1
|
Maujean T, Ramanoudjame SM, Riché S, Le Guen C, Boisson F, Muller S, Bonnet D, Gulea M, Marchand P. Hetero-Diels-Alder and CuAAC Click Reactions for Fluorine-18 Labeling of Peptides: Automation and Comparative Study of the Two Methods. Molecules 2024; 29:3198. [PMID: 38999148 PMCID: PMC11243578 DOI: 10.3390/molecules29133198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Radiolabeled peptides are valuable tools for diagnosis or therapies; they are often radiofluorinated using an indirect approach based on an F-18 prosthetic group. Herein, we are reporting our results on the F-18 radiolabeling of three peptides using two different methods based on click reactions. The first one used the well-known CuAAC reaction, and the second one is based on our recently reported hetero-Diels-Alder (HDA) using a dithioesters (thia-Diels-Alder) reaction. Both methods have been automated, and the 18F-peptides were obtained in similar yields and synthesis time (37-39% decay corrected yields by both methods in 120-140 min). However, to obtain similar yields, the CuAAC needs a large amount of copper along with many additives, while the HDA is a catalyst and metal-free reaction necessitating only an appropriate ratio of water/ethanol. The HDA can therefore be considered as a minimalist method offering easy access to fluorine-18 labeled peptides and making it a valuable additional tool for the indirect and site-specific labeling of peptides or biomolecules.
Collapse
Affiliation(s)
- Timothé Maujean
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Sridévi M. Ramanoudjame
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Stéphanie Riché
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Clothilde Le Guen
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
- Inovarion, F-75005 Paris, France
| | - Frédéric Boisson
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sylviane Muller
- Université de Strasbourg, CNRS, Biotechnologie et Signalisation Cellulaire UMR 7242, F-67000 Strasbourg, France
| | - Dominique Bonnet
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Mihaela Gulea
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
2
|
Phạm TTT, Murza A, Marsault É, Frampton JP, Rainey JK. Localized apelin-17 analogue-bicelle interactions as a facilitator of membrane-catalyzed receptor recognition and binding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184289. [PMID: 38278504 DOI: 10.1016/j.bbamem.2024.184289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The apelinergic system encompasses two peptide ligand families, apelin and apela, along with the apelin receptor (AR or APJ), a class A G-protein-coupled receptor. This system has diverse physiological effects, including modulating heart contraction, vasodilation/constriction, glucose regulation, and vascular development, with involvement in a variety of pathological conditions. Apelin peptides have been previously shown to interact with and become structured upon binding to anionic micelles, consistent with a membrane-catalyzed mechanism of ligand-receptor binding. To overcome the challenges of observing nuclear magnetic resonance (NMR) spectroscopy signals of a dilute peptide in biological environments, 19F NMR spectroscopy, including diffusion ordered spectroscopy (DOSY) and saturation transfer difference (STD) experiments, was used herein to explore the membrane-interactive behaviour of apelin. NMR-optimized apelin-17 analogues with 4-trifluoromethyl-phenylalanine at various positions were designed and tested for bioactivity through ERK activation in stably-AR transfected HEK 293 T cells. Far-UV circular dichroism (CD) spectropolarimetry and 19F NMR spectroscopy were used to compare the membrane interactions of these analogues with unlabelled apelin-17 in both zwitterionic/neutral and net-negative bicelle conditions. Each analogue binds to bicelles with relatively weak affinity (i.e., in fast exchange on the NMR timescale), with preferential interactions observed at the cationic residue-rich N-terminal and mid-length regions of the peptide leaving the C-terminal end unencumbered for receptor recognition, enabling a membrane-anchored fly-casting mechanism of peptide search for the receptor. In all, this study provides further insight into the membrane-interactive behaviour of an important bioactive peptide, demonstrating interactions and biophysical behaviour that cannot be neglected in therapeutic design.
Collapse
Affiliation(s)
- Trần Thanh Tâm Phạm
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alexandre Murza
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - John P Frampton
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
3
|
Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res 2023; 119:2683-2696. [PMID: 37956047 PMCID: PMC10757586 DOI: 10.1093/cvr/cvad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
| | | | - Neeraj Dhaun
- BHF/University of Edinburgh Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Liu Y, Jiang M, Li Y, Chen P, Chen X. Advances in the study of ELABELA in renal physiological functions and related diseases. Front Pharmacol 2023; 14:1276488. [PMID: 38026926 PMCID: PMC10644379 DOI: 10.3389/fphar.2023.1276488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly expressed in human embryonic, cardiac, and renal tissues and involves various biological functions, such as embryonic development, blood circulation regulation, and maintaining body fluid homeostasis. ELA is also closely related to the occurrence and development of acute kidney injury, hypertensive kidney damage, diabetic nephropathy, renal tumors, and other diseases. Understanding the physiological role of ELA and its mechanism of action in kidney-related diseases would provide new targets and directions for the clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- YuRong Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - MingChun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Yue Li
- Department of Anatomy, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Peng Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - XiaoYu Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| |
Collapse
|
5
|
Hong Y, Li J, Zhong Y, Yang S, Pei L, Huang Z, Chen X, Wu H, Zheng G, Zeng C, Wu H, Wang T. Elabela inhibits TRAF1/NF-κB induced oxidative DNA damage to promote diabetic foot ulcer wound healing. iScience 2023; 26:107601. [PMID: 37664606 PMCID: PMC10469767 DOI: 10.1016/j.isci.2023.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a serious complication of diabetes. Elabela (ELA), a ligand of apelin receptor (APJ), was shown to promote angiogenesis and suppress inflammation. This study aimed to illustrate the role of ELA in DFU wound healing. A whole-skin defect model was constructed using db/m and db/db mice to observe the effects of ELA on wound healing. The function of ELA in endothelial cells cultured in high glucose medium was investigated. Administration of ELA in peri-wound area of db/db mice accelerated wound closure and reduced inflammatory infiltration. Indicators of DNA damage, elevated reactive oxygen species (ROS) levels and tail DNA amounts, were downregulated by ELA but compromised after TRAF1 overexpression. ELA-mediated inhibition of NF-κB phosphorylation improved cell migration and angiogenesis, which were blocked by APJ silencing. The findings imply that ELA suppresses TRAF1-mediated NF-κB signal activation, reducing ROS-related oxidative DNA damage and improving protection of endothelial function.
Collapse
Affiliation(s)
- Yinghui Hong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Jun Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Yinsheng Zhong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Shujun Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Liying Pei
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Zijie Huang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Hao Wu
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Guanghui Zheng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chaotao Zeng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518003, P.R. China
| |
Collapse
|
6
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
7
|
Chen Z, Luo X, Liu M, Jiang J, Li Y, Huang Z, Wang L, Cao J, He L, Huang S, Hu H, Li L, Chen L. Elabela-apelin-12, 17, 36/APJ system promotes platelet aggregation and thrombosis via activating the PANX1-P2X7 signaling pathway. J Cell Biochem 2023; 124:586-605. [PMID: 36855998 DOI: 10.1002/jcb.30392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/31/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
The elabela-apelin/angiotensin domain type 1 receptor-associated protein (APJ) system is an important regulator in certain thrombosis-related diseases such as atherosclerosis, myocardial infarction, and cerebral infarction. Our previous reports have revealed that apelin exacerbates atherosclerotic lesions. However, the relationship between the elabela-apelin/APJ system and platelet aggregation and atherothrombosis is unclear. The results of the present study demonstrate that elabela and other endogenous ligands such as apelin-12, -17, and -36 induce platelet aggregation and thrombosis by activating the pannexin1(PANX1)-P2X7 signaling pathway. Interestingly, the diuretic, spironolactone, a novel PANX1 inhibitor, alleviated elabela- and apelin isoforms-induced platelet aggregation and thrombosis. Significantly, two potential antithrombotic drugs were screened out by targeting APJ receptors, including the anti-HIV ancillary drug cobicistat and the traditional Chinese medicine monomer Schisandrin A. Both cobicistat and Schisandrin A abolished the effects of elabela and apelin isoforms on platelet aggregation, thrombosis, and cerebral infarction. In addition, cobicistat significantly attenuated thrombosis in a ponatinib-induced zebrafish trunk model. Overall, the elabela-apelin/APJ axis mediated platelet aggregation and thrombosis via the PANX1-P2X7 signaling pathway in vitro and in vivo. Blocking the APJ receptor with cobicistat/Schisandrin A or inhibiting PANX1 with spironolactone may provide novel therapeutic strategies against thrombosis.
