tethered together in a protein chain. On function, tertiary functional sites often occur at protodomain interfaces, as they often occur at domain-domain interfaces in quaternary arrangements.First, we will briefly review some lessons learned from a previously published census of pseudosymmetry in protein domains (Myers-Turnbull, D. et al., J Mol Biol. 426:2255-2268, 2014) to introduce protodomains/protofolds. We will observe that the most abundant and diversified folds, or superfolds, in the currently known protein structure universe are indeed pseudosymmetric. Then, we will learn by example and select a few domain representatives of important pseudosymmetric folds and chief among them the immunoglobulin (Ig) fold and go over a pseudosymmetry supersecondary structure (protodomain) analysis in tertiary and quaternary structures. We will point to currently available software tools to help in identifying pseudosymmetry, delineating protodomains, and see how the study of pseudosymmetry and the underlying supersecondary structures can enrich a structural analysis. This should potentially help in protein engineering, especially in the development of biologics and immunoengineering.
Collapse
|
28
|
Zhang D, Kan X, Huss SE, Jiang L, Chen LQ, Hu Y. Using Phylogenetic Analysis to Investigate Eukaryotic Gene Origin. J Vis Exp 2018:56684. [PMID: 30175990 PMCID: PMC6126798 DOI: 10.3791/56684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phylogenetic analysis uses nucleotide or amino acid sequences or other parameters, such as domain sequences and three-dimensional structure, to construct a tree to show the evolutionary relationship among different taxa (classification units) at the molecular level. Phylogenetic analysis can also be used to investigate domain relationships within an individual taxon, particularly for organisms that have undergone substantial change in morphology and physiology, but for which researchers lack fossil evidence due to the organisms' long evolutionary history or scarcity of fossilization. In this text, a detailed protocol is described for using the phylogenetic method, including amino acid sequence alignment using Clustal Omega, and subsequent phylogenetic tree construction using both Maximum Likelihood (ML) of Molecular Evolutionary Genetics Analysis (MEGA) and Bayesian Inference via MrBayes. To investigate the origin of eukaryotic Sugars Will Eventually be Exported Transporters (SWEET) genes, 228 SWEETs including 35 SWEET proteins from unicellular eukaryotes and 57 SemiSWEET proteins from prokaryotes were analyzed. Interestingly, SemiSWEETs were found in prokaryotes, but SWEETs were found in eukaryotes. Two phylogenetic trees constructed using theoretically distinct methods have consistently suggested that the first eukaryotic SWEET gene might stem from the fusion of a bacterial SemiSWEET gene and an archaeal SemiSWEET gene. It is worth noting that one should be cautious to draw a conclusion based only on phylogenetic analysis, although it is useful to explain the underlying relationship between different taxa, which is difficult or even impossible to discern through experimental means.
Collapse
Affiliation(s)
- Dechun Zhang
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University
| | | | - Lan Jiang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign
| | - Yibing Hu
- College of Resources & Environmental Sciences, Nanjing Agricultural University;
| |
Collapse
|
29
|
Gao Y, Wang ZY, Kumar V, Xu XF, Yuan DP, Zhu XF, Li TY, Jia B, Xuan YH. Genome-wide identification of the SWEET gene family in wheat. Gene 2017; 642:284-292. [PMID: 29155326 DOI: 10.1016/j.gene.2017.11.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022]
Abstract
The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes.
Collapse
Affiliation(s)
- Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Zi Yuan Wang
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Vikranth Kumar
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Xiao Feng Xu
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Tian Ya Li
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Baolei Jia
- School of Bioengineering, Qilu University of Technology, Jinan 250353, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China.