Collapse
Affiliation(s)
- Zhe Chen
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xuling Luo
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Meiqing Liu
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jinyong Jiang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yao Li
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhen Huang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lingzhi Wang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jiangang Cao
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lu He
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shifang Huang
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haoliang Hu
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Changde Research Center for Artificial Intelligence and Biomedicine, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lanfang Li
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang Medical School, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
8
|
Murali S, Aradhyam GK. Structure-function relationship and physiological role of apelin and its G protein coupled receptor. Biophys Rev 2023; 15:127-143. [PMID: 36919024 PMCID: PMC9995629 DOI: 10.1007/s12551-023-01044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Apelin receptor (APJR) is a class A peptide (apelin) binding G protein-coupled receptor (GPCR) that plays a significant role in regulating blood pressure, cardiac output, and maintenance of fluid homeostasis. It is activated by a wide range of endogenous peptide isoforms of apelin and elabela. The apelin peptide isoforms contain distinct structural features that aid in ligand recognition and activation of the receptor. Site-directed mutagenesis and structure-based studies have revealed the involvement of extracellular and transmembrane regions of the receptor in binding to the peptide isoforms. The structural features of APJR activation of the receptor as well as mediating G-protein and β-arrestin-mediated signaling are delineated by multiple mutagenesis studies. There is increasing evidence that the structural requirements of APJR to activate G-proteins and β-arrestins are different, leading to biased signaling. APJR also responds to mechanical stimuli in a ligand-independent manner. A multitude of studies has focused on developing both peptide and non-peptide agonists and antagonists specific to APJR. Apelin/elabela-activated APJR orchestrates major signaling pathways such as extracellular signal-regulated kinase (ERKs), protein kinase B (PKB/Akt), and p70S. This review focuses on the structural and functional characteristics of apelin, elabela, APJR, and their interactions involved in the binding and activation of the downstream signaling cascade. We also focus on the diverse signaling profile of APJR and its ligands and their involvement in various physiological systems.
Collapse
Affiliation(s)
- Subhashree Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
9
|
Foris V, Kovacs G, Avian A, Bálint Z, Douschan P, Ghanim B, Klepetko W, Olschewski A, Olschewski H. Apelin-17 to diagnose idiopathic pulmonary arterial hypertension: A biomarker study. Front Physiol 2023; 13:986295. [PMID: 36685176 PMCID: PMC9846527 DOI: 10.3389/fphys.2022.986295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Background: NT-proBNP and GDF-15 are established blood-derived biomarkers for risk assessment in pulmonary hypertension (PH), despite limited sensitivity and specificity. Apelin has a crucial function in endothelial homeostasis, thus it might represent a new biomarker for PH. However, there are numerous circulating apelin isoforms, and their potential role in this setting is unknown. This study evaluated different apelin isoforms in PH patients and prospectively evaluated the role of apelin-17 in comparison with NT-proBNP and GDF-15 as diagnostic marker in idiopathic pulmonary arterial hypertension (IPAH). Methods: Based on our pilot study, we performed a power calculation for apelin-13, apelin-17, apelin-36, as predictor of IPAH vs healthy controls. Apelin-17 provided the best discriminatory power, and accordingly, we enrolled n = 31 patients with IPAH and n = 31 matched healthy controls in a prospective study. NT-proBNP and GDF-15 was determined in all patients. ROC curve analysis was performed to assess the diagnostic value of the markers and their combinations. Results: Apelin-17, NT-proBNP, and GDF-15 were significantly elevated in IPAH patients as compared to controls (p < .001). Apelin-17 detected IPAH with a sensitivity of 68% and a specificity of 93% at a cut-off value of >1,480 pg/ml (AUC 0.86, 95%CI:0.76-0.95) as compared to GDF-15 (sensitivity 86%; specificity 72%, AUC 0.81 (95%CI:0.7-0.92)) and NT-proBNP (sensitivity 86%; specificity 72% (AUC 0.85, 95%CI:0.75-0.95)). Combinations of these markers could be used to increase either specificity or sensitivity. Conclusion: Apelin-17 appears to be suitable blood derived diagnostic marker for idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Vasile Foris
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,*Correspondence: Vasile Foris,
| | - Gabor Kovacs
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Alexander Avian
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Faculty of Physics, Babes-Bolyai University Cluj-Napoca, Cluj-Napoca, Romania
| | - Philipp Douschan
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Bahil Ghanim
- Division of General and Thoracic Surgery, University Hospital Krems, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria,Experimental Anesthesiology, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
10
|
Janssens P, Decuypere JP, Bammens B, Llorens-Cortes C, Vennekens R, Mekahli D. The emerging role of the apelinergic system in kidney physiology and disease. Nephrol Dial Transplant 2022; 37:2314-2326. [PMID: 33744967 DOI: 10.1093/ndt/gfab070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
The apelinergic system (AS) is a novel pleiotropic system with an essential role in renal and cardiovascular physiology and disease, including water homeostasis and blood pressure regulation. It consists of two highly conserved peptide ligands, apelin and apela, and a G-protein-coupled apelin receptor. The two ligands have many isoforms and a short half-life and exert both similar and divergent effects. Vasopressin, apelin and their receptors colocalize in hypothalamic regions essential for body fluid homeostasis and interact at the central and renal levels to regulate water homeostasis and diuresis in inverse directions. In addition, the AS and renin-angiotensin system interact both systemically and in the kidney, with implications for the cardiovascular system. A role for the AS in diverse pathological states, including disorders of sodium and water balance, hypertension, heart failure, pre-eclampsia, acute kidney injury, sepsis and diabetic nephropathy, has recently been reported. Furthermore, several metabolically stable apelin analogues have been developed, with potential applications in diverse diseases. We review here what is currently known about the physiological functions of the AS, focusing on renal, cardiovascular and metabolic homeostasis, and the role of the AS in associated diseases. We also describe several hurdles and research opportunities worthy of the attention of the nephrology community.
Collapse
Affiliation(s)
- Peter Janssens
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussell), Department of Nephrology, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Jean-Paul Decuypere
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Bert Bammens
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.,Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, Collège de France, INSERM U1050, CNRS UMR 7241, Paris, France
| | - Rudi Vennekens
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB-KU Leuven Center for Brain and Disease, KU Leuven, Leuven, Belgium and
| | - Djalila Mekahli
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Department of Pediatric Nephrology and Organ Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Girault-Sotias PE, De Mota N, Llorens-Cortès C. [Physiological role of the apelin receptor: implication in body fluid homeostasis and hyponatremia]. Biol Aujourdhui 2022; 215:119-132. [PMID: 35275056 DOI: 10.1051/jbio/2021012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 06/14/2023]
Abstract
Apelin, a vasoactive neuropeptide, its receptor and arginine-vasopressin (AVP, antidiuretic hormone) are co-localized in magnocellular vasopressinergic neurons. In the kidney, the apelin receptor is present in glomerular arterioles and the collecting duct (CD) where the AVP type 2 (V2-R) receptors are located. Apelin exerts an aquaretic action both by its inhibitory effect on the phasic electrical activity of vasopressinergic neurons and the secretion of AVP into the bloodstream and by its direct actions at the kidney level resulting in an increase in the renal microcirculation and the inhibition of the antidiuretic effect of AVP mediated by V2-R in the CD. Plasma apelin and AVP are conversely regulated by osmotic stimuli in both humans and rodents, showing that apelin is involved with AVP in maintaining body fluid homeostasis. Clinically, in patients with inappropriate antidiuresis syndrome (SIAD), the apelin/AVP balance is altered, which contributes to water metabolism defect. Activation of the apelin receptor by the metabolically stable apelin-17 analog, that increases aqueous diuresis and moderately water intake and gradually corrects hyponatremia, may constitute a new approach for the treatment of SIAD.
Collapse
Affiliation(s)
- Pierre-Emmanuel Girault-Sotias
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| | - Nadia De Mota
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| | - Catherine Llorens-Cortès
- Laboratoire « Neuropeptides centraux et régulations hydrique et cardiovasculaire », Centre Interdisciplinaire de Recherche en Biologie, INSERM U1050, Collège de France, Paris, France
| |
Collapse
|
12
|
Tran K, Sainsily X, Côté J, Coquerel D, Couvineau P, Saibi S, Haroune L, Besserer-Offroy É, Flynn-Robitaille J, Resua Rojas M, Murza A, Longpré JM, Auger-Messier M, Lesur O, Bouvier M, Marsault É, Boudreault PL, Sarret P. Size-Reduced Macrocyclic Analogues of [Pyr 1]-apelin-13 Showing Negative Gα 12 Bias Still Produce Prolonged Cardiac Effects. J Med Chem 2022; 65:531-551. [PMID: 34982553 DOI: 10.1021/acs.jmedchem.1c01708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported a series of macrocyclic analogues of [Pyr1]-apelin-13 (Ape13) with increased plasma stability and potent APJ agonist properties. Based on the most promising compound in this series, we synthesized and then evaluated novel macrocyclic compounds of Ape13 to identify agonists with specific pharmacological profiles. These efforts led to the development of analogues 39 and 40, which possess reduced molecular weight (MW 1020 Da vs Ape13, 1534 Da). Interestingly, compound 39 (Ki 0.6 nM), which does not activate the Gα12 signaling pathway while maintaining potency and efficacy similar to Ape13 to activate Gαi1 (EC50 0.8 nM) and β-arrestin2 recruitment (EC50 31 nM), still exerts cardiac actions. In addition, analogue 40 (Ki 5.6 nM), exhibiting a favorable Gα12-biased signaling and an increased in vivo half-life (t1/2 3.7 h vs <1 min of Ape13), produces a sustained cardiac response up to 6 h after a single subcutaneous bolus injection.
Collapse
Affiliation(s)
- Kien Tran
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - David Coquerel
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre Couvineau
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montreal H3T 1J4, Québec, Canada
| | - Sabrina Saibi
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Lounès Haroune
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Élie Besserer-Offroy
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California 90095, United States
| | | | - Martin Resua Rojas
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Mannix Auger-Messier
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Olivier Lesur
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Michel Bouvier
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montreal H3T 1J4, Québec, Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| |
Collapse
|
13
|
de Oliveira AA, Vergara A, Wang X, Vederas JC, Oudit GY. Apelin pathway in cardiovascular, kidney, and metabolic diseases: Therapeutic role of apelin analogs and apelin receptor agonists. Peptides 2022; 147:170697. [PMID: 34801627 DOI: 10.1016/j.peptides.2021.170697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
The apelin/apelin receptor (ApelinR) signal transduction pathway exerts essential biological roles, particularly in the cardiovascular system. Disturbances in the apelin/ApelinR axis are linked to vascular, heart, kidney, and metabolic disorders. Therefore, the apelinergic system has surfaced as a critical therapeutic strategy for cardiovascular diseases (including pulmonary arterial hypertension), kidney disease, insulin resistance, hyponatremia, preeclampsia, and erectile dysfunction. However, apelin peptides are susceptible to rapid degradation through endogenous peptidases, limiting their use as therapeutic tools and translational potential. These proteases include angiotensin converting enzyme 2, neutral endopeptidase, and kallikrein thereby linking the apelin pathway with other peptide systems. In this context, apelin analogs with enhanced proteolytic stability and synthetic ApelinR agonists emerged as promising pharmacological alternatives. In this review, we focus on discussing the putative roles of the apelin pathway in various physiological systems from function to dysfunction, and emphasizing the therapeutic potential of newly generated metabolically stable apelin analogs and non-peptide ApelinR agonists.
Collapse
Affiliation(s)
- Amanda A de Oliveira
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ander Vergara
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaopu Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Fernandez KX, Fischer C, Vu J, Gheblawi M, Wang W, Gottschalk S, Iturrioz X, Llorens-Cortés C, Oudit GY, Vederas JC. Metabolically stable apelin-analogues, incorporating cyclohexylalanine and homoarginine, as potent apelin receptor activators. RSC Med Chem 2021; 12:1402-1413. [PMID: 34458742 DOI: 10.1039/d1md00120e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
High blood pressure and consequential cardiovascular diseases are among the top causes of death worldwide. The apelinergic (APJ) system has emerged as a promising target for the treatment of cardiovascular issues, especially prevention of ischemia reperfusion (IR) injury after a heart attack or stroke. However, rapid degradation of the endogenous apelin peptides in vivo limits their use as therapeutic agents. Here, we study the effects of simple homologue substitutions, i.e. incorporation of non-canonical amino acids l-cyclohexylalanine (l-Cha) and l-homoarginine (l-hArg), on the proteolytic stability of pyr-1-apelin-13 and apelin-17 analogues. The modified 13-mers display up to 40 times longer plasma half-life than native apelin-13 and in preliminary in vivo assay show moderate blood pressure-lowering effects. The corresponding apelin-17 analogues show pronounced blood pressure-lowering effects and up to a 340-fold increase in plasma half-life compared to the native apelin-17 isoforms, suggesting their potential use in the design of metabolically stable apelin analogues to prevent IR injury.
Collapse
Affiliation(s)
- Kleinberg X Fernandez
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive NW Edmonton Alberta T6G 2G2 Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive NW Edmonton Alberta T6G 2G2 Canada
| | - Jennie Vu
- Department of Physiology, University of Alberta 8440-112 Street NW Edmonton Alberta T6G 2B7 Canada
| | - Mahmoud Gheblawi
- Department of Physiology, University of Alberta 8440-112 Street NW Edmonton Alberta T6G 2B7 Canada.,Mazankowski Alberta Heart Institute, University of Alberta 8440-112 St. NW Edmonton Alberta T6G 2B7 Canada
| | - Wang Wang
- Department of Physiology, University of Alberta 8440-112 Street NW Edmonton Alberta T6G 2B7 Canada.,Department of Medicine, University of Alberta 8440-112 Street NW Edmonton Alberta T6G 2B7 Canada
| | - Samantha Gottschalk
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive NW Edmonton Alberta T6G 2G2 Canada
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM 1050 Paris F-75005 France.,Center for Interdisciplinary Research in Biology (CIRB), College de France Paris F-75005 France.,CNRS UMR 7241 Paris F-75005 France
| | - Catherine Llorens-Cortés
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM 1050 Paris F-75005 France.,Center for Interdisciplinary Research in Biology (CIRB), College de France Paris F-75005 France.,CNRS UMR 7241 Paris F-75005 France
| | - Gavin Y Oudit
- Department of Physiology, University of Alberta 8440-112 Street NW Edmonton Alberta T6G 2B7 Canada.,Mazankowski Alberta Heart Institute, University of Alberta 8440-112 St. NW Edmonton Alberta T6G 2B7 Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta 11227 Saskatchewan Drive NW Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
15
|
Flahault A, Keck M, Girault-Sotias PE, Esteoulle L, De Mota N, Bonnet D, Llorens-Cortes C. LIT01-196, a Metabolically Stable Apelin-17 Analog, Normalizes Blood Pressure in Hypertensive DOCA-Salt Rats via a NO Synthase-dependent Mechanism. Front Pharmacol 2021; 12:715095. [PMID: 34393794 PMCID: PMC8359812 DOI: 10.3389/fphar.2021.715095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
Apelin is a neuro-vasoactive peptide that plays a major role in the control of cardiovascular functions and water balance, but has an in-vivo half-life in the minute range, limiting its therapeutic use. We previously developed LIT01-196, a systemically active metabolically stable apelin-17 analog, produced by chemical addition of a fluorocarbon chain to the N-terminal part of apelin-17. LIT01-196 behaves as a potent full agonist for the apelin receptor and has an in vivo half-life in the bloodstream of 28 min after intravenous (i.v.) and 156 min after subcutaneous (s.c.) administrations in conscious normotensive rats. We aimed to investigate the effects of LIT01-196 following systemic administrations on arterial blood pressure, heart rate, fluid balance and electrolytes in conscious normotensive and hypertensive deoxycorticosterone acetate (DOCA)-salt rats. Acute i.v. LIT01-196 administration, in increasing doses, dose-dependently decreases arterial blood pressure with ED50 values of 9.8 and 3.1 nmol/kg in normotensive and hypertensive rats, respectively. This effect occurs for both via a nitric oxide-dependent mechanism. Moreover, acute s.c. LIT01-196 administration (90 nmol/kg) normalizes arterial blood pressure in conscious hypertensive DOCA-salt rats for more than 7 h. The LIT01-196-induced blood pressure decrease remains unchanged after 4 consecutive daily s.c. administrations of 90 nmol/kg, and does not induce any alteration of plasma sodium and potassium levels and kidney function as shown by the lack of change in plasma creatinine and urea nitrogen levels. Activating the apelin receptor with LIT01-196 may constitute a novel approach for the treatment of hypertension.