| |
Collapse
|
30
|
Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, Liu Q, He S. The Plasma Membrane-Localized Sucrose Transporter IbSWEET10 Contributes to the Resistance of Sweet Potato to Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2017; 8:197. [PMID: 28261250 PMCID: PMC5306249 DOI: 10.3389/fpls.2017.00197] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/01/2017] [Indexed: 05/04/2023]
Abstract
SWEET (Sugars Will Eventually be Exported Transporter) proteins, a novel family of sugar transporters, mediate the diffusion of sugars across cell membranes and acts as key players in sucrose phloem loading. Manipulation of SWEET genes in plants leads to various effects on resistance to biotic and abiotic stresses due to disruption of sugar efflux and changes in sugar distribution. In this study, a member of the SWEET gene family, IbSWEET10, was cloned from the sweet potato line ND98. mRNA expression analysis in sweet potato and promoter β-Glucuronidase analysis in Arabidopsis showed that IbSWEET10 is highly expressed in leaves, especially in vascular tissue. Transient expression in tobacco epidermal cells revealed plasma membrane localization of IbSWEET10, and heterologous expression assays in yeast indicated that IbSWEET10 encodes a sucrose transporter. The expression level of IbSWEET10 was significantly up-regulated in sweet potato infected with Fusarium oxysporum Schlecht. f. sp. batatas. Further characterization revealed IbSWEET10-overexpressing sweet potato lines to be more resistant to F. oxysporum, exhibiting better growth after infection compared with the control; conversely, RNA interference (RNAi) lines showed the opposite results. Additionally, the sugar content of IbSWEET10-overexpression sweet potato was significantly reduced, whereas that in RNAi plants was significantly increased compared with the control. Therefore, we suggest that the reduction in sugar content caused by IbSWEET10 overexpression is the major reason for the enhanced F. oxysporum resistance of the transgenic plants. This is the first report that the IbSWEET10 transporter contributes to the resistance of sweet potato to F. oxysporum. The IbSWEET10 gene has the great potential to be used for improving the resistance to F. oxysporum in sweet potato and other plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingchang Liu
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural UniversityBeijing, China
| | - Shaozhen He
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural UniversityBeijing, China
| |
Collapse
|
31
|
Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, Chen LQ, Jeon CO, Xuan YH. Integrative View of the Diversity and Evolution of SWEET and SemiSWEET Sugar Transporters. FRONTIERS IN PLANT SCIENCE 2017; 8:2178. [PMID: 29326750 PMCID: PMC5742349 DOI: 10.3389/fpls.2017.02178] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/12/2017] [Indexed: 05/21/2023]
Abstract
Sugars Will Eventually be Exported Transporter (SWEET) and SemiSWEET are recently characterized families of sugar transporters in eukaryotes and prokaryotes, respectively. SemiSWEETs contain 3 transmembrane helices (TMHs), while SWEETs contain 7. Here, we performed sequence-based comprehensive analyses for SWEETs and SemiSWEETs across the biosphere. In total, 3,249 proteins were identified and ≈60% proteins were found in green plants and Oomycota, which include a number of important plant pathogens. Protein sequence similarity networks indicate that proteins from different organisms are significantly clustered. Of note, SemiSWEETs with 3 or 4 TMHs that may fuse to SWEET were identified in plant genomes. 7-TMH SWEETs were found in bacteria, implying that SemiSWEET can be fused directly in prokaryote. 15-TMH extraSWEET and 25-TMH superSWEET were also observed in wild rice and oomycetes, respectively. The transporters can be classified into 4, 2, 2, and 2 clades in plants, Metazoa, unicellular eukaryotes, and prokaryotes, respectively. The consensus and coevolution of amino acids in SWEETs were identified by multiple sequence alignments. The functions of the highly conserved residues were analyzed by molecular dynamics analysis. The 19 most highly conserved residues in the SWEETs were further confirmed by point mutagenesis using SWEET1 from Arabidopsis thaliana. The results proved that the conserved residues located in the extrafacial gate (Y57, G58, G131, and P191), the substrate binding pocket (N73, N192, and W176), and the intrafacial gate (P43, Y83, F87, P145, M161, P162, and Q202) play important roles for substrate recognition and transport processes. Taken together, our analyses provide a foundation for understanding the diversity, classification, and evolution of SWEETs and SemiSWEETs using large-scale sequence analysis and further show that gene duplication and gene fusion are important factors driving the evolution of SWEETs.
Collapse
Affiliation(s)
- Baolei Jia
- School of Bioengineering, Qilu University of Technology, Jinan, China
- Department of Life Sciences, Chung-Ang University, Seoul, South Korea
- *Correspondence: Baolei Jia
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhong Ji Pu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yu Xi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lu Jiang Hao
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Jie Zhang
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Che Ok Jeon
- Department of Life Sciences, Chung-Ang University, Seoul, South Korea
- Che Ok Jeon
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Yuan Hu Xuan
| |
Collapse
|