Collapse
Affiliation(s)
- Adrien Flahault
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Mathilde Keck
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Pierre-Emmanuel Girault-Sotias
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Lucie Esteoulle
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, Illkirch, France
| | - Nadia De Mota
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Labex MEDALIS, Faculté de Pharmacie, Illkirch, France
| | - Catherine Llorens-Cortes
- College de France, Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050/CNRS UMR7241, Paris, France
| |
Collapse
|
16
|
Castan-Laurell I, Dray C, Valet P. The therapeutic potentials of apelin in obesity-associated diseases. Mol Cell Endocrinol 2021; 529:111278. [PMID: 33838166 DOI: 10.1016/j.mce.2021.111278] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023]
Abstract
Apelin, a peptide with several active isoforms ranging from 36 to 12 amino acids and its receptor APJ, a G-protein-coupled receptor, are widely distributed. However, apelin has emerged as an adipokine more than fifteen years ago, integrating the field of inter-organs interactions. The apelin/APJ system plays important roles in several physiological functions both in rodent and humans such as fluid homeostasis, cardiovascular physiology, angiogenesis, energy metabolism. Thus the apelin/APJ system has generated great interest as a potential therapeutic target in different pathologies. The present review will consider the effects of apelin in metabolic diseases such as obesity and diabetes with a focus on diabetic cardiomyopathy among the complications associated with diabetes and APJ agonists or antagonists of interest in these diseases.
Collapse
Affiliation(s)
- I Castan-Laurell
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France.
| | - C Dray
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France
| | - P Valet
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France
| |
Collapse
|
17
|
Mughal A, Sun C, O'Rourke ST. Apelin Does Not Impair Coronary Artery Relaxation Mediated by Nitric Oxide-Induced Activation of BK Ca Channels. Front Pharmacol 2021; 12:679005. [PMID: 34122102 PMCID: PMC8194342 DOI: 10.3389/fphar.2021.679005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Apelin-APJ receptor signaling regulates vascular tone in cerebral and peripheral arteries. We recently reported that apelin inhibits BKCa channel function in cerebral arteries, resulting in impaired endothelium-dependent relaxations. In contrast, apelin causes endothelium-dependent relaxation of coronary arteries. However, the effects of apelin on BKCa channel function in coronary arterial myocytes have not yet been explored. We hypothesized that apelin-APJ receptor signaling does not have an inhibitory effect on coronary arterial BKCa channels and hence does not alter nitric oxide (NO)-dependent relaxation of coronary arteries. Patch clamp recording was used to measure whole cell K+ currents in freshly isolated coronary smooth muscle cells. Apelin had no effect on the increases in current density in response to membrane depolarization or to NS1619 (a BKCa channel opener). Moreover, apelin did not inhibit NO/cGMP-dependent relaxations that required activation of BKCa channels in isolated coronary arteries. Apelin-APJ receptor signaling caused a marked increase in intracellular Ca2+ levels in coronary arterial smooth muscle cells, but failed to activate PI3-kinase to increase phosphorylation of Akt protein. Collectively, these data provide mechanistic evidence that apelin has no inhibitory effects on BKCa channel function in coronary arteries. The lack of inhibitory effect on BKCa channels makes it unlikely that activation of APJ receptors in coronary arteries would adversely affect coronary flow by creating a vasoconstrictive environment. It can be expected that apelin or other APJ receptor agonists in development will not interfere with the vasodilator effects of endogenous BKCa channel openers.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
18
|
Hmazzou R, Marc Y, Flahault A, Gerbier R, De Mota N, Llorens-Cortes C. Brain ACE2 activation following brain aminopeptidase A blockade by firibastat in salt-dependent hypertension. Clin Sci (Lond) 2021; 135:775-791. [PMID: 33683322 DOI: 10.1042/cs20201385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
In the brain, aminopeptidase A (APA), a membrane-bound zinc metalloprotease, generates angiotensin III from angiotensin II. Brain angiotensin III exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive rats and increases vasopressin release. Blocking brain angiotensin III formation by the APA inhibitor prodrug RB150/firibastat normalizes arterial BP in hypertensive deoxycorticosterone acetate (DOCA)-salt rats without inducing angiotensin II accumulation. We therefore hypothesized that another metabolic pathway of brain angiotensin II, such as the conversion of angiotensin II into angiotensin 1-7 (Ang 1-7) by angiotensin-converting enzyme 2 (ACE2) might be activated following brain APA inhibition. We found that the intracerebroventricular (icv) administration of RB150/firibastat in conscious DOCA-salt rats both inhibited brain APA activity and induced an increase in brain ACE2 activity. Then, we showed that the decreases in BP and vasopressin release resulting from brain APA inhibition with RB150/firibastat were reduced if ACE2 was concomitantly inhibited by MLN4760, a potent ACE2 inhibitor, or if the Mas receptor (MasR) was blocked by A779, a MasR antagonist. Our findings suggest that in the brain, the increase in ACE2 activity resulting from APA inhibition by RB150/firibastat treatment, subsequently increasing Ang 1-7 and activating the MasR while blocking angiotensin III formation, contributes to the antihypertensive effect and the decrease in vasopressin release induced by RB150/firibastat. RB150/firibastat treatment constitutes an interesting therapeutic approach to improve BP control in hypertensive patients by inducing in the brain renin-angiotensin system, hyperactivity of the beneficial ACE2/Ang 1-7/MasR axis while decreasing that of the deleterious APA/Ang II/Ang III/ATI receptor axis.
Collapse
Affiliation(s)
- Reda Hmazzou
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Yannick Marc
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Quantum Genomics SA, Paris F-75015, France
| | - Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
- Université René Descartes, "Ecole doctorale MTCI n°563", Paris F-75270, France
| | - Romain Gerbier
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM U1050, Paris F-75231 France
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris F-75231 France
| |
Collapse
|
19
|
Hu G, Wang Z, Zhang R, Sun W, Chen X. The Role of Apelin/Apelin Receptor in Energy Metabolism and Water Homeostasis: A Comprehensive Narrative Review. Front Physiol 2021; 12:632886. [PMID: 33679444 PMCID: PMC7928310 DOI: 10.3389/fphys.2021.632886] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The apelin receptor (APJ) is a member of the family A of G-protein-coupled receptors (GPCRs) and is involved in range of physiological and pathological functions, including fluid homeostasis, anxiety, and depression, as well as cardiovascular and metabolic disorders. APJ was classically described as a monomeric transmembrane receptor that forms a ternary complex together with its ligand and associated G proteins. More recently, increasing evidence indicates that APJ may interact with other GPCRs to form heterodimers, which may selectively modulate distinct intracellular signal transduction pathways. Besides, the apelin/APJ system plays important roles in the physiology and pathophysiology of several organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis, or inflammation. Additionally, the apelin/APJ system is widely expressed in the central nervous system, especially in neurons and oligodendrocytes. This article reviews the role of apelin/APJ in energy metabolism and water homeostasis. Compared with the traditional diuretics, apelin exerts a positive inotropic effect on the heart, while increases water excretion. Therefore, drugs targeting apelin/APJ system undoubtedly provide more therapeutic options for patients with congestive heart failure accompanied with hyponatremia. To provide more precise guidance for the development of clinical drugs, further in-depth studies are warranted on the metabolism and signaling pathways associated with apelin/APJ system.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhen Wang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Rumin Zhang
- Neurobiology Institute, Jining Medical University, Jining, China
| | - Wenping Sun
- Department of Pathology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| |
Collapse
|
20
|
Flahault A, Girault-Sotias PE, Keck M, Alvear-Perez R, De Mota N, Estéoulle L, Ramanoudjame SM, Iturrioz X, Bonnet D, Llorens-Cortes C. A metabolically stable apelin-17 analog decreases AVP-induced antidiuresis and improves hyponatremia. Nat Commun 2021; 12:305. [PMID: 33436646 PMCID: PMC7804859 DOI: 10.1038/s41467-020-20560-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Apelin and arginine-vasopressin (AVP) are conversely regulated by osmotic stimuli. We therefore hypothesized that activating the apelin receptor (apelin-R) with LIT01-196, a metabolically stable apelin-17 analog, may be beneficial for treating the Syndrome of Inappropriate Antidiuresis, in which AVP hypersecretion leads to hyponatremia. We show that LIT01-196, which behaves as a potent full agonist for the apelin-R, has an in vivo half-life of 156 minutes in the bloodstream after subcutaneous administration in control rats. In collecting ducts, LIT01-196 decreases dDAVP-induced cAMP production and apical cell surface expression of phosphorylated aquaporin 2 via AVP type 2 receptors, leading to an increase in aqueous diuresis. In a rat experimental model of AVP-induced hyponatremia, LIT01-196 subcutaneously administered blocks the antidiuretic effect of AVP and the AVP-induced increase in urinary osmolality and induces a progressive improvement of hyponatremia. Our data suggest that apelin-R activation constitutes an original approach for hyponatremia treatment.
Collapse
Grants
- Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
- Fondation Pour la Recherche en Chimie (Frontier Research in Chemistry Foundation)
- This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM) including financial support for Proof of Concept, CoPoc Apelinatremia 2015-2017 by INSERM Transfert, the Centre National de la Recherche Scientifique, the Université de Strasbourg, the LabEx MEDALIS, the Collège de France, the Agence Nationale de la Recherche "Vie, santé et bien-être 2016" (ANR-16-CE18-0030, FluoroPEP), the Fédération Française de Cardiologie and the FRC (Frontier Research in Chemistry). AF was supported by a fellowship from INSERM (Poste d’Accueil pour Hospitaliers). PEGS was supported by a fellowship from the Fondation pour la Recherche Médicale, grant number “PBR201810007643”. LE and SMR were supported by a fellowship from the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche and the Agence Nationale pour la Recherche, respectively.
Collapse
Affiliation(s)
- Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Pierre-Emmanuel Girault-Sotias
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Mathilde Keck
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Rodrigo Alvear-Perez
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Lucie Estéoulle
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Sridévi M Ramanoudjame
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France
| | - Dominique Bonnet
- Laboratory of Therapeutic Innovation, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique, Faculty of Pharmacy, University of Strasbourg, Illkirch, France.
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology, INSERM, Unit U1050, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7241, Collège de France, Paris, France.
| |
Collapse
|
21
|
Girault-Sotias PE, Gerbier R, Flahault A, de Mota N, Llorens-Cortes C. Apelin and Vasopressin: The Yin and Yang of Water Balance. Front Endocrinol (Lausanne) 2021; 12:735515. [PMID: 34880830 PMCID: PMC8645901 DOI: 10.3389/fendo.2021.735515] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. Experimental data performed in rodents have shown that apelin has an aquaretic effect via its central and renal actions. In the brain, apelin inhibits the phasic electrical activity of vasopressinergic neurons and the release of vasopressin from the posterior pituitary into the bloodstream and in the kidney, apelin regulates renal microcirculation and counteracts in the collecting duct, the antidiuretic effect of vasopressin occurring via the vasopressin receptor type 2. In humans and rodents, if plasma osmolality is increased by hypertonic saline infusion/water deprivation or decreased by water loading, plasma vasopressin and apelin are conversely regulated to maintain body fluid homeostasis. In patients with the syndrome of inappropriate antidiuresis, in which vasopressin hypersecretion leads to hyponatremia, the balance between apelin and vasopressin is significantly altered. In order to re-establish the correct balance, a metabolically stable apelin-17 analog, LIT01-196, was developed, to overcome the problem of the very short half-life (in the minute range) of apelin in vivo. In a rat experimental model of vasopressin-induced hyponatremia, subcutaneously (s.c.) administered LIT01-196 blocks the antidiuretic effect of vasopressin and the vasopressin-induced increase in urinary osmolality, and induces a progressive improvement in hyponatremia, suggesting that apelin receptor activation constitutes an original approach for hyponatremia treatment.
Collapse
|
22
|
Assan D, Huang Y, Mustapha UF, Addah MN, Li G, Chen H. Fish Feed Intake, Feeding Behavior, and the Physiological Response of Apelin to Fasting and Refeeding. Front Endocrinol (Lausanne) 2021; 12:798903. [PMID: 34975769 PMCID: PMC8715717 DOI: 10.3389/fendo.2021.798903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Feed is one of the most important external signals in fish that stimulates its feeding behavior and growth. The intake of feed is the main factor determining efficiency and cost, maximizing production efficiency in a fish farming firm. The physiological mechanism regulating food intake lies between an intricate connection linking central and peripheral signals that are unified in the hypothalamus consequently responding to the release of appetite-regulating genes that eventually induce or hinder appetite, such as apelin; a recently discovered peptide produced by several tissues with diverse physiological actions mediated by its receptor, such as feed regulation. Extrinsic factors have a great influence on food intake and feeding behavior in fish. Under these factors, feeding in fish is decontrolled and the appetite indicators in the brain do not function appropriately thus, in controlling conditions which result in the fluctuations in the expression of these appetite-relating genes, which in turn decrease food consumption. Here, we examine the research advancements in fish feeding behavior regarding dietary selection and preference and identify some key external influences on feed intake and feeding behavior. Also, we present summaries of the results of research findings on apelin as an appetite-regulating hormone in fish. We also identified gaps in knowledge and directions for future research to fully ascertain the functional importance of apelin in fish.
Collapse
Affiliation(s)
- Daniel Assan
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
| | - Yanlin Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Umar Farouk Mustapha
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Mercy Nabila Addah
- Department of Fisheries and Aquatic Resources Management, Faculty of Bioscience, University for Development Studies, Tamale, Ghana
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| | - Huapu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- *Correspondence: Huapu Chen,
| |
Collapse
|
23
|
Trân K, Murza A, Sainsily X, Delile E, Couvineau P, Côté J, Coquerel D, Peloquin M, Auger-Messier M, Bouvier M, Lesur O, Sarret P, Marsault É. Structure-Activity Relationship and Bioactivity of Short Analogues of ELABELA as Agonists of the Apelin Receptor. J Med Chem 2020; 64:602-615. [PMID: 33350824 DOI: 10.1021/acs.jmedchem.0c01547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ELABELA (ELA) is the second endogenous ligand of the apelin receptor (APJ). Although apelin-13 and ELA both target APJ, there is limited information on structure-activity relationship (SAR) of ELA. In the present work, we identified the shortest bioactive C-terminal fragment ELA23-32, which possesses high affinity for APJ (Ki 4.6 nM) and produces cardiorenal effects in vivo similar to those of ELA. SAR studies on conserved residues (Leu25, His26, Val29, Pro30, Phe31, Pro32) show that ELA and apelin-13 may interact differently with APJ. His26 and Val29 emerge as important for ELA binding. Docking and binding experiments suggest that Phe31 of ELA may bind to a tight groove distinct from that of Phe13 of Ape13, while the Phe13 pocket may be occupied by Pro32 of ELA. Further characterization of signaling profiles on the Gαi1, Gα12, and β-arrestin2 pathways reveals the importance of aromatic residue at the Phe31 or Pro32 position for receptor activation.
Collapse
Affiliation(s)
- Kien Trân
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Eugénie Delile
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Pierre Couvineau
- Département de Biochimie et de Médecine Moléculaire & Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Maude Peloquin
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Michel Bouvier
- Département de Biochimie et de Médecine Moléculaire & Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| |
Collapse
|
24
|
Wang C, Xiong M, Yang C, Yang D, Zheng J, Fan Y, Wang S, Gai Y, Lan X, Chen H, Zheng L, Huang K. PEGylated and Acylated Elabela Analogues Show Enhanced Receptor Binding, Prolonged Stability, and Remedy of Acute Kidney Injury. J Med Chem 2020; 63:16028-16042. [PMID: 33290073 DOI: 10.1021/acs.jmedchem.0c01913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI), mostly caused by renal ischemia-reperfusion (I/R) injury and nephrotoxins, is characterized by rapid deterioration in renal-functions without effective drug treatment available. Through activation of a G protein-coupled receptor APJ, a furin-cleaved fragment of Elabela (ELA[22-32], E11), an endogenous APJ ligand, protects against renal I/R injury. However, the poor plasma stability and relatively weak APJ-binding ability of E11 limit its application. To address these issues, we rationally designed and synthesized a set of E11 analogues modified by palmitic acid (Pal) or polyethylene glycol; improved plasma stability and APJ-binding capacity of these analogues were achieved. In cultured renal tubular cells, these analogues protected against hypoxia-reperfusion or cisplatin-caused injury. For renal I/R-injured mice, these analogues showed improved reno-protective effects than E11; notably, Pal-E11 showed therapeutic effects at 24 h post I/R injury. These results present ELA analogues as potential therapeutic options in managing AKI.
Collapse
Affiliation(s)
- Chao Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Mingrui Xiong
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shun Wang
- Department of Blood Transfusion, Wuhan Hospital of Traditional and Western Medicine, Wuhan 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Jourdain de Muizon C, Ramanoudjame SM, Esteoulle L, Ling C, Brou G, Anton N, Vandamme T, Delsuc MA, Bonnet D, Kieffer B. Self-organization Properties of a GPCR-Binding Peptide with a Fluorinated Tail Studied by Fluorine NMR Spectroscopy. Chembiochem 2020; 22:657-661. [PMID: 32986915 DOI: 10.1002/cbic.202000601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Indexed: 12/31/2022]
Abstract
Conjugation of the bioactive apelin-17 peptide with a fluorocarbon chain results in self-organization of the peptide into micelles. Fluorine NMR spectroscopy studies show that the fluoropeptide's micelles are monodisperse, while proton NMR indicates that the peptide moiety remains largely disordered despite micellization. A very fast exchange rate is measured between the free and micellar states of the peptide which enables the number of molecules present in the micelle to be estimated as 200, in agreement with values found by dynamic light scattering measurements.
Collapse
Affiliation(s)
| | - Sridévi M Ramanoudjame
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Lucie Esteoulle
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Claude Ling
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France
| | - Germain Brou
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Nicolas Anton
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Thierry Vandamme
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Marc-André Delsuc
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France.,CASC4DE Le Lodge 20, Avenue du Neuhof, 67100, Strasbourg, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Bruno Kieffer
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France
| |
Collapse
|
26
|
Sidorova M, Studneva I, Bushuev V, Pal'keeva M, Molokoedov A, Veselova O, Ovchinnikov M, Pisarenko O. [MeArg 1, NLe 10]-apelin-12: Optimization of solid-phase synthesis and evaluation of biological properties in vitro and in vivo. Peptides 2020; 129:170320. [PMID: 32380198 DOI: 10.1016/j.peptides.2020.170320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Chemically modified peptide apelin-12 ([MeArg1, NLe10]-apelin12, peptide M) is able to reduce reactive oxygen species (ROS) formation, cell death, and metabolic and ionic homeostasis disorders in experimental myocardial ischemia-reperfusion injury. These beneficial effects indicate the therapeutic potential of this compound in cardiovascular diseases. The goals of this work were to optimize the synthesis of peptide M, and to study its proteolytic stability and effect on the heart function of rabbits with doxorubicin (Dox) cardiomyopathy. We have developed a rational method of solid-phase synthesis of peptide M using the Fmoc methodology in combination with the temporary protection of the guanidine function of arginine residues by protonation (salt formation) during the formation of the amide bond. It avoids the formation of by-products, and simplifies the post-synthetic procedures, providing an increase in the yield of the final product of higher purity. Comparative evaluation of the proteolytic stability of peptide M and apelin-12 in human blood plasma was carried out using 1H NMR spectroscopy. It was shown that the half-life of peptide M in plasma is approximately three times longer than that of apelin-12. Intravenous infusion of increasing doses of peptide M caused a gradual increase in left ventricular (LV) fractional shortening and ejection fraction in rabbits after 8 weeks of Dox administration (2 mg/kg weekly). The effect of the modified peptide on LV systolic dysfunction was significantly more pronounced than the effect of apelin-12, which suggests the promise of using this pharmacological agonist of the APJ receptor in patients with heart failure.
Collapse
Affiliation(s)
- Maria Sidorova
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| | - Irina Studneva
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| | - Valery Bushuev
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| | - Marina Pal'keeva
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| | - Alexander Molokoedov
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| | - Oksana Veselova
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| | - Michael Ovchinnikov
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| | - Oleg Pisarenko
- National Medical Research Center for Cardiology, 3rd Cherepkovskaya Str., 15A, 121552 Moscow, Russian Federation.
| |
Collapse
|
27
|
Fischer C. A patent review of apelin receptor (APJR) modulators (2014-2019). Expert Opin Ther Pat 2020; 30:251-261. [DOI: 10.1080/13543776.2020.1731473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
29
|
Mechanism of KLF4 Protection against Acute Liver Injury via Inhibition of Apelin Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6140360. [PMID: 31687083 PMCID: PMC6811788 DOI: 10.1155/2019/6140360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Krüppel-like factor 4 (KLF4) is a key transcription factor that regulates genes involved in the proliferation or differentiation in different tissues. Apelin plays roles in cardiovascular functions, metabolic disease, and homeostatic disorder. However, the biological function of apelin in liver disease is still ongoing. In this study, we investigated the mechanism of KLF4-mediated protection against acute liver injury via the inhibition of the apelin signaling pathway. Mice were intraperitoneally injected with carbon tetrachloride (CCl4; 0.2 mL dissolved in 100 mL olive oil, 10 mL/kg) to establish an acute liver injury model. A KLF4 expression plasmid was injected through the tail vein 48 h before CCl4 treatment. In cultured LX-2 cells, pAd-KLF4 or siRNA KLF4 was overexpressed or knockdown, and the mRNA and protein levels of apelin were determined. The results showed that the apelin serum level in the CCl4-injected group was higher than that of control group, and the expression of apelin in the liver tissues was elevated while KLF4 expression was decreased in the CCl4-injected group compared to the KLF4-plasmid-injected group. HE staining revealed serious hepatocellular steatosis in the CCl4-injected mice, and KLF4 alleviated this steatosis in the mice injected with KLF4 plasmid. In vitro experiments showed that tumor necrosis factor-alpha (TNF-α) could downregulate the transcription and translation levels of apelin in LX-2 cells and also upregulate KLF4 mRNA and protein expression. RT-PCR and Western blotting showed that the overexpression of KLF4 markedly decreased basal apelin expression, but knockdown of KLF4 restored apelin expression in TNF-α-treated LX-2 cells. These in vivo and in vitro experiments suggest that KLF4 plays a key role in inhibiting hepatocellular steatosis in acute liver injury, and that its mechanism might be the inhibition of the apelin signaling pathway.
Collapse
|
30
|
Apelin promotes hepatic fibrosis through ERK signaling in LX-2 cells. Mol Cell Biochem 2019; 460:205-215. [PMID: 31270645 PMCID: PMC6745032 DOI: 10.1007/s11010-019-03581-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
Apelin participates in cardiovascular functions, metabolic disease, and homeostasis disorder. However, the biological function of apelin in liver diseases, especially liver fibrosis is still under investigation. The present study aimed to investigate the expression of apelin in nonalcoholic fatty liver disease (NAFLD) and the mechanism of apelin promoting hepatic fibrosis through ERK signaling in hepatic stellate LX-2 cells. The results showed that the ALT and AST levels in serum were increased in the mice fed HFC. The histological staining revealed that hepatocellular steatosis and ballooning degeneration was severe, and fibrogenesis appeared as increased pericellular collagen deposition along with pericentral (lobular) collagen deposition in the mice fed HFC. Immunochemistry and qRT-PCR results showed that the expression of apelin and profibrotic genes was higher as compared to the control group. The in vitro experiments demonstrated that apelin-13 upregulated the transcription and translation levels of collagen type I (collagen-I) and α-smooth muscle actin (α-SMA) in LX-2 cells. The immunofluorescent staining, qRT-PCR, and Western blot results showed that the overexpression of apelin markedly increased the expression of α-SMA and cyclinD1. The LX-2 cells treated with apelin-13 displayed an increased expression of pERK1/2 in a time-dependent manner, while the pretreatment with PD98059 abolished the apelin-induced expression of α-SMA and cyclinD1. Furthermore, the in vivo and in vitro assays suggested a key role of apelin in promoting liver fibrosis, and the underlying mechanism might be ascribed to the apelin expression of profibrotic genes via ERK signaling pathway.
Collapse
|
31
|
Cardioprotective apelin effects and the cardiac-renal axis: review of existing science and potential therapeutic applications of synthetic and native regulated apelin. J Hum Hypertens 2019; 33:429-435. [PMID: 30659278 DOI: 10.1038/s41371-019-0163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/28/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
First described in 1998, apelin is one of the endogenous ligands of the apelinergic receptor. Since its discovery, its possible role in human physiology and disease has been intensively studied. Apelin is a native cardioprotective agent that the body synthesizes to create atheroprotective, antihypertensive, and regenerative effects in the body. By antagonizing the RAA system, apelin could play an important role in heart failure and hypertension. It is also involved in myocardial protection against ischemia/reperfusion injury, post-ischemic remodeling, and myocardial fibrosis. A small number of studies even suggest that serum apelin levels may be involved the development of life-threatening arrhythmias. All this information generated excitement about potential therapeutic effects in patients with heart failure and myocardial infarction. The therapeutic index of apelin is unknown but is anticipated to be favorable based on the small number of studies. In this review, we summarize the mechanisms by which apelin exerts its cardioprotective effects and its connection with the cardiorenal axis. Also, we report the potential therapeutic applications of synthetic and native regulated apelin. If larger studies can be performed, it is possible that apelin-mediated drug treatment may play a major role for a large number of patients worldwide in the future.
Collapse
|
32
|
Fischer C, Lamer T, Wang W, McKinnie SMK, Iturrioz X, Llorens-Cortes C, Oudit GY, Vederas JC. Plasma kallikrein cleaves and inactivates apelin-17: Palmitoyl- and PEG-extended apelin-17 analogs as metabolically stable blood pressure-lowering agents. Eur J Med Chem 2019; 166:119-124. [PMID: 30690406 DOI: 10.1016/j.ejmech.2019.01.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
Abstract
Apelins are human peptide hormones with various physiological activities, including the moderation of cardiovascular, renal, metabolic and neurological function. Their potency is dependent on and limited by proteolytic degradation in the circulatory system. Here we identify human plasma kallikrein (KLKB1) as a protease that cleaves the first three N-terminal amino acids (KFR) of apelin-17. The cleavage kinetics are similar to neprilysin (NEP), which cleaves within the critical 'RPRL'-motif thereby inactivating apelin. The resulting C-terminal 14-mer after KLKB1 cleavage has much lower biological activity, and the presence of its N-terminal basic arginine seems to negate the blood pressure lowering effect. Based on C-terminally engineered apelin analogs (A2), resistant to angiotensin converting enzyme 2 (ACE2), attachment of an N-terminal C16 fatty acid chain (PALMitoylation) or polyethylene glycol chain (PEGylation) minimizes KLKB1 cleavage of the 17-mers, thereby extending plasma half-life while fully retaining biological activity. The N-terminally PEGylated apelin-17(A2) is a highly protease resistant analog, with excellent apelin receptor activation and pronounced blood pressure lowering effect.
Collapse
Affiliation(s)
- Conrad Fischer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Tess Lamer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Wang Wang
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440-112 St. NW, Edmonton, Alberta, T6G 2B7, Canada
| | - Shaun M K McKinnie
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM, U1050, Paris, F-75005, France; Center for Interdisciplinary Research in Biology (CIRB), College de France, Paris, F-75005, France; CNRS, UMR 7241, Paris, F-75005, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM, U1050, Paris, F-75005, France; Center for Interdisciplinary Research in Biology (CIRB), College de France, Paris, F-75005, France; CNRS, UMR 7241, Paris, F-75005, France
| | - Gavin Y Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440-112 St. NW, Edmonton, Alberta, T6G 2B7, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
33
|
Castan-Laurell I, Masri B, Valet P. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opin Ther Targets 2019; 23:215-225. [PMID: 30570369 DOI: 10.1080/14728222.2019.1561871] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Apelin, a bioactive peptide, is the endogenous ligand of APJ, a G protein-coupled receptor which is widely expressed in peripheral tissues and in the central nervous system. The apelin/APJ system is involved in the regulation of various physiological functions and is a therapeutic target in different pathologies; the development of APJ agonists and antagonists has thus increased. Area covered: This review focuses on the in vitro and in vivo metabolic effects of apelin in physiological conditions and in the context of metabolic diseases. Expert opinion: In experimental models, novel APJ agonists are efficient in vivo, to treat metabolic diseases and associated complications. However, more clinical trials are necessary to determine whether molecules that target APJ could become an alternative therapeutic strategy in the treatment of metabolic diseases and associated complications.
Collapse
Affiliation(s)
- Isabelle Castan-Laurell
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Bernard Masri
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Philippe Valet
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| |
Collapse
|
34
|
Gao LR, Zhang NK, Zhang Y, Chen Y, Wang L, Zhu Y, Tang HH. Overexpression of apelin in Wharton' jelly mesenchymal stem cell reverses insulin resistance and promotes pancreatic β cell proliferation in type 2 diabetic rats. Stem Cell Res Ther 2018; 9:339. [PMID: 30526660 PMCID: PMC6286553 DOI: 10.1186/s13287-018-1084-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Apelin plays a key beneficial role in energy metabolism by increasing glucose uptake and insulin sensitivity; however, apelin has a short half-life because it is rapidly cleared from the circulation limiting its therapeutic benefit. The aim of this study is to create a new approach to treat type 2 diabetes by inducing prolonged expression of apelin in Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs). Methods A type 2 diabetic rat model was given a high-fat diet combined with low-dose streptozotocin (STZ) injection. The human WJ-MSCs were isolated and subsequently transduced with apelin-expressing lentiviral particles (WJMSCs-apelin), and expression was verified by flow cytometry, Western blot, ELISA, and RT-PCR analysis. Type 2 diabetic rats were infused with either WJMSCs-apelin (2 × 106 cells) or an equivalent dose of saline through the tail vein injection 7 days after STZ injection. The therapeutic effects of each infusion group were evaluated by monitoring plasma glucose levels and performing glucose tolerance tests (OGTTs), insulin tolerance tests (IPITTs), confocal microscopy, and immunocytochemical analysis for quantitating islet beta cells. Plasma inflammatory cytokines IL-6 and TNF-α and anti-inflammatory factors adiponectin were measured as well. Results Type 2 diabetic rats infused with WJ-MSCs-apelin significantly decreased levels of blood glucose (from 26.03 ± 2.83 to 15.85 ± 2.13 mmol/L on 7 days P < 0.001, and to 9.41 ± 2.05 on 14 days, P < 0.001). Infusion of WJMSCs-apelin not only improved significantly insulin sensitivity and glucose disposal, but also promoted endogenous pancreatic ß cell proliferation (9.6-fold increase compared to the control group). Furthermore, infusion of the WJMSCs-apelin consistently increased insulin and C-peptide levels in the plasma, and the above effects persisted up to 42 days. The inflammatory cytokines IL-6 and TNF-α were significantly decreased, whereas anti-inflammatory factor adiponectin was significantly increased after WJ-MSC-apelin infusion. Conclusion In this study, we report a novel approach to treat type 2 diabetic rats that combines apelin gene therapy with WJ-MSC cell therapy, which could provide a promising therapeutic option for management of type 2 diabetes clinically.
Collapse
Affiliation(s)
- Lian Ru Gao
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Ning Kun Zhang
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Yan Zhang
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Yu Chen
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Li Wang
- Department of Internal Medicine, The 413th Hospital of P.L.A. 98 Wenhua Road Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Ying Zhu
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China
| | - Hai Hong Tang
- Center of Cardiology, The Sixth Medical Center of P.L.A. General Hospital (Former Navy General Hospital), NO.6 Fucheng Road, Beijing, Haidian District, 100048, People's Republic of China.
| |
Collapse
|
35
|
O’Harte FPM, Parthsarathy V, Hogg C, Flatt PR. Long-term treatment with acylated analogues of apelin-13 amide ameliorates diabetes and improves lipid profile of high-fat fed mice. PLoS One 2018; 13:e0202350. [PMID: 30157220 PMCID: PMC6114795 DOI: 10.1371/journal.pone.0202350] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/01/2018] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that modified apelin analogues exhibited enzyme resistance in plasma and improved circulating half-life compared to apelin-13. This study investigated the antidiabetic effects of chronic administration of stable long acting fatty acid modified apelin analogues, namely, (Lys8GluPAL)apelin-13 amide and pGlu(Lys8GluPAL)apelin-13 amide, in high-fat fed obese-diabetic mice. Male NIH Swiss mice (groups n = 8) were maintained either on a high-fat diet (45% fat) from 8 to 28 weeks old, or control mice were fed a normal diet (10% fat). When diet induced obesity-diabetes was established after high-fat feeding, mice were injected i.p. once daily with apelin analogues, liraglutide (25 nmol/kg) or saline (controls). Administration of (Lys8GluPAL)apelin-13 amide and pGlu(Lys8GluPAL)apelin-13 amide for 28 days significantly reduced food intake and decreased body weight. Non-fasting glucose was reduced (p<0.01 to p<0.001) and plasma insulin concentrations increased (p<0.01 to p<0.001). This was accompanied by enhanced insulin responses (p<0.01 to p<0.001) and significant reductions in glucose excursion after oral (p<0.01) or i.p. (p<0.01) glucose challenges and feeding. Apelin analogues also significantly improved HbA1c (p<0.01), enhanced insulin sensitivity (p<0.01), reduced triglycerides (p<0.001), increased HDL-cholesterol (p<0.01) and decreased LDL-cholesterol (p<0.01), compared to high-fat fed saline treated control mice. Cholesterol levels were decreased (p<0.01) by pGlu(Lys8GluPAL)apelin-13 amide and both apelin treated groups showed improved bone mineral content, reduced fat deposits and increased plasma GLP-1. Daily treatment with liraglutide mirrored many of these changes (not on bone or adipose tissue), but unlike apelin analogues increased plasma amylase. Consumption of O2, production of CO2, respiratory exchange ratio and energy expenditure were improved by apelin analogues. These results indicate that long-term treatment with acylated analogues (Lys8GluPAL)apelin-13 amide and particularly pGlu(Lys8GluPAL)apelin-13 amide resulted in similar or enhanced therapeutic responses to liraglutide in high-fat fed mice. Fatty acid derived apelin analogues represent a new and exciting development in the treatment of obesity-diabetes.
Collapse
Affiliation(s)
- Finbarr P. M. O’Harte
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Vadivel Parthsarathy
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Christopher Hogg
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| | - Peter R. Flatt
- School of Biomedical Sciences, SAAD Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
36
|
Abstract
Apelin is a vasoactive peptide and is an endogenous ligand for APJ receptors, which are widely expressed in blood vessels, heart, and cardiovascular regulatory regions of the brain. A growing body of evidence now demonstrates a regulatory role for the apelin/APJ receptor system in cardiovascular physiology and pathophysiology, thus making it a potential target for cardiovascular drug discovery and development. Indeed, ongoing studies are investigating the potential benefits of apelin and apelin-mimetics for disorders such as heart failure and pulmonary arterial hypertension. Apelin causes relaxation of isolated arteries, and systemic administration of apelin typically results in a reduction in systolic and diastolic blood pressure and an increase in blood flow. Nonetheless, vasopressor responses and contraction of vascular smooth muscle in response to apelin have also been observed under certain conditions. The goal of the current review is to summarize major findings regarding the apelin/APJ receptor system in blood vessels, with an emphasis on regulation of vascular tone, and to identify areas of investigation that may provide guidance for the development of novel therapeutic agents that target this system.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University Fargo, ND, USA.
| |
Collapse
|
37
|
Murza A, Trân K, Bruneau-Cossette L, Lesur O, Auger-Messier M, Lavigne P, Sarret P, Marsault É. Apelins, ELABELA, and their derivatives: Peptidic regulators of the cardiovascular system and beyond. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandre Murza
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Kien Trân
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Laurent Bruneau-Cossette
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Olivier Lesur
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Pierre Lavigne
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
- Institut de Pharmacologie de Sherbrooke; Sherbrooke Québec J1H 5N4 Canada
| |
Collapse
|
38
|
Trân K, Murza A, Sainsily X, Coquerel D, Côté J, Belleville K, Haroune L, Longpré JM, Dumaine R, Salvail D, Lesur O, Auger-Messier M, Sarret P, Marsault É. A Systematic Exploration of Macrocyclization in Apelin-13: Impact on Binding, Signaling, Stability, and Cardiovascular Effects. J Med Chem 2018; 61:2266-2277. [DOI: 10.1021/acs.jmedchem.7b01353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kien Trân
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Xavier Sainsily
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Karine Belleville
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Lounès Haroune
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Robert Dumaine
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Dany Salvail
- IPS Thérapeutique Inc., Sherbrooke J1G 5J6, Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
| |
Collapse
|
39
|
Vaudry H, Tonon MC, Vaudry D. Editorial: Trends in Regulatory Peptides. Front Endocrinol (Lausanne) 2018; 9:125. [PMID: 29632516 PMCID: PMC5879090 DOI: 10.3389/fendo.2018.00125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
|
40
|
Abstract
Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G-protein-coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand-AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C-terminal to dibasic proprotein convertase cleavage sites. The C-terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform-dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure-function correlation, with a particular focus on isoform-dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform-dependent pharmacological properties, and biological membrane-mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407-450, 2018.
Collapse
Affiliation(s)
- Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Calem Kenward
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
41
|
Heinonen I, Vuolteenaho O, Koskenvuo J, Arjamaa O, Nikinmaa M. Systemic Hypoxia Increases Circulating Concentration of Apelin in Humans. High Alt Med Biol 2017; 18:292-295. [DOI: 10.1089/ham.2017.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, Turku University Hospital, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku, Finland
- Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olli Vuolteenaho
- Department of Physiology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Juha Koskenvuo
- Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Olli Arjamaa
- Biodiversity Unit, Turku University Hospital, University of Turku, Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
42
|
McKinnie SMK, Wang W, Fischer C, McDonald T, Kalin KR, Iturrioz X, Llorens-Cortes C, Oudit GY, Vederas JC. Synthetic Modification within the “RPRL” Region of Apelin Peptides: Impact on Cardiovascular Activity and Stability to Neprilysin and Plasma Degradation. J Med Chem 2017; 60:6408-6427. [DOI: 10.1021/acs.jmedchem.7b00723] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shaun M. K. McKinnie
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Wang Wang
- Department of Medicine, University of Alberta, 8440-112 Street NW, Edmonton, Alberta T6G 2B7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, 8440-112 Street NW, Edmonton, Alberta T6G 2B7, Canada
| | - Conrad Fischer
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Tyler McDonald
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Kevin R. Kalin
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM, U1050, Paris, F-75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, INSERM, U1050, Paris, F-75005, France
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Paris, F-75005, France
- CNRS, UMR 7241, Paris, F-75005, France
| | - Gavin Y. Oudit
- Department of Medicine, University of Alberta, 8440-112 Street NW, Edmonton, Alberta T6G 2B7, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, 8440-112 Street NW, Edmonton, Alberta T6G 2B7, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
43
|
Flahault A, Couvineau P, Alvear-Perez R, Iturrioz X, Llorens-Cortes C. Role of the Vasopressin/Apelin Balance and Potential Use of Metabolically Stable Apelin Analogs in Water Metabolism Disorders. Front Endocrinol (Lausanne) 2017; 8:120. [PMID: 28620355 PMCID: PMC5450005 DOI: 10.3389/fendo.2017.00120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022] Open
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. In animal models, experimental data demonstrate that intracerebroventricular injection of apelin into lactating rats inhibits the phasic electrical activity of arginine vasopressin (AVP) neurons, reduces plasma AVP levels, and increases aqueous diuresis. In the kidney, apelin increases diuresis by increasing the renal microcirculation and by counteracting the antidiuretic effect of AVP at the tubular level. Moreover, after water deprivation or salt loading, in humans and in rodents, AVP and apelin are conversely regulated to facilitate systemic AVP release and to avoid additional water loss from the kidney. Furthermore, apelin and vasopressin secretion are significantly altered in various water metabolism disorders including hyponatremia and polyuria-polydipsia syndrome. Since the in vivo half-life of apelin is in the minute range, metabolically stable apelin analogs were developed. The efficacy of these lead compounds for decreasing AVP release and increasing both renal blood flow and diuresis, make them promising candidates for the treatment of water retention and/or hyponatremic disorders.
Collapse
Affiliation(s)
- Adrien Flahault
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Pierre Couvineau
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Rodrigo Alvear-Perez
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Xavier Iturrioz
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Center for Interdisciplinary Research in Biology (CIRB), INSERM, U1050/CNRS, UMR 7241, College de France, Paris, France
- *Correspondence: Catherine Llorens-Cortes,
| |
Collapse
|